Joined Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 7

Vincent Mathieu and Cesar Fernández-Ramírez

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Tuesday of Week-II.

Classwork

1. Using $\int_0^\infty e^{-ax} dx = 1/a$, compute the series (and make the factor s^α appear)

$$F(s,\alpha) = \sum_{J=0}^{\infty} \frac{s^J}{J-\alpha}.$$
(1)

- 2. Consider $\pi\pi \to \pi\pi$ with m being the pion mass. The reduce amplitude φ_{ℓ} is defined by removing the barrier factor $B_{\ell} = (t 4m^2)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}(s) = B_{\ell}(s)\varphi_{\ell}$. The phase space factor is $\rho(s) = (1/16\pi)\sqrt{1 4m^2/s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}(s) = \rho(s)|t_{\ell}|^2$ to deduce the unitarity equation for the reduce amplitude.
- 3. Consider $\pi\pi \to \pi\pi$ and $\pi\pi \to K\bar{K}$ with m_1 being the pion mass and m_2 being the kaon mass. Let us denote by 1 (2) the $\pi\pi$ $(K\bar{K})$ channel so that $t_{\ell}^{ij}(s)$ is the partial wave for the scattering $i \to j$. The reduce amplitude φ_{ℓ}^{ij} is defined by removing the barrier factors $B_{\ell}^i = (t 4m_i^2)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}^{ij}(s) = \sqrt{B_{\ell}^i(s)B_{\ell}^j(s)}\varphi_{\ell}^{ij}(s)$. Note that $t_{\ell}^{ji}(s) = t_{\ell}^{ij}(s)$. The phase space factors are $\rho_i(s) = (1/16\pi)\sqrt{1 4m_i^2/s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}^{ij}(s) = \sum_{k=1,2} \rho_k(s)t_{\ell}^{ik*}(s)t_{\ell}^{kj}(s)$ or equivalently

$$\operatorname{Im} t_{\ell}^{11}(s) = \rho_1(s) |t_{\ell}^{11}(s)|^2 + \rho_2(s) |t_{\ell}^{12}(s)|^2,$$
(2a)

$$\operatorname{Im} t_{\ell}^{12}(s) = \rho_1(s) t_{\ell}^{11*}(s) t_{\ell}^{12}(s) + \rho_2(s) t_{\ell}^{12*}(s) t_{\ell}^{22}(s),$$
(2b)

$$\operatorname{Im} t_{\ell}^{22}(s) = \rho_1(s)|t_{\ell}^{12}(s)|^2 + \rho_2(s)|t_{\ell}^{22}(s)|^2,$$
(2c)

to derive the unitarity equations for the reduce amplitudes $arphi_\ell^{ij}$.

- 4. In the single channel case $\pi\pi \to \pi\pi$, assume the following form for the reduce amplitude $\varphi_{\ell}(s) = \beta(s)/(\ell \alpha(s))$ and derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the unitarity equation for the reduce amplitude, assuming the residue $\beta(s)$ is real.
- 5. In the coupled channel case $\pi\pi \to \pi\pi, K\bar{K}$, assume the following form for the reduce amplitude $\varphi_{\ell}^{ij}(s) = \beta_{ij}(s)/(\ell \alpha(s))$. Derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the three unitarity equations for the reduce amplitudes $\varphi^{11}, \varphi^{12}$ and φ^{22} , assuming the residues $\beta_{ij}(s)$ are real (and $\beta_{12} = \beta_{21}$). Since these unitarity equations are equal, what are the resulting constraints on the residues $\beta_{ij}(s)$?