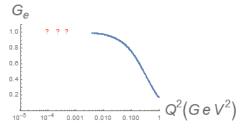
A new approach to limit the extrapolation errors of the proton size problem

Proton charge radius of e-scattering has been estimated by extrapolation of Sachs electric form factor $G_E(Q^2) = F_1(Q^2) - (Q^2/4M^2)F_2(Q^2)$ to $Q^2 = 0$.



Current estimates CONTROVERSIAL: fits allow $r_p \in [0.84, 89] \text{ fm}$ (Horbatsch 2016).

The plan: limit extrapolation errors by making use of analytic structure of G_F .

Two relevant theorems: theorem #1

Theorem #1, on the convergence of Chebyshev polynomials

Chebyshev polynomial fits to a function f on [-1,1] converge geometrically as $n \to \infty$ iff f is analytic [Bernstein 1911, 1912].

Cheby polynomials: set of orthogonal polynomial functions ... Geometric convergence: convergence at a rate $O(C^{-n})$ for C>1 Errors look like straight lines on a semilog scale.

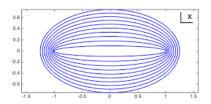
Intro to Cheby polynomials: Chebfun (L.N. Trefethen)

Two relevant theorems: theorem #2

Theorem #2, on Chebyshev coefficients of analytic functions

Let a function f analytic in [-1,1] be analytically continuable to the open Bernstein ellipse E_{ρ} , where it satisfies |f(x)| < M for some M. Then its Chebyshev coefficients satisfy $|c_0| < M$ and $|c_k| < 2M\rho^{-k}$, k > 1.

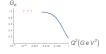
Bernstein Ellipses $E_{ ho}$



How the theorems fit together: the big picture

Thm #1:

We do Chebyshev fit to G_E data. Having G_E data is NOT same as having an analytic function for G_E . Thm #1 doesn't automatically apply; exponential convergence as $n \to \infty$ is not guaranteed.

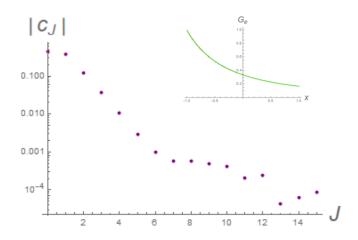


Thm #2:

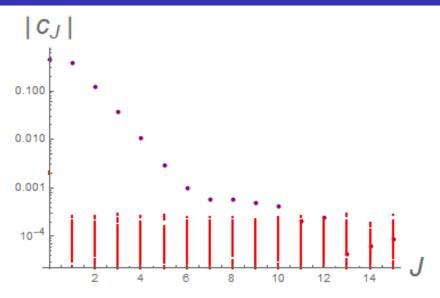
FF ansatz (dipole + branch cut) + thm #2 provide a test of the convergence of the Cheby fit above— i.e. they constrain $\{|c_k|\}$.

 $|c_k| < 2M
ho^{-k}$, where physical singularities fix ho

Chebyshev fit to G_E data



Chebyshev fit to G_E data

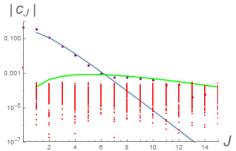


red = 2σ Gaussian noise, approximating effects of $\delta G_{E^{\oplus}}$ $\delta G_{E^{\oplus}}$

Adding in the analyticity bounds

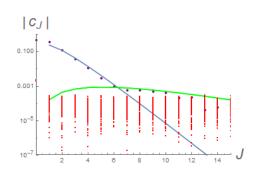
$$F_{ansatz}(Q^2) = \frac{a_1}{(Q^2 + m_{di}^2)^2} + a_2 \cdot (1 - \frac{\sqrt{Q^2 + 4m_{\pi}^2 + 0.08}}{\sqrt{Q^2 + 4m_{\pi}^2} - 0.08})^4 \xrightarrow{\text{thm 2}} bounds$$

Blue is constraint from dipole term; green from branch cut term.



Upshot: Cheb fit obeys analyticity bounds!

The (preliminary) final analysis

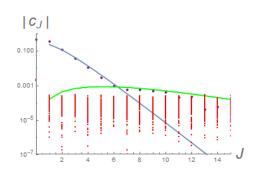


! PRELIMINARY!

We find

1) a radius value consistent with the 'small' radius values $\sim 0.84 \, fm$ and 2) a factor of 2 reduction in the relative uncertainty of r_p .

The (preliminary) final analysis



! PRELIMINARY!

We find

1) a radius value consistent with the 'small' radius values $\sim 0.84 \, fm$ and 2) a factor of 2 reduction in the relative uncertainty of r_p .

BACKUP

Model form factor is

$$F(Q^2) = \frac{a_1}{(Q^2 + m_{di}^2)^2} + a_2 \cdot \left(1 - \frac{\sqrt{Q^2 + 4m_{\pi}^2} + 0.08}{\sqrt{Q^2 + 4m_{\pi}^2} - 0.08}\right)^4$$

Dipole term has a singularity at $q^2=-m_{di}^2$ that is mathematically allowed, if a bit unphysical. It does not include the width of the resonance, and its imaginary part is quite singular.

The other term has been concocted to include a branch cut from the 2-pion continuum, beginning at $Q^2 < -4m_\pi^2$ and falling fast enough as $Q^2 \to \infty$. The important thing is that singularities of the model occur at physically realistic locations in the time-like region