2017 International Summer Workshop on Reaction Theory

Effects Beyond the Born Approximation for the Elastic Scattering of Leptons by Nuclei

Oleksandr Koshchii Adviser: Andrei Afanasev The George Washington University

June 16, 2017, Bloomington, Indiana, USA

Outline

- The Proton Radius Puzzle and MUSE experiment
- Theoretical background on the elastic lp scattering
- Elradgen: MC generator for MUSE
- Recent update to Elradgen: influence of lepton mass on charge asymmetry contribution
- Helicity-flip transitions in MUSE: σ -meson exchange in the t-channel
- Conclusion

The Proton Radius Puzzle

[https://www.psi.ch/muonic-atoms/]

The Proton Radius Puzzle

[https://www.psi.ch/muonic-atoms/]

MUSE at PSI

- \triangleright Will measure simultaneously elastic $e^{\pm}p$ and $\mu^{\pm}p$ scattering:
	- Direct Access to TPE Corrections
	- Test Lepton Universality
- \triangleright First signicant μp scattering radius determination, at roughly the same level as done in previous scattering experiments:
	- Theoretical estimations beyond the Born approximation are required (ultrarelativistic limit $(\varepsilon \gg m)$ cannot be used for scattering of muons!)

Theoretical Background: Born Approximation

Rosenbluth separation:

Charge radius definition:

$$
\frac{d\sigma}{d\Omega}\propto G_E^2(Q^2)+\frac{\tau}{\epsilon}G_M^2(Q^2)
$$

$$
\left\langle r^2\right\rangle = -6\frac{dG_E(Q^2)}{dQ^2}\Bigg|_{Q^2=0}
$$

6 $\overline{0}$

Theoretical Background: Higher Order Corrections

Theoretical Background: Higher Order Corrections

Theoretical Background: Higher Order Corrections

Born and Higher Order Relevant Diagrams

 $\mathcal{L}_{\textit{vac}}$ $\left. |+2\,\text{Re}\right|\left(M_{1\gamma}^{~\prime}~\right)~M_{1\gamma}^{~\prime}~\left|+2\,\text{Re}\right|$ $M_{0}^{*}M_{0}^{*}$ $+|M_{1y}^l|^2 + 2\text{Re}\left[M_0^*M_{vert}^l\right] + |M_{1y}^h|^2 + 2\text{Re}\left[M_0^*M_{vert}^h\right] + O(\alpha^4)$ Leading and next-to-leading order contributions:

How We Calculate Bremsstrahlung

$$
\begin{aligned} &\text{Lab Frame :}\\ &k=(\omega,\vec{k}),\\ &k_1=(\varepsilon_1,\vec{k}_1),\\ &k_2=(\varepsilon_2,\vec{k}_2),\\ &p_1=(M,0),\\ &p_2=(E_2,\vec{p}_2). \end{aligned}
$$

How We Calculate Bremsstrahlung

[Akushevich et.al. Comp.Phys.Comm, 2012]

Why Elradgen 2.1?

\triangleright Takes into account the mass of the lepton

 \mathcal{M}_{vac}

 $(1+\delta)$ 2 $\sum |M|^2 |M|^2$ $\left|i\right|^2 = \left|M_0\right|^2 \left(1\right)$ *i* M ² = \sum |*M*_i|² = |*M*₀|² (1+ δ)

Radiative Corrections: Electron

Radiative Corrections: Muon

Extra contributions to include

 \triangleright Terms of our interest:

Extra contributions to include

\nTerms of our interest:

\n
$$
|M|^2 = |M_0|^2 + 2 \text{Re} \left[M_0^* M_{vac} \right] + |M_{1y}^l|^2 + 2 \text{Re} \left[M_0^* M_{var}^l \right] + 2 \text{Re} \left[M_0^* M_{2y} \right] + 2 \text{Re} \left[M_0^* M_{2y} \right]
$$
\nElradgen 2.1 terms:

\n
$$
M_0|^2 + 2 \text{Re} \left[M_0^* M_{vac} \right] + |M_{1y}^l|^2 + 2 \text{Re} \left[M_0^* M_{vert} \right]
$$
\nRecent calculation:

\n
$$
2 \text{Re} \left[\left(M_{1y}^l \right)^* M_{1y}^h \right] + 2 \text{Re} \left[M_0^* M_{2y} \right]
$$

 \triangleright Elradgen 2.1 terms:

$$
|M_0|^2 + 2 \text{Re} \left[M_0^* M_{vac} \right] + |M_{1y}^l|^2 + 2 \text{Re} \left[M_0^* M_{vert}^l \right]
$$

 \triangleright Recent calculation:

$$
2\operatorname{Re}\left[\left(M_{1\gamma}^{l}\right)^{*}M_{1\gamma}^{h}\right]+2\operatorname{Re}\left[M_{0}^{*}M_{2\gamma}\right]
$$

My contribution to Elradgen

 \triangleright Pros: the only charge-dependent contribution to order $\alpha^3 \rightarrow$ direct access in MUSE!

17 Cons: various intermediate hadronic states in the TPE loop are possible

Model-independent TPE calculation

Soft Photon Approximation: $q_1 \rightarrow q$ $q_2 \rightarrow 0$

Two Approaches:

- **1. [Yung-Su Tsai, Phys Rev 1961]**
- **2. [Maximon, Tjon, Phys Rev C 2000]**

Asymmetry Comparison

[Koshchii, Afanasev arXiv:1705.00338]

Alternative Calculation

[Tomalak, Vangerhaeghen Phys Rev D 2014]

Extra contribution to be considered: helicity-flip transitions

σ-meson exchange in t-channel

Consider the interference between following diagrams:

$$
j_{\mu}^{v} = \overline{u}(k_{2})\gamma_{\mu}u(k_{1})
$$

\n
$$
j_{\mu}^{v} = \overline{U}(p_{2})\left(\gamma_{\mu}F_{1}(Q^{2}) + \frac{i\sigma_{\mu\nu}q_{\nu}}{2M}F_{2}(Q^{2})\right)U(p_{1})
$$

\n
$$
j_{\mu}^{s} = \overline{U}(p_{2})U(p_{1})
$$

\n
$$
j_{\mu}^{s} = \overline{U}(p_{2})U(p_{1})
$$

σ-meson exchange in t-channel

Consider the interference between following diagrams:

Model to calculate f_s

Everything that is sandwiched between spinors is the form factor!

Model to calculate f_s

Everything that is sandwiched between spinors is the form factor!

Vertex description Vertex description

The most general form to describe the vertex:

 $\Delta_{\mu\nu} = A_s(q^2; q_1^2, q_2^2) \Big(g_{\mu\nu} (q_1 \cdot q_2) - q_1^{\nu} q_2^{\mu} \Big) + B_s(q^2; q_1^2, q_2^2) \Big(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \Big) \Big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \Big)$ Vertex description

The most general form to describe the vertex:
 $2^2; q_1^2, q_2^2 \left(g_{\mu\nu}(q_1 \cdot q_2) - q_1^{\nu} q_2^{\mu} \right) + B_s(q^2; q_1^2, q_2^2) \left(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \right) \left(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \right)$

[A.E. D Vertex description

The most general form to describe the vertex:
 $A_s(q^2; q_1^2, q_2^2)(g_w(q_1 \cdot q_2) - q_1^{\nu}q_2^{\nu}) + B_s(q^2; q_1^2, q_2^2) (q_1^2q_2^{\nu} - (q_1 \cdot q_2)q_1^{\nu}) (q_2^2q_1^{\nu} - (q_1 \cdot q_2)q_2^{\nu})$

[A.E. Dorokhov et. al. Eu Vertex description

The most general form to describe the vertex:
 $\Delta_{uv} = A_s(q^2; q_1^2, q_2^2) (g_{uv}(q_1 \cdot q_2) - q_1^v q_2^v) + B_s(q^2; q_1^2, q_2^2) (q_1^2 q_2^v - (q_1 \cdot q_2) q_1^v) (q_2^2 q_1^v - (q_1 \cdot q_2) q_2^v)$

[A.E. Dorokhov et. al. Eu **[A.E. Dorokhov et. al. Eur. Phys. J. C (2012)]**

Vertex description Vertex description

The most general form to describe the vertex:

 $\Delta_{\mu\nu} = A_s(q^2; q_1^2, q_2^2) \Big(g_{\mu\nu} (q_1 \cdot q_2) - q_1^{\nu} q_2^{\mu} \Big) + B_s(q^2; q_1^2, q_2^2) \Big(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \Big) \Big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \Big)$ Vertex description

The most general form to describe the vertex:
 $\frac{2}{3}$; q_1^2 , q_2^2) $(g_{\mu\nu}(q_1 \cdot q_2) - q_1^{\nu}q_2^{\nu}) + B_s(q^2; q_1^2, q_2^2) (q_1^2q_2^{\nu} - (q_1 \cdot q_2)q_1^{\nu}) (q_2^2q_1^{\nu} - (q_1 \cdot q_2)q_2^{\nu})$

[A.E. Dorokh Vertex description

The most general form to describe the vertex:
 $A_s(q^2;q_1^2,q_2^2)(g_w(q_1\cdot q_2)-q_1^vq_2^v)+B_s(q^2;q_1^2,q_2^2)(q_1^2q_2^v-(q_1\cdot q_2)q_1^v)(q_2^2q_1^v-(q_1\cdot q_2)q_2^v)$

[A.E. Dorokhov et. al. Eur. Phys. J. C (2012 Vertex description

The most general form to describe the vertex:
 $\Delta_{uv} = A_s(q^2; q_1^2, q_2^2) (g_{uv}(q_1 \cdot q_2) - q_1^v q_2^v) + B_s(q^2; q_1^2, q_2^2) (q_1^2 q_2^v - (q_1 \cdot q_2) q_1^v) (q_2^2 q_1^v - (q_1 \cdot q_2) q_2^v)$

[A.E. Dorokhov et. al. Eu ription
describe the vertex:
, $q_2^2) \big(q_1^2 q_2^\mu - (q_1 \cdot q_2) q_1^\mu\big) \big(q_2\big)$
ov et. al. Eur. Phys.
bdel for transverse $\big(q_2\big)^2 \big) \big(m_\rho^2 - q_2^2\big)$
rimentally cription

describe the vertex:
 $q_1^2, q_2^2) \big(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \big) \big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \big)$

hov et. al. Eur. Phys. J. C (2012)]

nodel for transverse photons:
 $g_{\sigma \gamma} \, m_\rho^4$
 $q_1^2 \big) \big(m_\rho$ **escription**
 n to describe the vertex:
 $(q^2; q_1^2, q_2^2) (q_1^2 q_2^u - (q_1 \cdot q_2) q_1^u) (q_2^2 q_1^v - (q_1 \cdot q_2) q_1^v)$
 orokhov et. al. Eur. Phys. J. C (20)
 D) model for transverse photons
 $\frac{g_{\sigma \gamma} m_\rho^4}{m_\rho^2 - q_1^$ ription

describe the vertex:
 $,q_2^2\big)\big(q_1^2q_2^{\mu}-(q_1\cdot q_2)q_1^{\mu}\big)\big(q_2^2q_1^{\nu}-(q_1\cdot q_2)q_2^{\nu}\big)$

lov et. al. Eur. Phys. J. C (2012)]

del for transverse photons:
 $\frac{\sigma_{\mathcal{V}}}{m_{\rho}^2}\frac{m_{\rho}^4}{m_{\rho}^2-q_2^2}\bigg)$ $\begin{align*} \textbf{escription} \ \textbf{to describe the vertex:} \ \tau^2; q_i^2, q_2^2 \big) \big(q_i^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \big) \big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \big) \ \textbf{c} \ \textbf{chov et. al.} \ \textbf{Eur.} \ \textbf{Phys. J. C (2012)} \textbf{)} \ \textbf{model for transverse photons:} \ \frac{g_{\sigma \gamma \sigma} m_{\rho}^4}{\rho_{\rho}^2 - q_1^2 \eta_1^2 \big) \$ $\begin{array}{l} \mbox{\bf s}{\bf ciription} \ \end{array}$
 $\begin{array}{l} \displaystyle \sigma_1, \sigma_2, \sigma_3 \end{array} \begin{array}{l} \displaystyle \sigma_2, \sigma_3 \end{array} \begin{array}{l} \displaystyle \sigma_1, \sigma_2, \sigma_3 \end{array} \begin{array}{l} \displaystyle \sigma_1, \sigma_2, \sigma_1 \end{array} \begin{array}{l} \displaystyle \sigma_2, \sigma_2 \end{array} \begin{array}{l} \displaystyle \sigma_1, \sigma_2, \sigma_2 \end{array} \begin{array}{l} \displaystyle \sigma_2, \sigma_3 \end{array} \begin$ **[A.E. Dorokhov et. al. Eur. Phys. J. C (2012)]**

Vector meson dominance (VMD) model for transverse photons:

Vertex description
\n
$$
\text{Uertex algorithm to describe the vertex:}
$$
\n
$$
x_1 \cdot q_2 - q_1^v q_2^u + B_s(q^2; q_1^2, q_2^2) \left(q_1^2 q_2^u - (q_1 \cdot q_2) q_1^u \right) \left(q_2^2 q_1^v - (q_1 \cdot q_2) q_2^u \right)
$$
\n[**A.E. Dorokhov et. al. Eur. Phys. J. C (2012)**]\nminance (VMD) model for transverse photons:
$$
A_s(q^2; q_1^2, q_2^2) = \frac{g_{\sigma \gamma r} m_\rho^4}{(m_\rho^2 - q_1^2)(m_\rho^2 - q_2^2)}
$$
\nObtained experimentally

Results

[Koshchii, Afanasev PRD, 2016]

Other Estimations

[Tomalak, Vanderhaeghen EPJC, 2016]

Conclusion

- Monte Carlo generator Elradgen 2.1 was developed to include mass effects in elastic $l^{\pm}p$ scattering
- \triangleright Charge asymmetry contributions were recently added to Elradgen
- \triangleright The estimates of major helicity-flip contribution were performed

Thank you!