The electromagnetic $\Sigma^0 - \Lambda$ Transition Form Factor at low energies

Elisabetta Perotti Carlos Granados, Stefan Leupold

2017 International Summer Workshop on Reaction Theory
Bloomington, Indiana, USA
June 12-22

Motivation

To further investigate the structure of matter one can try the phenomenal combo:

Electromagnetism

Form Factors (FF)

Strangeness Hyperons (Y)

Hyperons are not stable!

Experimental information about hyperon form factors is rather limited

- Hyperon FFs are more easily accessible in the time-like region $(q^2 > 0)$ for high and low energies via:
 - $e^+e^- \rightarrow Y_1 \bar{Y}_2$ reactions (BESIII)
 - ullet $Y_1
 ightarrow Y_2 \, e^+ e^-$ Dalitz decays (PANDA, HADES)

Focus of this work:

Electric and magnetic transition form factor Σ^0 to Λ

ullet accessible by high-precision measurement of the decay $\Sigma^0 o \Lambda e^+ e^-$ (possible @FAIR)

About experimental feasibility:

- FFs are functions of dilepton invariant mass q^2
 - ightarrow not very large range available, $q^2 < (m_{\Sigma^0} m_{\Lambda})^2 pprox (77 \ {
 m MeV})^2$
 - ightarrow high experimental precision required

Focus of this work:

Electric and magnetic transition form factor Σ^0 to Λ

ullet accessible by high-precision measurement of the decay $\Sigma^0 o \Lambda e^+ e^-$ (possible @FAIR)

About experimental feasibility:

- ullet FFs are functions of dilepton invariant mass q^2
 - ightarrow not very large range available, $q^2 < (m_{
 m S^0} m_{
 m A})^2 pprox (77~{
 m MeV})^2$
 - → high experimental precision required

 \bullet Chiral Perturbation Theory (EFT) \to pseudo-Goldstone bosons

 \rightarrow systematically improvable, reliable uncertainty estimate

- ullet Chiral Perturbation Theory (EFT) o pseudo-Goldstone bosons
 - Include baryon octet

Kubis/Meißner, Eur. Phys. J. C 18, 747 (2001)

- ullet Chiral Perturbation Theory (EFT) o pseudo-Goldstone bosons
 - Include baryon octet
 - Include baryon decuplet

Jenkins/Manohar, Phys.Lett. B259, 353 (1991)

Pascalutsa/Vanderhaeghen/Yang, Phys.Rept. 437, 125 (2007)

Ledwig/Camalich/Geng/Vacas, Phys.Rev. D 90, 054502 (2014)

- ullet Chiral Perturbation Theory (EFT) o pseudo-Goldstone bosons
 - Include baryon octet
 - Include baryon decuplet
- Q: What about other hadronic states, e.g. vector mesons?
- A: It's unclear how to treat them in a systematic, model-independent way.
 - $\bullet \; \rho$ meson experimentally shows up in pion form factor and p-wave pion phase shift (well-known quantities)

Dispersion theory allows to combine these ingredients:

EFT + data

i.e. ChPT and extension thereof + F_{π}^{V}

A few words about dispersion relations

Consider the S-matrix S = 1 + i TUnitarity requires

$$SS^{\dagger} = 1 + i(T - T^{\dagger}) + |T|^2 = 1$$

which implies that

$$2 \operatorname{Im} T = |T|^2 \longrightarrow \left[\operatorname{Im} T_{A \to B} = \frac{1}{2} \sum_X T_{A \to X} T_{X \to B}^{\dagger}\right]$$
 Optical theorem

 \rightarrow consider only most relevant intermediate states X

Analyticity requires

$$T(q^2) = T(0) + rac{q^2}{\pi} \int_{-\infty}^{+\infty} \mathrm{d}s \, rac{\mathrm{Im} T(s)}{s \, (s-q^2-i\epsilon)}$$

ightarrow get the whole amplitude T from its imaginary part

Our paper in figures...

Two-pion exchange: dominant contribution at low energies

Need:

- pion vector form factor F_{π}^{V}
- $\Sigma \Lambda \pi \pi$ scattering amplitude $A_{\Sigma \Lambda \pi \pi}$

Granados/Leupold/Perotti, Eur.Phys.J. A53, 117 (2017)

Alarcon/Blin/Vacas/Weiss, Nucl.Phys. A964, 18 (2017)

Let's take a closer look at $A_{\Sigma\Lambda\pi\pi}$

Let's take a closer look at $A_{\Sigma\Lambda\pi\pi}$

pion rescattering (circle) + a part containing left-hand cuts and polynomials (box)

- no data available for pion-hyperon :(
 - \rightarrow use three-flavor baryon ChPT at LO and NLO
 - $\rightarrow \text{include decuplet states}$

Parameters

Baryon exchange diagrams from LO BChPT:

- octet baryon \to Born diagrams vertices: $\Sigma\Lambda\pi$ and $\Sigma\Sigma\pi$ (F and D parameters)
- decuplet baryon vertices: $\Sigma^* \Lambda \pi$ and $\Sigma^* \Sigma \pi$ (h_A parameter, 2.2 < h_A < 2.4)

Four-point diagram from NLO BChPT:

- vertex $\Sigma \Lambda \pi \pi$ (b_{10} parameter, $0.85 < b_{10} < 1.35 \, \text{GeV}^{-1}$)
 - \rightarrow b_{10} is not very well known!
 - ightarrow b_{10} is directly related to magnetic transition radius of $\Sigma-\Lambda$

Results: TFF at photon point

Electric charge, magnetic moment and electric(magnetic) radius of $\Sigma-\Lambda$ transition

Λ [GeV]	quantity	Born	NLO	NLO+res	χ PT
1	$G_M(0)$	-0.438	5.55	2.58	1.98 (exp.)
2		-0.65	5.98	2.66	
1	$\langle r_M^2 \rangle$ [GeV ⁻²]	0.453	33.7	17.9	18.6
2		0.613	35.2	18.8	
1	$G_E(0)$	-0.432	-	0.0026	0
2		-0.562	-	-0.031	
1	$\langle r_E^2 \rangle$ [GeV ⁻²]	-3.13	-	0.866	0.773
2		-2.91	-	1.044	

Comparison to χ PT (Kubis, Meißner 2001), using $h_A=2.3,\,b_{10}=1.1\,\mathrm{GeV}^{-1}$

- Born terms alone are insufficient to produce reasonable results
 - \rightarrow need NLO and decuplet-resonance exchange
- varying the cut off Λ has rather small impact (10% at most)

uncertainty related to h_A moderate

quantity	$h_A = 2.2$	$h_A = 2.4$	χ PT
$G_M(0)$	2.94	2.36	1.98 (exp.)
$\langle r_M^2 \rangle$ [GeV ⁻²]	20.2	17.3	18.6
$G_E(0)$	-0.076	0.016	0
$\langle r_E^2 \rangle$ [GeV ⁻²]	0.708	1.40	0.773

Comparison to χPT using $\Lambda = 2 \, \text{GeV}$ and $b_{10} = 1.1 \, \text{GeV}^{-1}$

uncertainty related to b₁₀ sizable

b ₁₀	quantity	NLO	NLO+res	χ PT
0.85	$G_M(0)$	4.47	1.15	1.98 (exp.)
1.35		7.49	4.17	
0.85	$\langle r_M^2 \rangle$ [GeV ⁻²]	27.4	10.9	18.6
1.35		43.1	26.7	

Comparison to χ PT using $\Lambda = 2$ GeV and $h_A = 2.3$

Results: TFF

TAKE-HOME MESSAGE

- G_E close to zero at low energies
- G_M is very sensitive to variations of b_{10}
 - \rightarrow need input from experiment

Summary and Outlook

So...What have we learned so far?

- Dispersion theory relates the low-energy electromagnetic $\Sigma\Lambda$ TFF with F_π^V
- Relativistic NLO BChPT determines $A_{\Sigma\Lambda\pi\pi}$
 - Inclusion of decuplet baryons essential to obtain reasonable results!
- Electric TFF very small in the whole low-energy region
- Magnetic TFF depends strongly on a poorly known LEC of the NLO Lagrangian (b₁₀)
 - ightarrow can be determined from measurement of the magnetic transition radius (@FAIR)
 - \rightarrow obtain predictive power

And...What are we going to do next?

- NNLO corrections
- decuplet octet TFF: $\Sigma(J^P=\frac{3}{2}^+)$ to $\Lambda,\,\Delta$ to nucleon

Thank you for the attention!

Lagrangians

Relevant interaction part of the LO chiral Lagrangian:

including only octect baryons

$$\mathcal{L}_{8}^{(1)} = i \langle \bar{B} \gamma_{\mu} D^{\mu} B \rangle + \frac{D}{2} \langle \bar{B} \gamma^{\mu} \gamma_{5} \{ u_{\mu}, B \} \rangle + \frac{F}{2} \langle \bar{B} \gamma^{\mu} \gamma_{5} [u_{\mu}, B] \rangle$$

including also decuplet resonances

$$\mathcal{L}_{8+10}^{(1)} = \mathcal{L}_{8}^{(1)} + \frac{1}{2\sqrt{2}}\,\frac{\mathsf{h_{A}}\,\epsilon_{\mathit{ade}}\,g_{\mu\nu}\,(\bar{\mathit{T}}_{\mathit{abc}}^{\mu}\,u_{\mathit{bd}}^{\nu}\,\mathit{B}_{\mathit{ce}} + \bar{\mathit{B}}_{\mathit{ec}}\,u_{\mathit{db}}^{\nu}\,\mathit{T}_{\mathit{abc}}^{\mu})$$

Relevant interaction part of the NLO chiral Lagrangian:

including only octect baryons

$$\mathcal{L}_{8}^{(2)} = b_{D}\langle \bar{B}\{\chi_{+},B\}\rangle + b_{3}\langle \bar{B}\{u^{\mu},[u_{\mu},B]\}\rangle + ib_{6}(\langle \bar{B}[u^{\mu},\{u^{\nu},\gamma_{\mu}D_{\nu}B\}]\rangle$$

$$- \langle \bar{B}\overleftarrow{D}_{\nu}\{u^{\nu},[u^{\mu},\gamma_{\mu}B]\}\rangle) + \frac{i}{2}\frac{b_{10}}{b_{10}}\langle \bar{B}\{[u^{\mu},u^{\nu}],\sigma_{\mu\nu}B\}\rangle$$

Results: Helicity Amplitudes

Real and Imaginary part of $\Sigma \bar{\Lambda} \to \pi^+ \pi^-$ helicity amplitudes

Magnetic part

- full amplitudes have both real and imaginary part
- full amplitudes include ρ meson (via π - π phase shift)
- decuplet resonance exchange modifies considerably the amplitudes

Results: Helicity Amplitudes

Real and Imaginary part of $\Sigma \bar{\Lambda} \to \pi^+ \pi^-$ helicity amplitudes

Electric part

- full amplitudes have both real and imaginary part
- full amplitudes include ρ meson (via π - π phase shift)
- decuplet resonance exchange modifies considerably the amplitudes