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1 Generalities and notations

In the production of n particle a4+b — 1+ 2+ ...+ n we will denote by m;, E;, A\; and p; with
i € {a,b,1,2,...,n} the mass, energy, helicities and four-vector of the particle i. The three
dimensional space component of four vectors are denoted p;. The physical component are the
covariant ones, p* = (E;, ps, py, p.) and the metric is such that an on-shell particle satisfies

pi =mj = E; — |pi|". (1)

The Lorenz invariant relativistic measure is

1 &p; [ d'pi 2 2y000) — d'pi. s (2
(2%)3/ 2F, _/(27r)4 27 (p; $)0(p;) _/(27r)4 2704 (p; 2) (2)

One often uses the triangle function

2 2\ _ 2 4 4 2 2,2 2
A(s,m;,mj) = s° +m; +mj — 2sm; — 2mim; — 2m;s

= (5= (ms +my)*) (s = (mi = my)?) = Nij(s) (3)
Operators, such as the S—matrix S=T+ if, are hatted. They act on states normalized as
(piMilpiNy) = (2m)°0° (P}, — pi)2Eid, (4)

When contracted on the in |a) = [psAappAs) and out (B8] = (p1A1 ... paAn| states, we pull out
the conservation of energy and momenta with

Ssa = (D11 - - - Pudnl S[ParaPsAs) = Lga + (27)*64( Py — Pg)iMga, (5)

with the notation Iz, = (B|a) = (27)30°(pa — P1)2E.0x, 0, (27)28° (pp — P2)2E}0y, .- In the
case of identical particles, there would be the cross term 6%(p, — p2)d°(py — p1). We also used
P, =ps+py,and Pz =), p;.

The n particle differential cross section is

1 = 11 | &pi
do(a+b—1+...4n)= E(%)%(Pa - Pﬁ)ZAi 1T @y oF, Mal® (6)
i=1 !

The symbol i/\i = (25,+1)71(2s,4+1)"" 3=, stands for the sum over final helicities and average
over the initial ones. The previous formula is valid for different particles. In the presence of
identical particles, there is an extra factor 1/(n!) for each group of n; identical particle (i.e.
>, =n). The flux factor is F; = mypiap with pra, the momentum of the beam (particle a) in
the laboratory frame (the target rest frame).



The unitary relation StS =T with Yk, a k—particle intermediate state, reads:

i (Mga . Mﬁa) (27) ZH / 271T M}, Moo 8P, — Pa), (7)

k=1 i=1

with P, = Zle k;. The left-hand-side can also be written ¢ (M ga - Mga) = 2Im Mg,. The
unitarity relation for elastic scattering a = [ allows one to obtain the total cross section in a
simple form

ola— X) = QFIZ Im M. (8)

Note that since the final and initial four-momenta are equal, the matrix element M, corre-
sponds to the elastic scattering in the forward direction.

In the above formulas we implicitly use natural units 1 = hc = 0.19732 fm.GeV. We can
convert the cross section in physical units by reinstalling the factor

10*(hc)? = 389.35 ub.GeV?. (9)

2 2-to-2 scattering

In this section we particularize the formula for the process a + b — 1 4+ 2. The Mandelstam
variables are

s=Pa+m)? t=0a—11) u=Ds—p2)* s+t+tu=m>+mi+mi+mi=%, (10)

The matrix element depends on the four helicities p; and two Mandelstam variables M =
M, (s,t). In the center-of-mass of the reaction, also called the s—channel, the initial and final
break-up momenta are

e >—7Ai22<> 1a(s) = \ﬂié?() (11)

The scattering takes place in the xz plane such that the beam is aligned with the z direction
Pa = qap(5)(0,0,1) and p; = q12(s)(sin by, 0, cos f5). The scattering angle 6, in this frame is

t—t t — 2 2 2 _ 2
2qab(8)q12(s) 45Gab(s)q12(s)
It is traditional to denote t' = t — to with tq and t; being the limits of the physical region of
the scattering t; <t < t; < 0. We have, with A = (m? — m3) + (m? — m?):
A? 9
ti0 = P (qab(8) & q12(5)) to —t1 = —4qap(5)q12(5) (13)

The boundary of the physical region is given by the Kibble function

o(s,t) =s(t —to)(t —t1) = 4sq2b(s)qf2(s) sin? 0, (14)

The differential cross section is

do T do
_ 2 ==~ 15
dt 64 F2Z| dt Gab(s) Q12( ) dQ ( )



Allowing only one two-body intermediate state v, the unitarity takes the simple form

dQ,,
Y, (5,0,8) Moo (s, 05). (16)

21 My (5. 005) = pals) [ 5

The angle 0,5 is the angle between the state o and 8. The two-body phase space is, with m,
and m, being the masses of the two intermediate state -,

1
—Al/z(s,mi,mg). (17)

pa(s) = S7s

By convention we have left the factor of two in the left-hand-side of Eq. (16) outside the
two-body phase-space factor ps(s).
The partial wave expansion for scalar particles reads

M(s, cosby) = 2(25 + 1)ay(s) Py(cos bs). (18)
=0

The partial wave expansion diagonalize the unitarity equation (7). In the elastic approximation
we obtain

2Im ag(s) = pa(s)lac(s)|” (19)

Another convenient and equivalent way to write the elastic unitarity equation for the partial
wave is

2Tma, '(s) = —pa(s). (20)

The partial decomposition can also defined for particle with spin

[e.9]

= 2T+ Daj,(s)d;,(6,) = — i o= s — iy (21)
J=0



3 Spinors

3.1 Generalities

See Perl, ArXiv:0703214 and ArXiv:9405376 for the conventions. The physical components are
the contra-variant ones z* = (¢, z,y, z) etc. The gamma matrices are

0 __ IQ 0 i 0 O'i 5 0 IQ
L (01 s (0 —i . (1 0
"‘(1 0) U_<i 0) = \o -1 (22b)

2. The commutation relations are

They satisfy v/, = 707,70 and C~'v,C = —7 ] with C' = iy
{2} = At H A = 29" 1y {o",07} = 2¢7Fqy,. (23)

A complete base of 4 x 4 is given by the 16 matrices, collectively denoted by ~4
v = {757, 957", 0}, (24)

with the notation o = (i/2) [v*,~*] = (i/2) (7" — ¥"4"). 75 satisfy the following properties

1 (073 12
V5 = EGaﬁwa ’YB’Y“’Y ’Yg =1 Tr (75) =0 (25&)
= i’y %y (Vs 5] = 0 (O 5] =0 (25b)

Let p = (sinf cos ¢, sin fsin ¢, cos ) being a unit vector (p - p = 1) with direction (6, ¢).
The variables domains are 6 € [0, 7] and ¢ € [0, 27[. The two component spinors along p are

. cos & . —e ®gsin 2 |
v = ((55) ww= () jeruda @

i} i O v
€ Sln2 COS2

They obey the normalization and the useful relations:

k@@ =1 xL(p)oxs(p) = +p xe@xkP) =5l £p-0)  (27)
C@x=0) =0 L) ove®) = vIED  xe(B)YL(D) = %é@ - (25)

We introduced the unit vector é = (1/v/2)e’®(cos cos ¢ — isin ¢, cos §sin ¢ + i cos ¢, — sin 0)
orthogonal to p ((€-€é = 1) and p-€=0). The complex conjugation in €™ is taken for the lower
helicity combination.

For particle moving along the —p direction, i. e. along the angles (7 — 6, ¢ 4+ 7) (choose
the sign such that 0 < ¢ + 7w < 27), we would obtain

X+(—P) = Te " x+(p). (29)

However in order to satisfy the remove the ambiguity in xk(p)x+(—p) = Te¥¢ (because in
the limit where the momentum goes to zero, a particle with helicity in the direction of his
momentum reduces to a particle moving in the opposite direction with helicity opposite to its

momentum), we define the spinor along —p with the second particle convention of Jacob and
Wick:

X=(=P) = x=(P). (30)



With v = —C@” and © = uTC~!, the four component spinors are (with @ = u'vy)

_ X=+(P) _ —apx£(P)
u+(p) = By (:l:apXi(ﬁ)) vi(p) = By ( 4+ XﬂF(ﬁ)) (31)
ax(p) = B, (XL (®) FopxL(p)) 0s(p) = By (o (®) E®)  (32)

The satisfy the Dirac equations (with p = p,7*)

(P —m)ux(p) =0 (P +m)vs(p) =0 (33)

With the definitions and properties

=V Eptm = =Vt (3)
p
af? = |p| B =E,—m i =u'"’ (36)
U Uy = 2m5>\/>\ u;,U)\ = 2Ep(5)\/)\ ZU)\I_L)\ = ﬁ +m (37)
A
Uy Uy = —2m(5>\/,\ ’UI\/U)\ = 2Ep5)\/)\ ZU)\?_))\ = }’5 —m (38)
A

3.2 Spinors in s—,t— and u—channels

In the s—channel 1(0) 4+ 2(7) — 3(p) + 4(—p), the particle 2 and 4 should be defined with the
‘'second particle convention. In the case of nucleon-nucleon scattering we would use

~

B x=(0) (o) — x+(0) .
ui(pl) = o <:|:O‘p1Xi(())) i(pQ) = P <i04p2><z(0)) (39 )
s (ps) = Bpy (XL(P) Fop,xL(P)) s (ps) = Bpy (X2(P) Fop, (D)) (39D)

In the t—channel 1(0) + 3(7) — 2(p) + 4(—p), the particle 3 and 4 should be defined with
the ’second particle’ convention. In the case of nucleon-nucleon scattering we would use

ux(p1) = By, (iamiigg;) vy (p2) = Bp, (_afiz((?)) (40a)
0+ (p3) = Bos (—0pxk(0) Fx1(0)) s (ps) = By (X (B) Fop XL (D)) (40b)

In the u—channel 1(0) + 4(w) — 3(p) + 2(—p), the particle 2 and 4 should be defined with
the ’second particle’ convention. In the case of nucleon-nucleon scattering we would use

_ x+(0) _ 5 (X (D)
wsto) = (4, 410)) wste) = (20 (412)
Baps) = B (LB) Foph®) Pl = B (-0 h(0) L) (41D)



