Joined Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 8

Vincent Mathieu

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Tuesday of Week-II.

Classwork

- 1. Derive all the quantum numbers $I^G J^{PC}$ in the *t*-channel of the following reactions
 - (a) $\pi\pi \to \pi\pi$ and $K\bar{K} \to K\bar{K}$
 - (b) $\pi N \rightarrow \pi N$, $\pi N \rightarrow \eta N$ and $KN \rightarrow KN$
 - (c) $\gamma N \rightarrow \eta N$ and $\gamma N \rightarrow \pi N$
 - (d) $\pi \rho \rightarrow \rho \pi$

Notation: $\pi = (\pi^+, \pi^-, \pi^0)$; $\rho = (\rho^+, \rho^-, \rho^0)$; $K = (K^+, K^0)$; N = (p, n).

- 2. Assume that the Regge exchange form a SU(3) octet and a SU(3) singlet with the coupling for the octet and the singlet being different. Consider a vector and a tensor nonet (octet plus singlet). From the duality hypothesis and the absence of double charge meson, find the combination of octet-singlet tensor that decouples from $\pi\pi$. Use the SU(3) Clebsch-Gordan coefficients from Rev.Mod.Phys. 36 (1964) 1005. What are the quark content and the $K\bar{K}$ couplings of these states?
- 3. Assuming ideal mixing for the vector and tensor, derive the exchange degeneracy relations coming duality and the absence of resonance in the following reactions
 - (a) $\pi\pi \to \pi\pi$
 - (b) $K\bar{K} \to K\bar{K}$
 - (c) $KN \to KN$
 - (d) $\pi \rho \rightarrow \rho \pi$ (and $\pi \pi \rightarrow \rho \rho$)
- 4. Derive a Lorentz-covariant basis, the isospin decomposition and the crossing properties for the following reactions
 - (a) $\pi N \to \pi N$ and $KN \to KN$
 - (b) $NN \rightarrow NN$
 - (c) $\omega \to \pi \pi \pi$ and $B \to J/\psi K \pi$
 - (d) $\pi \rho \rightarrow \pi \rho$
 - (e) $\gamma N \to \pi N$ and $\gamma^* N \to \pi N$ (use $F^{\mu\nu} = \epsilon^{\mu} k^{\nu} \epsilon^{\nu} k^{\mu}$)