2017 International Summer Workshop on Reaction Theory

Effects Beyond the Born Approximation for the Elastic Scattering of Leptons by Nuclei

Oleksandr Koshchii Adviser: Andrei Afanasev The George Washington University

June 16, 2017, Bloomington, Indiana, USA

Outline

- The Proton Radius Puzzle and MUSE experiment
- Theoretical background on the elastic *lp* scattering
- Elradgen: MC generator for MUSE
- Recent update to Elradgen: influence of lepton mass on charge asymmetry contribution
- Helicity-flip transitions in MUSE: σ -meson exchange in the t-channel
- Conclusion

The Proton Radius Puzzle

[https://www.psi.ch/muonic-atoms/]

	Muon	Electron
Spectroscopy	0.8409(4)	0.8758(77)
Scattering	???	0.8770(60)

The Proton Radius Puzzle

[https://www.psi.ch/muonic-atoms/]

MUSE at PSI

- > Will measure simultaneously elastic $e^{\pm}p$ and $\mu^{\pm}p$ scattering:
 - Direct Access to TPE Corrections
 - Test Lepton Universality
- > First signicant μp scattering radius determination, at roughly the same level as done in previous scattering experiments:
 - Theoretical estimations beyond the Born approximation are required (ultrarelativistic limit $(\varepsilon \gg m)$ cannot be used for scattering of muons!)

Theoretical Background: Born Approximation

Rosenbluth separation:

Charge radius definition:

$$\frac{d\sigma}{d\Omega} \propto G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2)$$

$$\left\langle r^2 \right\rangle = -6 \frac{dG_E(Q^2)}{dQ^2} \bigg|_{Q^2=0}$$

6

Theoretical Background: Higher Order Corrections

Theoretical Background: Higher Order Corrections

Theoretical Background: Higher Order Corrections

Born and Higher Order Relevant Diagrams

 $\blacktriangleright \text{ Leading and next-to-leading order contributions:}}$ $|M|^{2} = |M_{0}|^{2} + 2\operatorname{Re}\left[M_{0}^{*}M_{vac}\right] + 2\operatorname{Re}\left[\left(M_{1\gamma}^{l}\right)^{*}M_{1\gamma}^{h}\right] + 2\operatorname{Re}\left[M_{0}^{*}M_{2\gamma}\right]$ $+ |M_{1\gamma}^{l}|^{2} + 2\operatorname{Re}\left[M_{0}^{*}M_{vert}^{l}\right] + |M_{1\gamma}^{h}|^{2} + 2\operatorname{Re}\left[M_{0}^{*}M_{vert}^{h}\right] + O\left(\alpha^{4}\right)$

How We Calculate Bremsstrahlung

Lab Frame :

$$k = (\omega, \vec{k}),$$

 $k_1 = (\varepsilon_1, \vec{k}_1),$
 $k_2 = (\varepsilon_2, \vec{k}_2),$
 $p_1 = (M, 0),$
 $p_2 = (E_2, \vec{p}_2).$

How We Calculate Bremsstrahlung

[Akushevich et.al. Comp.Phys.Comm, 2012]

Why Elradgen 2.1?

Takes into account the mass of the lepton

 \mathcal{M}_{vac}

 $|M|^{2} = \sum_{i} |M_{i}|^{2} = |M_{0}|^{2} (1+\delta)$

 \mathcal{M}_{vert}^{l}

Radiative Corrections: Electron

Radiative Corrections: Muon

Extra contributions to include

Terms of our interest:

$$|M|^{2} = |M_{0}|^{2} + 2 \operatorname{Re}\left[M_{0}^{*}M_{vac}\right] + |M_{1\gamma}^{l}|^{2} + 2 \operatorname{Re}\left[M_{0}^{*}M_{vert}^{l}\right] + 2 \operatorname{Re}\left[\left(M_{1\gamma}^{l}\right)^{*}M_{1\gamma}^{h}\right] + 2 \operatorname{Re}\left[M_{0}^{*}M_{2\gamma}^{l}\right]$$

Elradgen 2.1 terms:

$$\left|M_{0}\right|^{2}+2\operatorname{Re}\left[M_{0}^{*}M_{vac}\right]+\left|M_{1\gamma}^{l}\right|^{2}+2\operatorname{Re}\left[M_{0}^{*}M_{vert}^{l}\right]$$

Recent calculation:

$$2\operatorname{Re}\left[\left(M_{1\gamma}^{l}\right)^{*}M_{1\gamma}^{h}\right]+2\operatorname{Re}\left[M_{0}^{*}M_{2\gamma}\right]$$

My contribution to Elradgen

➢ Pros: the only charge-dependent contribution to order α^3 → direct access in MUSE!

Cons: various intermediate hadronic states in the TPE loop are possible

Model-independent TPE calculation

Soft Photon Approximation: $q_1 \rightarrow q$ $q_2 \rightarrow 0$

Two Approaches:

- 1. [Yung-Su Tsai, Phys Rev 1961]
- 2. [Maximon, Tjon, Phys Rev C 2000]

Asymmetry Comparison

[Koshchii, Afanasev arXiv:1705.00338]

Alternative Calculation

[Tomalak, Vangerhaeghen Phys Rev D 2014]

Extra contribution to be considered: helicity-flip transitions

σ -meson exchange in t-channel

Consider the interference between following diagrams:

σ -meson exchange in t-channel

Consider the interference between following diagrams:

Model to calculate f_s

Everything that is sandwiched between spinors is the form factor!

Model to calculate f_s

Everything that is sandwiched between spinors is the form factor!

Vertex description

The most general form to describe the vertex:

 $\Delta_{\mu\nu} = A_s(q^2; q_1^2, q_2^2) \Big(g_{\mu\nu}(q_1 \cdot q_2) - q_1^{\nu} q_2^{\mu} \Big) + B_s(q^2; q_1^2, q_2^2) \Big(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \Big) \Big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \Big)$ [A.E. Dorokhov et. al. Eur. Phys. J. C (2012)]

Vertex description

The most general form to describe the vertex:

 $\Delta_{\mu\nu} = A_s(q^2; q_1^2, q_2^2) \Big(g_{\mu\nu}(q_1 \cdot q_2) - q_1^{\nu} q_2^{\mu} \Big) + B_s(q^2; q_1^2, q_2^2) \Big(q_1^2 q_2^{\mu} - (q_1 \cdot q_2) q_1^{\mu} \Big) \Big(q_2^2 q_1^{\nu} - (q_1 \cdot q_2) q_2^{\nu} \Big)$ [A.E. Dorokhov et. al. Eur. Phys. J. C (2012)]

Vector meson dominance (VMD) model for transverse photons:

$$A_{s}(q^{2};q_{1}^{2},q_{2}^{2}) = \frac{g_{\sigma\gamma\gamma}}{(m_{\rho}^{2}-q_{1}^{2})(m_{\rho}^{2}-q_{2}^{2})}$$

Obtained experimentally

Results

[Koshchii, Afanasev PRD, 2016]

Other Estimations

[Tomalak, Vanderhaeghen EPJC, 2016]

Conclusion

- Monte Carlo generator Elradgen 2.1 was developed to include mass effects in elastic l[±]p scattering
- Charge asymmetry contributions were recently added to Elradgen
- The estimates of major helicity-flip contribution were performed

Thank you!