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1t is shown that if the longitudinal distances which are important in the electromagnetic interactions
of hadrons increase linearly with increase of energy, then only the nucleons on the surface of a nu-
cleus participate in the interaction with a high ener%y y quantum, and the total cross section oy of
hadronic processes for heavy nuclei is equal to 27R*(1 — Z;), where Z, is the renormalization con-
stant of the photon Green’s function, and 1 — Z, is the probability for the virtual transition of a ¢
quantum into hadrons. The corrections associated with volume absorption of ¥ quanta are discussed
in detail, and also the situation in the case when the 1dngitudinal distances increase slowly with in-

crease of energy.

INTRODUCTION

jIN an article by Ioffe, Pomeranchuk, and the author® !
fhe question was raised about the feasibility of an ex-
{ perimental determination of what distances are impor-
Fant in the strong interactions at high energies. It was
£shown that if the amplitude for the scattering of parti-
R ele 2 by a certain target b (Fig. 1) essentially depends
fon the square of the 4-momentum p3 (the mass), then
Jongitudinal distances which increase with energy are
fmportant in the interaction; these distances are of the
order of |p|/u® (H = ¢ = 1), where p is the momentum
the incoming particle in the laboratory coordinate
$ystem and p is a certain characteristic mass.
- Unfortunately, it was shown that the method pro-
posed in ¢ '? for an experimental investigation of the de-
pendence of the amplitude on the ‘“mass’’ of the parti-
¢le with the aid of an analysis of the bremsstrahlung
L aannot provide an answer to the question about the im-
sportant longitudinal distances because of the cancella-
tons that are due to conservation of charge.!?! In the
Present article we wish to point out that investigations
8.0l the interaction of ¥ quanta and electrons with nuclei
Yleld the possibility to experimentally clarify what lon-
f Situdinal distances are important in the electromagnetic
-_hteractions of hadrons.
£ Aninteresting effect was observed in an article by
Bell,'*) consisting in the fact that if the interaction of
¥ quanta with nucleons is dominated by vector mesons,
the neutrino interaction is dominated by 7 mesons,
: Surface effects appear in connection with the inter-
;lction of v guanta and neutrinos with nuclei, i.e., to-
Sether with the volume terms which are proportional to
¥ - Bumber A of nucleons in the nucleus, the amplitudes
contain surface terms proportional to A*3, At

énergies the surface terms turned out to be deci-
Ve, and this was regarded as a specific property of

P~ or g-dominance model.
: h:n the present article we show that the nature of the
Taction of y quanta and neutrino with nuclei and the
4 arance of surface effects at high energies is not
| " tected with p meson or 7 meson dominance, but is
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only determined by what distances are important in
these interactions. We show that if large longitudinal
distances of the order of 6 = |p|/u? are important,
then the total cross section, for example, of y quanta
with heavy nuclei, including only hadronic processes, is
given by

0y = 2nRA(1 — Z3), (1)

where R is the nuclear radius, and Z3 is the charge
renormalization constant due to the hadrons. One can
express the quantity 1 — Z; in terms of the hadronic
part of the Lehman density of the photon Green’s func-
tion or in terms of the cross section gg+o-(k°) for the
annihilation of electron-positron pairs into hadrons:

Yy L
1—Z;—e¢ gp(ﬁ)-—;;_m

Formula (1) has a simple physical meaning: 27R% is
the total cross section for the interaction of hadrons
with the nucleus, and 1 — Z; is the fraction of the time
which the ¥y quantum spends in the hadronic state.

The assumption that large distances are important
in the interaction is equivalent to an assumption about
the convergence of the inte§rals (2). The condition for
the applicability of (1) is 6° >> Rl where [ is the mean
free path of the hadrons in the nucleus. I the charac-
teristic mass p is of the order of the p-meson mass,
and the mean free path is of the order of 1/mg (my de-
notes the mass of the 7 meson), then surface effects
should appear at energies greater than 10 GeV.

One can understand the origin of the surface effects
and formula (1) almost without making any calcula-
tions. Let us assume that a ¥ quantum interacts with
the nucleons in the nucleus in the following way: it first
decays into virtual hadrons, and then these hadrons in-
teract with the nucleons inside the nucleus. Let this

§ Gore- () 2. 2)
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fluctuation last a time 6. Then the total cross section
for the interaction of ¥ quanta with a nucleus will be
determined by the probability 7R? for the y quantum
to hit the nucleus, the probability (R/1376) that a fluc-
tuation arises inside the nucleus, and the probability
5/1 that the hadrons which are produced are able to in-
teract with some kind of nucleon inside the nucleus.
Therefore o., is of the order of TR*R/13756)(6/1)

~ hsrTR¥R/1) ~ Aoy N.

This argument is valid, however, only if 6 £ 1. X in
the coordinate system in which the quantum has a small
energy the duration of the fluctuation is of the order of
1/u, then in the laboratory system where the quantum
has momentum p the duration of the fluctuation is given
by 6 ~ p/u? i.e., it increases with the energy of the
quantum. If R >6 > [, then the cross section for the
interaction of a quantum will be of the order of 7R?

x (R/13176), i.e., it decreases with increase of energy.
In actual fact, as was essentially noted by Bell,t*! the
possibility of the formation of fluctuations of size 6
larger than the mean free path 7 is suppressed by a
factor 6/ due to quantum-mechanical interference,
and the cross section is of the order of 7R*(Rl/13757),
i.e., it decreases even more rapidly with increase of
energy. Under these conditions it is now impossible to
neglect the probability that a fluctuation may arise out-
side of the nucleus. When 6 becomes larger than the
nuclear radius, then essentially all fluctuations will
arise outside of the nucleus, and the created hadrons
will collide with the nucleus with a cross-section 7R?
i.e., the interaction cross section of a quantum will be
of the order of Yis:mTR®. Thus we arrive at a cross sec-
tion of the type (1).

It is also easy to explain the appearance of the fac-
tor 1 —Z, in expression (1) if the amplitude for forward
elastic scattering of a.y quantum by a nucleus, which
determines the total cross section, is represented with
the aid of the diagram shown in Fig. 2a. The amplitude
F for the scattering of a beam of hadrons by a nucleus
of radius R changes substantially during a change of
the transverse momenta of the particles by an amount
of the order of 1/R and falls off rapidly for large
changes of the momenta. Since 1/R is appreciably
smaller than the scale of the momenta which are im-
portant in the diagram of Fig. 2a, the momenta kj of
the particles almost do not differ from kj. The ordi-
nary amplitude for the elastic scattering of a single
particle may be written under similar conditions in the
form 27iR%/(q). The corresponding amplitude for the
scattering of a group of particles is proportional to
27miR®TI6(k; — ki). As a result the diagram of Fig. 2a is
equivalent to the diagram of Fig. 2b multiplied by 27iR%.
The diagram shown in Fig. 2b determines the charge
renormalization.

Such a picture of the interaction arises under the
assumption that a quantum of small energy undergoes
virtual decay into small masses of the order of u. How-
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ever, it is possible that a quantum will comparatively
frequently decay into very large masses. This corre-
sponds to a divergence of the integral for 1 —Z, The
existence of such fluctuations with large masses may
not develop in any way for a quantum with small energy
if the path length ! for such states with large masseg
is large. However, with an increase of the energy, whey
the length of the fluctuations 6 even for very large
masses is comparable with the path length I inside a
nucleus, such masses begin to participate in the inter.
action with a cross section of the order of 7R% Only
masses for which the length 6 of the fluctuations for
arbitrary energy is smaller than the path length may,
for arbitrary energy, give a contribution proportional
to the volume of the nucleus to the cross section.

In the case when the integral over the mass for
1 — Z; diverges, one can write the cross section for the
interaction of a ¥ quantum with a nucleus in the form

o, = IR — Zs(x?)] + oy, (3)
* dn?
§— Zy(uet)=e2 § 0(2) %— @

[

The mass k, at which the integral (4) is cut-off is de-
termined by the condition

8 (wgt) = 2p [ wo* = (%% P}, (5

where (k% p) is the mean free path of a group of par-
ticles with total mass x° and momentum p. The cor-
rect definition of I(x%, p) will be given in the text.

If the integral (2) diverges logarithmically, i.e., if
the cross section for the annihilation of e* and e~ into
hadrons is of the same order of magnitude as the cross
section for the annihilation into leptons,t*’®? then

1 — Zs(x?) = e2p() In (xe*/ p?), O)]

where p is a certain constant.
The second term in Eq. (3) is proportional to the vol-
volume of the nucleus and is of order

oy ~ ezﬂRzT(;ﬁjp_)' M
If I(«Z, p) does not depend on the energy, which is pos-
sible if (%, p) = I(x*/p), then «Z~ p and o) does not
depend on the energy, but the surface term increases
logarithmically. ¥ I(«Z, p) increases with an increase
of the energy, then condition (5) holds only up to ener-
Yies for which I(«Z, p) <R. For I(«xZ, p) > R the cut-
off k2 is determined by the condition

@)

l(xe% p) = R.

In this connection the volume term is of the order
e*7R?, but the surface term, which is the major term,
either tends to a constant if I(«Z, p) does not depend P
p or else continues to increase logarithmically. ;
By experimentally studying the dependence of 0y on
the energy and on A, one can distinguish both term5
determine the dependence of xﬁ on p. The dependence'
of k2 on p reflects the energy dependence of the 10
tudinal distances 6 = 2p/x® which are important in the -

interaction of v quanta with nucleons. If xj iI'tzcl‘e"'ses
with increase of p but more slowly than p (/2P ‘.th '
then large longitudinal distances, which increase

energy but are smaller than for finite 1 — Zs, are 1"

her
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ctant. I kg — pu then longitudinal distances up to 1/u
important. The growth of ¢,, with energy may con-

e up to those energies at which 7 %% 1In (,2/p?) ~ 1

etic interaction.

If the integral (2) were to diverge more rapidly than
jthmically, then the cross section would increase
.ccording to a power law. Perturbation theory in elec-
namics would become invalid at energies which
appreciably smaller than is usually assumed. We

shall not consider this possibility.

; : The cross section for the interaction of electrons
¥4 . with nuclei which is described by the diagram shown in
al; L Fig. 3 will have the same properties for given values of

4 p' and p,» The only difference consists in the fact that
E {nstead of 1 — Zs it will be determined by the value of
. the polarization operator (Fig. 2b) for p°# 0. We show

 that

b 2 et » ,

¢ 1 dos = 2n S ([t £+ L+ b 2

{s P @K 9)
b 1 X plamt + 2 T} 2o a
i doy = do% 4 dov, (10)
i where \ ,

((: p (x2) d? L
4 (# %)= ?75172' n‘("z)“? =2 (11)

It is of interest to note that in the case when distances
smaller than 2p/u® are important, i.e., when the inte-
gral for I, diverges, II,(p% «2) does not depend on p’,
and consequently the surface term in the cross section
does not depend on p? for p® << k2.

The results cited above are obtained under the as-
sumption that one can regard the interaction of fast
| hadrons with a nucleus as the result of successive in-
f teractions with the nucleons inside the nucleus and the
i interaction of the nucleons inside the nucleus can be
. described with the aid of pair correlations. The latter
~ agsumption apparently is not essential, but its rejection
 would only complicate the investigation.

i 2, INTERACTION OF HADRONS WITH A NUCLEUS
AT HIGH ENERGIES

As noted above the interation of a ¥ quantum with a
hucleus at high energies takes place in such a way that
the y quantum first turns into hadrons, and then the
badrons interact with the nucleus. Therefore, before
going on to an examination of the interaction of a ¥
quantum with a nucleus, let us discuss how the descrip-
tion of the interaction of hadrons with a nucleus is
Changed upon transition to high energies in comparison
¢ With the description at low energies.

3 Total cross sections and the elastic interaction of
- rons with a nucleus at not very high energies are
£ Usually described either with the aid of the optical
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rturbation theory becomes invalid for the electro-

FIG. 5

model or with the aid of Glauber’s theory of successive
collisions. These two methods are similar, provided
the pair correlations of the nucleons inside the nucleus
are taken into account, and reduce to an investigation of
Feynman diagrams of the type shown in Fig. 4, which
describe successive elastic scatterings by the nucleons
in the nucleus. Under the assumption that the average
momenta of the nucleons in the nucleus is much smaller
than the momenta which are important in the hadronic
interactions, at low energies one can consider only
elastic scattering processes since the inelastic proc-
esses require large momentum transfers, leading to a
collapse of the nucleus.

As shown in '®1, during an increase of the energy,
when the momentum transfers necessary for the crea-
tion of particles decrease and become of the order of
the momenta of the nucleons in the nucleus, it is neces-
sary to take inelastic processes and the diagrams of
Fig. 5 into account.

Before going on to an investigation of the diagrams
of Fig. 5 and their influence on the character of the to-
tal cross sections, let us briefly consider how the eval-
uation of the total cross sections is carried out at high
energies, but such that inelastic processes are still not
important. Everywhere below we shall not take into ac-
count the shrinkage of the diffraction peak in hadronic
processes.

Evaluation of the diagrams of Fig. 4 at these ener-
gies gives the following result. The forward scattering
amplitude F'™, corresponding to n-fold rescattering
(see, for example, the Appendix), has the form

eld )HN2 § Ppudsy...dsn (1= 2 . % (3nes — 5a)1,(12)

Gpmv/ V
where N is the number of nucleons in the nucleus, V is
the volume of the nucleus, p is the momentum of the
incoming particle, pj and zj are the coordinates of the
nucleons: zj is the coordinate in the direction of the in-
coming particle’s momentum, pj is the coordinate per-
pendicular to p, x(zj —2j,,) is the correlation function
of two nucleons in the nucleus, k(«) = 1, f denotes the
scattering amplitude, m is the mass of a nucleon, and
Z1 > Z2... > Zp. If the amplitude F which is given by

(13)

Fm =(

F=3 Fm,

is written in the form

—‘\
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then one can easily verify that F(p, z) satisfies the
equation

—li— S dz’ fx(z —2')F (p,2'), zo(p)= YR*— p?, (15)
4pmV )

which is the analog of the equations for the optical
model with the scattering amplitude f playing the role
of a potential. If correlations are neglected, i.e., if

one sets x = 1, then the following trivial result follows
from Eq. (15):

F(o,2) = fexp{—I-'[z+ z(p)]}, (16)
I8 = (—iN | 4pmV)f (17

F(o,2)=1f+

and
= ——Nz g F ([) Z)d[‘ = 2pmN - 2Rz g = 2nR2. (18)
v O P ]

The idea of the following investigation consists in
the fact that an equation of the type (15) remains valid
with only a small change if, by the amplitudes f and
F(p, z) one understands the amplitudes for the interac-
tion of groups of hadrons with a nucleon with a transi-
tion to the other groups of hadrons which enter into the
diagrams shown in Fig, 5. An evaluation of the diagram
shown in Fig. 5 is given in the Appendix under the as-
sumption that the nucleons in the nucleus are nonrela-
tivistic, and their momenta are appreciably smaller
than the momentum transfers which are important in
the strong interactions at high energies. The latter is
equivalent to the assumption that the mean free path of
the hadrons inside the nucleus is larger than the dis-
tances between the nucleons. It is assumed that under
these conditions we can confine ourselves only to the
correlations between nucleons which participate in two
successive collisions.

One can write the result for the amplitude of a proc-
ess, including the interaction with n-nucleons, in the
form et -

iIN \r—L N2
i ( ) - 3 Sdzpi dzy ... dzs fas
4pmV 4 b, ¢, dy e

Xexp {—ig:> (24 — 22) }% (21 — 22) foc €xp {—iq:° (22— 23)} ... faa, (19)

where fyo is the amplitude for the process correspond-
ing to the diagram shown in Fig. 6. A summation is
carried out over the real intermediate states

g.b = (mg? — p2) [ 2p, (20)

where mP denotes the mass of the intermediate state,
and p is the mass of the incoming particle.

Let us introduce the operator F(p, z) whose matrix
elements between arbitrary states are defined by the
equation

i n—i
Fop(p,2)= 2 (—é%) ) E Sdzz. + . dzy foc exp {—igq.5 (22 — 23)}

X #(22 — 23} fod . . . eXD {—iq:* (2n—t — 2Zn)} % (St — 2n)fer.  (21)

The operator ¥(p, z) satisfies the equation

Flo,oy=f+it § a'fexp {—ig:(z — )} x(z—2)F(p,7),

~2i{p)
’ L me (22),
E—Wr (']z)cd— cd 2p .

This equation describes all possible transformations in
the beam of hadrons associated with the interaction with

the nucleons of the nucleus. It goes over into Eq, (15) i
only one intermediate state with mass m equal to the
mass i of the incoming particle is possible.

One can easily find 2 symbolic solution of this equa.
tion if F(p, z) is written in the form

1 atico
Flo5)=5- § dtesror (@), (23)
Py —— 1
=TTt ¢ (24)
(€)= Se—f’u(z)dz. (25)

[
The scattering amplitude is given by

N2 N2 2208 4
F=%(Fe.0av=""(a§ dgfmmx (26)

Let us write Eq. (24) in the form

1 f 1 .
=) § T 1= o

f+F@E), FO)=0.

F(g)=
i) 27)
X%’ (ig) T— ()
Substituting (27) into (26) and integrating, we obtain
f N2 1

Nz o aR—
F= Nt T v TG «
1 ;
/(i) —————— — 28) -
X (ig) g+ F, 28) .
o g g 1 (29)
F_Vsdz"ﬂ,iwz_m"éfi—icfx(§+iq)f'

The first term, which is proportional to the number of )
nucleons in the nucleus, is actually equal to zero in ap=
plication to a real state with mass p° since here q=0"
(k(iq) ~ 1/ig, q — 0). For the same reason the second
term is equal to 2pmN. 27iR° The last term in (28), F,
is determined by the poles of the integrand in (29).
These poles are located at negative values ¢ = —&
determine the attenuation of F(z, p). In this connection

F is of the order of N°fl %V, where I = 1/ is the

Ynean free path. Thus

F = 2pmN{[2aR?% + O(Nol®/ V)], [~ 2pmic. (80
Consequently the amplitude for the scattering of a group
of particles by a sufficiently large nucleus is a diago
operator and the total cross section is equal to 27R’,
just like at lower energies.

In conclusion we emphasize that volume absorption
is equal to zero only for a real state of the incident
ticle, i.e., for the scattering amplitude on the mass
shell. If p?, for the incident particle does not coinci
with 1® of the intermediate state, then gy # 0, and W€
obtain volume absorption proportional to
[(p® - 1®)1/2p] °N. This means that at small ene_rgie’
the amplitude for the scattering of a virtual particle
differs substantially from the scattering amplitude 0P
the mass shell.
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f . NTERACTION OF GAMMA QUANTA WITH
)

this section we present a derivation of formula (1)
ghich the concept of the distances at which the inter-
tion takes place will explicitly figure. For this pur-
F ose, let us write the forward scattering amplitude
;‘o (s, €9 for virtual Compton scattering in the form
o an integral of the T-product of the electromagnetic

: cm-rents:
(s, 52) = ie2 § et | Tju(— 20)iv(@) |ADdzidias;

(31)

pere K° = py, denotes the ““mass” of a quantum.

As discussed in article [*!, for large energies s the
| mplitude F (s, «°) depends on «° only in the case

L Jhen large longitudinal distances of the order of p/u?

| ure important in the integral (31); here u isa certain
F characteristic mass, p is the quantum’s momentum in
E e laboratory system, s ~ 2pM, and M is the mass of
 the nucleus. In fact, by writing the argument of the ex-
b ponential in (31) in the form

pz = pot — p3 = po(t —z) + (*/2po)3,

we see that values of t—z ~ 1/p, are essential in ex-
B pression (31) and F (s, «2) depends on k* only if val-
. tes z ~ t ~ p/p’are important. We shall assume that
E this holds, and by using the reduction formulas we
 write the quantity (A|Ti,(x,) jv(x?) |A) in the form

(AIT]V(II)]‘V(IZ)‘A>= (
=i § exp (— ipa(y — ¥)}dtydy O Tjs(2) ju(22) ua () Ba () |02,

| where up(y') and @ Aly) are the operator sources of the
- field of the nucleus. Substituting (32) into (31) and
2 changing variables, we obtain

Fu(s,t)=—e2 S exp{— ip(z; — 1) + il’@E}
K0 Tjv (1) u(0) T (E) jv (x2) |02 dizrdizadiE.

Taking into consideration that X, — X, — £ and &
~1/M, we may assume that in Eq. (33) the points 0,
% ~ 1/M are located between the points x,, and X,
and instead of (33) we may write

(33)

Fu(s,n8) = —e? Sexp{ip(:rz — z1)+ ipak}
X0 jo(a2) T (w(0) B (E) ) jv(@1) |0)dia1d* 2,0 + 21— 22 (34)

or after an expansion of the product of the operators
§ Over the intermediate states we obtain

Fyy(s,x?) = €23, M<n! S e'Pa8Tu(0)u(E)d'E l m>

nm Pno— Po

x(m liv| 0 (35)

Pmo — Do
'here pn = pm =P.
The expression (n| [ exp (ipa &) x Tu(0)d(£)a s | m )
:‘e(mal to ¥ . where F, ., is the amplitude for the
Orward scattering of a group of particles with momen-
m p by a nucleus, which was discussed in the previ-
Ous Section, Taking into consideration that

+P'+'—11,

%2 Mn2 M2
Po= pA4—, Pnnzp+—"', Pmo = P+ -
2p ©2p 2p

3

A
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we obtain

Oliv|r) . (mljv|0
Fy 2y =2 ]
v(S,K) [ :jnan'—'xz ﬂmMmz_ 2

(2p)%

(36)

LA

The second term in (35), corresponding to the substitu-
tion p— —p, is small since the denominator p, + P,

~ 2p instead of (M3 — x%)/2p. For a similar reason the
contributions of the other regions to (33), with a time
relation differing from (34), are small if the integrals
over the mass of the type (35) converge. As was shown,

6y r

Fom = 2nth20M6(n —_ m)
Substituting (37) into (36), we obtain

dM 2
sy o)

Fuy(s, %) = 2nR2 - 2pMeZS (38) [’
where ' ‘ :
Paz (Pn) = D1 <0 ja(0) [ n> (n|jp (0} 0> (2m)* 8 (Z ky— pn)

= (=845 P} + PooPag) P (P1),

1
Pw = 2"eg"pap(Pn) = pulp{ps?), (39)

ez is the polarization vector of a quantum, and

p(Mfl)/Mf1 is the spectral density of the photon Green’s
function. Hence the total cross section for the interac-
tion of a real photon with a nucleus is given by

oy = 2nR*(Zyt — 1) ~ 2nR*(1 — Zy), (40)
e By (02

In connection with the derivation of £q. (40) we as-
sumed that the integral for 1 — Zs converges. In order
to estimate the accuracy to which expression (40) is
valid, and in order to consider the case when the inte-
gral for 1 — Z; diverges, it turns out to be more conve-
nient to first express the amplitude for the scattering
of a quantum by a nucleus in terms of the amplitude for
the interaction of the quantum and hadrons with the nu-
cleons in the nucleus, and then to use formulas of the
type (33) or dispersion relations with respect to the
mass, but now for the amplitudes characterizing the in-
teraction of a quantum with a nucleon. We do this in the
following section.

4, INTERACTION OF A GAMMA QUANTUM WITH A i
NUCLEUS. NOT VERY LARGE DISTANCES |

Under the assumptions formulated in Sec. 2, one can
represent the amplitude F.}, .y(s) for the forward scat-

tering of a y-quantum by a nucleus in the form of a set
of diagrams of the type shown in Fig. 7, which are sim-
ilar to the diagrams shown in Fig. 5. The amplitude
F,, may be written down in the form (19), the only dif-
ference being that state a is a y-quantum and fa}, and
f4a are replaced by f,}, and fg,. As before, the re-
maining amplitudes represent the amplitudes for had-
ronic processes.

SN ———



O

C

714

For a real quantum the parameters qz are equal to
mf, /2p. In analogy with (21), let us introduce the ampli-
tudes F. ., (p, z) and F.4(p, 2) where a denotes the
hadronic state., These amplitudes satisfy equations
similar to (22):

Fr(.5) = fn+it | di'fyexp {(— ig:(z — 2')}u(z — =) Fy(z',0).(412)
—zp)

z

Fy(p,a)=ti+it § d&'fexp {—igu(z — #)}n(z — #)Fa(p,2) (4 1b)
~24(p)

here f.y.y is the amplitude of the Compton effect per nu-
cleon, and f.y is the amplitude for photoproduction of
the hadronic state.

Equations (41) are written in operator form with re-
spect to the hadronic states. Solving Eq. (41) by chang-
ing to the momentum representation (24), we obtain

1 ; 1
S S . 2
1 —ifu(E+ig) &

Fy()= (42a)

Fn(8) =22+ Rfin +i0) (42b)
Hence, computing

N2
Fypy= TS Fyy(p,2)dV,

instead of expression (28) we may write down

1
F = JV2 i i T
” [fw+ Lfwx(ig.) 1=t (ia) fv]
1 7~I(i‘12)
1 —itfx(ig,) x(ig,)

f1’+FW7

Nz
+ —V RRiny% (iqz)

(43)

x 1 i;; (i
1 —itinlion X
where %)

(92) a6 = dapms? / 2p.

The first term in (43) represents the volume interac-
tion F-}f.},, the second represents the surface interaction

F$, , and the third term is small in analogy to (30). In

contrast to (30) the volume term does not vanish, and
the surface term is not equal to 27R% - 2pmN since £
differs from f and q; # 0 in application to a real state.
Let us estimate the order of magnitude of the indi-
vidual terms in (42). We note that in order of magnitude
) N ) 1 N 1
—lU~—l—f/4—p’n—'21pm0'z?—i}—O'~'§T,
where ¢ is the cross section for the hadronic process,
and ! is the mean free path. The correlation function
k(iqy) depends on igz and on the average distance I,
between the particles. For q,r, << 1 we have k(ig,)
= 1/iqy,, and for qry>> 1 the function k(iqy) falls off.
The characteristic denominators which determine the
dependence of F;’y and F,?,y on the value of q in the

intermediate states have the form 21/[k(iq,) + 1],
and are equal to 2ilq, + 1 for small values of dz-
These denominators are of the order of unity for gy
<1/l and are large for gy > 1/I. One can write the
contributions to F},.y and F§.y from the regions g,

<K 1/1 and g, >> 1/1, respectively, in the form

1 N2 1
va=Nz[fw—fv7fv:’, Fws=i“—,ﬂmfv—fv

i (44)
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for q; << 1/1 and
FWV=N2[/‘W+U?%<1—2L,%),‘V],

(45)
N2 1
FpS = .ITnBin?Ef?

for q, >> 1/1. Here 1/2] = —itf.
I, as is true for the p-dominance model,t £,
=g4f and 1, =g, fg, and q, — 0 since q,
= mz /2p, then according to Eq. (44)
FwV =0, FyuS=2pMi 2nR%2 (46)
In order to evaluate F, . without making any as-

sumption about p-dominance, one can use formulas of
the type (31) but for the amplitudes characterizing the
interaction of a y quantum with a nucleon, or else by a
dispersion relation with respect to the masses of the
quanta for those same amplitudes. In this section we
shall use dispersion relations. Let us assume that an
unsubtracted dispersion relation in the masses of the
quanta of the following form holds for the amplitude for
forward scattering of a virtual quantum of mass p?
which is changing into a quantum with mass pZ:

s ?dng®f v (5, %42, %2?)

(%1%~ ps2) (%22 — po?)

1
fw (s, pi? p2?) == S

, (47)

P, pi% ) = 3 Ty(kao, k)8 o1 — 3 )

nm

XTnm(Fty oo oy Rty km’,q)b‘(pz- Ekj,)r?(klly-'-okml)' (48) -

Here fnm(ki, ..., kp, ki, ..., kin, q) is the amplitude
for the hadronic processes per nucleon with momen-
tum transfer q(q,, qj, Qz) to the nucleon, g3 —q5 =0, ©
az = (pZ - pl)/2p; Ty (k;, ..., ky) is the vertex part for’
the transition of a photon into n hadrons. In similar
fashion, with the aid of a single dispersion relation one
can write the amplitude f,,(s, pi, Ky, ... , k) in the
form

1

f‘la(sfpizy e )= ?S

dxs?

s 2
mz-—pxsz(s’ 2. ),

o),
Toalsips )= Shy(ke - knot(pi— 3 ki)

(50)

X frallosy ooy b i/, k', q).

3 With regard to the possibility of using these disper-
sion relations, two questions naturally arise: whether
the dispersion relations (47) and (49) (especially (49))
are violated because of the presence of more compli-
cated complex singularities than the threshold singu-
larities, and whether the unsubtracted dispersion rela-
tions are valid? Even if complex singularities exist
they are not important at high energies, One can Yerﬂ!
this, for example, with the aid of formula (36), which 18
nothing other than a double dispersion relation over the.
masses of the quanta, and which is obtained only from
assumptions that the integrals over the intermediate ;
states converge. An attempt to investigate the analyti¢ *.
properties of the Feynman diagrams leads to the san’f
result, ]

The use of unsubtracted dispersion relations 18 ob-
viously an hypothesis which cannot be proved. HOW'm_
ever, it is necessary to emphasize that there is ani




at distinction between the dispersion relations
Y. * or the energy which are usually used and dispersion
“1 ations with respect to the mass. The growth of the
3 variant amplitudes at large energies s is a normal
g 1 nomenon both in the strong as well as in the weak
& | peractions. In contrast to this it is natural to assume
b 5 | at large masses, i.e., in the case of strongly vir-
processes, the amplitudes decrease because of the
¢ cut-off due to the strong interactions, at all events for
b passes K 2 s
® * |f the dispersion relations (47)-(50) are assumed,

bstituting them into (43) we obtain for x

g then by su
L » 1/i9z
. 1 1 dug?dns?
. _F.,S—2niR2—
o = 2R nzS o
1 1 1 ]
X —_ z r )
F’[ Tl @ Zgitri T (51)
N2 ¢ dwy?dxg? 2ig.lf
' =— : Ty.
= Ve D T (52)

f the integrals over «; and x> converge for finite
masses of the order of 112 (large distances), then ql
p?l/2p— 0 and

A s i P dn® 1 9i(gd + lgs) + 0241 T,
. v i Hi“Hot (53)

1 dy? dnl®
Fov =N S

q: +

= 2 A (g P | Ly 54
O | — e #|r.  (54)
‘B‘ence, by using the optical theorem we obtain, in analo-
gy to Eqs. (36)—(40), the total cross sections in the

ov5=2n32[1+0(%z=>](23-1—1), (55)

N ¢ dx2dns? ¢
oy = ——— § ZEZEY 4(gud)2 Ty & NayVO (i'z— F) . (56)
2pmat Y wPne 13

e., Eq. (40) holds with good accuracy of the order of
.}’/os = RIp?/p%

If the integral (40a) for 1— Zs diverges, i.e., if

B masses much larger than p” are important, then ac-

§ cording to Eq. (51) F.?,.}, is determined by masses which
satisfy the condition g,/ < 1. The contribution from
large q, is small due to the rapid decrease of the ex-
pression inside the square brackets. In this connection,
= f the integral (40a) over «° for 1 — Z, diverges loga-
| rithmically, then it is determined by the region qz!
«1, and c.§, is given by

P

dx? 2p
of =2k [ (), wt~ (57)

. The volume term on the other hand is determined by
tbh; region gl > 1 and, in order of magnitude, is given

oyY = oy¥ (ng?) N, (58)

Where G)I:I (xg) is that part of the cross section for the

Interaction of a y quantum with a nucleon which is due,
b from the viewpoint of the dispersion integral (47), to

: Masses x® and k> which are larger than k2. The ques-
3 tlon of the energy dependence of x5 was discussed in

‘ the Introduction. The assertions made there are obvi-

. s from the point of view of formulas (51) and (52).
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5. INTERACTION OF ELECTRONS WITH NUCLEI

The interaction of an electron with a nucleus re-
duces to the interaction of a virtual y quantum with a
nucleus (see the diagram shown in Fig. 4). The differ-
ential cross-section for the scattering of an electron
accompanied by the creation of an arbitrary number of
hadrons may be written in the form
ez 1 &k

= m > [Ku.KvFuv -+ pVZFwJZko' (2."" )'3« (59)

where k denotes the incoming-electron momentum in
the laboratory system, K, =k, + ki, py = ky —ky de-
notes the momentum of the virtual quantum, and M is
the mass of the nucleus. The quantity F,_“, denotes the

imaginary part of the forward scattering amplitude for
the virtual y-quantum. In the preceding sections the
quantity Fpuy was calculated for a real quantum, i.e.,
for p2 = 0 and polarization vectors perpendicular to the
momentum of the quantum. As is clear from the 2pre-
ceding discussion, a generalization to the case p” # 0
does not present any difficulties since only at the last
stage did we assume the photon mass equal to zero. A
small difficulty arises only in connection with calcula-
tions of the contribution of the longitudinally polarized
quanta. This is associated with the fact that expres-
sions (38) and (39) are approximate, and with the fact
that the longitudinal polarization vector depends on the
energy. One can write expression (39) for py,, written

in the laboratory system, in the form i

dg

ppv = [—8uvM = + pupv -+ @upv 4 avpu + auavip(Ma?), (60)

pr— M2
Uy = ——mr——
T 2p]

where pﬁ‘ is the momentum of the nucleus. This ex-

pression is not gauge invariant. At first glance it may
appear that only the principal term PuPy has meaning

in this expression, and the remaining terms, which are
of order 1/|p|? in comparison with it, should be dis-
carded. This same term does not, in virtue of current
conservation, give a contribution to any process, and
therefore we have evaluated an uninteresting quantity.
In actual fact, if one assumes j) = jueﬁ from the very
beginning, as was done above, then these questions do
not arise, and the principal term is py, = M p(M], ).
The correction terms coming from intermediate states
of the other type are of order 1/|p| in comparison with
the term written down since no additional energy de-
pendence can arise from el

The situation is different with e"," . In this case if

(e ﬂe "{) = —1 enters in the principal term but the quan-
tity (eupﬁ‘)zp'zz 1 in the correction term, then we ob-

tain a contribution of the same order. This means that
the calculation of the longitudinal polarization is not
valid. In order to avoid this difficulty, let us write down
a general expression for F, which satisfies the con-

ditions pyFy, =0 and p,Fy, = 0. It has the form

Put,

Putpv + PvAPa ]

Fuy = — A[ Suv + ———pultpvt — (74p)

pZ
(p4p)*
X B(pupv — P*Owv).

(61)

|
|
|
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On the other hand, in analogy to (38) we may write

aM 2

T (62)

Fuy = 20R% - 2(ppA) et §

Comparing the principal term, which is proportional to
PuPy, in the right-hand side of expressions (62) and (60)

with expression (61) we obtain

aM 2
(Mz?— p?)*
Calculating F“Veﬁe,} with the aid of Egs. (62) and (61)
we will have

B =2aRti - 2pMer § p(M.). (63)

Ma2dM 2
(M2 — p?)?
Substituting (63) and (64) into (61) and (59) we obtain
formulas (9)-(11) which were mentioned in the Introduc-
tion.

In conclusion I wish to express my deep gratitude to
I. T. Dyatlov, B. L. Ioffe, L. B. Okun’, and K. A, Ter-
Martirosyan for numerous helpful discussions.

A+ Bp2 = 2% - 2puMe? § o(M.2).  (64)

APPENDIX

Here we derive formula (21) for the amplitude for
the scattering of a particle by a nucleus in terms of the
amplitude of the hadronic processes per nucleon. For-
mula (12), which is valid at small energies, is obtained
from (21) as a special case.

Let us consider the diagram shown in Fig. 5, and we
shall consider the part of the diagram separated by the
dashed line as the unique amplitude for the scattering
of a hadron by n nucleons, and let us denote this ampli-
tude by Faa(p, P;, Py + Q15 P2 Do+ Q2 -..)-

Assuming that thé nucleons in the nucleus are non-
relativistic and introducing the relative momenta of the
nucleons

pin’ = pwu/n + ku,

it is easy to see (see, for example, (®!) that ki, ~ gi,
~k%/2m is much smaller than the energies entering
mto Faa(p, pl , b, + 4qj, ...). Inthis connection, neglect-
ing k{o and Cho in the amplitude Fy5 we obtain the re-
sult that

, i
Foo(p, pliv pil + qily )= F(pv 4,9,y Gty pPa).

This makes it possible to integrate over kj, and qj, and
to write the integral corresponding to the diagram of
Fig. 5 in the following nonrelativistic form:

g1 § L (k") Foa (P, G’y Pupan) T(ki’ + g¢)
“ T RN —n)! D:D:
N—1 n—1i
&k &g/
Here ezl oy (A.1)
D, =na+ ( Zk >+ Sk, =g

+ (S0 +90) +3 f+ a0

A2 = m? — M2[ N2,

N. GRIBOV

Or, introducing the wave function of the nucleons in the
nucleus in the coordinate representation, we have
T'(k/)
Dy

= YNI(2m) N4 S exp (ki) g (ry, ..., tn—g)dVy . ..

aVxl (A2)
For such a choice of the factor in (A.2) we obtain

S Ip(re,..., dVy_y=N.
Hence for n << N

M OoOBEO®E A

tno) |2dV0- .. (A-2a)

N 1
(r)_
ae — | (zm) n_igx(ru-. yrn)

n n—t

xexp(iq/r) Fa(p.ai's ppa) [1aVe I]
1 i

a3 .
Vs,

L
(2m)3
X("a,--~.fn)='S Y ey TNeg) AV ngy ..
Let us represent the vectors q1 in the form q1
= qf, + qi,, where q1 L lies in a plane perpendicular to
the momentum of the incoming particle in the labora- :
tory system, and similarly rj = pjj + 2j. Then the in-
tegral

g e

Sexv(ifm’pu.')x(rh.-..rn)dsz---dzpn-i

will change substantially during a change of g{, by an
amount of the order of 1/Ryp, where Ry is the average .
distance between the nucleons r,, ... , rN. We assume 4
that the mean free path inside the nucleus is larger than /|
the transverse distances which are important in the
strong interactions at high energies. Since Rp is of the
order of the mean free path, then 1/R; is significantly
smaller than the transverse momenta which are impor-
tant in the strong interactions and which enter into the
amplitude Fu5(p, af, ppa). This means that we may
carry out the integration over g, having set qf, =0 i
in Fa4(p, ai, PPA). Then integration over d,qj gives 4
6(p; —p2)0(p; — pg) - .. and 1
N» 1 g
Tl (2m)mt

T e TS i DAy S ] e

Fio_ jdzp,dq...dz,.x(px,-'-n--.,ln)

n-t
dg.s (A4)
X €xp(ig:{%i) Faa(ps §zi’» PP 4) == :

fu=t
Let us go on to the most important integration over
2zj. Since X (p,, 2y, --- , 2p) iS symmetric with respect
to z,, ..., 2y (taking the difference between neutrons
and protons into account does not change the result), we

1 may omit the 1/n! in front of the integral (A.4) and as-

sume

<2< 2. < Zp-l.

(A.5)

One can write the expression E qf, 2z in the form
i

2 qi/21= q1s(51— Z2) + Gz (52— 28) F - .. -+ Gnetoe(Bnmt — Zn)s (A6

i P N 1
where q,; = Qiz, Gz = %z + Qiz, 93z = A1z + Qzz + Qsze
We note that

si=(p—q')>=(p— q1)u® = pu® + 2p4xt

is equal to the square of the mass of the intermediate
state which appears after scattering by the first nt-
cleon,

s2=(p—q' — @ )l= (p — q2)u = ps* + 24z
is the square of the mass of the intermediate state
which appears after scattering by two nucleons, etc-




-
A AND ELECTRONS WITH NUCLEI 17

INTERACTION OF GAMMA QUANT

integration over Qdz, dzz--* is integration over
255€S Sy, Say e e of the intermediate states. These
mtegraﬁons have the usual Feynman character. Since
oxP [iCIzi(zi —2j,,)] decreases in the lower half-plane,
one Can close the contour of integration over Sj in the
jower half-plane and reduce the integral of Faal ) to
integral of the absorptive part, i.e., to an integration
over real intermediate states, and one can substitute

i = (si— v)/2p.

X an
As a result one can write Faa) in the form

o= ,ﬁfﬂ:i—— S dpydzy ... 0nt >, favesp [ig.> (2 — 22) Ifbe
e (4pm') ot b,c,d.
(A.7)

X OXP{iq:c(Zz —1z9)]... eXP[i‘Izd (Zn—1— zn)] feaX (P12 210022 Za)s

where the sum over b, ¢, and d is2 summation over

the possible intermediate states, and fpc denotes the
amplitude for the conversion of the group of particles b
{nto the group of particles ¢ by 2 nucleon (see Fig. 6).
In contrast to the amplitudes for the interaction of
mdividua.l particles (not groups of particles) which are
usually considered, these amplitudes areé not matrix
elements of the S-matrix. Infact, when we calculated
the absorptive part, for example, with respect to the
variable Ss, it was determined by the product facfeas in
other words, the contribution of real intermediate states
to fac 18 determined in the usual way by the substitu-
ton S; — Ss + 1€ andin f&o by the substitution g
-5y —l€. If after this one evaluates the absorptive
b .rt with respect to Sz, then fac goes over into fapfhes
where fﬁc is determined by the replacement of s, by
g, —ie. Thus, f§ is determined as fpc(s; —i€, 85 + i€).
- At first glance it may appear that the introduction of
such quantities may lead to difficulties. In actual fact
this is not so, and quantities of this type represent a
patural generalization of the ordinary amplitudes to 2
case involving the interaction of groups of particles.
One can verify this if we represent the amplitude Faa
in the form of an integral of the T-product of the nu-

cleon operators:

(a|TA(z, 2) A (@ 27) - Al@n, ') lay.
where A(x,, 1) ~ 9(x,)¥(x)), and if we decompose the

product with respect to the intermediate states
(a|A(znz) M) (n| A (2, 72) im>...

The amplitudes (n]A(xg, x,)|m) are not matrix ele-
ments of the S-matrix provided none of the states
{n|,|m) are single-particle ‘states, and they coincide
with the quantities discussed above.

In order to complete the final step in order to ob-
tain formula (21), we shall utilize the assumption that
the mean free path is large in comparison with the dis-
tance between nucleons. This means that the points Iy,
rz, and ry are located, on the average, in the integral
(A.4) at distances from each other which exceed the
distance between particles, and therefore under condi-
tion (A.5) one can confine one’s attention to only the
correlations of the nearest nucleons, i.e., one can write

(1, 21,81 — B2, 82 = 33y -+ 42 Inmt T Zn) =
= g(pn21)% (31 —22)x (32— 28) - - % (Zn—1 — %n),
* x{zicy — 2) > 1 for zi — %i-1—> %,
where @(py, 2,) 18 constant inside the nucleus and equal
to zero outside of it. By virtue of the normalization

condition (A.22)

(A.8)

elona)=N/V" (A.9)
where V is the volume of the nucleus. Substituting
(A.8) and (A.9) into (A.7), we obtain formulas (21) which
were used in the text.
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