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p
pion cloud

 Probing resonances experimentally is “hard”

 confirmation 
 production mechanism [couplings]
 identification of prominent decay channels 
 couplings to decay channels

experimental demands

theoretical demands  structural understanding

|niQCD = c0 + c1 + c2 + c3 + · · ·

Resonances in experiments



9. Quantum chromodynamics 31

Notwithstanding these open issues, a rather stable and well defined world average
value emerges from the compilation of current determinations of αs:

αs(M
2
Z) = 0.1184 ± 0.0007 .

The results also provide a clear signature and proof of the energy dependence of αs, in
full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in
Fig. 9.4, where results of αs(Q2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized and plotted.

Figure 9.4: Summary of measurements of αs as a function of the respective energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).

July 9, 2012 19:53

⇠ g

↵s =
g2

4⇡

⇠ g ⇠ g2

⇠

No hierarchy at low-energies

non-perturbative….

Quantum Chromodynamics

confinement?
origin of mass?
formation of matter
… Desperate for a Nobel Prize?
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Lattice QCD 

Ken Wilson Richard Feynman

JLab’s cluster

In summary:
QCD is non-perturbative
Solution: be smart and let computers do the hard work!

the emergence 
of nature
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Wick rotation [Euclidean spacetime]:  
Monte Carlo sampling

lattice spacing:
finite volume [periodic…]

tM ! �itE

a ⇠ 0.03� 0.15 fm

Never free!
No asymptotic states!
No scattering!

Lattice QCD 



Wick rotation [Euclidean spacetime]:  
Monte Carlo sampling

lattice spacing:
finite volume
quark masses: mq ! mphys.

q

La

tM ! �itE

a ⇠ 0.03� 0.15 fm

Advantage over experiment!

Lattice QCD 



⌧

⌧
Wick rotation [Euclidean spacetime]:  
Monte Carlo sampling

lattice spacing:
finite volume
quark masses: mq ! mphys.

q

a ⇠ 0.03� 0.15 fm

tM ! �itE

time = t time = 0

CL(t) =

Lattice QCD 



Exp.

Status of spectroscopy
 Simple properties of QCD stable states [non-composite states]

physical or lighter quark masses [down to mπ~120 MeV]

 non-degenerate light-quark masses: Nf=1+1+1+1

 dynamical QED



 Simple properties of QCD stable states [non-composite states]

physical or lighter quark masses [down to mπ~120 MeV]

 non-degenerate light-quark masses: Nf=1+1+1+1

 dynamical QED

 Frontier of lattice: multi-particle physics

 scattering/reactions

composite states

 bound states

 hadronic resonances
Formal development:

under way
more needed 

Benchmark calculations:
exploratory
proof of principle
unphysical quark masses
…

Status of spectroscopy



Questions?

meet Jazzi. Jazzi likes 
long walks in the park and 

chasing squirrels. 



Outline

QCD: mq /ΛQCD

Correlation functions
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Path-integral in quantum mechanics

I measured a quark at (xi,ti), the probability of finding it at (xf,tf) is:

t
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where: 

classical path: minimizes the action

Imagine a world where quarks are free to propagate
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Path-integral in quantum mechanics
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Path-integral in quantum mechanics

I measured a quark at (xi,ti), the probability of finding it at (xf,tf) is:
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f

e

�iĤt
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Imagine a world where quarks are free to propagate

can evaluate this numerically 
by introducing a mesh in 

spacetime



Path-integral in quantum field theory
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x

I see two possible configs, 
which one is bigger?

Quarks aren’t free, they live inside bound states
They strongly interact, couple to gluons, create/annihilate repeatedly
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At each point in spacetime, we can have different configurations
Need to “sum” over all configurations
Path integral: 
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configurations
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Path-integral in quantum field theory

t
x

Quarks aren’t free, they live inside bound states
They strongly interact, couple to gluons, create/annihilate repeatedly
At each point in spacetime, we can have different configurations
Need to “sum” over all configurations
Path integral: 

different 
configurations

S =

Z
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3
x dtL

Z =

Z
D'(x) eiS[']



Path-integral in QFT - some details

integral and measure: 

“only” rigorously defined by first discretizing

Z
d'(x)

Z
D'(x) ⌘

Y

x2V

Z
d'(x)

Z =

Z
D'(x) eiS[']



correlation functions give us access to:

masses, decay constants, form factors, scattering amplitudes,…!!!

Path-integral in QFT - some details

integral and measure: 

“only” rigorously defined by first discretizing

Z
D'(x) ⌘

Y

x2V

Z
d'(x)

where      is some generic operator. 
e.g., 
Ô

Ô = '̂, '̂2, '̂3, . . . , @µ', . . .

two-point correlation functions:

Z =

Z
D'(x) eiS[']

hÔ(t)Ô†(0)i = 1

Z

Z
D'(x) eiS[']O(t)O†(0)



integral and measure: 

Z
D'(x) ⌘

Y

x2V

Z
d'(x)
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Q: Consider a scalar field in a volume with 104 points. 
This means we need to evaluate that many integrals.  
If we approximate each integral, by a 10 point mesh, how 
many terms would be have to add?



integral and measure: 
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Truncation and discretization of volume
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Q: Consider a scalar field in a volume with 104 points. 
This means we need to evaluate that many integrals.  
If we approximate each integral, by a 10 point mesh, how 
many terms would be have to add?

A: 101000 terms!

modern day calculations: 
T/at ~ 200, L/as~20-40 

!!!spacetime must truncated!!!



Very explicit example: assume we have two points in space and we 
want to do a 3-point mesh, where the fields just take values of 1,0, or 
-1.

Truncation and discretization of volume

32 = 9 terms}

Z
d'(x1)

Z
d'(x2)f('(x1),'(x2))

⇠
Z

d'(x1) [f('(x1), 1) + f('(x1), 0) + f('(x1),�1)]

⇠ f(1, 1) + f(1, 0) + f(1� 1)

+ f(0, 1) + f(0, 0) + f(0� 1)

+ f(�1, 1) + f(�1, 0) + f(�1� 1)



Evaluating integrals probabilistically
could we instead evaluate correlation functions statistically?

if only this were positive definite

it is, if we Wick rotate onto imaginary time:
making Minkowski spacetime replaced by a Euclidean one
example…

t ! �it

hÔ(t)Ô†(0)i = Z

�1

Z
D'(x) eiS[']O(t)O†(0)

⌘ Z
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Z
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f [', t]



Wick rotation
consider a 2D scalar field theory…

t ! �it
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Wick rotate:

Euclidean correlation function:

hÔ(t)Ô†(0)iE =

R D'(x) e�SE [']O(t)O†(0)R D'(x) e�SE [']
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�1
E

Z
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Monte-Carlo technique 

ZE =

Z
D'(x) e�SE [']

let’s evaluate the path integral, statistically…

probability for a field configuration

generate field configurations according to the probability
obtain an ensemble of configurations:
means:

uncertainties: 

{'1,'2,'3, . . . ,'N}

Z

�1
E

Z
D'(x) e�SE [']

f [', t] ⇡ f ⌘ 1

N

NX

n=1

f ['n, t]

�f ⌘

vuut 1

N(N � 1)

NX

n=1

�
f ['n, t]� f

�2
systematically improvable!



Some words about QCD
QCD is not a simple scalar field theory
there are quarks and gluons…

top decays too quickly to 
hadronize…so forget it!

LQCD =
X

f=u,d,s,c,b

 ̄f (i�
µDµ �mf ) f � 1

2
tr (Fµ⌫F

µ⌫)

⇠ g ⇠ g ⇠ g2



gluon field:

Lorentz index
µ = 1…4

matrix in color

Some words about QCD
QCD is not a simple scalar field theory
there are quarks and gluons…

LQCD =
X

f=u,d,s,c,b

 ̄f (i�
µDµ �mf ) f � 1

2
tr (Fµ⌫F

µ⌫)

⇠ g ⇠ g ⇠ g2

quark field:

Dirac spin index
α = 1…4

color index
c = 1…3

[ f ]↵,c [Aµ]cc0



gluon field:

Some words about QCD
QCD is not a simple scalar field theory
there are quarks and gluons…

LQCD =
X

f=u,d,s,c,b

 ̄f (i�
µDµ �mf ) f � 1

2
tr (Fµ⌫F

µ⌫)

⇠ g ⇠ g ⇠ g2

quark field: [ f ]↵,c [Aµ]cc0

… our fields live in a [time T] x [volume V] x [flavor f] x [color 3] x [Dirac 4] - dim ‘space’

ZQCD =

Z
DADqDq e�SE



Lattice spacing & quark masses
Parameter of QCD: mu, md, ms, mc, mb, mt, g
Dimensional transmutation: mu/ΛQCD, md/ΛQCD, ms/ΛQCD, … , mt/ΛQCD

QCD does not have an inherent mass scale
QCD can predict masses of hadron in units of ΛQCD

Phenomenologically, we fix ΛQCD 

Lattice QCD: amu, amd, ams, amc, amb , amt

a
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Lattice spacing & quark masses
Parameter of QCD: mu, md, ms, mc, mb, mt, g
Dimensional transmutation: mu/ΛQCD, md/ΛQCD, ms/ΛQCD, … , mt/ΛQCD

QCD does not have an inherent mass scale
QCD can predict masses of hadron in units of ΛQCD

Phenomenologically, we fix ΛQCD 

Lattice QCD: amu, amd, ams, amc, amb , amt

Tuning
In general: mh(a) = mh(0)+O(a) […but we won’t discuss this…]



Questions?

Jazzi prefers python, but will 
code in C++ if need be… 



Outline
Correlation functions

L

Ecm(L)

3m

2m

m

0

Finite-volume spectrum:

QCD: mq /ΛQCD



Time evolution in Euclidean spacetime
The time-dependence of: hO(t)O†(0)i ⌘ h⌦|O(t)O†(0)|⌦i

|⌦i :  QCD vacuum [assumed to have zero energy]

Heisenberg picture in Minkowski spacetime

OM (t) = eitĤO(0)e�itĤ

Wick rotation onto Euclidean spacetime: t ! �it

OE(t) = etĤO(0)e�tĤ

h⌦|O(t)O†(0)|⌦i = h⌦|etĤO(0)e�tĤO†(0)|⌦i
Euclidean correlation functions:



Time evolution in Euclidean spacetime
We would like to introduce eigenstates of the Hamiltonian

Ĥ|ni = |niEn

such that… C(t) = h⌦|etĤO(0)e�tĤO†(0)|⌦i
=

X

n

etE⌦e�tEnh⌦|O(0)|nihn|O†(0)|⌦i

=
X

n

e�tEn |h⌦|O(0)|ni|2

bound state

threshold

Im[s]

s = E2
cm

Re[s]

except, the spectrum is continuous!

Should we be integrating…?



bound state
Im[s]

s = E2
cm

Time evolution in Euclidean spacetime
finite

“only a discrete number of modes 
can exist in a finite volume”

Remember, we have placed the theory in a finite-volume

C(t) =
X

n

e�tEn |h⌦|O(0)|ni|2

Finite-volume spectrum

consequently, we can rigorously write  



Ground state masses

lim
t!1

C(t) = lim
t!1

X

n

e�tEn |h⌦|O(0)|ni|2

= e�tE0 |h⌦|O(0)|0i|2 +O(e�t(E1�E0))

A simple limit

In principle, each correlation function has access to 
infinite number of states

This motivates:

me↵(t) = log

C(t)

C(t+ 1)

! log

e�tE0

e�(t+1)E0
= log eE0

= E0
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The π spectrum

atme↵(t) = log

C(t)

C(t+ 1)
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atm⇡(L) = 0.0690(2)

at ⇠ 0.035 fm

m⇡(L) ⇠ 394MeV



Questions?

Jazzi is always working 
on her tan…
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Finite-volume spectrum:

Ecm(L) ⌧ 2mif                       :

Ecm(L) =
p

p2 +m2 +O(e�m⇡L)

Interpretation of spectrum:

Masses of hadrons

QCD: mq /ΛQCD



Finite vs. infinite volume spectrum

finite volumeInfinite volume

both pictures are QCD: 

“Two analytic manifestations of QCD”



pp

pp

p

p

p

p

Infrared limit of the theory
 Finite-volume arise from the interactions with mirror images

 Assuming L >> size of the hadrons ~ 1/mπ 

  This is a purely infrared artifact

 We can determine these artifact using hadrons are the degrees of freedom

 Note mπL is a natural parameter

p
pion cloud

L



Physics in a 1+1 Dimensions

 Free particle wave function: 
'

p

(x) = e

ipx

 Periodicity 

L

⇠

'

p

(L+ x) = e

ip(x+L) = '

p

(x) = e

ipx

 Discretized momentum and spectrum: p =
2⇡n

L

 Question: What happens to the masses determined in a finite-volume?



Exponentially suppressed corrections

sketchy quantum 
mechanical derivation

sketchy quantum field 
theoretical derivation

m⇡(L) = m⇡(1) +O �
e�m⇡L

�



Scalar field theory in 1+1D box

Toy model for mesons: 

= i�

= �0(p
2) =

i

p2 �m2
0 + i✏

Z
dk

2⇡
!

X

k

�k

2⇡
=

X

k

�k

2⇡
=

X

k

2⇡�n

2⇡L
=

1

L

X

k

Feynman rules: 

 Integrals over momenta become sums:

 Integrals over energy are still integrals

L
M

=
1

2

�
(@

t

')2 � (@
x

')2 �m2
0'

2
�
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4!
'4



 0.0685

 0.069

 0.0695

 0.07

 0.0705

 15  20  25  30

The π in a box

m⇡(L) = m⇡ + c
e�m⇡L

(m⇡L)3/2
L

as ⇠ 0.12 fm �! m⇡L ⇠ 3.8, 4.7, 5.6



Challenge with light quark masses

p p

⇠ m�1
⇡

L

⇠ 2m�1
⇡

m⇡L ⇠ 4

TV ⇠ TL3

m⇡L ⇠ 2

TV ⇠ TL3

m⇡L ⇠ 4

TV ⇠ 28TL3 ⇠ 10TL3

p

⇠ 2m�1
⇡

2L

L

m⇡ ! m⇡/2

L ! 2L



Peter Higgs
Higgs is responsible for giving 

leptons and quarks mass. 

2012, LHC @ CERN

Francois Englert

the origin of mass



the origin of mass

Survey of different groups:
BMW, LHPC, RBC, & χQCD

RB



the origin of mass



Exp.
-“slightly more precise”

quark masses are 
set to zero

Higgs does not matter!
Only gluodynamics matter!

the origin of mass

800

939
⇥ 100 ⇡ 85%



Jazzi loves car rides!
Questions?
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Finite-volume spectrum:

Ecm(L) ⌧ 2mif                       :

else:

Ecm(L) =
p

p2 +m2 +O(e�m⇡L)

Ecm(L)

Interpretation of spectrum:

Scattering amplitudes

Masses of hadrons

QCD: mq /ΛQCD



Exotics
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πη

JPC=1-+
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Exotics
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πη
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Exotics

⇡1

πη

JPC=1-+

πη’

ρπ

πππ

multichannel, multiparticle system! 
hard, but not obviously impossible… 
let’s take it one step at a time…



Two particles in 1+1 Dimensions

 Two-particle plane waves: 
'

k1k2(x1, x2) = e

ip1x1
e

ip2x2

 In the c.m. frame: '
p

(x1, x2) = e

ip(x1�x2) ⌘ e

ipx

x

p

 Imagine a finite-range potential that depends on x: 

eipx

ei2�e�ipx

x

V(x)



Two particles in 1+1 Dimensions
 Outside the potential, we get

 Imposing exchange symmetry:

'

p

(x) ⇠ e

ipx +Ae

i2�
e

�ipx = e

i�

⇣
e

�i(p|x|+�) +Ae

i(p|x|+�)
⌘
, (x < 0)

'

p

(x) ⇠ e

�ipx +Be

i2�
e

ipx = e

i�

⇣
e

�i(p|x|+�) +B e

i(p|x|+�)
⌘
, (x < 0)

'p(x) = 'p(�x)

'p(x) ⇠ cos(p|x|+ �) we obtain:

 More explicitly:

 Its derivative:

'p(x) ⇠ cos(�px+ �), (x < 0)

⇠ cos(px+ �), (x < 0)

'

0
p(x) ⇠ p sin(�px+ �), (x < 0)

⇠ �p sin(px+ �), (x < 0)



Two particles in 1+1 Dimensions

 Imposing periodicity:

Next, confine them to a periodic box!

L

⇠

'p(L/2) = 'p(�L/2) , cos(p

L

2

+ �) = cos(p

L

2

+ �)

'

0
p(L/2) = '

0
p(�L/2) , p sin(p

L

2

+ �) = �p sin(p

L

2

+ �) = 0

 Quantization condition:

L pn + 2�(pn) = 2⇡n



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 

n=1

n=2

n=3

n=4



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 



L pn + 2�(pn) = 2⇡n

Spectrum in a  1+1D box 



scattering amplitudefinite volume spectrum

M = scattering amplitude

det[F�1
2 (EL, L) +M(EL)] = 0

EL = finite volume spectrum

L = finite volume

F2 = known function

Spectrum in a  3+1D box 



Jazzi does NOT like 
swimming!

Questions?



Outline
Correlation functions

L

Ecm(L)

3m

2m

m

0

Finite-volume spectrum:

Ecm(L) ⌧ 2mif                       :

else:

Ecm(L) =
p

p2 +m2 +O(e�m⇡L)

Ecm(L)

Interpretation of spectrum:

s0 = (mR � i
2�R)

2

⇠ i(ig)2

s� s0

Resonances

Scattering amplitudes

Masses of hadrons

QCD: mq /ΛQCD
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Wilson, RB, Dudek, Edwards & Thomas (2015)

Extracting the spectrum

 Use lots of operators

 e.g., ππ isotriplet at rest, mπ=236 MeV

KK

⇡⇡

 ̄� 

#1 ~

#26 ~

#3 ~

Two-point correlation functions:

C2pt.
ab (t,P) ⌘ h0|Ob(t,P)O†

a(0,P)|0i =
X

n

Zb,nZ
†
a,ne

�Ent



Wilson, RB, Dudek, Edwards & Thomas (2015)
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ππ scattering
(I=1 channel)



Wilson, RB, Dudek, Edwards & Thomas (2015)
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� 1
/�

E?
⇡⇡/MeVEcm/MeV

m⇡ = 140 MeV

Comparison with experiment

Bolton, RB & Wilson (2016)



Lin et al. (2009)
Dudek, Edwards, Guo & Thomas (2013)
Dudek, Edwards & Thomas (2012)
Wilson, RB, Dudek, Edwards & Thomas (2015)
Bolton, RB & Wilson (2015)

The ρ vs mπ



Jazzi loves the great 
outdoors,…

Questions?



The real frontier



The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

f0(500)/�

f0(980)

f0(1370)

f0(1500)

f0(1710)



is it real?

The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

f0(500)/�

f0(980)

f0(1370)

f0(1500)

f0(1710) ⇠

⇠

KK molecule?

glueball?
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KK molecule?

glueball?

The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

is it real?

f0(500)/�

!!~100 %



is it real?

f0(500)/�

f0(1370)

f0(1500)

f0(1710) ⇠
glueball?

The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

f0(980)⇠

KK molecule?

KK



is it real?

f0(500)/�

f0(1370)

f0(1500)

f0(1710) ⇠
glueball?

The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

f0(980)⇠

KK molecule?

!!



mπ=391 MeV

Extracting the spectrum

18
RB, Dudek, Edwards, Wilson - PRL (2017)
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RB, Dudek, Edwards, Wilson - PRL (2017)
M0 =

16⇡Ecm

p cot �0 � ip



The σ/f0(500) vs mπ
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The σ/f0(500) vs mπ
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Figure 4: The � or f0(400 � 1400) resonance poles listed in the RPP 1996 edition (Black squares) together with those
also cited in the 2010 edition [70] (Red circles). Note the much better consistency of the latter and the general absence
of uncertainties in the former. The huge light gray area corresponds to the uncertainty band assigned to the � from 1996
to 2010.

before, a very significant part of the apparent disagreement between di↵erent poles in Fig.2 is
not coming from experimental uncertainties when extracting the data, but from the use of models
in the interpretation of those data and unreliable extrapolations to the complex plane. Actually,
di↵erent analyses of the same experiment could provide dramatically di↵erent poles, depending
on the parameterization or model used to describe the data and its later interpretation in terms of
poles and resonances. Maybe the most radical example are the three poles from the Crystal Barrel
collaboration, lying at (1100� i300) MeV [68], (400� i500) MeV and (1100� i137) MeV [69],
corresponding to the highest masses and widths in that plot. These poles were compiled together
in the RPP although they even lie in di↵erent Riemann sheets. Moreover we will see in Sect.2
that all three lie outside the region of analyticity of the partial wave expansion (Lehmann-Martin
ellipse [71]).

Therefore it should be now clear that in order to extract the parameters of the � pole, which
lies so deep in the complex plane and has no evident fast phase-shift motion, it is not enough to
have a good description of the data. As a matter of fact, many functional forms could fit very
well the data in a given region, but then di↵er widely with each other when extrapolated outside
the fitting region. For instance, if all data were consistent (which they are not) one can always
find a good data description using polynomials, or splines, which have no poles at all. Hence, to
look for the � pole, the correct analytic extension to the complex plane, or at least a controlled
approximation to it, is needed. Unfortunately that has not always been the case in many analyses,
and thus the poles obtained from poor analytic extensions of an otherwise nice experimental
analysis are at risk of being artifacts or just plain wrong determinations. This, together with the
huge uncertainty attached to the � in the RPP, is what made many people outside the community
to think that no progress was made in the light scalar sector for many decades.

However, progress was being made and the other remarkable feature of Fig.2 is that by 2010
most determinations agreed on a light sigma with a mass between 400 and 550 MeV and a half
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J. R. Peláez (2015)
Review of Particle Physics (RPP)

RB, Dudek, Edwards, Wilson - PRL (2017)



The σ/f0(500) vs mπ
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the time is ripe for sophisticated 
amplitude analysis of lattice QCD results!

RB, Dudek, Edwards, Wilson - PRL (2017)



f0(980)

f0(1370)

f0(1500)

f0(1710) ⇠
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KK molecule?

glueball?

is it real?

f0(500)/�

The isoscalar, scalar sector



is it real?

The isoscalar, scalar sector
[i.e., the quantum numbers of the vacuum]

f0(500)/�

f0(1370)

f0(1500)

f0(1710) ⇠
glueball?

f0(980)⇠

KK molecule? in preparation!



More than one channel open
 Coupled channels: e.g.,⇡⌘,KK

det


F�1
⇡⌘ +M⇡⌘,⇡⌘ M⇡⌘,KK

M⇡⌘,KK F�1
KK

+MKK,KK

�
= 0

Hansen & Sharpe / RB & Davoudi (2012)
RB (2014)  / RB & Hansen (2015)

|niL = ↵(M, L)|⇡⌘i+ �(M, L)|KKi

can’t pull states apart!



More than one channel open
 Coupled channels: e.g.,⇡⌘,KK

 Practical solution: parametrize scattering amplitude and fit

mπ=391 MeV
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More than one channel open
 Coupled channels: e.g.,⇡⌘,KK

 Practical solution: parametrize scattering amplitude and fit

mπ=391 MeV
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“a0(980)”

again, we should be 
putting constrains of 
analyticity, crossing 

symmetry…into our fits



Three-body

⇡1

ρπ

πππ



Going higher in energy
 Coupled channels

 Beyond two particles:

N!

N!!



Going higher in energy

det
⇥
1 + F3Kdf,3

⇤
= 0

RB, Hansen  & Sharpe (2016)

Hansen  & Sharpe (2014) 

det


1 +

✓
F2 0
0 F3

◆✓
K2 K23

K32 Kdf,3

◆�
= 0

 Coupled channels

 Beyond two particles:



Quantum Chromodynamics

Jose Rodriguez (Skype/Microsoft)



The end!

above all, Jazzi loves a 
good nap!


