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Hence, for our particular model, we seek the solution of

(34) k@, 7) =4+ BQ + CQ’ Q,
where
a4 ; B Analytic Properties of Scattering Amplitudes
A= dr =1 — —at]]exp[— Ar]dtr =1 —— N
L(r)g()ds [L—Fexp[—ar]]exp[—4r] «+’ as Functions of Momentum Transfer.
[ [
> _ (ﬂ y)g ' H. LEHMANN (*)
=|a(v)g(z)dz [l(ﬂ viexp[— (= + Arldr = a4’ Institute for Advanced Study Princeton - New Jersey
[
> b A (ricevuto il 31 Luglio 1958)
C =|g(r)g(r)dr = |pAexp[— (“v+ Arldr = xt A’
[} [}

Summary. — Scattering amplitudes are shown to have analytic pro-
perties as functions of momentum transfer. The partial wave expansions
which define physical scattering amplitudes continue to converge for
complex values of the scattering angle, and define uniquely the ampli-
tudes appearing in the unphysical region of non-forward dispersion rela-
tions. The expansions converge for all values of momentum transfer
for whicl dispersion relations have been proved.

with A4+ B+C=1. Therefore, the probability that the cascade will even-
tually terminate is given by the smallest non-negative solution, less than
unity, of

(35) A —[a—A1—(B+)]IQ+x+A1—f) =0.
- For values such that

[e—A(1— B+y)]* > 4yMe+ A1 — 1)) & 1. — Introduction.

The purpose of this note is to derive some properties of scattering ampli-
; tudes which follow from causality in relativistic quantum theory. It will be
" shown that a scattering amplitude has—for fixed energy—analytic properties
;. 88 a function of scattering angle or momentum transfer. This consequence
of causality is distinet from the existence of dispersion relations (*'*) which
’»f express analytic properties of a scattering amplitude as a function of energy
g for fixed momentum transfer., However, our results are of interest mainly in
» connection with dispersion relations for non-forward scattering. They imply
that for all values of momentum trausfer for which dispersion relations have

two real roots, say {, and {;, of (35) exist; and @ = min ({,, {.).

RIASSUNTO (%)

Nel presente lavoro si considera un modello semplice di una cascata di elettroni
¢ fotoni in cui le probabilitd di trasformazione sono funzioni dello spessore dell’assor-
bitore. 8i ricavano la media e la varianza del numero degli elettroni nella cascata in
funzione dello spessore dell’assorbitore e se ne discutono le proprietd. Si da anche .
un’equazione che fornisce la probabilitd che la cascata si arresti.

(*) Now at the University of Ilamburg, Germany.

(*) M. L. GoLpBERGER: Phys. Rev., 99, 979 (1955).

(?) K. Symanzik: Phys. Rev., 100, 743 (1957).

(3) N. Bocorntunsov, B. MepvepEv and M. PortvaNov: lecture notes. Translated
¢ ot the Institute for Advanced Study, (I’rinceton, 1957).

g () H. J. BREMERMANN, R. OumE and J. G. Tavror: Phys. Rer., 109. 2178 (1958).

(*) Traduzione a cura della Redazione 3 These papers contain numerons other references.
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been established (**)—in n-N scattering this is the case for momentum tran
< (§-(2m+p))(2m —p))} -4y —the s0-called non-physical region is completed
determined by the physical phase shifts via the partial wave expansion. Thi sg : .
possibility ha.i beenpsuggested previously (%). P ; F s ImT =n f dr d'r, exp [W{ ; Pin ik N 1:).'1",1‘

We disregard spins and consider the seattering of a charged particle; / 2
masg m (nucleon) with initial momentum p, final momentum p', and a neuly
particle of mass p < 2m (meson) with initial momentum £, final momentumy
We gssume in addition that these particles are not coupled to other pa
of charge zero and mass < 2u or of charge one and mass < m-+u. Our roeg
are valid also for the seattering of equal particles {m = ) under correspo ai
restrictions on the mass spectrum.

As i8 well known, several equivalent expressions for the scattering m
in terms of Heigsenberg operators may be given. With the notation

ression for the imaginary part of the amplitude may be derived,

.z(oll?fA '2_1_\ " “'(_‘:! ‘ +k R ; &, T
2. <0 3) o )l2 k> ok y A () (- 7)oy,

enotes o sum over all states with total four-momentum Pk By (3 is

e energy shell) equivalent to the unitary regnirement for the
tude. It was first used by BoGoviwvgov et al, (*). A simple
ption i8 given in Seet. 3.

he general method used to obtain o
s may be described as follows:

pach case the seattering amplitude—or its imaginary part—appe:

Brier transform of a vetarded commutator or of a sum ov
. commutators.

seattering
proof of this

xplicit consequences of thege CXPres-
<p'k’ out|pk in)y = ('K’ in |pk in) + i(2m) d(p +k — p'— k)T
s a8 the
er products of
Therefore it is simply related to the Fourier-trunsform
; ne corresponding unretarded commutator which i8 in the s

the amplitude T' may be written as (%)

. ' ) ase of (2) or (3
) T=— fd‘x exp [‘»(-":‘.2“7 ¥l a:} @R A (‘g) A (» g) >, m by !
or Fo =[ase oo iaet o1l (3). 1 (- D) ip+1 0,

L — o' . :
2) I = —{d*x exp E(——-i—g-) a:J {OIR'A (g) y (—— g) |pkin) .

8 jlz) = (O — 2y Ar); ) = (O —m:yplr). We know abont F(q):

A(z) and p(®) are the meson and nucleon field operators. R’ denotes a reb

it is the Fourier transform of a function that
commutator. For example,

vanishes for space-like « ;
R A@)p(y) =— iCr — p2} Oy — m2) 0z — y)[A (), v(¥)] . {8) vanishes unless

b Eas'

The state vectors refer to incoming or outgoing particles with definite <, Dot ky - p+k 2
as indicated. g o0 and ( 5 + q> > m?,
Eq. (1) is used in the derivation of dispersion relations. Eq. (2) ¢S or

other hand yields directly information about the scattering amplitude
function of momentum transfer, since—in the center of mass systet
variable appears only in the exponential. However, more information
tained in both cases by observing that from eithier (1) or (2) the folM

ster .st.ﬂtement follows divectly if a sum over intermediate states is
ped in {4). m, 2 ¢ - . i . ,

(®) M. L. GOLDBERGER: Proceedings of the Sixth Annual Rochester Conl E cont. 'i)( t;) 1 and m, are the masses of the lowest intermedinte states
{New York, 1956). - ribute to the two terms of the commutator.

(%) H. LeumMany, K. SYmanzik and W, ZIMMERMANN, Nuovo Cimento, 8, 3198 [P, My = m -,

In the m-N case
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invariant function of the vectorsu, p, k. The integration extends over
fregion given in (5). 'We choose thc center of mass system to evaluate (7)
'f. introduce the variables

DysoN (7) has solved the problem of finding a representation of all fune
; satisfying these conditions. His result is: For F(q) to satisfy (4a) and {
i it is necessary and sufficient that it ean be represented ns

P

- A3, _ (k—Fy

; (5) Flg) = f d'u f Detelgo — ua)B[(g — w)* — Yy 7). A i B PR

Y ¢ or
@lu, »*) ig arbitrary if the vectors (p-+¥%)/24u and (p-+k)/2 — u both 5 W2 — (m 4 ) [We— (m— p)] 5 —1 e
the forward light-cone and K= - RS P e =L,

ke

bpends then only on u?, %, u-k, »*, W. It vanishes outside

% >Max {o; m— (?331 + u) g — V(?@‘;—k ——‘1:);}

@ vanishes outside this region. It depends, of course, also on the quanf

numbers y and on p-+k All our results will be based on applicati

Dyson’s theorem.
For the Fourfer transform of the retarded commutator which appears in

or (3) we have the relation (¢'= (g;, q)) , “ )

1 (deF(g
== 5 [BFD s,

0<u <W2; —W2+u<u<W2—u,
r-c;)M(w{O my — V(W2 F 1) — wr; my — V(W2 — up)? 2 — ut}.

3
g

dotrodncing polar co-ordinates in w-gpace, (7) becomes:

b b
T(W,cos §) = — 4;I{fduofudufdx’ do:fdﬁ-
4 3

o Qo
. . . @(tty, u%, cos a 8in §, x*, W)
if ¥, is gufﬁelently bounded. K’ T T — (e £ (AW e ,
Inserting (5) gives 3K sin ﬂ
daP (u, x?)
6 I 9y
®) By = — g [ar [ SR
o n
, L z, cos o, W
In general we cannot expect F, to be bounded enough for (6) to hold inj T(W, cos ) = f dz f da wtpi,c%'{;’* :) 1

form. The necessary modification (*) does not alter the analytic propég
we are interested in. It is therefore sufficient to discuss (6). We shall}
it both for Eq. (2) and Eq. (3). :

TPy 0

o, W) = — 4;de1i,,fu (lu[dx’jdﬁ'

‘ - I+ w4 ot — (g + (m® — p?)[2 w):
' 2Kusin §

2, - Momentum tiransfer properties of scattering amplitudes,

iy, 42 coBa 8in B, %, W,

By inserting (6) into Eq. (2) we obtain :
d*u datp(n, 2, p, k)

M 27: (F—pH2—u) —ar’

Bwer limit z,(IV) is determined by

() ¥. J. Dysox: Phys. Rev., 110, 1460 (1958).

(*) R. Jost and H. LEnMANN: Nuovo Cimento, 5, 1508 (1957), Eq. {4.5).

Ko w4 w2 — (1, 4 (m® — pud)[2W)2
#6(W) = Min I K }
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if u,, %, % vary over the region {9). The minimum can be calculated in au ele-

mentary manner. The result is

(m? — p)(m—m3)

In (11) the scattering angle cos # appears only in the denominator. We may
therefore consider cos# as a complex variable und the seattering amplitude
a8 an analytic function of cos #. Moreover, this can be done separately for
the real and imaginary parts of the amplitude.

Singularities of these functions can occur only if the denominator on the
right hand side of (11) vanighes. That is for

cos P = x-co8 o 4 iV — L sina.
We have therefore the following result:

{13) The real part and the imaginary part of the scattering
amplitude are analytic functions of cos ¥, regular ingide
an ellipse in the cos #-plane with center at the origin
and with axes ®,, Vi —1.

‘We shall see presently—making use of Lg. (3)—that the imaginary part of
the amplitude is regular in a larger domain, namely:

{14} Ty T(W, cos @) is regular in cos # inside au c(llipse with
center at the origin and with axes 2a; —1; 9wy V@i — 1.
x, i8 given by (12).

Using cos # = 1 —(24*/K*) we can, of course, re-express (13) and (14) a8 analytic 3

properties of the seattering amplitude as a function of momentum transfer. |

These results (we defer the proof of (14)) lead—using well-known mathe-
matical theorems (*)—to the following properties of the partial wave expansion
of the scattering amplitude. Let
T(W,co8d) = e 3 (21 + 1)C(W) Pilcos ?)

12
3

{15)

2
with (W) = ’-;T g— f d cos #T(W, cos 8) Pi{cos 9) .
-1

™ E. T. Winrtaker and G. N. Warson. A course of modern analysis, 4th Ed,, -
{Cambridge 1040), p. 322; G. RzEcd, Orthogonal Polynemials, {New Yeork, 1939), p. 238,

A
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The Legendre series converges inside the domain of regularity of the re-
presented functions; i.e. for cos & inside the ellipses (13) or (14) for Re T or
Im T respeetively. Also

fim 1
(13a) Hm | Re C(W) | <~
, Y ¢ ! s + '\/xg - s
(14a) fim | Tm €.(W) | < ———

(o + Vi — 1)
Taking into account the unitarity relation
{18) . Im C(W) = [Re C{W)]* + [Im C (W)},

?ve may note that (13«) is actually a consequence of (144a); i.e. if Im T(WW, cos &)
is regular in the domain (14) it follows immediately that Re T(W, cos &) is
regular in (13).

We cannot conclude, of course, that the amplitude T(W, cos #) actually

has singularities on the boundary of the domaing (18) or {14). Using more
physical information it may well be possible to improve these results.
, To digeuss the connection of the above statements with the non-physical
region of dispersion relations, let us consider Im T(K?, 4%), the imng'inary
part of the amplitude, as a function of e.m. momentum and momentum
transfer—the physical region is given by K2>> A:. However, in the dispersion
relation Im T(K%, A®) is needed for all A* > 0. The expansion

- 1 il
(a)  Im T, 49 = % 30+ 1) I 60W) P, (1 2'4’) ,

— %
defines a continuation of Im T(K® 4% into the non-physical region. The
series converges if V

B gy R
o tngt gy (P — ).
“ + W2 (m, —m,)?

i.e. it converges for all K2 > 0 provided

A < Min {K2a3} .
This leads to the restriction
A3< _8..,2,m + ”‘[I'N3}l‘,

32m —p

A8 - 11 Nuovo Cimenio.

3347
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in the =-N case. {4* < 2u* for equal particle scattering with m, = m, = 2u). and an analogous treatment of the second factor in (18) we have
We have still to show that the continuation given by (15a) is indeed the

correct definition of the non-physical region in the dispersion relation. (19) M(w,¢, 4%) = 2n fd‘-’%d‘% oxp [ip'z, — ipm,] 3 O| R AO)p(@,) |p + k, y>-
¥

. (k'—p L[k~
i 2?’)%_1( 72 a-
)

(p + k, p| R'A(0)p*(2,) | 0> = 2n | d*e, d*a, exp

3. -~ Connectlon with dispersion relations.

To identify Im T(K?, A*) as given by (16a) with the dispersion relation
integrand it is convenient to consider (1) (which defines a f\mctlon T for
arbitrary real vectors k, k') not only on the energy shell (kt = &'* = u) but
for the more general case K=k == {; keeping p*=p’ *~ms T can then
be considered as a function of

We note that the imaginary part of the physical scattering amplitude is given by
(20) Im T = M{w, u?, 4%).

The term M{(— w, u*, 4?)does not contribute since it vanishes for = > /4% 44t
Hence (19) is on the energy shell equivalent to (3).

To find analytic properties of 3 as given by (19) we use again the integral
representation (6). This leads to

_____fk“{*k’)(?*f‘?') é. =k’=k", A,n_(p_p’)'.
NV +p')» 4

We derive first Eq. (3).
(1) leads directly to

an Im Tt 4 - sfawexn [i(55) o] i (5) 5 (—5) 2> =

= {Mlw,8, 4) — M(—w, L, A},

d‘u,dxfd‘u,dz’(p(“; y Xyy tay %y P+ k)
21) M(w,{, 4*) = Mf[(w N2 —u)t — K[k —p)f2 — us) — 2]’

where

D2y 21y Ugy 2y PHK) =T, @, {25 2, p-{—k)(p:(uz, #yy P-+K)
T

is built up from the weight functions g, corresponding te the individual terms
on the right hand side of (19). @ is a real, invariant function which satisfies
the support conditions (6) in each pair of variables u, x separately, We choose
the center of mass system and replace w by

with _
08 Mt =[awosp [¢ (HE) o i (5) 3 (= 5)0> =

= (27)* T <2 |} 0)|p + Ky > {p + K, 7|0} |p)
i 4

1 W= 20VA + ms+ 245+ md + .
§; Then

Let gin(p’) denote the annjhilation operator for an incoming nucleon with 22) M{w, &, 4%) =5
t . Then . ’
momentum p Aty doe doty ducdD (g0, 1y 51, Unoy U3y X3y Byl [t0,%s, W)

f [((m’ —O)2W + uye)* — 0 — (k'— u)*J[((m* — O)[2W + tt00)'— si— (k —wp)*]

P H0)|p +Ek, ¥ = Olpin (p)j(0)|p +k p) = <O|[pin (p'), O |P + % >

if (p+k—p)Pp=Fkt=1{< 9 With polar co-ordinates

3 (23) MW, ¢, 4Y) 53'?;(7(5) duo w; du, d"gfdaf dﬂ’f dﬂ'f a
o ' o o

D(u o %, #, cos a 8in B, 8in B, -+ cos B, cos f;, W)
[#,(8) — cos (3 — p)|[=(0) —cos (x —a)] '

gince <0|j(0)pin(p’)|p +k, > =0 in this case. With the relation (%)

lpin (), JO] = G f d'z exp [ip'z} R’ A(O)plz) ,
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EAE) + 0 4+ o — ((m2 —0)/2W + )’

all) = == gk Fu s,
ws 2 L) — AW
sz((;):( Tm 41?’ )

We note that

2

1 1 o
fdx (@, — cos (¥ — %)) [@s — co8 (x—o)]

(@ )Val—1) + (@/(Vai—1)
" (48 + Vai— Wzl — 1 — co8 (& — a)

=2

From {(23) analytic properties in ¢ and Af_ f{%lf,‘f', On the enfzrgy shlel,
i.e. ¢ =pt, we can introduce y=a,8,+Vri—1vVai—1 a8 a new x}ltegratlon
variable. Only integrations over y and « remain; the other integrations result
only in a mew weight function Dy, cosa, W).

The minimum value of y i8

yo = Min {2, -+ Vi Z1Va —1} =2 —1.

Therefore

25

4 &y, cos a, W)
MW, 49 = 21 7 = [ay [ae O

2zy—1 ¢

This proves the statement (14).

It can be seen now that the analytic contimuation of Im T defined by
{15a) yields the correct non-physical part of the dispersion relation integrand. _:
In the proofs of these relations (*4) it is ghown first that—as a consequence
of Eq. {1)—a dispersion relation in @ holds if ¢ is taken real and { < -
The absorptive part in this relation is M(W, ¢, A%) as given by (18) and (23).

The " dispersion relation for the physical value [ =pu* is then obtai.ned by
analytic continuation in {, provided M(W, ¢, 4%) is an analytic function of {
regular for Re { < p? in a neighborhood of the real axis. It follows from (23)
that this condition is satisfied if

A% < Min {K*a%}.

This is also the condition for the convergence of the Legendre serics. The ’,

absorptive part of the dispersion relation is then given by (23} with {=p"

i.e. the non-physical region is obtained by analytic continuation in A4* which

can be carried out by the Legendre expression (1ba).
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The possibility of evaluating the non-physieal region in this manner has
been digcussed earlier (*). 'While no proofs were given, it was believed on the
basis of threshold arguments that such a procedure could be valid only if
4* < pt, due to a branch point of the scattering amplitude as a function of A3,
We have shown that the expansion converges also for higher values of A2;
the limit being 4* = 2u* in the case of equal particle scattering. We believe
that this is due to the fact that the real and imaginary part of the amplitude
are separately analytic functions of A4* and have different properties. For
the dispersion relation only the imaginary part i3 needed and it has a larger
domain of regularity. The mentioned branch point is likely to be present in
the real part.

While we have no good reason to believe that our results are hest possible,
the expected appearance of o singularity in the real part gives us—via the
unitarity relation (16)—an upper limit to the values of A4 for whielh the Le-
gendre expansion for the imaginary part might converge. In the case of equal
particle scattering the expected branch point of the real part at 4?=W2f4
leads to the limitation A2 < 8u® for the Legendre expansion of the imaginary
part.
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RIASSUNTO (*)

8i dimostra che le ampiezze di seattering hanno proprietd analitiche come funzioni

¥ del trasferimento dei momenti. Gli sviluppi parziali delle funzioni d’onda che definircono

le ampiezze fisiche di scattering continuano a convergere per valori complessi dell'an-

.golo di scattering e definiscono unicamente le ampiezze che compaiono nella regione

non fisica delle relazioni di dispersione non in avanti. Gli sviluppi convergono per tntti
i valori del trasferimento dei momenti per eui sono state dimostrate esatte le relazioni
di dispersione,

{*} Traduzione n enura della Rednzione.



