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Abstract. To test the validity of current 1deas on the poles of the S-matrix, a simple example 1s
treated non-relativistic scattering by a sphernically symmetric rectangular potential well
(or barrier) The poles of the S-matrix associated with this problem, in the case of zero
angular momentum, are determined, and their behaviour as a function of the well depth
(barrier height) 1s discussed Some results for hugher angular momenta are also given
The usual physical interpretation may be applied only to a very restricted class of poles
Dafficulties appear in the case of “short-lived decaying states” However, the present
model leads to a connection between the hmiting cases of strongly bound states 1n a deep
well and of certain charactenstic states attached to a ‘“‘hard sphere” or to a perfect
conductor (antenna) Itis shown that some poles, previously described as ‘‘meaningless’,
give rise to important physical effects

1. Introduction

The general properties of the poles of the S-matrix have been the object of
a great number of papers However, few attempts have been made to test
and to illustrate these properties by determining all the poles of the S-matrix
m concrete physical examples This has been done for the Coulomb potential,
in this case, however, there are only purely mmaginary poles, which corre-
spond to bound states no complex tt poles exist. To our knowledge, no
example where complex poles occur has ever been completely treated

A simple example of this kind 1s the scattering of non-relativistic particles
by a spherically symmetric rectangular potential well (or barrer) This
example was considered in 1930 by Beck 1), who observed that, when the
well depth decreases, the bound levels are “pushed” into the continuous
spectrum, giving rise to ‘“virtual” levels After the introduction of the
S-matrix, the rectangular potential well was mentioned as an example 1n a
paper by Mgller 2), where 1t 1s stated (incorrectly) that there are no complex
poles 1n this case Complex poles were also disregarded in a later treatment
of the problem by Schutzer 3)

As will be shown 1n sect 3, the poles of the S-matrix associated with this

t Fellow of the National Research Council of Brazil, present address Institute for the-

oretical Physics, University of Utrecht
tt We call a number complex 1f 1t has non-vamshing real and imaginary parts

499



500 H M NUSSENZVEIG

problem, for angular momentum / = 0, may be completely determined
Some results for higher angular momenta will be given 1n sect 4 The mter-
est of this example 1s that 1t allows us to test the usual point of view on the
poles of the S-matrix We have found several inexact statements in the
Iiterature, mn fact, the whole problem of the physical interpretation of the
poles of the S-matrix should be dealt with much more carefully than has
usually been done hitherto

Let us summarize the usual point of view We shall restrict ourselves to the
case of non-relativistic scattering by a central potential of finite radius
In this case, as 1s well known, the S-matrix 1s a diagonal matrix, with
elements

Sy(k) = exp [2um,(R)], (1)

where 7,(k) 1s the phase-shift corresponding to the angular momentum
[ and wave number 2 In the cases in which we are interested, the analytic
continuation of S;(k) in the complex %-plane 1s a meromorphic function
The following properties are generally ascribed to the poles of this function

(A) The poles are located erther on the positive 1imaginary axis or in the
lower half-plane % %)

(B) A pole on the positive mmagmary axis, & = 2«,(x, > 0), corresponds
to a bound state with energy E, = — (%«,)%/2m, where m 1s the mass of the
particle

(C) Complex poles are usually interpreted either by means of so-called
“‘quasi-stationary” or ‘‘virtual” states #°) or in terms of resonance scatter-
ing 1°) The first mterpretation involves the analytic continuation of
Schrodinger’s wave function to “complex energies” A pole at the pomt
k =k —ix(x > 0) 15 associated with the “complex energy”’

W = E—}I = (h2/2m) (F'—1k)? 2)

If 2 > 0, the corresponding “wave function” 1s said to represent a ‘‘decaying
state”’, with decay constant I'/% and “energy” E (defined with an uncer-
tainty given by I') Poles with &’ < 0 are associated with “‘capture’ processes.
1t 1s assumed, 1n both cases, that E > 0 (cf sect 5 2)

It 1s well known that a ““‘complex-energy wave function’” cannot be
normalized, owmng to 1ts exponential increase with the distance (this 1s
attributed to emission that took place ““a long time ago” ?)) This difficulty
1s usually circumvented by interpreting a “complex-energy wave function”
as an approximation to a wave packet that 1s a proper solution of Schrodin-
ger’s equation 1-12) It must be emphasized, however, that this approxima-

t 1f the scattering potential does not vanish rapidly enough at infinity, there may also

exist ‘‘spurious’’ poles on the positive imaginary axis, which do not correspond to bound
states 6, 7)
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tion rests upon the following assumptions (a) |I'| < E, (b) |I'| K level
spacing If these conditions are not fulfilled, 1t 1s very doubtful whether such
an mterpretation 1s possible (cf sect 5 2)

The interpretation of complex poles by means of resonance scattering
associates (2) with a “Breit-Wigner peak’ in the scattering cross-section,
E gives the resonance energy and I 1s the half-width of the peak Besides
conditions (a) and (b), 1t 1s assumed that the pole in question 1s a simple
pole According to Hu 19), this 1s always so 1f the scattering potential has a
short range, 1e, if 2'a < 1, where a 1s the radius of the potential

2. Formulation of the Problem
We shall consider the potential
Vir)= —V,, r<a, V)=0, r>a,

where V> 0 1n the case of a well, and V; << 0 in the case of a barrier.
It 1s convenient to introduce the following dimensionless parameters

o = [2m(E+V,)]ta/f, (3)
B = ka = (2mE)}alh, (4)
+A2 =V,/& (+ for a well, — for a barrier), (5)
where E 1s the energy (taken, for the moment, to be real), and
& = ¥(2ma?) = E/p? (6)

The parameters « and 8 correspond to the wave number mside and outside
of the potential, respectively, & 1s the energy of a particle for which k2 =1,
A? 1s a well-depth (barrier-height) parameter It follows from the above
equations that

«? = f2-L A2 (+for a well, — for a barrier) (7

It follows from (1) and from the well-known expression for the phase-
shift 13) that t

S(8) — Bro() 1™ (B) —ay”, ()1, ()
L(ﬂ) - = 1) ’ 1) ’ (8)
Bru (@)™ (B) —a” () 1,V (B)

where 7,(z) 15 the spherical Bessel function of the first kind, and 2,1 (z),
h,? (z) are spherical Hankel functions of the first and second kinds, respec-
tively 14)

To obtain the analytic continuation of S,(8), 1t suffices to consider (8) as a
function of the complex variable 8 = #+-sv It follows from the properties of

t It 1s assumed 1n (8), as well as 1n subsequent expressions (unless otherwise stated), that,
i accordance with (7), « has been replaced by 4 (824+A42)} (the sign of the square root
15 wurelevant)
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the spherical Bessel functions that (8) 1s a meromorphic function of §,
which satisfies the well-known relations

Sy B)SU(—B) = S.(B)S*(6*) = 1 (9)

According to (9), 1f §1s a pole of S;(8), so 1s —f*, while —B and 8* are zeros.
Therefore, 1t suffices to determine the poles on the 1maginary axis and in the
right half-plane

3. The Case of Zero Angular Momentum

For ! = 0, (8) becomes

So(B) = exp(—21f) (x cot a+128) (x cot a—28)1 (10)
The poles of Sy(8) are the roots of the complex transcendental equation
o cot o =1 (1y)

It can be shown, by considering the real and 1magmary parts of (7) and (11),
that property (A) of sect 1 is satisfied Sy(8) cannot have any poles 1n the
upper half-plane, except on the imaginary axis

31 THE POTENTIAL WELL

To determine the roots of (11), 1t 1s more convenient to work with the
variable « = z+41y than with § Elmunating 8 from (7) and (11), we find

alsma= 4471 (12)
The corresponding values of g are given by
B = £(a*—4%)}, (13)

where the sign must be chosen in such a way that (11) 1s satisfied
The problem 1s now reduced to the determination of the roots of (12) asa
function of the parameter 4. This 1s carried out 1in appendix A Making use
of (13) and of the results derived in appendix A, 1t 1s a sumple matter to
determine the poles of Sy(8) 1n the f-plane. Some of these poles, together with
the corresponding values of A4, are shown i fig 1
For each given value of 4, there exists an infinite number of poles When
A varies, the poles describe certain paths in the f-plane (the curves in full
line 1in fig 1) The poles corresponding to a given 4 may be numbered
according to therr imiting positions for A — 0, thus, g, = «,+v,, where
hm g, = ng—100 (n=0,41,4+2, ) (14)
A0
The followmg abbreviations will be introduced for describing the poles
a-poles (a = ant1), for poles with #, = 0, v, << 0, b-poles (b = bound),
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for poles with #, = 0, v, > 0, and c-poles (c = complex), for poles with
#, # 0, v, 7 0 The denomination “anti-pole” will be justified in sect 5 2

Let us describe the behaviour of the poles when A4 increases from 0 (free
particles) to oo (infinitely deep well), beginning with the pole g, on the

Fig 1 The poles f§, of S{f) for a potential well
On=0 @en=+1 On= +2 @n= +3
The numbers beside the poles give the corresponding values of 4 The curves in full line are
the paths described by the poles The bisectors of the third and fourth quadrants are also
indicated

mmaginary axis For 0 << 4 < 1, §, corresponds to a root of (A3) (see appen-
dix A), 1t 1s an a-pole, and 1t moves from —100 to —: when A increases
from0to1 For 4 > 1, f, arises from a root of (A2) 1n the interval 0 << 2 <.
According to (A4), when A 1ncreases from 1 to 3x, f, 1s an a-pole, which
moves from —¢ to the origin For A > }x, 8, becomes a b-pole (first bound
state), and 1t moves upwards from the origin to 100 when 4 mcreases from
in to ©

It must be pomted out that the origin 1tself 1s never a pole of Sy(8), since
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this would violate the unitarity condition In the present case, for A =in—e¢,
le] < 1, we have, 1n the neighbourhood of the origin,

Se(B) ~ _(ﬂ+ﬁo)(5—ﬂo)_l 7 -(ﬂ—%me) (ﬂ+%¢ﬂ8)_1
= —l-f—ms(ﬂ-’,—%—ma)_l, (15)

so that the residue at § = 8, vanishes when ¢ — 0 This 1s due to the fact
that go* = —pg,, which 1s a zero of S,(f), approaches the origin simultane-
ously with §, Thus, the “conservation of the number of poles” fails to hold
at the origin

Let us consider next a pair of poles, 8,, withn =1 For 0 < 4 < 4,
where 4, is defined by (A7), §, 1s a c-pole, which corresponds to the root
a«, of (Al), and B_, 1s the mirror 1mage of §, with respect to the imaginary
axis The paths described by the first few pairs of poles are shown 1n fig 1
For A — 0, §, approaches asymptotically the straight line # = nz When A
increases, 3, moves upwards, until 1t approaches the straight line v = —1,
and then 1t moves towards the imaginary axts When 4 — A4, 8, and §_,
approach, from opposite sides, the pomt § = —:, where they coalesce for
A = A, The paths described by ., are tangent to the straight line
v = —1 at this pomt

Thus, for 4 = 4, S¢(B) has a double pole at the point § = —: It may be
easily verified that all other poles are sumple poles However, the existence of
double poles 2 = k'—:ix, with k'a = 0, xka = 1, contradicts Hu'’s statement,
quoted at the end of sect 1 To explain this discrepancy, we notice that 1t 1s
mmplicitly assumed 1n Hu’s paper 1) (see his eqs (32)—(33)) that «a < 1,
but, as shown by the present example, this need not be true

For A > A4,, the double pole at § = —: splits into a pair of poles, which
move 1n opposite directions along the imagiary axis We shall call the one
which moves upwards g,, and the one which moves downwards §_, (this
choice 1s, of course, entirely a matter of convention) Thus, 8_, 1s an a-pole,
which moves from —:z to —zc0 when A 1ncreases from 4, to co On the other
hand, for 4, < 4 < ¢,, where c, 1s defined by (A6), 8, 1s an a-pole, which
moves from —¢ to the origmm For 4 > ¢,, §, becomes a b-pole, which moves
from the origm to 200 when A 1ncreases from ¢, to oo Thus, every pasr of
c-poles ultimately gives rise to an a-pole and a b-pole

An approximate analytical representation of the poles for 1 << 4 < A4,
may easily be derived from (13), (A8) and (Al1)—(A12) Let us notice, 1n
particular, that, for 1 < 4 € 4,,, we have §, ~ x,—1y,, where z,, y, are
given by (A13) and (Al4) The case A < 1 will be considered in sect 41

32 THE POTENTIAL BARRIER

To carry out the transition from the potential well to the potential barrier,
1t suffices to replace 4 by 4 1n (12) and (13)
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alsina = 4247, (16)
B = 4 (a2+A2)} (17)

The roots of (16) are determined 1n appendix B, the poles of S,(f) 1n the
B-plane then follow from (17) All of them are c-poles For each value of 4,
there 1s an infinite number of poles, 8y, = +u,-+1v,, corresponding to the
roots «, of (16)

It suffices to consider the behaviour of the poles in the lower right quad-
rant The paths described by the first few poles as a function of A are
shown 1n fig 2 We find that 8, - ¢, ;—200 for 4 — 0 When 4 1increases,

/2 3n/2 5N/2
o) ! 2 4 5 6 7 8 9 i0 U
.

3
Ll T T Ll T A 1 - r=

. 100
e

[e]

-4-

001

Fig 2 The poles f, of Sy(8) for a potential barrier
Oon=1 On=2 @n=3
The numbers beside the poles give the corresponding values of 4 The curves in full hne are
the paths described by the poles The bisector of the fourth quadrant 1s also indicated

B, moves upwards and away from the imaginary axis, tending to approach
the real axis when 4 becomes very large Infact, when 4 > &', (cf appendix
B), we have, according to (17), (B9) and (B10),
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Bu ~ A[1+-§(nm|A)?] =1z, (n] A) [14-} (nz) 2] (18)
Thus, #, - o and v, - 0 for 4 — o This means that S,(8) has no poles
(at finite distance) in the limiting case of an impenetrable barrier (‘‘hard
sphere”’)
Notice that, for 1 < 4 « &,, we have §, ~ x,—1y,, where z,, y, are
given by (B7) and (B8) The case 4 <« 1 will be treated in sect. 4 1.

4. The Case of Higher Angular Momenta

The complete determination of the poles of S,{8) 1s more difficult for
! > 0 than for ] = 0 We shall restrict ourselves to a discussion of the general
behaviour of “large” poles and to some special results for / = 1

41 GENERAL BEHAVIOUR OF “LARGE” POLES

A pole of S;{8) at 8 = B, = u,—1w,, where w, = —v, > 0 (1t suffices to
consider %, = 0), will be called a “large” pole if 1t fulfils the following
conditions:

W1Bal > A, )|B] > A2, (m)|B,]>> I+1, (v) exp(w,) > 1 (19)
According to (5) and (6), (19) imples that |[E,| > [V,| and
|E, | > I(+1)%22ma?

the height of the ‘“‘centrifugal barrier”. It 1s not surprising that, under
these conditions, we find common features 1n the behaviour of the poles,
as will be shown below

It follows from (8) and from the relationship

1:(B)A M (B) —1":(B) Y (B) = 452 (20)
that, in the free-particle limit (4 — 0) we have, as 1t should be,
Iim S;(8) =1 (21)
A0

It may be expected, therefore, that the poles of S,(8) are rejected to infimity
when A4 -> 0, so that there are only large poles for very small A4

To determune the large poles of (8), we may, according to (1) and (i),
make the following approximations. « av f-+4%/(28), |4A2/8] < 1. On the
other hand, according to (u) and (1v), we may replace the spherical Bessel
functions by their asymptotic expansions, neglecting terms in exp(—:8) n
comparison with exp(z§). If this 1s done, we find that the large poles are
approximately given by the equation

14 (—1)* [$4F exp(¢f)]? = 0 (4 for a well, — for a barrier) (22)
In this approximation, therefore, the large poles of S,(8) for a potential well

(barrier) with even / coimncide with those for a potential barrier (well) with
odd !
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If we put
u, = U,+e, 0 =e, < i), (23)
where
U — {mz for a well with even ! or a barner with odd /, (24)
" (n—3)n for a well with odd ! or a barrier with even /,

we find that (22) may be replaced, in both cases, by the pair of equations
tan ¢, = u,fw,, (25)
expw, = (2/4) @, +w,)} (26)

Neglecting ¢, 1n comparison with U,, we get
¢, = tan (U, /w,), (27)
w, = §10g[(2U,/4)*+ (2w,/4)*] = f(w,) (28)

Eq (28) may be solved by iteration t, taking
v,V = log(2U,/4) (U, #0), (29)
w, " = f(w,™)  (r=12,. ) (30)

In general, the third or fourth 1iteration already gives a very good approx-
1mation.

In particular, if w,'? < U,, which 1s certainly the case for 4 > 1,
w, ~ log (2U,/4)+4U,~*[log(2U,/4)]* + .. , (31)
u, ~ U, +4n—U, 1w, + .. (32)

Equations (A13)~—(A14) and (B7)—(B8) are particular cases of these results.
On the other hand, if », > U,, which 1s the case for very small 4, we
find

w, ~ Ly+Ly+L, L, + (L, — 3L +3U )L, 2+, (33)
u,~U,+U,w,7 '+ ., (34)
where
L, =log(2/4), L, = log log(2/A). (35)
Notice that (33) remains vahd if », = U, = 0.

It follows from (33) and (34) that
hm g8, = U,—t0,
4-0
which generalizes the results obtained for / = 0 Notice, 1n particular, that
there 1s always an 1solated (unpaired) pole on the imagmary axis 1n the first
case of (24), but not in the second one

t A very similar equation has been discussed by de Bruyn %)
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42 THE CASE [ =1
For /=1, (8) becomes
S51(B) = exp(—218) (¢~ cot a—a~2+4p24271) (! cot a—a 242 —14-1) 1
The poles of S,(f) are the roots of @
atcot a—a 24 f2—1f71 = 0 (37)
(a) The potentral well
Let us consider first the poles on the mmaginary axis, § = w No such

poles exist for |v] > A For |v] < A4, according to (7) and (37), they are
given by the points of mtersection of the curve

zlcotx—x2 = yp~14072 (38)
which has been drawn 1n full Ime 1n fig 3, with the family of circles
2?2 = A2, (39)
some of which have been drawn in dashed line in fig 3.
v "\
\
\
4
\
\
3F \
\
A=3x\
2t \
\
1 \
E, &
0 X
.1 L
/
/
2t
/
-3
/
-4 /
/
_5 ,/
Fig 3 Determination of the purely imaginary poles of S;(f) for a potential well
zlcotz—2% = v-14972, ——— —g8ly2 = 42

Notice that the intersections occur close to the straight hnev = —3 for 4 = 27 and 4 = 3n.
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The curve (38) 1s defined 1n the intervals na <z < &', (n =1, 2, )
where £, 1s the nth positive root of the equation. ! cot z—z2 = —%,
The straight lines 2 = £,, where £, 1s given by (A5), are vertical asymptotes

There are no poles on the imaginary axisfor 4 <<z For 4 = =, (38)—(39)
have a double root at v = 0 However, this 1s not a pole of S,(8) (cf sect
31) For 4 > =, this double root splits into a pair of roots, giving rise to an
a-pole, which moves downwards for increasing 4, and a b-pole (first bound
p-state), which moves upwards when A increases A similar process takes
place each time that A goes through an integral multiple of =

How do these poles appear on the 1maginary axis? A comparison with the
case [ = 0 suggests that they must arise from the confluence of pairs of
c-poles If this i1s true, there must be a pair of c-poles close to the origin
whenever 4 approaches an integral multiple of #. In order to determine these
poles, we shall make the following assumptions 1 (37)

0<Anne—A)=6,<1 n=1,2, ), (40)
Bl<A, 1P <24. (41)

Under these conditions, (37) may be approximated by
8,~10,8—3f2+58° = 0, (42)

neglecting terms of the order of 4244
The roots of (42) are

ﬂiu = :}:(%6")*—1«(%—6")-’—0(6”%),

Bo= —81+%518,+0(,2
Notice that g, and §_, are approximate roots of (37), but this 1s only true for
p’ 1f 1t fulfils condition (41) Thus, §’ 1s not an approximate root of (37) for
n = 1 However, 1t may be shown that, for » = 2, there exists indeed an
a-pole close to the point —3¢: For # = 2 and # = 3, this may be clearly
seen m fig 3.

For A — nn, the c-poles 84, approach the origin along a parabolic arc
(with vertex at the origin) For 4 > nx, they dissociate into an a-pole and a
b-pole

The behaviour of the poles differs from the behaviour for / = 0 1n the
following respects (1) according to sect 41, 8, —c, ,—29 as 4 - 0,
therefore, there 1s no 1solated pole on the 1maginary axis, (2) the “joining-
pomnt” of the c-poles 1s at the origin (instead of the point § = —:)

(43)

(b) The potentral barrier

In this case, according to sect 4.1, 8, — nw—100 as A — 0, so that there
1s an 1solated pole on the imaginary axis, f, = 2w, When A increases from
0 to oo, B, moves upwards from —z00 to —z
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As was the case for [ = 0, the c-poles B4, == +u,-1v, (n = 1) tend to
approach the real axis for large values of 4 However, n contrast with the
case ! = 0, one pole remains at fimite distance as 4 — oo, namely, the
a-pole f, = —1

Generally, for any angular momentum /, / poles remain at finite distance
in the limiting case of a “hard sphere’’. These poles are the roots of the

equation
h(B) =0 (44)

The poles corresponding to the first few values of / are given n table 1 18).

TasLE 1
The poles of S,(f) for a “hard sphere”

I = o| 1 P [ 3
—226
B=|—| =] 2dv3=h | |15 187

Notice that, 1n agreement with the results of sect 4 1, there are only pairs
of c-poles for even /, whereas, for odd /, there 1s also an isolated a-pole.

By comparing the “hard sphere” with 1ts electromagnetic counterpart, a
perfect conductor, we find an mnteresting connection with antenna theory t
In fact, the roots of (44), for = 1, are also the characteristic values associ-
ated with the so-called magnetic modes of oscillation of a perfectly conduct-
ing sphere ¢). These characteristic values are the poles of the S-matrix of the
associated scattering problem.

5. Discussion

51 GENERAL PROPERTIES OF THE POLE DISTRIBUTION

The results obtained 1n the previous sections allow us to verify, i the
present example, some general properties of the pole distribution for non-
relativistic scattering by a central potential of finite range tt:

(1) There 1s an infinite number of poles, but only a finite number of them
lie on the mmagmary axis 1% 18)

(2) For large n, the distance |8,,,—8,| between two consecutive c-poles
approaches the value #n (see ref 18)) This follows from sect 41

(3) The distance of the c-poles to the real axis increases logarithmically
with #n (see ref 18)) If we put B, = |8,| exp(—16,), we find, according to

t The author 1s indebted to Prof G Beck for pointing out the connection between the
antenna problem and the S-matrix We expect to treat this point more fully 1n a future paper,
1 collaboration

1t Properties (2) and (3) have been derived for the case of s-scattering %)
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sect. 411,
sin 0, ~ (nz) 1logn (n — o). (45)

52 ON THE PHYSICAL INTERPRETATION OF THE POLES

According to Heitler and Hu ®), almost all the poles of the S-matrix have
a simple physical interpretation (namely, the interpretation that we have
outlined 1n sect 1). In the non-relativistic case, the only ‘‘meaningless”
poles would be those which are located in the region of the complex k-plane
where the real part E of the “‘complex energy”’ (2) 1s negative, i e , below the
bisectors of the third and fourth quadrants (cf fig 1 and fig 2).

Besides the fact that a contmuous transition from these so-called meaning-
less poles to the so-called meaningful ones 1s possible (as shown by the
present example), 1t must be pointed out that the interpretation of E as the
approximate energy of a “decaying state’ 1s certaimnly not valid if |I/E| > 1
Therefore, there seem to be no grounds for accepting the above criterion.

As we have mentioned 1n the introduction, the approximations involved in
the usual interpretation of c-poles are based upon conditions (a) and (b) of
sect 1 In the present example, these conditions are fulfilled only n a few
cases (cf. fig 1 and fig 2) One of them 1s the case of the lowest-order poles
for a very high barrier (which are given by (18) for / = 0) These poles
correspond to virtual energy levels lying above the top of the barrier. The
well-known analogy with optical interference phenomena in thin plates may be
applied to them The “level width” may be estimated by the usual formula?®)

I'=#%Tv,/(2a), (46)

where v, 1s the “velocity’’ 1nside the potential and T 1s the “transmussivity”’
of the potential step

Eq (46) may also be applied to the lowest-order c-poles for a very deep
potential well, provided |I'| < E In this case, 1t gives I'/& ~ 4(E/&)L.
This result 1s equivalent to the fact that the c-poles tend to approach the
straight line v = —1 1n the g-plane (cf fig. 2 and sect 31) The wvirtual
levels of a well are much broader than those of a barrier of comparable range
and transmussivity, this is due to the much larger value of v; in the case
of a well.

One runs mnto serious difficulties as soon as one tries to apply the usual
mterpretation 1n cases when the above-mentioned conditions are not
fulfilled As the poles get farther away from the real axis, the corresponding
resonance peaks 1n the scattering cross-section become broader and broader,
tending to overlap in an mextricable way, until they merge into a slowly-

t Eq (45) should be compared with eq (19) of Regge’s paper 1#) (A = 0 in our example).
There are some errors 1n eqs (16)—(19) of that paper, 1n particular, a factor 2/x 1s missing 1n
the second member of eqs (18) and (19) Notice that Regge’s way of numbering the poles 1s
different from ours, so that his # (1n eq (19)) is equivalent to our n



512 H M NUSSENZVEIG

varying background, which 1s usually included in the so-called potential
scattering

On the other hand, 1t 1s exceedingly doubtful whether these poles can be
mterpreted 1n terms of “decaying states”. This 1s clearly seen when we
consider the case of a very shallow well (or a very low barrier), 1n which all
the poles are large poles (sect 4 1) If we build up a wave packet that 1s
mitially concentrated within the potential, 1n this case, it will propagate and
spread practically in the same way as 1t would do 1 the case of free particles,
and this process has nothing to do with exponential decay t.

It has been shown by Regge 1% 2!) that the asymptotic behaviour of the
large poles depends very critically on the asymptotic behaviour of the
potential Physically unimportant changes in the potential may completely
modify the behaviour of the large poles, so that these poles cannot have
much physical sigmficance 2!) This “hypersensitiveness” of the poles with
respect to asymptotic conditions, which had previously been noticed in the
case of ‘“‘spurious” poles, 1s a very unwelcome feature of the S-matrix
formalism

Let us now consider the poles on the negative 1imaginary axis (a-poles).
The “energies” that formally correspond to them, according to (2), are real
negative energies, just as 1n the case of bound states (b-poles) However,
while the energy levels of the bound states are determined by the condition
that the wave function at » = a may be smoothly joined to a purely decreasing
exponential for » > a, the energies associated to a-poles are those for which
the wave function at r = a may be smoothly jomned to a purely increasing
exponential for » > a For this reason, we propose to call them ants-levelstt,
and to call the associated poles anfi-poles

In the case of a potential well with / = 0, the anti-level associated to the
a-pole B,(sect 3 1) hes below the bottom of the well for 0 < 4 < 1, and
within the well for 1 << 4 < 3n All other anti-levels lie within the well, as may
readily be verified, there is one anti-level between every pair of bound states.

Let us sum up It 1s convenient to classify the poles of the S-matrix mnto
several (not sharply separated) groups They range all the way from those
which are associated with well-defined physical concepts to those which seem
to be no more than mathematical properties of the formalism The bound
states belong to the first category The usual interpretation of c-poles may
be applied to “long-lived decaying states”, either for an attractive or for a
repulsive potential However, 1t seems to be very difficult to give a precise
and general formulation of the scattering problem 1n the case of “short-lived
decaying states”

t A discussion of the exponential decay law has recently been given 1n a paper by Hohler 20)
tt They are sometimes called “virtual levels” (cf sect 5 3), but it seems to us that thisisa
most unfortunate terminology, since 1t 1s apt to suggest the 1dea of quasi-stationary states
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The himiting case of a “hard sphere” 1s specially interesting In the related
case of a perfect conductor, 1t 1s known that there exist certain characteristic
states of the field, which are more or less strongly damped by radiation
according to the shape of the conductor Our model indicates the existence of
a connection between these “antenna states” and the other imiting case of
strongly bound states in a deep well (cf the end of sect 4 2)

The large poles seem to have very little physical sigmificance It might be
expected that the a-poles, which are “‘meamingless’ 1n the usual interpreta-
tion, cannot have any physical importance However, this 1s not true, as will
be shown in the next section

53 THE LOW-ENERGY SCATTERING CROSS-SECTION

It will be shown 1n this section that some poles of the S-matrix that would
be considered to be “meamingless” according to the usual interpretation
(in particular, a-poles) may give rise to important physical effects in the
low-energy scattering cross-section.

The scattering cross-section ¢, for angular momentum / 1s given by the
well-known expression

o, = (20+1)nma? %15, (B)[2 (47)

(@) The case I =0

Let us consider a potential well that 1s almost deep enough for the ap-
pearance of the first bound state, so that 4 = 3n—¢, 0 < e < 1 According
to (15), this implies the existence of an a-pole at § = f, ~ —%ime, and,
according to (15) and (47),

oy ~ dma?[B2-t (Lme)?], (48)

so that the cross-section becomes very large as § — 0 An a-pole very close
to the onigin guves mise to an anomalously large scattering cross-section at low
energies

This behaviour 1s well known 1n the case of neutron-proton scattering It
1s usually interpreted in terms of a so-called virtual singlet state of the
deuteron, the defimtion of which has occasioned some confusion in the
hiterature There have been several attempts to define a “virtual level” at a
small positive energy It must be stressed, 1n this connection, that, mn the
present example, all c-poles are far away from the origin for A ~ }x, as may
readuly be verified from fig 1 The definition by means of an a-pole of the
S-matrix has been considered by several authors 22 23, 24)

Let us follow the behaviour of the low-energy cross-section during the
process which leads to the appearance of the next bound s-state (4 — x)
In S-matrix language, this process corresponds to the transformation of the
pair of c-poles B, mnto an a-pole and a b-pole (cf sect 31 and fig 1)
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It may be verified without difficulty that, as §, approaches the bisector of
the fourth quadrant, the low-energy cross-section becomes very smali
(&« ma?) The value of 4 for which g, crosses the bisector practically coincides
with the value 4 = =4/2 ~ 4 44, which marks the appearance of the first
zero m the cross-section. This zero appears at the pomnt g = Zx, when 4
mcreases, 1t sphits 1nto a pair of zeros, one of which moves towards lower
energies, while the other one moves towards higher energies. In fig. 4, the
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Fig 4 The ratio 6,/ (na?) and the phase-shift 7, as a function of f§ for a potential well with

A4 = 446

rat1o o,/ (na?) has been plotted as a function of g, for 4 = 4 46, together
with the corresponding values of the phase-shift #4(n, = = at the zeros of the
cross-section). A vanishing cross-section at low energy is well known 1n the
theory of the Ramsauer-Townsend effect

For A = &, ~ 4.49, the zero-energy cross-section vamishes For 4 > &,
the low-energy cross-section begins to increase For 4 = A4, ~ 461,
B, and B_; coalesce at the point § = —1, giving r1se to a pair of a-poles. The
low-energy cross-section keeps increasing while one of these a-poles moves
towards the origin, and 1t attains again very large values when the a-pole 1s
very close to the origin (4 — 2z ~ 4.71)
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A similar process takes place before the appearance of other bound states.
Thus, the typically quantal anomalies (very small or very large values) of the
low-energy cross-section, which precede the appearance of a new bound state, are
related to poles of the S-matnx that would be considered to be ‘“meaningless”
according to the usual interpretation

(b) The case 1 =1

Let us consider a potential well that 1s almost deep enough for the appear-
ance of a new bound p-state, so that (40) 1s satisfied In this case, as we have
seen 1n sect 4 2, there exists a pair of c-poles, f.,, given by (43), very close
to the omngin

To obtain the low-energy p-wave cross-section, we may employ (36) and
(47), replacing the denomunator of (36) by the first member of (42), and
expanding exp(—2:8) 1 powers of 8 The result 1st

0y/ (127a%) ~ B[ (362 —0,)2+ (362 —6,)%] (49)
In the region
Iﬁz_ganl < %6,., (50)

eq (49) gives rise to a “Breit-Wigner peak’” of half-width ($)(§4,)}, centered
at B2 = %4, This agrees with the usual interpretation The existence of a
sharp resonance 1n this case may be attributed to the *“‘centrifugal barrier”

It might be expected that only the poles (and corresponding zeros) that
are close to the origin would determine the behaviour of the low-energy
cross-section If this were so, (36) could be replaced by

S1(B) ~ exp(—2:B) (B+Ba) (B+B_.) (B—B4) 7 (B—B-.) (51)
Replacing (51) 1in (47), and taking mto account (43), we get
01/ (127a%) s [(B2—§0,)2+- (80,)2 %1 [ (B*—36,)2+§(30,)°1 (62)

Although this agrees with (49) in the region (50), 1t 1s by no means a good
approximation outside of this region. In particular, (52) would give

1 foré,£0
I 127a2)] = {9 T 53
ﬂlﬁ [01/( A )] 1 fOI' 6” — 0’ ( )
whereas, according to (49) tt,
0 ford,#0
1 127427 = { " ’ 54
ﬁu—z [Gl/< T4 )] % fOI' 6:" — O. ( )

t This differs from the result given by Schiff 1n eq (19 30) of his book ¥) The discrepancy
1s due to the fact that Schiff fails to take into account terms of the order of (ka)? and (ka)4 in
the denominator of his eq (19 27)

tt For §, = 0, (54) does not agree with theresult givenin p 36 of Mott and Massey’s book 12)
Thas 1s due to an error in their eq (39) a factor 2/(2x-1) should be inserted in the second
member of that equation
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The difference between (52) and (49) 1s due to the omission of the root
B '~ —3 of (43) from S;(f) According to sect. 42, f’ 1s an a-pole for
n = 2. In this case, therefore, the correct behaviour of the low-energy
cross-section may only be obtamned by taking into account the a-pole
B’ (together with the corresponding zero), even though it 1s far away from
the origin This 1s another example of the physical effects that may be
produced by an a-pole.

The author 1s greatly indebted to Prof G Beck for suggesting this
problem and for many helpful discussitons He 1s also grateful for the
hospitality of the Technische Hogeschool at Emndhoven, where this work was
written

Appendix

A THE ROOTS OF EQUATION (12)

Replacing a = z+2y 1in (12), and separating real and 1maginary parts,
we find the following three possibilities

zltana =y ttanhy (I),

y = cosh™|z/(4 sm z)| (II),
zlsmz = +A41,
y=0,

(®#£0, y+#0), (A1)

(A2)

x =0,

ylsinhy =A4"1 (4 >0) (A3)

The corresponding choice of sign 1n (13), in order to sattsfy (11), 1s such that
v < 0, in the case of (Al) and (A3), and such that

sgn v = — sgn{x s 2x) (Ad)

i the case of (A2), as may be easily proved.

Simce the roots of (12) are symmetrical with respect to the  and y axes,
we shall restrict ourselves to the first quadrant (x = 0, ¥ = 0) n the
following discussion

There are no roots of (A3) for A > 1 For each value of 4 belonging to the
interval 0—1, (A3) has one root, when A increases from 0 to 1, y decreases
from oo to 0

The roots of (Al) and (A2) may be found by graphical means Equation
(IT) defines a family of curves depending on the parameter 4. For each
value of A4, the roots of (A1) are given by the points of intersection of curves
(II) and (I), whereas the roots of (A2) are grven by the intersections of (II)
with the real axis
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Curve (I) has been drawn 1n full Iine 1n fig 5. It1s defined fornn <z < £,
(n =1,2,3,. ), where &, 1s the nth positive root of the equation tan z = z.
For large n, we have

§n ~ cn_cn_l—%c'n—a— o (A5)
where

€n = (n+3)m (A86)
Portions of curves (II) have been drawn in dashed line in fig 5, the corre-
sponding values of 4 are also indicated
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Fig 5 Determination of the roots of (Al) and (A2)
Curve (I), - — —— Curves (II) (the corresponding values of 4 are indicated beside the
curves)

Let I, be the imnterval nn < ¢ < (n+-1)z. In I, curves (II) intersect the
real axis only for 4 = 1 The corresponding root of (A2) increases from
0 to # when A imcreases from 1 to co.

The following discussion applies to all the intervals I, with #» =1
To 1llustrate the behaviour of curves (II) in 7,,, a typical curve (4 = 001
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m I,) has been drawnin fig 5 Each curve (II) goes through a single mimimum
in I, This point 1s located on the straight line x = &, When A increases, 1t
moves downwards along this line, reaching the real axis for 4 = A4,,, where

An = IE,,/SIH Snl ~ C”—%C”_I—E%Cn_a'— (A7)

It can easily be shown that, for every value of 4 between 0 and 4,,
curves (I) and (II) intersect at one and only one pomt in I, The corre-
sponding root, a, = x,-1y,, moves downwards when A4 1ncreases Notice
that «, > #m+t100 for 4 -0, and «, — §, for 4 - A4,,.

For A > 1, an approximate analytical representation of «, may be derived.
Under this condition, the intersection occurs close to the minimum of (II),
so that (II) may be approximated by

Yy, ~ Yn+%bn(5n_xn)2» (As)

where
Y, = cosh™{4,/A4], (A9)
b, =y"(£) = [1—(4/4,)%F (Al0)

On the other hand, if we put z, = ¢,—4,, (I) may be replaced by
(cnan)_1+cn-2+ (C"—2——%—)G"~16n ~ Yn_l tanh Yn = (bn Yn).—li

from which we find, by iteration,

el 65+ (E )T

In the immediate neighbourhood of A == 4,, this may be replaced by
Ty A Eu'—[l—(bnyn)_qsn_l (A12)
Equations (A8) and (All)— (A12) give a very good approximation to the

roots of (A1) when 1 < 4 < A, In particular, for large », 1e, for 1 < 4
< A,, we find

z, ~ c,—c, ‘log(2c,/A)+ , (A13)

Ya ~ log(2c,/A)+4c,*{[log(2c,/4)—1]2—}A%—1}+ . (Al4)

For A = A,, we have a, = &, This 1s a double root of (12), which arses
from the confluence of a root in the upper half-plane with a root in the lower
half-plane For A > A,, 1t splits into a pair of roots of (A2), which move 1n

opposite directions when A ncreases, approaching the end-points of I,
when 4 — oo.

B THE ROOTS OF EQUATION (16)

Replacing « = x4y in (16), and separating real and imagmary parts,
we find that there are no solutions with z = 0 or y = 0. For 2 £ 0, y £ 0,
we obtain
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ztanz = —ytanhy (1),
y = simhYz/(4 cos z)| (II)

The curve (I'), which 1s defmed for ¢, ; < x < nn (n = 1), has been
drawn 1n full line in fig 6 Portions of curves (II') have been drawn n
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Fig 6 Determination of the roots of (Bl)
Curve (I’), - - — — Curves (II’) (the corresponding values of 4 are indicated beside the

curves)

dashed lme, the corresponding values of 4 are indicated. In each interval
I' ¢, =x<c,, each curve (II') goes through a smgle mmimum,
located on the straight line z = &',,, where &', 1s the nth positive root of the
equation cot x = —=z For large =,

&, ~ nn—(nn)1—%(nn)3— .. .. (B2)

When A increases, the mmimum of (II') moves downwards, approaching the
real axis for 4 — o©
For every value of 4, (I') and (II') mntersect at one and only one point in
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I’, The corresponding root of (18), «,, = 2,41y, , moves downwards when A

increases We find that o, — ¢, ;200 for 4 — 0, and «, — nx for 4 - ©
The followmng formulae, the derivation of which 1s similar to that of

(A8)—(A11l), give a very good approximation to the roots when 4 > 1

x, ~ nu— (nm) Y, Y — (n) (67, Y, )2 (1—5,Y7,), (B3)
V3 ()2, (B4)
where
Y’, = smhz,, ¥, = (142,72)°%, (B5)
2y = (1+E2)H4 (B6)
In particular, for 1 << 4 « &', we have
z, ~ nan—(nx)~tlog(2nn/d)+ (B7)
~ log(2nn/A)+% (nn)-* [log(2nm/A) — 1124342 —1}+ (B8)
On the other hand, for 4 > &,(z, < 1), we find
z, ~ nx— (mm) 12,2, (B9)
Yo~ 2t nm) iz (B10)

Note added in proof 1t has been shown by Humblet (Mém 1n-8° Soc Roy
Sc Liége 12 (1952) no 4) that the properties of the pole distribution which
are mentioned 1n sect 5 1 are valid for a very general class of potentials of
finite range and for arbitrary values of the angular momentum Humblet
hasalso given a thorough discussion of the asymptotic behaviour of large poles.
The results given 1n sect 4 1 of the present paper are in complete agreement
with his results The author wishes to thank Prof L Rosenfeld for bringing
Humblet’s paper to his attention
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