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The general analysis of binary reactions involving particles with arbitrary 

spin is reformulated in such a way, that it applies equally well to relativistic 
particles (including photons). This is achieved by using longitudinal spin com- 

ponents (“helicity states”) not only in the initial and final states, but also in 
the angular momentum states which are employed as usual to reduce the 
S-matrix to a simpler form. Expressions for the scattering and reaction-am- 

plitude, intensity and polarization are given. They involve fewer vector-addi- 
tion coefficients than the customary formulas, and no recoupling coefficients. 

The application to some examples is sketched, and in t,he Appendix some for- 
mulas are given that may be of use in the applications. 

INTRODUCTIOK 

The general theory of collisions of the type a + b ---f c + d for polarized par- 
ticles has been discussed several times (l-5), but until recently not much at- 
tention has been paid to the relativistic features of the problem. At first sight, 
the principles employed in the customary discussion (unitnrity, conservation 
laws, composition law for angular momenta) are so general that nothing further 
has to be said. The relativistic description of the spin-states of a particle, however, 
involves certain well-known complications, which must be handled carefully. 
This has been done by Stapp (6) for collisions between spin-f5 particles and by 
Chao and Shirokov (7)’ for particles of arbitrary spin. In either case, the authors 
assume that the particles concerned have a nonvanishing rest-mass, and then 
show that for suitably defined (but somewhat complicated) spin operators the 
customary analysis of t!he initial (or final) stabe in states of definit,e orbital 
momentum L and result,ant spin S can he carried out in the usual manner, the 
only departure from the nonrelativist.ic case being in a somewhat subtle differ- 
ence in the interprehation of the spin direction of a particle. We shall examine 
here the same problem by a different method, which in our opinion is somewhat 
simpler. This method also has the advantage that, it applies equally well to 

* Work performed in part under the auspices of the U. S. Atomic Energy Commission. 
1 Now at Norman Bridge Lahoratory of Physics, California Institute of Technology, 

Pasadena, California. 
1 I am indebted to Prof. A. Wightman for drawing my att,ention to this paper. 
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massless particles, e.g., photons. The interpretation of the spin direction for a 
massive particle is however the same as in the method of Chao and Shirokov.* 

In the customary treatment, one uses the component of the spin along a fixed 
direction , say the z-axis, to classify the possible polarized states of a particle. 
The states used in our keatment are labeled with the component, of the spin 
along the direction of motion of the particle, which may be called the helicity 
quantum number (A) or briefly helicity. Thus me avoid the problem of the sepa- 
ration of the angular momentum operator into a spin- and an orbital-part (X 
may also be defined as the component, in the direction of motion, of the total 
angular momentum of the particle) which leads to complications in the relativis- 
bit case. In particular, X has a well-defined meaning also for massless particles. 

Independent,ly of any relntivist’ic considerations, X as a quantum number has 
also another convenient property; it is invariant under ordinary rotations, so 
that it is possible to construct stntes of definite angular momentum J, in which 
all particles involved have definite helicities. Thus in describing a reaction a + 
b --) c + d in a cent,er-of-mass frame, we may use E, J, M ( = J,) together with 
the helicities A, , Xb as quantum numbers for the initial stat’e, and similarly E:, 
J, At, A, , Ad for t,he final Aate. E is of course the total energy. The S-matrix 
for the process has then t.he form 

(E’J’M’ A,.& 1 S 1 E J N A&) = 6(E - E’)6w6~w(X,X~ 1 SJ(E) / X,Xb). (1) 

The reduction of the X-matrix to submatrices SJ(E), belonging to definite val- 
ues of E and J, is of course an essent,ial step in any general analysis of a colli- 
sion. In the ordinary scheme, t,he diagonalization of J and J, is achieved by 
successive addition of the spin vectors and relative orbital momentum vector. 
As a result an clement of the submatrix SJ(E) is labeled 

(L’S’ 1 xJ 1 LS), (“1 

where LS (L’S’) are orbital and total spin quantum-numbers for the initial 
(final) state. Since the total spin S (5”) is not a suitable yuant.ity to describe 
any possible polarization measurement,s on t.he inibial (final ) state, the ordinary 
scheme must shutt,le back and forth between two different representations, one 
being the representation in which the simple form (2) obtains, and the other 
being a representation in which the stat,es are labeled with individual spin com- 
ponents. Our scheme avoids this complication, since the helicity quantum num- 
bers appearing in Ey. (1) are also directly related to individual polarization 
propert,ies of t,he particles. This leads to a certain simplicity and neatness of 
the formulae for the scattering and reaction amplitudes, which may well con- 
stitute a practical advant,age over the conventional formulae. 

* Xote mided in proof. We have recently received a copy of a paper t)p Chou huang-Chao 
[J. Erptl. Theoret. Phys. (U.S.S.R.) 36, 909 (1959,] m which a treatment is given which ap- 

plies when one of the incident particles has zero mass. 
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The general plan of the paper is as follows. In Section 2, we give some expla- 
nations about helicity states and in particular about the conventions adopted 
about the relative phases of the various spin components. These conventions, 
of course, become important in the calculation of transverse polarizations, The 
reader who is not too interested in mathematical detail may, however, skip the 
first part of this section entirely. Next we give the transformation formulas 
Eqs. ( 18) and (24) from plane-wave states to states of definite J and J, ( = M) . 
In Section 3 we then introduce the states just described into the general S-matrix 
formalism. The main result is the formula (31) for the scattering- or reaction- 
amplitude in the c.m. system. Like the formulas usually given,’ Eq. (31) is a 
simple and obvious generalization of the elementary scattering formula for 
spinless particles 

f(e) = (1/2ip)C (2J + l)(S” - l)P,(cos e>. (3) J 

Our formula, however, contains no Clebsch-Gordan coefficients and a single 
summation index, instead of the five of the usual formula. It may be argued, 
of course, that some of the complexity is hidden in the presence of the functions 
dimI (0) in place of the more elementary P,,( 0). Some of the dJ-functions most 
likely to occur are tabulated in the Appendix for greater convenience. Actually, 
the appearance of these functions in our formulas has a simple intuitive meaning. 
As is well known, the function d,i’kt (0) can be regarded as the wave function of 
a symmetrical top, m being the component of angular momentum along a fixed 
(“x”) axis and m’ being the component along the symmetry (“2’ “) axis of the 
top. The presence of a resultant spin-component p = X, - Xd along the direction 
of motion of the two final particles relative to each other imparts to the two 
particles properties somewhat similar to those of a symmetrical top spinning 
about its symmetry axis. The identification m’ = p is therefore obvious. Simi- 
larly x = X, - &, = m follows from the fact that the J, value of the outgoing 
wave is determined by the initial resultant spin along the x-axis. 

In Section 4, we give some general intensity and polarization formulas derived 
from Eq. (31). The calculation is no more difficult than in the usual case; in 
fact the formulas now contain some Clebsch-Gordan, but no recoupling, coeffi- 
cients. The point is that this slight gain in simplicity is not only attained at no 
cost, but on the contrary while achieving a somewhat wider range of application 
of the formulas. 

The simplifications arising from parity conservation and other symmetry 
considerations are discussed in Section 5. Finally, in Section 6 we consider some 
examples. 

2 See for example Ref. 9, Eq. (3.14) 
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II. ANGULAR MOMENTUM STATES 

In order to describe the states of a free particle of arbitrary spin s and mass m 
it is fortunately unnecessary, for our purposes, to write down an explicit relativis- 
tic wave equation. It is instead sufficient (8) to know that such equations exist, 
and that their plane-wave solutions, representing states of definite linear mo- 
mentum p and corresponding positive energy w = (m” + P*)~“, have the follow- 
ing properties : 

(a) for each p, and assuming m # 0, there are 2s + 1 linearly independent 
solutions (states), which may be chosen to be solutions of definite helicity: 

x = s, s - 1, . . . , -s. (4) 

If m = 0, and if the wave equation is “irreducible” the independent solutions 
are only two, corresponding to 

x = fs, (4’) 
e.g., for a photon X = fl. 

(b) When the transformation corresponding to an ordinary rotation of the 
xyz system of axes is applied to one of the above solutions, one obtains a state 
with a diferent direction of p, but X remains unchanged. 

(b’) When a space reflection is applied, h changes sign. 
(c) When a Lorentz-transformation in the direction of p is applied, one ob- 

tains a state with the same (or the opposite) direction but a different magnitude 
of p. Assuming the direction of p is not reversed, again X remains unchanged. 

(d) The states referred to under (a), and characterized by p and A, form a 
complete orthogonal set of states for a free particle. The transformations induced 
within the set by rotations, reflections and proper Lorentz transformations are 
represented by certain operators or matrices, which must obey well-known com- 
mutation relations; the explicit form of these operators needs not be specified 
here, except that certain specifications are implied in the statements (b), (b’), 
and (c). 

A minor complication involved in working without an explicit wave equation 
is, that the relative phases of the basic states defined above have to be specified 
by some special convention. This is easily done, however. In the first place, 
according to statement (b), the states with momentum p’ in an arbitrary direc- 
tion specjfied by polar angles 0, c$, may be dejined by means of a suitable rotation 
applied to states fiPx having a momentum p in the positive z-direction. The 
rotation is conveniently defined to be a rotation through an angle e in the posi- 
tive direction about the axis p X p’. If J, , J, , J, are the angular momentum 
operat,ors for the particle, a finite rotation with Euler angles (Y, /?, y is given by 
the opemtor 

R d+ = e 
-iaJze--i&lye--iyJ, 

(5) 
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One easily sees that the state with momentum p’ ( / p’ 1 = j p / = p) and helicity 
x as defined above is given by 

) p&;X) = R+.o,--~#~x = eiX”R+dp~ . (‘3) 

We have now only to specify the relative phases of the states 9,~ with momentum 
in the positive x-direction. Owing to (c) and in analogy to Eq. (6) we may 
generate all the states tip1 with a fixed X and variable p by applying Lorentz 
transformations in the z-direction (2 = CC, v’ = 21, t’ = x - fit, 2’ = t - pz) to 
a fixed state $,,A . If m z 0, we may moreover go to the limit po = 0; even in 
this limit the quantization axis for angular momentum remains, of course, the 
z-axis. Since for a particle at rest the angular momentum is equal to the spin 
we may specify the relative phases of the states #OX by t’he requirement 

(Jz f iJ,)GOX = [(s =F A>(s * A + 1)1”2J/ox*tl (7) 

meaning that in this case J, J, J, reduce to the standard spin matrices. For a 
massless particle, no finite Lorentz transformation can reduce po t)o zero, but we 
have only two values of A, Eq. (3’)) to compare. Owing to (b’) this may be done 
by means of a reflection. If for example P is the “parity” operator, corresponding 
to the reflection in the origin (ZUX -+ -x, -g, -x), then the reflection in the 
22 plane: 

y = e-i*Jgp (8) 

transforms #Ps into tip,-* apart from a phase factor 7 

Y~,,8 = vkp,--s . (9) 

Since Y commutes with a Lorentz transformation in the z-direction, it is easy 
to see that ,owing to our previous conventions, 9 is independent of p. It is there- 
fore a constant which we shall call the “parity factor” of the particle. For exam- 
ple it is customary to define the X = 3~1 solutions for a photon as having a 
vector potential A = TF2-““(e, f ieU) exp(ipz). Furthermore Y applied to A 
reverses the sign of A, . One sees that with these conventions 71 = - 1. 

We may further check that Eq. (9) is compatible with the conventions (7) 
for m # 0. In this case we know that P transforms $0~ into itself apart from a 
phase-factor which must be independent of X (P commutes with J). Hence we 
write 

Furthermore 

(10) 

(11) 
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where t,he matrix C&,X(/~) is well known. In particular 

&(a) = ( - l)“-x6x+h. (12) 

Combining ( 10) and ( 11) and applying a Lorentz transformation in the z-direc- 
tion on bolih sides we get 

Y&x = ?I( - lrX~,,-x ) (9’) 

which for A = s reduces to (9). Equations (9) (9’) will turn out to he extremely 
useful later. 

We now go over to the description of the states of two free particles 1 and 2 
with masses ml and ~1~ , and spins s1 and st . These states may, of course, be 
constructed as direct products 

of individual states of the above described type for particles 1 and 2. We are, 
however, mostly interested in states of zero total linear momentum, for which 
say PI = -pe = p (dire t’ clo~~e,~).Thelle1=e,~1=~and84=~-e,~Z= 
C$ i r andr t,he two rotations R’” and R’?’ may be replaced by a single rotation 
R involving the total angular momentum J = J1 + Jz of t!he two particles. To 
this end we first define for particle 2, states xP,xZ with momentum in the negative 
z-direction as follows 

-&& = ( - l)s~-ApJP)&pA, . (13) 

The phase factor in front is not really necessary; it is introduced for convenience 
in such a way t,hat for a particle at rest (p = 0)) XOX reduces simply to #O.--h (the 
change of sign of the helicity may be understood if one assumes that the direc- 
tion of p is reversed before going tjo the limit p = 0). We then define a product 
state for the two particles 

$ PAlA = h, ( 1) XPb(2) 7 (14) 

in which state the relative momentum p is in the positive z-direction. States 
with other directions of p may be obtained, as in Eq. (G), by applying a rota- 
Con 

1 pw Gd = RQ.B,-&Lph,~2 = eiX’R+,w+&~,~2 , (15) 

where x = X1 - X0 is the resultant angular momentum of the two-particle system 
in the direction (e, cp) of the relative momentum. 

It is now easy to construct states with zero linear momentum and definite 
total angular momentum J and component J, = M. Since the magnitude p 
of the reMive momentum and the helicit,ies Al and XZ are invariant against 
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rotations, one can assign definite values to them, together with J and M. 
Let / p; JM; x1x2) be the ket-symbol for such a state. The prescription we em- 
ploy is well known (9,1(I); introducing a suitable normalization factor X, we write 

I p; JM; W) = 2 /- d[J di,x(~P~)Rrn~~+p~~~~, (16) 

dU = sin p dadpdr , 

where the integral extends to the region3 0 < a! < 2r, 0 < p < n; 0 < y < 2~ 
and where the star means complex conjugation. Furthermore 

a)MM’(cUpy) = e-iMord$,,&)e-inr’Y (17) 

is the matrix corresponding to Raar in the irreducible representation By. Alter- 
natively .D$,, may be described as the wave function of a symmetrical top, 
whereby M’ is the angular momentum of the top with respect to the symmetry 
axis. Two particles moving in opposite directions and spinning with a resultant 
angular momentum X = X1 - X2 about the direction of their relative momentum 
p, present certain kinematical features in common with a symmetrical top, the 
symmetry axis being of course replaced by p. Therefore the appearance of aMX 
in Eq. (16) is hardly surprising. 

The dependence of the integrand in (16) on y is simply a factor exp i 
x (X - X1 + x,)-r. The integration over y is therefore trivial (hence also 
the condition M’ = X = X1 - X2). Remembering (15) we can write 

(18) 

where do = sin 8 de dqb. This exhibits our angular momentum states as super- 
positions of the plane-wave states (15). 

Let us now examine some questions of normalization. For a product state 
1 p,pZ &) with independent momenta for the two particles, we assume at first 
a conventional normalization 

(PI’ pz’ hl’ b!’ / p1pz W2) = Gw &(Pl - PI’) S(pz - pz’> &,A,~ &A, (19) 

then introduce as new variables the total energy-momentum four-vector 

p.u = P, PO), 

with components P = pl + pz , Pa = w1 + w2 , and two polar variables e, 4 to 
specify the direction4 of the relative momentum p = (ml + mz)-’ ( m2 pl - ml p2). 

3 The reader can easily verify that this region of integration is adequate also in the case 

of a two-valued representation. 
4 The magnitude of p is, of course, in general a function of 8, 4, and P, , and in particu- 

lar, in a center-of-mass frame, a function of PO . In the following, p and ZJ will always stand 

for the magnitudes of relative momentum and velocity, both measured in a c.m. frame. 
Therefore 

2, = p[ (p” + m,2)--1’2 + (p’ + m22)-“21. 
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Then on the right-hand side of Eq. (19), and more generally in the matrix-ele- 
ment of a’ny operator A which commutes with the four components of P, , we 
can separate out a “center-of-mass factor” 

&(P, - P,‘) = &(P - P’) 6(P, - PO’). 

Introducing some additional normalization factors for convenience, me shall write 

(PI’ pz’ X1’ At’ / A j p] pz x1 X,) = (an)” &(Pp - P,‘) . (27$ v p-? 

x (0’4’ Xl’ AZ’ I A (P,) ( 0 4 Xl A,), 
(20) 

where A (P,,) represent?, of course, the submatrix of A belonging to a given 
four-momentum P, . The left-hand side of (20) reduces to (19) when A is the 
unit operator, in which case A = 1 and A(P,) may be omitted on the two sides. 
The additional normalization factors are chosen in such a way that in the special 
case P = 0 (center-of-mass frame of reference) one has, as one easily verifies, 

(8 ‘4’ Xl’ X2’ I 0 4 XlU = 62(8 4; 8 4’) SXIX,~ 6X&, (21) 

where 6% i,s the two-dimensional b-function on the unit sphere: 

G(cos e - cos e’) 6(4 - 4’). 

With a slight modification (see the discussion preceding Ey. 15) amounting 
only to a phase factor, which does not affect the normalization, the ket-symbol 
1 B # x1 A,) of Eys. (20) and (21) may he identified with the states of Eqs. (15) 
(18). If then Eq. (21) is assumed for the normaliznt#ion, and if we choose. 

3z.r = [(2J + l)/47r]1’2 (22) 

and pay o,ttenti& to the orthogonality relations 

I * db,(P) dz,(P) sin p d/3 = 6jjt2/(2j + 1) , (23s) 

!&2j + 1) di, (P, &, (6’) = qcos p - cos P’), (23b) 
j 

we easily find that the angular momentum stat’es Eq. (18) are normalized in a 
standard fashion 

(J’M’ Xl’ AZ’ 1 JM X1X2) = 6.w 6M.w’ &,X1, 6x,x,, 

and moreover that the transformation matrix 

(04; XrXz j JM; h’X2’) = X&,~ 6x2x2, &x(4, 0, -4) 

satisfies the unitarity conditions 

s 
dCt(84X& 1 JMXG~)(~~XIX~ 1 J’M’h,X,)* = &J~~M.w, 

(24) 

(25) 
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These conditions are, of course, useful in the discussion of the X-matrix, to which 
we now turn our attention. 

III. S-MATRIX 

An element of the S-matrix for the reaction a + b + c + d can be designated 

by 

h-bpd ; AcAd ) s 1 pupb ; k&n) (26) 

in terms of initial and final states normalized as in Eq. (19). Let us designate 
by P, and P,’ the initial and final momentum four-vectors 

p, = (pa + pb)r ; P, = (PC + Pd)a (27) 

and similarly by p, p’, U, v’ the initial and final relative momenta and velocities 
measured, as we have said, in a c.m. frame (P = P’ = 0). 

Apart from the introduction of helicity quantum numbers, the discussion 
proceeds along conventional lines. Owing to energy- and momentum-conserva- 
tion, one can split out a “center-of-mass factor,” introducing polar coordinates 
& , 40 for the initial- and 0, 4 for the final-relative momentum, and one can write 
the matrix-element (26) in analogy to Eq. (20) 

(p&i ; &hi j  s 1 papb ; Xc&) = (24” &(p,i - p,‘) (~~#z(f-$-l 
(28, 

whereby the normalization of the states of relative motion has been properly 
taken into account, in such a way that the unitarity of the S-matrix takes a 
simple form, which the reader can easily write down. 

In practice, we are interested in the case: P = 0 and we shall write S(E) in- 
stead of S( P,), I3 being the invariant ( - P,P,)“” or the value of the total energy 
PO in a center-of-mass frame. Moreover we assume that the initial direction of 
relative motion is along the positive z-axis; we set then 00 = 0 and +. arbitrary, 
for example: 4. = 0. A familiar calculation then gives for the differential cross 
section 

du = (2=/p)’ 1 (04 AcAd ( T(E) 1 00 &zhb) I2 dQ2, (29) 

where dfl = sin 0 dOd+ is the final solid angle in a c.m. frame and the operator 
T is related to S by the usual equation 

S - 1 = iT, (29’) 

where 1 is the unit operator, which, of course, contributes to the matrix element 
(28) only in the case of elastic scattering (a = c, b = d). The cross section as 
given refers to given values of the initial and final helicities, but can be easily 
generalized to the case of arbitrary polarization (see Section 4). 
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We now transform, as usual, to a J, 111 representation, which in our case may 
be done by means of the transformation matrix (24). We notice that, since 
I90 = 0, 

(JM; X,Xb ( e&o ; X,Xb) = 374&(~” ) 0, -r#lo) = XJ ei(M-A)90 dJ,x(O) = SIJGMA 

(independent of $. !). Furthermore recalling the structure of S in the J, M 
representat,ion, Eq. (l), we find, using (22) and (24) 

@I$ A,& 1 f:(E) j  00 A,&,) = Js (0 d i,hd 1 JM %u) 

X (JAI X,Xd 1 S(E) / J’M’ AA) (J’M’ A,&, j 00 X,Xtj) (30) 

= (l/W? (2J + 1) (Lb I SJ(E) I X,X&$&A 8, -41, 

where X = X, - Xg , p = X, - Ad . Inserting (30) into (29) (29’) n-e have 

da = 1 fx,x~;x,x~ (0, 4) 1’ da; 

fA,x, ;A,,,* (e,+) = (l/p) q (J + ?,;I Ww I Q+(E) / Lb) eich-‘)+ d;,(e); (31) 

(X = x, - Xb ; /.L = x, - id). 

TJ(E) is the same as -i SJ(E) except in the case of elastic scattering (a = c, 
b = d) when in view of Eq. (29’) 

(XJd / SW) / GVJ) - 6x,x, &Ad = i(XcXd 1 WE) j LA). (31’) 

IV. GEiYERAL INTENSITY ASD POLARIZATION FORR’IULBS 

When only small J values contribute, it may be convenient to calculate the 
amplitudes f directly, by means of the dJ functions given in the Appendix. Just 
as in former treatmen@ it is possible, however, t,o square the amplitudes di- 
rectly, expressing the product of two d-functions by means of the Clebsch- 
Gordan series : 

diw d&r = F C(JJ’ I; X, -A’) C(JJ’2; j.~, -/A’) ( -l)h’-“’ d:p+S, , (32) 

where we use t.he notation 

(.I$ mlm2 I j&.i m) = C(ilj?j; mnGL.ml+m2 

for the Clebsch-Gordan coefficients. 
For example the unpolarized cross section is obtained by squaring the ampli- 

tude, summing over the final- and averaging over the initial-helicity quantum 
numbers. In this case one uses (32) with X = X’, p = p’ so that 

d;, --) dkJ(B) = Pl(COS e). 
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One finds5 

(da) unpoi = I(O) dQ2; 

where CW = &,x~x,x,, . In this formula as well as in subsequent ones, the 
statistical weight (2s + 1) must be replaced by 2 for a massless particle. 

In a similar way we may compute cross sections for arbitrary polarization of 
the particles. It is quite easy to write down “the most general cross section” 
involving density matrices pa..,. , pd or the corresponding statistical tensors. Even 
in these general formulas no elimination of magnetic sums by means of recoupling 
of angular momenta occurs, because all the simplifications arising from rota- 
tional invariance have already been taken into account implicitly. 

We shall, however, limit ourselves with a single exception to the cases of longi- 
tudinal (circular) and transverse polarization of an initial (say a) or final (say 
c) particle. Longitudinal polarization (total or partial) can obviously be intro- 
duced by attributing different weights to the positive and negative values of the 
helicity quantum number. The ensuing modification of Eq. (33) is immediate 
and need not be discussed in detail. In particular it is easy to see that, if parity 
is conserved in the reaction (see Section 5), and if the initial particles are un- 
polarized, then in the final state values of X, (or X,) differing only in sign are 
equally probable. ?Jo circular polarization is therefore produced in the reaction, 
as one expects. 

If parity nonconserving reactions of practical interest exist, then the present 
formalism is obviously well suited to their discussion, 

Transverse polarization is usually defined by means of the expectation value 
of a transverse component of the spin. As we have mentioned earlier, the defini- 
tion of transverse components of the spin is somewhat arbitrary in the relativistic 
case. In fact, in the case of a massless particle, transverse polarization cannot be 
defined in this way at all. The following formulas are derived, therefore, for a 
particle of finite mass. Consider for example the assumption that particle a is 

5 Since I(e) and the C-G coefficients are real, the product 

(... I TJ 1 . ..)* (... I TJ’ I . ..) 

may obviously be replaced by its real part. This also follows from the symmetry property 
C(JJ’I; X, --A) = C(J’JZ; X,-X). A corresponding simplification has been included in 

the later formulas (38) and (39). 
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initially in a pure state 

(we write here X instead of X, for simplicity). A convenient way to define the 
transverse polarization is to assume that the particle is first “transformed to 
rest” by means of a Lorentz transformation along the z-axis. That is we assume 
that the transverse components of t’he spin s, and s, are measured in a Lorentz 
system of reference, obtained from the original syst,em xyx by the above men- 
tioned Lorentz transformation. According to Section 1, statement (c), X re- 
mains unchanged in the transformation, hence also the probability / ah 1’. In 
fact one can see that, with our phase conventions, the amplitudes a~ also are 
unchanged. Hence with the above definition and using the known form of t,he 
nonrelativistic spin-matrices, see Eq. (7), we can write, after an obvious sim- 
plification 

(sy) = z; (s,h ax* axt = C[(s + X) (s - X + l)]“‘Im (a~-~ax*), (35) x 

where Im( . 1 . ) means imaginary part of . . . , and where, following usage, one 
can recognize a Clebsch-Gordan coefficient 

[(s + X) (s - x + l)Y = [2s( 1 + s)]li2 C(s 1 s; x, -1) 

= -[2s(l + s)y C(s 1 s; x - 1, +I). 
(36) 

Conversely if a particle is partially polarized in the y-direction the density matrix 
has the form 

(Ph = (2s + 1)-‘(6xv + 3 [(%)/S(S + l)l(S,hX~ + . ..}. (37) 

where . . represents the contribution of higher order statistical tensors, which 
we neglect in the following. It is now an easy matter to calculate the “polarized 
cross section” i.e., the part of the cross section da/d!&’ which is proportional to 
(say); it is 

31/2(S,,)[:S,( S, + 1 )]-“*[p*( 2% + 1) (2sb + 1 )I-’ sin 8 

x c (J + %)(J + !) 
JJ’ 

X z Im ( (X&d ) TJ ) &kb)@& ) TJ’ 1 k, - 1, hb)* e”“) (38) 

x F C(JJ’Z; x, 1 - X) C(JJ’Z; EL, -P>( -l)x-” C(s, 1 sa ; x, ) - 1) 

. [Z(Z + 1)1-l” Pr’(cos e). 

Here Eq. (32) has been used, and a function c& (0) has been expressed as Pl’; 
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see Table I. Furthermore it will be shown in Section V that owing to parity con- 
servation the e” may be replaced by cos 4. 

Turning now to the polarization of the final particles, we not’ice that the basic 
states of our representation Eys. (6) and (15) are most obviously interpreted 
as the analogs of the states tiph and fiP,xlxZ with regard to a system of axes ~‘y’z’, 
which is obtained from the original axes xyz by a rotation with Euler angles 
(4, 0, -4) or alt’ernatively (4, 8, 0) if one suppresses a factor e”” in the defini- 
tion of t,he basic states. The second choice is somewhat preferable, because in 
that case the y’ axis is perpendicular to both z and x’, i.e. to the reaction plane. 

Let us t’herefore compute the expectation value s,, for particle c, assuming 
unpolarized incident particles. If c were in a pure state c, c7RQso t+b,, , the de- 
sired expect,ation value would, of course, be given by (35) with .s,X and ah re- 
placed by sc , y and cy , respectively. Our final state is similarly expanded in 
terms of R+OO ~,A,~~ , the coefficient being fxcxd;x,xg( 19,4) eiP’, (where ,J = X, - x,). 
Hence one easily calculates for the outgoing state 

I(O)(Scy~> = -d- 2 sin 19 [s,(s, + 1)]““[$(2s, + 1)(2sb + l)]-’ 

x xC(JJ’Z;h, -X)C(JJ’Z;p, 1 - /.J) C(s, 1 s,;x,, -1)(-l)“-” 
1 

x [Z(Z + q-l’” Pl’(COS 0). 

A similar formula may be obtained for (s,,,) and may be shown to vanish (as 
one expects) if the scattering matrix satisfies bhe symmetry condition for parity- 
conservation discussed in the next section. 

Finally, as an example of more general formulas, we may write the density 
matrix ,~y”~, for outgoing particle c, assuming no initial polarization, and using 
the “R+,B,-~ representation”, in the form 
c 

P-Y-f’ = [$(2s, + 1)(2-s% + 1>1-’ (-l)y-‘;g (J + $5) [a(22 + l)]“” 

X A$b$ hd 1 TJ ) ~a~,>{r’ Ad 1 TJ’ 1 Xc&)* c(.JlJ’; x 0) c(Jlcf’; Jo, y’ - 7) (39’) 

x yw-, (0, 4) 

where p = y - id , and where some trivial rearrangements of the Clebsch- 
Gordan coefficients have been made. Some properties of this formula will be 
discussed later. 

V. SYMMETRY PROPERTIES OF THE SCATTERING MATRIX Ah-D 

SELECTION RULES 

We must now examine the restrictions to the form of the S-matrix and the 
simplifications in the formulas (33) etc., which arise from various symmetry 
considerations, and in the first place from parity conservation, if it applies. 
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The states of each of our particles a, . * * , d will obey an equation (9’) with 
intrinsic phase-factors qI, , . . . , vd . I+om (8) and (9’) one sees that the corre- 
sponding equation for the parity operator P is 

P l//Pi = eiTJ’ Y tipk = 7j ( - 1 )s--h eiuJY #P,P~ . (40) 

A similar equation may be derived for xPx and combining the two we get, for a 
two-particle state, 

P fi,~,~~ = 71~77~ ( - l)s1+s2PX1+h2 ei”Ju$P,-~,,--x, . (40’) 

We now apply the operator P to an angular-momentum state, Ey. (IG), remem- 
bering that P commutes with the rotation operators 

P 1 JMX&) = m( - 1 )sl+sz--hl+X* s dUa,~x(apy)R,a,Ro,-,,OIC/p,--hl,--XZ. 

We notice that the equation 

Rap-r Ro,-r,o = Raw7’ 

defines an element a’/Yr’ in such a way that the transformat,ion from &y to 
(Y’/?‘Y’ pree,erves the volume element in group space,6 i.e., dU = dli’. Further- 
more, using the known value of dJ(r), one has 

a)MX(cx/3Y) = c Dv,, (cu’P’r’)QIx (0 ~ 0) = ( -l)J--X%-x(ac’P’r’). 
P 

With these substitutions one easily gets 

P / JM; AA) = rllqz ( -l)J-S1-xz / JM; ---xl, -A,), (41) 

where it should be noticed that .I - s1 - s2 is necessarily an integer. 
If parity is conserved 

P-l s P = As, (42) 

and applying this to the suhmatrix S(E) in the JM-representation and using 
(31) one finds 

(-A,, --x,1 / sJ ) --x, , -Ah> = ?Ig(xckd / sJ j  bb); 

90 = (SC %I/% ab)(-l) 
s,+sd-“a-s* 

7 (43) 

i.e. apart from a constant phase factor, an element of the submatrix S, does not 
change if one reverses the sign of all the helicity quantum numbers. It is easy to 
see what this means for the reaction-amplitude (31). Using the symmetry 
property (A.1) of the Appendix, we find easily 

f-A,--Xd;--h,--h* (&I = Ils fA,xd;x,x* (4 r - 4) (44) 

which can also be obtained directly by a reflection in the zz plane. 

6 See for example Ref. 9, Chapter S. 
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Equation (43) means that the suhmatrix S., has, roughly speaking, only half 
as many independent elements as it could otherwise have;7 the equation plays 
the same role as the L-selection rule of the usual formulation. For example in 
Eq. (33) we may notice that changing A, , . . . , Xd to -A, , . . . , --A~ does not 
affect the product of the two C-G coefficients. Hence Eq. (43) tells us that, in 
the sumc (xj , two terms with opposite helicities give the same contribution to the 
sum. The sum may thus be reduced to roughly half as many terms. 

The simplification that applies to Eq. (38) is the following. Rewrite (38) inter- 
,changing J and J’ and replacing A, , Xb , A, , Ad by -A, j- I, --Xb , -A, , --Xd . 
‘Then using (43) and the symmetry properties of the C-G coefficients with re- 
spect to the interchange of two angular momentum states one sees that co) . . . 
in (38) is replaced by 

the dots indicating that the remainder of the expression is unchanged. This 
shows that expanding ei’ = cos $ + i sin 4 the terms in sin 4 cancel out, as 
mentioned before. 

No change occurs in (39), the simplification in the polarization of the out- 
going particle being expressed instead by the condition (a,,,) = 0. The generaliza- 
tion of these considerations to polarization tensors of higher order is immediate. 

For example if in Eq. (39’) we set $J = 0 for simplicity, then applying condi- 
tion (43) together with well known properties of the C-G coefficients we see 
that 

&,,-,t = (-1)‘~” p;,7’. (44’1 

This means, of course, that certain statistical tensors for particle c vanish. In 

order to see this more precisely, we recall that according to our conventions if 
we compute statistical tensors by the standard formulas (II) they will be re- 
ferred to a rotated system of axes in which the z-axis is parallel to pc = -pd 
while (since + = 0) the y-axis is unchanged and perpendicular to the reaction 
plane. Let us now perform a further rotation of the statistical tensors by means 
of the formula8 

7 It is perhaps worth noticing that in the present formalism it is especially easy to count 
the number of a priori independent coefficients in the submatrix SJ, taking due account of 

the existing symmetries, such as Eqs. (43), (47), and (55). This number is independent of 
J (except for small values of J, when the conditions ( X 1 2 J, 1 ,J 1 5 J may reduce the 
dimensionality of the submatrix) and is therefore clearly equal to the number of independ- 
ent functions of f? (or of the momentum transfer) which must appear in the general reae- 
tion formula. 

* In T,., , q and K are, respectively, rank and magnetic quantum number of the tensor. 
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which corresponds to the replacement, in any tensor operator, of sz , s, , ss, 
with sz , sz , s, . In other words we refer the tensors to a system of axes in which 
the z-axis is perpendicular to the reaction plane. One sees easily by means of 
Eq. (A-2) and the Wigner-Eckart theorem that the tensors T’ have the sym- 
metry property 

(T’,,,)-,,-,J = (-l)Y-Y’+“(T;,d,,,~ . 

Then Eq. (44’) shows thst 

T;,, = ( - l)“T;,n , (44") 

i.e., all tensors with odd K vanish. This is one of the selection rules of Shirokov (5). 

Identical particles 

Let us now see how the symmetry or antisymmetry of the wave functions for 
identical particles is expressed in our formalism. Indicating by PI2 the operator 
which interchanges particles 1 and 2, we may cast the equation which expresses 
the effect of PI2 on the basic state (14) in a form quite similar to Eq. (40’) for 
the operator P. To this end one must use simply the definition (13)) and the 

identities e -i%dy = ( -l)2s eiHJ(:) and ( -l)‘l--xz = (-1)‘2-” (since X1 _ x2 is 

an integer in this case). One easily sees that 

PlZ h,xz 
= ( - lys-xl+x~ ei”J” $px,x, ) 

whereupon, remembering that PI2 commutes with the rotation operators, the 
same calculation that follows (40’) will obviously give for the zmgulsr momen- 
tum states 

Plz / JM; X1X2) = (-l)‘-“’ 1 JM; A&). (46) 

The well-lknown connection between spin and statistics now tells us that the 
state of th.e correct symmetry with respect to PI2 is 

(I + (-1)” PIT) 1 JAI; A&) = / JM; A&) + ( -l)J 1 JM; &!I). (47) 

It should 'be noticed that, owing to the particular conventions we have used, the 
+ factor which distinguishes Bose-Einstein and Fermi-Dirac statistics has been 
canceled by a spin-factor ( -l)‘“! 

One should notice that, according to Eq. (47), for odd J only X1 # hz is al- 
lowed. Another restriction to be remembered in counting possible states is, of 
course, J 2 1 X1 - X2 1 . A by-product of Eq. (47), for example, is a very easy 
derivation of the Landau-Yang enumeration of the possible states for two pho- 
tons (12, IS). The corresponding parities, of course, are immediately obtained 
from (41). 
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A simpler case is that of two protons. Writing for brevity tiRR for 1 JM; 
+ ,],a + j&) and so on (R or L means + 42 or - 12 ) we find bhe following possi- 
ble states 

ti hL RR , (J eveu), 

$RL + #LR (J even I), (48) 

+RL - IC/LR (J odd). 

The states of the third and fourth type have odd parity (assuming v2 = l), 
while the first two must combine in the form # RR f fiLL if one wants states of 
{odd/even) parity. Finally the states thus obtained may be expressed in terms 
of the customary ‘So , “Po,l,p, . . . states in the nonrelativistic limit by means of 
the expansion coefficients of Appendix B. The result for the first few states is 
given in Table III. 

Time rcuersal 

In order t,o examine the consequences of time-reversal invariance, let us as- 
sume as usual that our theory admits an antiunitary (Wigner) time reversal 
operator T. When T operates on our basic one-particle state 9,~ , it obviously 
generates a state with the same helicity and the same momentum, but in the 
negative x-direction. Since such a st,ate can also be generated by a rotation about 
the y-axis, we can write 

T #,A = E eCiHJ” fipx , (49) 

where 6 is a phase factor, which may depend on p and X. It is easy to see that 
it does not depend on p. Consider a Lorentz-transformatiou d: along the x-direc- 
tion, which changes p to p’: 6: GPx = +,,A . Multiplying (49) on the left by C-‘, 
and noticing t,hat according to well-known commutation relations 

c-’ T = I’d:; c-l e-irJg = e-i*Juee, 
(50) 

one finds immediately that $,,A obeys the same equation (49) with the same 
value of +q and since p’ is arbitrary, this proves the assertion. It is also easy to 
see that e does not depend on h. If the mass is not zero, we may consider the 
limiting case p --$ 0, in which case (49) must reproduce the well known time- 
reversal properties of the spin-functions of a particle at rest (I/,, 15). Using Eq. 
( 14) one sees that 

T +ox = c ( -l)‘-’ #O.-x = E z ‘2(x-s) h-x (51) 

has the required form, if E is independent of X. In particular if c = -i” one gets 
the Wigner-Eisenbud prescription, for e = ( - I )” one gets the Coester prescrip- 
tion, et,c. The value of E may of course (since T is antiunitary) be altered at will, 
by multiplying all our states by a suit,able common phase-factor. Let us assume 
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for example e = 1. We still have to show that the same conclusion applies to a 
massless particle. We use then Eq. (9) assuming for simplicity that 7 is real (for 
a photon 11 = - 1 as we have seen). Furthermore TY = YT. Then applying Y 
on both sides of Eq. (51) for X = +s, one finds the same equation for X = -s. 
Q.E.D. 

From Eq. ( 13) and (50) one finds that xPh obeys the same T-transformation 
as IC/~~ , Ec 1. (49). Hence the two-particle state also 

1’ #,x~x~ = epiuJ” #p~l~s , (52) 

where we have set e = 1. We can now easily calculate, since T commutes with 
R dr 

T 1 JM; AA) = (x/2a) j d7: %.,,~(&%d!‘~p~~~~. (53) 

Using (52) and writing R,b, Ron0 = Rulp yt we proceed like in the derivat’ion of 
(41) and transform (53) into 

(32/2T) / a ( - 1 )J+h~Dw,-~(~‘p’y’)Ra,~,r,~p~r~L. 

Furthermore a)M,-h(~‘/3’y’) = ( - 1)-“-“33?,,~(0(‘/3’~‘) and finally 

T 1 JM; XIX?) = ( -l)J-M 1 J -M; X1X2). (54) 

As is well known, from (54) and the time-reversal property of t’he S-matrix 
T--‘ST = S-‘, one easily gets the result that the SJ-matrix is symmetric 

(XJd 1 sJ I X,X*) = (XJb / sJ / XeXd), (55) 

where the matrix element on the right refers of course to the inverse transition 
c + d + 1% + b. Since (55) has the customary form, there is no problem in ap- 
plying to our formalism the customary conclusions about phases of the matrix 
elements in phot’omeson production and so on. 

VI. ILI,IJSTILATION OF THP: METHOI) BY SOME SIMPLE EXAMPLES 

Elastic scattering of u spin-one-half by a spin-zwo particle 

If particle b ( = d) has zero spin, the indices Xb , X,i may be suppressed. For X, 
and X, we use the abbreviation f for &.],r. Assuming conservation of parity, 
Eq. (X3), two of the matrix-elements S++ , S+- , . . . of the submatrix SJ can 
be expressed in terms of t,he other two, and it is easy to express all four in terms 
of the two eigenvalues of NJ. Since the submatrix is unitary the eigenvalues are 
of the form t@ where 6 is a reel phase. A commonly used notation9 is S2+ or 61P , 

9 A recent example is Chew d al. (16). The formulas in question are, of course, much 

older. 
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depending on whether J = 1 + $2 or 1 - &j, 1 being the orbital quantum num- 
ber. Although 1 has no place in our description, we may identify these states by 
their parity. For simplicity we consider in the following the “orbital” parity 
(i.e., computed omitting the intrinsic parity factors ~~72 in Eq. 41) which in the 
usual notation is ( - 1) ’ = ( - l)r’l’z. From (41) we see that the state 

1 JM; +) h 1 JM; -) (56) 

has parity &(-1)J-1’2 = (-l)J”‘2. The state with the upper sign in (56) ha.s 
therefore the phase-shift 61+ with 1 = J - $5, and the state with the lower sign 
has 613-, with 2’ = J + $8 = I + 1. One sees then that 

s$+ = &ye = J.5 (e2i*1+ + (p1+1)-), 

X$- = XL+ = $$ (e ZiSl+ -e ZiS(l+l)- 
1. 

(57) 

Inserting into (31) and with the abbreviation 

fli: = p-’ eis” sin 6~, 

we find, using d:j2 l,z , etc. from Table II, after a slight rearrangement 

(58) 

f++(&) = cos; (fi + fd 7 
(59) 

f+-(&) = e+ sin i (fi - .f2>, 

where f1 and fi are defined as in (IS), 

fl = lq (fl+ Pi+1 - fl- Kl,, 

j-2 = Iq (fl- - fl+> Pl’. 
(60) 

The amplitudes f-- and f-+ are, of course, given by the symmetry relation (44). 
The ensuing form of the 2 X 2 scattering-amplitude-matrix can be written 

(fl + f2) cos i + i sin i (fi - .fi)(cos4 fly - sin+ ~~1, 

which is easily seen to be equivalent to the ordinary form if one bears in mind 
the rotation of the system of axes, to which the final spin-state is referred. 

Neutron-proton scattering 

We shall only point out some of the possible simplifications. Of the 4 states 
j JM; f =t) the linear combinations 

I JM; ++> f I JM; --) (6la) 
/ JM; +-) f 1 JM; -+> (61b) 
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may be formed; those with the upper sign have “orbital” parity ( - l)J-‘, the 
others parity ( -I )“. The former correspond therefore to the customary triplet 
states, with J = L f 1. The submatrix SJ splits correspondingly into two sub- 
matrices 2 X 2. If furthermore the neutron-proton interaction is assumed sym- 
metric in the two particles (neglecting small electromagnetic effect.s), then the 
fact, that the state (61 h) with the lower sign has the opposite symmetry to the 
state (61s) of the same parit.y, implies a further splitting’” of the submatrix for 
par&y ( - 1)“. Thus finally SJ is reducible by symmetry considerations only, to 
one 2 X 2 submatrix and two 1 X 1 suhmatrices. This is, of course, t)he usual 
result.. 

Photom.esorl production: 

p+y+n+a+ 

The elements of the reaction matrix may be labeled f,,x since the T-meson has 
no spin, and the value of X = X, - X, is sufficient to determine X, and h, sep- 
arately. Assuming parity-conservation, Ey. (X3), and assuming Q, = 911 , 
qv = qr = - 1 (these conventions are the usual ones for nucleons and n-meson, 
for the photon see earlier) so that. 7u = - 1 we may designate the elements of 
the submatrix TJ as follows 

p-‘TJ = c A B D 

> -D -B -A -(: ) (62) 

where the IL’OWS correspond t’o p = +l,i and --I; and the columns to X = ,3i, jd, 
- I,,’ - 3; in this order. Each element, say A, will receive a subscript 2J = 1, 
3, 5:‘. s .‘. 

We notice that, for J = ,I,;, X = fs;?’ is impossible and the e1ement.s (’ and D 
do not exkt. 

Then by means of Table III we easily find 

e-i6fI,2,3.:2 = -+Z C, cosg sin0 + ..., 

f]&l/l = cos 2” (A4, - .4, + x4, cos e + . . . }, 

(63) 
~~‘f~,.~,-~:~ = sin i (B, + B, + 3B3 cos 0 + . . . ), 

e2i’jl~2,-3~2 = 43 D, sin 2” sin 0 + . . ., 

where the dots indicate t,erms with J > B i. The correspondence between the 

lo This is rhe customary remark that ‘PI and 3P1 , or respectively, ‘112 and 31>2 , . etc., 
do not mix. Compare Table III. 
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coefficients A, , BI , . . . , et,c. and those customarily employed is easily traced 
by means of the parity of the final states, using Eq. (41). The states of the pion 
nucleon system ordinarily indicated as sl/? (pllT), for example, correspond, in 
our JMH notation, to the linear combinations 

/ JAW, !a + (-) I JfiI, -25). (64) 

The transitions I31 --) ~112 and Ml ---f pllz are therefore associated to the coeffi- 
cients A, - B, and A, + B, , respectively. 

Similarly, c&,2 requires a minus sign in Eq. (@I), i.e., the transitions to d3,2 
depend on t’he difference between the two rows of the submat,rix 3?“, Eq. (62). 
The often made assumption that these transitions are negligible at low energies 
can therefore be expressed by writing 

A, + B3 = C3 + D, = 0. (65) 

This reduces the number of independent coefficients in Eq. (63) to the usual 
four. 

APPENDIX A 

We collect here, for convenience, some formulas, which are useful in the evalua- 
tion of the dj( O) matrices. We refer the reader to Wigner’s (9) and other well- 
known books (17, 18).” for more extensive information. 

Symmetry properties 

The number of functions to be computed is considerably reduced by the sym- 
metry relations 

One also has 

cl;, (e) = dL$,,-x(8) = (-l)“-” &x(B). (AlI 

dx,(e) = (- i)j+X dx,-,(T - e). (AZ) 

Eva1 uation 

The di,, functions can be expressed in various ways as hypergeometric func- 
tions, Jacobi polynomials, etc. Some convenient procedures for the computation, 
due to Wigner, are described by Edmonds ( f8). A useful formula is the recursion 
relation’” 

(j + p)ri2 d::‘)(e) = (j + A)‘/’ dE;;f~~Ll,2(e) cos i 

(ASI 
+ (j - A)“’ d&;fi~Lj2(e) sin i, 

11 Our notations follow Rose’s book; in particular 6~,~(8) = e-i** YL,(8 6). ZD(&~) 
and d(p) in Edmonds’ book correspond to a)(-a,-@,-?) and d(-0) here. 

12 See for example Rose (17), equation preceding (4.26) or Edmonds (f8), Eq. (4.4.1). 
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which may be iterated to give 

2[(j + pj(j + p - 1)]“2 d:‘(B) 

= [(j + A) (j + x - l)]“? ( 1 + cos e) &$,‘_, 

+ 2 (j2 - x2)“” sill ,g d(j:l’ 
(A-l) 

x.lr 1 

+ [(j - X) (j - x - 1)]“2( 1 - cos e) &;,‘,‘-1 . 

The following procedure may be adequate in many cases. The values of h,~ 
needed are usually small. If j = I, an integer, one can start from & , or more 
generally cl;0 , see Table I, and calculate d:l , dfh , . . . , by means of the recur- 
sion formula (Al) or alt.ernatively by using 

dLI,t1 = [(j f P + l)(j ‘F /.x1’2 s$ + p cot e =F i di,(e). (A5) 

A simple proof of this formula is as follows. From 

we obtain 

e --i% J, ,~eb = cos e J, + sin e Jz , 

(Jz k zIJ~)c?~~~ = (sin e)-’ e-‘eJyJz - cot e J2aeieJu F i eeieJu. (AG) 

Formula (A5) is then obtained by taking the matrix element of (AG) between 
(Jo 1 and ( ,jp), remembering Eq. (7). 

If j is a half-integer, the same recursion procedure can be applied, starting 
from &2 ,, 

p’ 
Xl/2 = (j + J;)- [(j + xy d::;:;:{;)(e) cos ; 

1 
(AS) 

+ (j - X)“’ dX+i$F&(e) sin i . 

By means of the above formulas the special values in the following tables have 
been obtained. 

APPENDIX B 

In the nonrelativistic case, one may wish to know what the connection is be- 
tween the states j Jill; X1X2) and t,he customarily employed states 

[ JM; LX) = c C(LSJ; m, ml + m2) C( JlJ2 S; mlm2) YLm unb, z~,,~~, (Bl) 
ml% 

where the spherical-harmonic symbol I TLm includes for simplicity also t’he radial 
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TABLE I 
j = 1 (IXTEGER)~ 

d;?(e) = (-l)m d;;(e) = [4r/(21 + l)]“* S,,(e) 

Examples : 
d;:‘(e) = Pl(COS 0) 
d$ (0) = -[Z(l + 1)]-1’z sin@ P~‘(cose) 
d;;‘(e) = [(Z - 1)1(1 + l)(Z + 2)]-“2(2PI-,(cos 0) - Z(Z - I)Pl(COS e)] 

d:>:;‘(e) = [Z(Z + l)l-“2{-n~[(l + cos e)/sin 631 di? (0) - [(Z - m)(Z + WL + l)]l/zd$l.,, (0) 

= ;$[Z (I + l)]-““( - [ (I - 11~) (I + 1)~ + 1)]“2 d2l.o + [ (1 + m) (2 - m + I)]“’ d2l.o 
+ [ (1 - nr) (2 - m - l)]“* d$;,‘.b + [ (1 + wz) (1 + WL - 1)]“2 dk$J. 

a Pi’ means dPt/d(cos Q) 

TABLE II 
j = Z + $5 (HALF-INTEGER)~ 

dj;;.,,z = (I + I)-’ cos ; (Pi,, - Pi’) 

dp’ 1,2,1,2 = 0 + 1)-l sin 5 #+I + Pl’) 

d$.,,, = (1 + 1)-l sin F 2{GPi+l+j/_2Pi} 

d’i’. 1,0,3,2 = (1 + l)-’ cos ! 2 IgP;+,+/(q?P’.j 

8 Pi’ means dPt/d (cos 0) 

part, urnI , v,, are spin states for spin s1 and 53 , respectively, and 

m = M - ml - m2. 

At the same time one can write for our states Eq. (la), remembering the re- 
mark following Eq. (13) 

ti dh = e 
iP(zl-z2) 

‘UA, V-A, . 032) 

The rotation operator R of Eqs. (15) and (16) acts on each factor of the right- 
hand side of (B2) separately and gives for example 

RQdo #p~,x, = c ~$2~ s$!!x, urnI urn2 R6eo eip(a1--a2), (B3) 
m1m2 

where the Us, here and in the following equations, are functions of the arguments 
deo. 
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TABLE III 

HELICITY STATES vs. ORDINARY STATES FOR Two PROTOSS 

J 

Helicity states 

0 1 2 3 -l 
- 

i &RR -- $LL) ‘So - 
4 

‘DI - ‘G4 

’ (J/RL -- ‘!‘LR) - 
4 

-3P, -3F3 

The YL,,-function of Eq. (Bl) can be expressed in a manner similar to Eq. 
(18). Remembering (15) and (22) we shall write 

Y Lrn = En, 
s 

5.x$? ( &90) Ii&so e?(p1-z2) dQ. (I341 

By means of Eqs. (17) and (Al) and (32) it is easy to expand ( 18) in terms of 
(Bl) or vice versa. The result is 

liZ 
JM; LS 1 J&l; AA) = 

‘2L + 1 

t ) 
m C(LSJ;O,X)C(s~szs;X~,-Xz). 035) 

Finally as an application of this formula we give in Table III the connection 
between our states for two protons, Eq. (48), and the customary singlet- and 
triplet-states. 

RECEIVED: March 23, 1959 
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