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A b s t r a c t .  To t e s t  t he  va l id i ty  of cu r r en t  ideas  on t he  poles of t h e  S-matrLx,  a s imple  example  m 
t r ea t ed  non-re la t lv l s t lc  s ca t t e r ing  b y  a spher ica l ly  s y m m e t r i c  r ec t angu la r  po ten t i a l  well 
(or barrier)  The  poles  of t h e  S - m a t r i x  assoc ia ted  v n t h  th i s  p roblem,  In t he  case of zero 
angu l a r  m o m e n t u m ,  a re  de te rmined ,  a n d  the i r  b e h a v l o u r  as  a f unc t i on  of t h e  well d e p t h  
(barrier  he lgh t )  is d i scussed  Some resu l t s  for bagher angu l a r  m o m e n t a  a re  also g iven  
The  u sua l  phys i ca l  i n t e rp re t a t i on  m a y  be appl ied  on ly  to a ve ry  res t r ic ted  class of poles 
Dlff lcul t les  appea r  in  t h e  case of  " shor t - l ived  decay ing  s t a t e s "  However ,  t he  p r e sen t  
mode l  leads  to a connec t ion  be tween  t he  l imi t ing  cases  of s t r ong ly  b o u n d  s t a t e s  in a deep 
well a n d  of ce r ta in  charac te r i s t i c  s t a t e s  a t t a c h e d  to  a " h a r d  sphe re"  or  to a per fec t  
c o n d u c t o r  ( an tenna)  I t  is s h o w n  t h a t  some  poles, p rev ious ly  descr ibed as  " m e a n i n g l e s s " ,  
g ive  rme to i m p o r t a n t  phys ica l  effects 

1. In troduct ion  

The general properties of the poles of the S-matrix have been the ob]ect of 
a great number of papers However, few at tempts have been made to test 
and to illustrate these properhes by  determining all the poles of the S-matnx 
m concrete physmal examples Tins has been done for the Coulomb potential, 
in tins case, however, there are only purely Imaginary poles, which corre- 
spond to bound states no complex tt poles exast. To our knowledge, no 
example where complex poles occur has ever been completely treated 

A simple example of tins kind is the scattering of non-relativistic particles 
by  a spherically symmetric rectangular potential well (or barrier) This 
example was considered in 1930 by  Beck 1), who observed that, when the 
well depth decreases, the bound levels are "pushed" into the continuous 
spectrum, giving rise to "virtual" levels Mter  the introduction of the 
S-matrix, the rectangular potential well was mentioned as an example m a 
paper by  M011er ~), where it is stated (incorrectly) that  there are no complex 
poles in tins case Complex poles were also disregarded In a later treatment 
of the problem by  Schutzer s) 

As will be shown in sect 3, the poles of the S-matrix associated with thls 

t Fel low of t he  Na t iona l  R esea r ch  Council  of Brazil ,  p r e sen t  add res s  I n s t i t u t e  for the-  
oret lcal  Phys ic s ,  U n i v e r s i t y  of U t r e c h t  

t t  W e  call a n u m b e r  complex  if it  h a s  n o n - v a m s h l n g  real and  i m a g i n a r y  pa r t s  
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problem,  for angular  m o m e n t u m  l ~ -0 ,  m a y  be comple te ly  de te rmined  
Some results for higher  angular  m o m e n t a  will be given in sect 4 The mter -  
est of this example  is t ha t  It allows us to tes t  the usual point  of vlew on the 
poles of the S-mat r ix  We have  found several  Inexact  s t a t emen t s  in the 
l i tera ture ,  in fact,  the  whole problem of the physical  in te rp re ta t ion  of the 
poles of the S-mat r ix  should be deal t  wi th  much more careful ly  than  has 
usual ly been done h i ther to  

Le t  us summarize  the usual point  of view We shall res t r ic t  ourselves to the 
case of non-relat ivis t ic  scat ter ing b y  a central  potent ia l  of finite radius 
In  this case, as is well known,  the S -ma t r ix  as a diagonal  mat r ix ,  with 
e lements  

S,(k) : exp [2,~h(k)], (1) 

where ~ (k )  is the phase-shif t  corresponding to the angular  m o m e n t u m  
l and wave number  k In the cases in which we are interested,  the analyt ic  
cont inua t ion  of St(k) in the complex  k-plane is a meromorphlc  funct ion 
The following proper t ies  are general ly  ascribed to the poles of this funct ion 

(A) The  poles are located e i ther  on the  posl t lve imaginary  axis or in the 
lower half-plane 4, 5) 

(B) A pole on the posi t ive imag ina ry  axls, k ---- *Kn(K n > 0), corresponds 
to a bound  s ta te  with energy  En ~ --  (~K.)2/2m, where m is the mass of the 
part icle  

(C) Complex poles are usual ly  in te rpre ted  ei ther  b y  means  of so-called 
"quas i - s t a t i ona ry"  or " v i r t u a l "  s ta tes  8, 9) or in te rms of resonance scat ter-  
ing 10) The  first in te rp re ta t ion  revolves the analyt ic  cont inua t ion  of 
Schrodinger 's  wave funct ion to "complex  energies"  A pole at  the point  
k--~ k ' -- ,K(K > 0) lS associated wi th  the "complex  ene rgy"  

W = E - - ½ , N  = ( h ~ / 2 m ) ( k ' - - z K )  " (2) 

I f  k' > 0, the corresponding "wave  func t ion"  is said to represent  a "decay ing  
s t a te" ,  with decay  cons tan t  F/?i and " e n e r g y "  E (defined wi th  an uncer- 
t a i n ty  given by  F)  Poles with k' < 0 are associated with " c a p t u r e "  processes. 
I t  is assumed,  in bo th  cases, t ha t  E > 0 (cf sect 5 2) 

I t  is well known tha t  a "complex-ene rgy  wave func t ion"  cannot  be 
normalized,  owing to its exponent ia l  increase wi th  the distance (this is 
a t t r i bu t ed  to emission tha t  took  place "a long t ime ago"  9)) This diff icul ty 
is usual ly  c i rcumvented  b y  in te rpre t ing  a "complex-energy  wave func t ion"  
as an approx imat ion  to a wave packe t  t ha t  Is a proper  solution of Schrodm- 
ger 's  equat ion  ix, is) I t  mus t  be emphasized,  however ,  t ha t  this approxima-  

* If  the scat ter ing potent ia l  does not  v a m s h  rapidly enough a t  mflnl ty,  there m a y  also 
exis t  " spur ious"  poles on the pomtlve xmagmary axis, which do not  correspond to bound 
s ta tes  % 7) 
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t lon rests upon the following assumptions (a) IPI << E,  (b) IP[ << level 
spacing If  these conditions are not  fulfilled, it Is very  doubtful  whether  such 
an interpretat ion is possible (cf sect 5 2) 

The interpretat ion of complex poles by  means of resonance scattering 
associates (2) wi th  a "Brel t -Wlgner  peak"  in the scattering cross-section, 
E gives the resonance energy and F is the half-width of the peak Besides 
conditions (a) and (b), it is assumed tha t  the pole in question is a simple 
pole According to Hu 10), this is always so if the scattering potential  has a 
short range, 1 e ,  if k ' a  << 1, where a is the radius of the potential  

2. F o r m u l a t i o n  of the P r o b l e m  

We shall consider the potential  

V ( r ) = - - V  o, r < a ,  V ( r ) = O ,  r > a ,  

where V o > 0 in the case of a well, and V 0 < 0 in the case of a barrier. 
I t  is convenient  to introduce the following dimensionless parameters  

o~ = [2m(E+Vo)J½a/? i ,  (3) 

fl = ka = (2mE)½a/t~, (4) 

-4-A 2 = V o / ~  ( +  for a well, -- for a barrier), (5) 

where E IS the energy (taken, for the moment ,  to be real), and 

e = ~ / ( 2 m a  2) = EI82 (6) 

The parameters  :~ and fl correspond to the wave number  inside and outside 
of the potential ,  respectively, @ is the energy of a particle for which ka : 1, 

A 2 is a well-depth (barrier-height) parameter  I t  follows from the above 
equations tha t  

~ : 8~:EA 2 ( + f o r  a well, --  for a barrier) (7) 

I t  follows from (1) and from the well-known expression for the phase- 
shift  la) tha t  * 

8J~(~)h7 ~) (8)-~J'~(~)h,'~'  (8) 
s~(8) = - 8J, (~)h71) ( 8 ) - ~ J ' ,  (~)h~,l, (8)' (8) 

where l~(z) is the spherical Bessel function of the first kind, and hz (1)(z), 
h~ (2~ (z) are spherical Hankel  functions of the first and second kinds, respec- 
t ively 14) 

To obtain the analyt ic  contmuat lon  of S~(8), it suffices to consider (8) as a 
function of the complex variable 8 = u + , v  I t  follows from the properties of 

¢ I t  is  a s s u m e d  in  (8), as  we l l  as  i n  s u b s e q u e n t  e x p r e s s i o n s  (un less  o t h e r w i s e  s t a t e d ) ,  t h a t ,  
i n  a c c o r d a n c e  w i t h  (7), 0t h a s  b e e n  r e p l a c e d  b y  - + - 0 5 * i A S ) t  ( the  s i g n  of  t h e  s q u a r e  r o o t  
is  I r r e l e v a n t )  
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the spherical Bessel functions tha t  (8) IS a meromorpinc function of fl, 
which satisfies the well-known relations 

S,(fl)St(--f l) = Sz(fl)St* (fl* ) = 1 (9 )  

According to (9), ff fl is a pole of S l (fl), so is --fl*, while --fl and fl* are zeros. 
Therefore, It suffices to determine the poles on the imaginary  axis and in the 
r ight  half-plane 

3.  T h e  C a s e  o f  Z e r o  A n g u l a r  M o m e n t u m  

For l = 0, (8) becomes 

So(fl) = exp(--2,fl)(0t cot a+~fl)(ct cot ~ _ , f l ) - i  (10) 

The poles of So(fl) are the roots of the complex t ranscendental  equat ion 

0t cot ~ = ~fl (11) 

I t  can be shown, by  considering the real and  imaginary  parts  of (7) and (11), 
tha t  proper ty  (A) of sect 1 is satisfied So(fl) cannot  have any  poles in the 
upper half-plane, except on the imaginary  axas 

3 1 T H E  P O T E N T I A L  W E L L  

To determine the roots of (11), it  is more convenient  to work with  the 
variable ~ = x W , y  t han  with fl E h m m a t i n g  fl from (7) and (11), we find 

~-1 s in  ~ = & A  -1 (12) 

The corresponding values of fl are given b y  

= + (~*--A*)L (13) 

where the sign mus t  be chosen in such a way  tha t  (11) IS satisfied 
The problem is now reduced to the de te rmlnahon  of the roots of (12) as a 

function of the parameter  A. Tins is carried out  in appendix A Making use 
of (13) and of the results derived m appendix A, it is a snnple ma t t e r  to 
determine the poles of So (fl) In the fl-plane. Some of these poles, together  with 
the corresponding values of A, are shown in fig 1 

For each given value of A ,  there emsts an mfimte  number  of poles When  
A varies, the poles describe certmn pa ths  in the fl-plane (the curves in full 
hne m fig 1) The poles corresponding to a given A m a y  be numbered  
according to their  hml t lng  positions for A --> 0, thus, ft. ---- u . + ~ % ,  where 

hm ft. = n~--~oo (n ~ 0, i l ,  =t=2, ) (14) 
A--~O 

The following abbreviat ions will be introduced for describing the poles 
a-poles (a = ant1), for poles with u .  = O, %, < 0, b-poles (b = bound),  
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for poles wi th  u .  = 0. v. > 0, and  c-poles (c = complex) ,  for poles with 
u.  :y= 0. v.  ~= 0 The  denomina t ion  "an t i -po le"  will be justified in sect 5 2 

Le t  us describe the behavlour  of the poles when A increases f rom 0 (free 
particles) to oo (infinitely deep well), b egmm n g  with the pole /5o on the 
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Fig I Tile poles ft. of So(fl) for a potential  well 
[2n = 0, O n  = +1 O n  = ± 2  O n  = ~E3 

The numbers  beside the poles give the  corresponding values of A The curves m full hne  are 
the  pa th s  described b y  the poles The bisectors of the thi rd  and  fourth  quadran t s  are also 

lndxcated 

imaginary  axis For  0 < A < l./50 corresponds to a root  of (A3) (see appen-  
dix A), It is an a-pole, and it  moves  f rom - - ,oo  to - - ,  when A increases 
f rom 0 to  1 For  A > 1,/5 o arises f rom a root  of (A2) in the Interval  0 < x < a .  
According to (A4), when A Increases f rom 1 to {a, /50 is an a-pole, which 
moves  f rom - - ,  to  the o n g m  For  A > {a,/5o becomes a b-pole (first bound  
state) ,  and It moves  upwards  f rom the origin to ~oo when A Increases f rom 
½a to  oo 

I t  mus t  be poin ted  out  t ha t  the origin itself xs never  a pole of So(/5 ), since 
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this would viola te  the u m t a r l t y  condi t ion In the present  case, for A ---- ½z--e, 
]~[ << l,  we have,  in the ne lghbourhood of the origin, 

S o ( # )  - ( # + # o ) ( # - # 0 )  - 1  - 

- ( 1 5 )  

so tha t  the residue a t /3  = fl0 vanishes when e --> 0 This 1s due to the fact 
t ha t  fl0* ---- --flo, which is a zero of So(fl), approaches  the origin s imultane-  
ously with/3 0 Thus,  the "conserva t ion  of the n u m b er  of poles" fails to hold 
at  the origin 

Le t  us consider nex t  a pair  of poles, fl±n, with n _> 1 For  0 < A < An, 
where A,~ is def ined by  (AT), fin is a c-pole, which corresponds to the root  
xn of (A1), and fl-n is the mir ror  image of fin with respect  to the imaginary  
axis The pa ths  described b y  the first few pairs of poles are shown in fig 1 
For  A -+ 0, fin approaches  asympto t i ca l ly  the s t ra ight  line u ---- n~ When  A 
increases, fin moves  upwards,  unti l  it approaches  the s t ra ight  line v ~- - -1 ,  
and then  it moves  towards  the imag ina ry  axis When  A -+ A n, fin and fl-n 
approach,  f rom opposi te  sides, the point  fl ---- --5, where t h ey  coalesce for 
A-- - -A n The  paths  described by  fi±n are t angen t  to the s t ra ight  hne  
v---- - -1  a t  this point  

Thus,  for A ---- A~, S0(fl) has a double pole at  the point  fl ---- --5 I t  m a y  be 
easily verif ied tha t  all o ther  poles are simple poles However ,  the existence of 
double poles k = k ' - -~K,  with  k ' a  ---- 0, Ka = 1, cont radic ts  Hu ' s  s ta tement ,  
quo ted  at  the end of sect 1 To explain this discrepancy,  we notice tha t  it is 
imphcl t ly  assumed in Hu ' s  paper  10) (see his eqs (32)--(33))  t ha t  Ka << 1, 
but ,  as shown b y  the present  example,  this need not  be t rue  

For  A > A n, the double pole at  fl ---- --5 splits Into a pair  of poles, which 
move  in opposi te  directions along the imaginary  axis We shall call the one 
which moves  upwards/~n,  and the one which moves  downwards  fl_~ (this 
choice is, of course, en t i re ly  a m a t t e r  of convent ion)  Thus,  fl-n is an a-pole, 
which moves  f rom --~ to - - too  when A Increases f rom A n to oo On the o ther  
hand.  for A n < A < c~, where c~ is def ined b y  (A6), fin is an a-pole, which 
moves  from --5 to the or lgm For  A > c n, fin becomes a b-pole, which moves  
from the origin to 5 oo when A Increases f rom c n to oo Thus,  every pasr  o/ 
c-poles u l tsmately  gzves rzse to an a-pole and  a b-pole 

An approx imate  analyt ica l  representa t ion  of the poles for 1 < A < A n 
m a y  easily be der ived from (13), (A8) and ( A l l ) - - ( A 1 2 )  Le t  us notice,  in 
part icular ,  tha t ,  for 1 < A << A . ,  we have ft. ~ x~--zyn, where x.,, ?In are 
given by  (A13) and (A14) The case A << 1 will be considered in sect 4 1 

3 2 T H E  POTENTIAL BARRIER 

To carry out the transition from the potential well to the potential barrier, 
It suffices to replace A by 5A In (12) and (13) 
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o~ - 1  sin ~ = +*A -1, (16) 

fl ----- -F(~2+A=)i (17) 

The roots of (16) are determined in appendix B, the poles of S0(fl) m the 
/Y-plane then  follow from (17) All of them are c-poles For each value of A, 
there is an mfimte  number  of poles,/~=~. = -Fu,,+w., corresponchng to the 
roots ~. of (16) 

I t  suffices to consider the behavlour of the poles in the lower right quad- 
rant  The paths  described by  the first few poles as a function of A are 
shown in fig 2 We flnd tha t /~ .  --~ c._1--,oo for A -+ 0 When A increases, 
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Ftg 2 The poles ft. of So(fl) for a potential  barrmr 
O n  = 1, O n  = 2,  @ n  = 3 

The numbers  beside the  poles give the corresponding values of A The curves m full hne  are 
the pa ths  described b y  the poles The bmector of the  four th  q u a d r a n t  m also mdmated  

ft. moves upwards and  away  from the imaginary  axis, tending to approach 
the real axis when A becomes very  large In fact, when A >> ~'.  (cf appendix 
B), we have,  accorchng to (17), (B9) and (B10), 
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/7. ~. A [ 1 + ½ (nz~lA)2] _ , z .  (nz~/A) [ 1 + ½ (n~)-2] (18) 

Thus, un -+ oo and v. --> 0 for A --> oo This means that So (i7) has no poles 
(at finite distance) in the limiting case of an impenetrable barrier ("hard 
sphere") 

Notice that, for 1 < A << ~'. ,  we have /7. ~ x . - - ~ y . ,  where x . ,  y .  are 
given by  (B7) and (BS) The case A << 1 will be treated in sect. 4 1. 

4. The Case of Higher Angular Momenta  
The complete determination of the poles of Sz(/7 ) is more difficult for 

1 > 0 than for I ~- 0 We shall restrict ourselves to a discussion of the general 
behavlour of "large" poles and to some special results for l -~ 1 

4 1 G E N E R A L  B E H A V I O U R  O F  " L A R G E "  P O L E S  

A pole of S~(fl) at fl = fin -~ Un--~Wn, where w. ----- - -v .  > 0 0t suffices to 
consider u .  >--_ 0), will be called a "large" pole if it fulfils the following 
conditions: 

(1)[fl~[ >> A, (n)]fl. I >> A 2, (m)[/7~[ > > / + 1 ,  (iv) exp(w.) >> 1 (19) 

According to (5) and (6), (19) lmphes that  ]E.[ >> IVo[ and 

[E.[ >> l ( l +  l )?~2/2ma ~ 

the height of the "centrifugal barrier". It  is not surprising that, under 
these conditions, we find common features in the behavlour of the poles, 
as will be shown below 

It  follows from (8) and from the relationship 

(/7) = ,/7-3 (20)  

that,  in the free-particle lumt (A --~ 0) we have, as it should be, 

hm S~(/7) = 1 (21) 
A--~  

It  may  be expected, therefore, that  the poles of S~(/7) are rejected to infinity 
when A -+ 0, so that  there are only large poles for very small A 

To determine the large poles of (8), we may, according to (i) and (fi), 
make the following approximat ions . . t  ~/74-A~/(2/7), JAil~7[ << 1. On the 
other hand, according to (m) and (iv), we may  replace the spherical Bessel 
functions by  their asymptotic expansions, neglecting terms in exp(--~/7) in 
comparison with exp(,/7). If this Is done, we find that the large poles are 
approximately given b y  the equation 

1 +  (--1) l [½A/7 -1 exp(~/7)] 2 = 0 ( +  for a well, --  for a barrier) (22) 

In this approximation, therefore, the large poles of S t (/7) for a potential well 
(barrier) with even l coincide with those for a potential barrier (well) with 
odd l 



THE POLES OF THE S-MATRIX 507 

If we pu t  

where 

U.  

u .  = U.-}-e .  (0 ~ e.  < ½~), (23) 

[ n n  for a well with  even l or a barrier  with odd l, (24) 
(n - -{ )n  for a well with  odd l or a barrier  with even l, 

we fmd tha t  (22) m a y  be replaced, in bo th  cases, b y  the pmr of equat ions  

tan  e~ ~ u . / w . ,  (25) 

exp w. - -  (2/A) (u~2+w.*)½ (26) 

Neglect ing e. in comparison with U . ,  we get 

en = t a n - X ( U . / w . ) ,  (27) 

w .  = ½ l o g [ ( 2 U , , ] A ) ' +  (2w./A)'*J -----/(w,,) (28) 

E q  (28) m a y  be solved b y  i terat ion *, taking 

w,, (x) = l o g ( 2 U . / A  ) (U.  =/= 0), (29) 

Wn (r+l) = l(~.)n('t) ) (T = 1, 2 , .  ) (30) 

In  general, the  third or four th  i terat ion a l ready gaves a ve ry  good approx-  
imation. 

In partmular,  If w.  (1) << U . .  which is certainly the case for A > 1, 

w. ~ log ( 2 U . / A )  + ½U. -~ [log (2U. /A)]3  + . .  , (31) 

u .  ~ U , , + ½ z ~ - - U . - l w , , +  . . (32) 

Equa t ions  (A13)--(A14) and (B7)- - (B8)  are part icular  cases of these results. 
On the other  hand,  if w.  (1) >> U . .  whmh is the case for ve ry  small A ,  we 

find 

w,, ~ L I + L ~ + L ~ L ~ - X +  (L~--½L~2+½Un2)La-~+ , (33) 

u,, ~ U . , + U . w , , - I +  . , (34) 
where 

L 1 = log(2/A),  L9 = log log(2/A). (35) 

Notice tha t  (33) remains vahd  if un = U~ = 0. 
I t  follows from (33) and (34) tha t  

hm 3.  = U . - - z o o ,  
A ~  

whach generalizes the  results obta ined  for Z = 0 Notice, in partmular,  tha t  
there Is a lways an isolated (unpmred) pole on the imaginary  axis in the first 
case of (24). bu t  not  in the  second one 

t A v e r y  s ,mflar  equa t ion  has  been dmcussed b y  de B r m j n  ,6) 
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4 2  T H E  C A S E  l =  1 

For l = 1, (8) becomes 

SI(/~) = exp(--2~#')(o¢ -1 cot e - -e -2+f l -~+ , /5 -1) (~- '  cot =_~-2+fl-=_~fl-1)-~ 
( 3 6 )  

The poles of $1(/5 ) are the roots of 

e-1 cot ~--c¢-2+fl-=--,/~ -1 = O (37) 

(a) The potentml  well 
Let  us consider first the poles on the imaginary  axis, fl = zv No such 

poles ernst for ]vl > A For  Ivl < A, according to (7) and (37), t hey  are 
given by  the points of intersection of the curve 

g-1 cot x - - x  -~ = v - l + v  -~, (38) 

which has been drawn in full hne in fig 3, with the family  of circles 

x = + v  ~ -= A 2, (39) 

some of which have  been drawn in dashed line in fig 3. 
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F i g  3 D e t e r m i n a t i o n  of t h e  p u r e l y  i m a g i n a r y  po l e s  of  Sx(fl) for  a p o t e n t i a l  we l l  
- - x  -I cot x--x -i ~ v - l + v  - 2 ,  - - - - - - - - a g 2 - } - v  2 ~ 1 2  

N o t i c e  t h a t  t h e  I n t e r s e c t i o n s  o c c u r  c lose  t o  t h e  s t r a i g h t  l i n e  v = - -  3 for  A = 2~  a n d  A = 3~. 
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The  curve (38) is def ined in the intervals  nn < x < ~" . (n  = 1, 2, ), 
where ~" .  is the n th  posi t ive root  of the equat ion,  x -~ cot x - - x - * =  --¼. 
The s t ra ight  lines x = Sn, where ~. is given b y  (A5), are vert ical  asympto tes  

There  are no poles on the imaginary  axis for A < zt For  A = rt, (38)--(39) 
have  a double root  at  v = 0 However ,  this is not  a pole of Sl(fl) (of sect 
3 1) For  A > n, this double root  splits into a pair  of roots,  giving rise to an 
a-pole, which moves  downwards  for increasing A, and a b-pole (first bound 
p-s ta te) ,  which moves  upwards  when A increases A similar process takes  
place each t ime tha t  A goes th rough  an integral  mult iple of ~t 

How do these poles appear  on the imaginary  axls~ A comparison with the 
case 1 = 0 suggests t ha t  t hey  must  arise f rom the confluence of pairs of 
c-poles If  this is t rue,  there  must  be a pair  of c-poles close to the origin 
whenever  A approaches  an Integral  mult iple  of ~t. In order  to de termine  these 
poles, we shall make  the following assumptions  m (37) 

(40)  

(41) 

O < A ( m t - - A )  = 0 . < < 1  ( n =  1,2,  ), 

lfi] << A, ]tip << 2A. 

Under  these conditions,  (37) m a y  be approx ima ted  b y  

= 0,  

neglecting te rms of the order  of A-~fl  4 

The roots  of (42) are 

= + t - ,  + o 
fi' = 

(42)  

(43) 

Notice tha t  ft. and fl-n are approx imate  roots of (37), bu t  this is on ly  t rue  for 
/~' if it fulfils condit ion (41) Thus,  ~' is not  an approx imate  root  of (37) for 
n = 1 However ,  it m a y  be shown tha t ,  for n > 2, there  exists indeed an 
a-pole close to the point  --33 For  n = 2 and  n = 3, this m a y  be clearly 
seen in fig 3. 

For  A ~ n~, the  c-poles fl+. approach the origin along a parabolic arc 
(with ve r tex  at  the origin) For  A > n:t, t hey  dissociate into an a-pole and a 
b-pole 

The  behaviour  of the poles differs f rom the behavlour  for l = 0 in the 
following respects (1) according to sect 4 1, ft. -+ c._x--~oo as A -+ 0, 
therefore,  there  is no isolated pole on the imaginary  axis, (2) the " ]ommg-  
po in t "  of the c-poles is a t  the origin (instead of the point /~ = --3) 

(b) The potentml barrier 
In  this case, according to  sect 4.1, ft. -~ nz~--,oo as A -+ 0, so tha t  there  

is an Isolated pole on the imaginary  axis, flo = *% When  A increases f rom 
0 to oo, /5 o moves  upwards  from - - ,oo  to - - t  
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As was the case for l = 0, the c-poles fl~n = +u,,+w,, (n >= 1) tend to 
approach the real ares for large values of A However,  in contrast  with the 
case l = 0, one pole remains at  finite d~stance as A - +  oo, namely,  the 

a-pole flo = --~ 
Generally, for a n y  angular  m o m e n t u m  l, l poles remain at  finxte distance 

in the hml t lng  case of a "ha rd  sphere".  These poles are the roots of the 
equat ion 

hz'l'(fl) = 0 (44) 

The poles corresponding to the first few values of l are given m table 1 le). 

TABLE 1 

The poles of S~0~ ) for a "ha rd  sphere"  

l =  0 1 

±½C3-}: 
- -2  26~ 

1 75-- 1 87~ 

Notice tha t ,  m agreement  wi th  the results of sect 4 1, there are only  pairs 
of c-poles for even l, whereas, for odd l, there is also an isolated a-pole. 

B y  comparing the " h a r d  sphere" wi th  its electromagnetic counterpart ,  a 
perfect conductor,  we find an interest ing connection with an tenna  theory  t 
In  fact, the roots of (44), for l ~ l,  are also the characteristic values associ- 
a ted  wi th  the so-called magnet ic  modes of oscillation of a perfectly conduct-  
mg  sphere 18). These characteristic values are the poles of the S-matr ix  of the 
associated scat ter ing problem. 

5. D i s c u s s i o n  

5 1 GENERAL PROPERTIES OF THE POLE DISTRIBUTION 

The results obtained m the prevlous sectlons allow us to verdy, m the 
present example, some general properties of the pole dlstnbuhon for non- 
relatlvlstlc scattering by a central potenhal of fuute range it: 

(1) There is an mflmte number of poles, but only a fimte number of them 
he on the imaginary  axis 17, lS) 

(2) For  large n, the chstance Ifln+t--fl.l between two consecuhve c-poles 
approaches the value ~ (see ref xs)) Thxs follows from sect 4 1 

(3) The distance of the c-poles to the real axis increases logari thmically 
wi th  n (see ref 18)) If  we put  fin : [fl~[ exp(--*0n), we find, according to 

t The au thor  m Indebted to Prof  G Beck for poin t ing  ou t  the connection between the  
an t enna  problem and  the S-matmx We expect  to t rea t  t ins po in t  more  fully m a fu ture  paper ,  
m coUaboratlon 

t* Propert ies  (2) and (3) have been derived for the case of s-scat ter ing x.) 
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sect. 4 1 ?, 
sin 0~ ~ (n~)-: log n (n --~ oo). (45) 

5 2 ON T H E  P H Y S I C A L  I N T E R P R E T A T I O N  OF T H E  POLES 

Accorchng to Heltler and Hu 9), almost all the poles of the S-matrix have 
a simple physical xnterpretatlon (namely, the interpretation that  we have 
outhned in sect 1). In the non-relatlvlstlc case, the only "meaningless" 
poles would be those which are located in the region of the complex k-plane 
where the real part  E of the "complex energy" (2) is negatlve, i e ,  below the 
bisectors of the tlurd and fourth quadrants (cf fig 1 and fig 2). 

Besides the fact that  a continuous transltlon from these so-called meaning- 
less poles to the so-called meaningful ones is possible (as shown b y  the 
present example), it must be pointed out that the mterpretatlon of E as the 
approximate energy of a "decaying state" is certainly not vahd if IF/El >> 1 
Therefore, there seem to be no grounds for accepting the above crltermn. 

As we have mentioned in the introductlon, the approximations involved in 
the usual interpretation of c-poles are based upon condltlons (a) and (b) of 
sect 1 In the present example, these conditions are fulfilled only in a few 
cases (cf. fig 1 and fig 2) One of them is the case of the lowest-order poles 
for a very lugh barrier (wluch are given by  (18) for l = 0) These poles 
correspond to vlrtual energy levels lying above the top of the barrmr. The 
well-known analogy wlth optmal interference phenomena in thin plates may  be 
applied to them The "level wldth" may  be estlmated b y  the usual formula 19) 

r = (46) 

where v~ is the "velocity" reside the potential and T is the "transnusslvl ty" 
of the potential step 

Eq (46) may also be apphed to the lowest-order c-poles for a very deep 
potential well, prowded [P[ << E In this case, it gives E l 8  ~ 4(E/$')A. 
This result IS eqmvalent to the fact that  the c-poles tend to approach the 
strmght hne v = --1 In the E-plane (cf fig. 2 and sect 3 1) The virtual 
levels of a well are much broader than those of a barrier of comparable range 
and transmlsslv:ty, this is due to the much larger value of v~ m the case 
of a well. 

One runs into serious chfflcultles as soon as one tries to apply the usual 
interpretation m cases when the above-mentioned condltmns are not 
fulfilled As the poles get farther away from the real aras, the corresponding 
resonance peaks m the scat tenng cross-section become broader and broader, 
tendmg to overlap m an mextrmable way, until they merge into a slowly- 

t E q  (45) should be compared  wxth eq (19) of Regge's paper  Is) (~t ~ O m our  example).  
There are some errors m eqs (16)--(19) of t h a t  paper ,  m partmular ,  a factor 2]z~ m missing In 
the  second member  of eqs (18) and (19) Notice t h a t  Regge's way  of number ing  the  poles is 
different f rom ours, so t ha t  ins n (m eq (19)) m equivalent  to our  
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varying background, which IS usually Included In the so-called potential 
scattering 

On the other hand, It is exceedingly doubtful whether these poles can be 
Interpreted m terms of "decaying states". This is clearly seen when we 
consider the case of a very shallow well (or a very low barrier), in which all 
the poles are large poles (sect 4 1) If we build up a wave packet that  is 
initially concentrated witinn the potential, in tins case, it will propagate and 
spread practically in the same way as :t would do in the case of free particles, 
and tins process has nothing to do with exponential decay t. 

I t  has been shown by Regge is. 21) that  the asymptotic behavlour of the 
large poles depends very critically on the asymptotic behaviour of the 
potential Physically unimportant changes In the potential may completely 
modify the behaviour of the large poles, so that  these poles cannot have 
much physical significance 21) This "hypersensitlveness" of the poles with 
respect to asymptotic conditions, which had previously been noticed in the 
case of "spurious" poles, is a very unwelcome feature of the S-matrix 
formalism 

Let us now consider the poles on the negative imaginary axis (a-poles). 
The "energies" that  formally correspond to them, according to (2), are real 
negative energies, lust as in the case of bound states (b-poles) However, 
while the energy levels of the bound states are determined by the condition 
that  the wave function at r = a may be smoothly lolned to a purely decreasing 
exponential for r > a, the energies associated to a-poles are those for winch 
the wave function at r ----- a may  be smoothly joined to a purely ,ncreas, ng 
exponential for r > a For tins reason, we propose to call them ant,-levelstt, 
and to call the associated poles ant,-poles 

In the case of a potential well with l ----- 0, the anti-level associated to the 
a-pole ri0(sect 3 1) lies below the bottom of the well for 0 < A < 1, and 
within the well for 1 <: A < ½~ All other anti-levels lie within the well, as may 
readily be verified, there is one anti-level between every pair of bound states. 

Let us sum up It  is convenient to classify the poles of the S-matrix into 
several (not sharply separated) groups They range all the way from those 
which are associated with well-defined physical concepts to those winch seem 
to be no more than mathematical  properties of the formalism The bound 
states belong to the first category The usual interpretation of c-poles may 
be applied to "long-lived decaying states", either for an attractive or for a 
repulsive potential However, it seems to be very difficult to give a precise 
and general formulation of the scattering problem in the case of "short-bred 
decaying states" 

t A discuss ion of the  e x p o n e n t i a l  decay  l aw has  r ecen t ly  been g iven  in  a p a p e r  b y  Hoh le r  2o) 
t t  T h e y  are  some t imes  cal led " v i r t u a l  l eve l s"  (cf sect  5 3), b u t  i t  seems to  us  t h a t  th i s  is  a 

mos t  u n f o r t u n a t e  t e rmino logy ,  s ince i t  is a p t  to  sugges t  the  idea  of quas l - s t a t aonary  s t a t e s  
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The hmltlng case of a "hard sphere" is specially interesting In the related 
case of a perfect conductor, it is known that  there exist certain charactenstm 
states of the field, which are more or less strongly damped by radlatlon 
accorchng to the shape of the conductor Our model indicates the existence of 
a connection between these "antenna states" and the other limiting case of 
strongly bound states in a deep well (cf the end of sect 4 2) 

The large poles seem to have very httle physical significance It  might be 
expected that  the a-poles, which are "meaningless" in the usual interpreta- 
tion, cannot have any physical importance However, this is not true, as will 
be shown in the next section 

5 3 THE L O W - E N E R G Y  S C A T T E R I N G  CROSS-SECTION 

I t  will be shown in this section that  some poles of the S-matrix that  would 
be considered to be "meaningless" accorchng to the usual Interpretation 
On partmular, a-poles) may glve rise to important physical effects m the 
low-energy scattering cross-section. 

The scattering cross-sectmn as for angular momentum l is given by the 
well-known expression 

as = ( 2 l +  (47) 

(a) The case l----0 
Let us consider a potential well that  is almost deep enough for the ap- 

pearance of the first bound state, so that  A ---- ½~--e, 0 <: e << 1 According 
to (15), this Implies the existence of an a-pole at fl----flo ~ --½me, and, 
according to (15) and (47), 

O" 0 ~ ,  4~a2[~2-~ -- (½~E)2] -1 ,  (48)  

so that  the cross-section becomes very large as fl --~ 0 A n  a-pole very close 

to the ong~n gwes r, se to an anomalously large scattenng cross-sectwn at low 
energ, es 

This behavlour is well known in the case of neutron-proton scattering It  
IS usually interpreted in terms of a so-called virtual smglet state of the 
deuteron, the definition of which has occasioned some confusion m the 
literature There have been several attempts to define a "virtual level" at a 
small positive energy It  must be stressed, in this connection, that, in the 
present example, all c-poles are far away from the origin for A ~ ½~, as may 
readily be verified from fig 1 The deflmtlon by means of an a-pole of the 
S-matrix has been considered by several authors za, a3, 24) 

Let us follow the behavlour of the low-energy cross-section during the 
process which leads to the appearance of the next bound s-state (A -~ {~z) 
In S-matrix language, this process corresponds to the transformation of the 
pmr of c-poles fl±l Into an a-pole and a b-pole (cf sect 3 1 and fig 1) 
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I t  m a y  be verified wi thout  diff icul ty tha t ,  as 81 approaches the bisector of 
the four th  quadrant ,  the low-energy cross-section becomes very  small 
(<< z~a ~) The value of A for which 81 crosses the bisector practical ly coincides 
with the value A -~ z~V'2 ~ 4 44, which marks  the appearance of the first 
zero m the cross-section. This zero appears at  the point  8 = {r zc, when A 
increases, it  splits into a pair of zeros, one of which moves towards lower 
energies, while the other  one moves towards higher energies. In fig. 4, the 

J 

006 

0.0,~ 

0 02 

0 05 tO 15 2_0 

Fig  4 T h e  ra t io  u0/(~a I) a n d  t h e  phase - sh i f t  T0 as  a functxon of ~ for a po t en t i a l  well w i th  
.4 ~ 4 4 6  

ratio ~o/(~a ~) has been plot ted as a function of 8, for A : 4 46, together  
wi th  the corresponchng values of the phase-slnft ~e(#o = ~ at  the zeros of the 
cross-section). A vanishing cross-section at  low energy is well known m the 
theory  of the Ramsauer-Townsend effect 

For  A = ~1 ~ 4.49, the zero-energy cross-section vanishes For  A > ~1, 
the low-energy cross-section begins to increase For  A : A 1 ~ 461,  
81 and  8-1 coalesce at  the point 8 = --z, giving rise to a pmr of a-poles. The 
low-energy cross-section keeps increasing while one of these a-poles moves 
towards the origin, and  it a t ta ins  again very  large values when the a-pole is 
very  close to the origin ( ,4-~ ~ ~ 4.71) 
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A similar process takes place before the appearance of other bound states. 
Thus, the typwally quantal anomalies (very small or very large values) o] the 
low-energy cross-sectson, whwh precede the appearance o] a new bound state, are 
related to poles o] the S-matrix that would be cons,tiered to be "'meamngless'" 
according to the usual ~nterpretat, on 

(b) The case l = 1 
Let us consider a potential well that  is almost deep enough for the appear- 

ance of a new bound p-state, so that (40) is satisfied In this case, as we have 
seen in sect 4 2, there crests a pair of c-poles,/5~, given by (43), very close 
to the origin 

To obtain the low-energy p-wave cross-section, we may employ (36) and 
(47), replacing the denominator of (36) by the first member of (42), and 
expandang exp(--2,/5) in powers of t5 The result is ? 

ax/(12~ra ~) ,m f14[(~/52--~n)2-~-/52(½/52--{~n)2J--1 (49) 

In the region 
<< (50) 

eq (49) gives rise to a "Brelt-Wlgner peak" of half-width (~) ({~.)t, centered 
at/5~ = ~ Tins agrees with the usual interpretation The existence of a 
sharp resonance in this case may be attributed to the "centrifugal barrier" 

I t  might be expected that  only the poles (and corresponchng zeros) that  
are close to the origin would determine the behavlour of the low-energy 
cross-section If this were so, (36) could be replaced by 

Sl(fl) ~ exp(--2~fl)(fl+fl,,)(fl+fl_,,)(fl--/5,,)-~(fl--fl_.) -1 (51) 

Replacing (51) in (47), and taking Into account (43), we get 

ffl/(127ga2 ) ~ [ ( / 5 2  }~n)2  + J~ 2 2 2 ~ 2 _4. _~t 3 -1  (9a.) ][(/5 - 3 a . )  + 9 ( 3 a . )  ] . (52) 

Although this agrees with (49) in the region (50), It is by  no means a good 
approximation outside of tins region. In particular, (52) would gave 

{{ for ~ 0 ,  
hm [a1/(12:~a2)] : ( 5 3 )  
p__~ for ~. = 0, 

whereas, accorchng to (49) t t ,  

{ ;  for~. : /=O,  
hm [all(12zraZ)] = (54) 
p-*0 for ~. = 0. 

t This differs f rom the result  given by  Schlff m eq (19 30) of Ins book u)  The discrepancy 
is due to the  fact t ha t  Scinff fads to take into accouut  te rms of the  order  of (ha) t and ( ka )  4 m 

the denomina tor  of Ins eq (19 27) 
t t  For  ~.  = 0, (54) does not  agree wi th  the result  given m p 36 of Mort  and Massey's  book ~,) 

This is due to an  error m their  eq (39) a factor 2 / ( 2 n + 1 )  should be inserted m the  second 
member  of t ha t  equat ion  
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The difference between (52) and (49) is due to the omission of the root 
f l ' m  --3~ of (43) from Sl(fl) According to sect. 4 2, fl' is an a-pole for 
n _>_ 2. In  this case, therefore, the correct behavlour of the low-energy 
cross-section m a y  only be obtained by  taking  into account the a-pole 
fl' ( together wi th  the corresponchng zero), even though it is far away  from 
the origin This is another  example of the physical  effects tha t  m a y  be 
produced by  an a-pole. 

The au thor  is great ly  indebted to Prof G Beck for suggesting this 
problem and for m a n y  helpful discussions He is also grateful  for the 
hospi ta l i ty  of the Technlsche Hogeschool at  Emdhoven ,  where this work was 
wri t ten  

A p p e n d i x  

A T H E  ROOTS OF E Q U A T I O N  (12) 

Replacing c¢ ~ x + ~ y  in (12), and  separat ing real and  imaginary  parts,  
we fred the following three posslblhtles 

x -1 t an  x = y-1 t a n h  y (I), (x 4: 0, va 0), (A1) 
y = cosh-l[x/(A sm x)[ (II), Y 

x -x sin x ---- 4-A -1, (A2) 
y ---- 0, 

x -~ 0, (A3) 
y-1 smh y = A- I  (A > 0) 

The corresponding choice of sign in (13), in order to sat isfy (11), is such tha t  
v < 0, in the case of (A1) and  (A3), and such tha t  

sgn v = --  sgn (x sin 2x) (A4) 

m the case of (A2), as m a y  be easily proved. 
Since the roots of (12) are symmetmcal  wi th  respect to the x and  y axes, 

we shall restrict ourselves to the first quadran t  (x ~ 0, y _~ 0) m the 
following discussion 

There are no roots of (A3) for A > 1 For each value of A belonging to the 
interval  0--1,  (A3) has one root ,  when A increases from 0 to 1, y decreases 
from oo to 0 

The roots of (A1) and  (A2) m a y  be found by  graptucal means Equa t ion  
(II) defines a family  of curves depenchng on the parameter  A. For  each 
value of A,  the roots of (A1) are given b y  the points of mtersechon of curves 
(II) and (I), whereas the roots of (A2) are given by  the intersections of (II) 
wi th  the real axis 
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Curve (I) has been drawn in 11111 hne m fig 5. I t  is def ined for n~ < x ~ ~. 
(n ~- 1, 2, 3 , .  ), where ~. is the n t h  pos i t i ve  root  of the equatmn tan  x = x. 
For  large n, we have  

¢,, ~ c , , - c , , - L ~ c , , - ~ -  . . ,  (A5) 
where 

c. = (n+½)~ (A6) 

Port ions  of curves (II) have  been drawn In dashed hne m fig 5, the corre- 
spondmg values of A are also lnchcated 
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Curves  ( I I )  ( the co r respond ing  va lues  o f  A are  m d m a t e d  bemde t h e  
C U I ' ~ S )  

Let  I .  be the  in terva l  nn  ~ x < ( n + l ) n .  In  Io, curves (II) intersect  the  
real axis on ly  for A ~ 1 The corresponding root  of (A2) increases f rom 
0 to  n when A increases f rom 1 to oo. 

The  following chscusslon apphes to all the  intervals  I .  with n ~ 1 
To i l lustrate  the behavlour  of curves (II) in I . ,  a typmal  curve  (A = 0 01 
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in / l )  has been drawn in fig 5 Each curve (II) goes through a single minimum 
In I .  Tins point is located on the straight lane x = E. When A increases, it 
moves downwards along this line, reacinng the real axis for A = A . ,  where 

A.  ---- I~./sin ~.1 ~ c.--½c,~-l---~-c. - s -  (A7) 

It  can easily be shown that,  for every value of A between 0 and A . ,  
curves (I) and (II) intersect at one and only one point in I .  The corre- 
sponding root, a .  = x, ,+~y. ,  moves downwards when A increases Notice 
that  ~. -+ n~+~oo for A -> 0, and ~. -~ ~. for A --> A. .  

For A > 1, an approximate analytical representation of=.  may be derived. 
Under this condition, the intersection occurs close to the minimum of (II), 
so that  (II) may be approximated by  

y,, ~ Y.+½b.(E,,--x,~) 2, 
where 

(A8) 

(A9) 
(AIO) 

Y .  = cosh- l[A. /A [, 

b. = Y"(E,,) = [1--(A/A.)2]  -½ 

On the other hand, if we put  x~ = c . - -6 . ,  (I) may  be replaced by 

(c.6.)-X+c -~+ (c -2_½)c -1~. ~ y - 1  tanh Y .  = (b .Y . )  -1, 

from which we find, b y  Iteration, 

x.  ~ c . { 1 - - F (  c"z- - - 1 ) +  ( ~ - - 1 ) (  c'~- - - 1 ) - l ]  -x} (Al l ,  
L\b. Y.  ~b. Y.  

In the immediate neighbourhood of A = A . ,  this may be replaced by  

x. ~. ¢ . - - [1 - -  (b.Y.)-x]~. -1 (A12) 

Equations (AS) and (Al l ) - - (A12)  give a very good approximation to the 
roots of (A1) when 1 < A < A .  In particular, for large n, 1 e ,  for 1 < A 
<< A. ,  we find 

x,, ~ c,~--c. -1 log(2c, , /A)+ , (A13) 

y .  ~ log(2c. /A)+½c,,-~{[log(2c. /A)-- l]2--½A2--1}+ (A14) 

For A = A . ,  we have ~. = $. Tins is a double root of (12), which arises 
from the confluence of a root in the upper half-plane with a root in the lower 
half-plane For A > A . ,  at splits into a pair of roots of (A2), which move in 
opposite directions when A increases, approaclung the end-points of I .  
when A -+ oo. 

B T H E  ROOTS OF E Q U A T I O N  (16) 

Replacing at = x+~y  in (16), and separating real and imaginary parts, 
we find that  there are no solutions with x = 0 or y = 0. For x :# 0, y :# 0, 
we obtain 
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z tan  x = - - y  tanh  y (I'), (B1) 
y = s m h - l l x / ( A  cos x)[ (II') 

The curve (I'), which is defined for c._1 < x ~ n~ (n ~ 1), has been 
drawn in full line m fig 6 Por tmns  of curves (II ') have been drawn in 
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Fzg 6 D e t e r n u n a t m n  of  t h e  r o o t s  of  ( B I )  

- -  C u r v e  ( I ' ) ,  - - - - C u r v e s  ( I I ' )  ( t he  c o r r e s p o n d i n g  v a l u e s  of  A a r e  i n d i c a t e d  b e s i d e  t h e  

curves) 

dashed hne,  the corresponding values of A are indicated. In each interval 
1 ' .  : c._t ~_ z < c. ,  each curve (II ') goes through a single minimum,  
located on the s t rmght  line x = ~' . ,  where ~'. is the n th  positive root of the 
equat ion cot x---- - -x  For  large n, 

When A increases, the min imum of (II ') moves downwards,  approaching the 
real axis for A --~ oo 

For  every value of A, (I') and (II ') Intersect at  one and  only one point  m 
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I'~ The corresponding root of (16), 0% ~- xn+~yn, moves downwards when A 
increases We find that  c% --> c~_1+~oo for A -+ 0, and ~% -+ nn for A -+ oo 

The following formulae, the derivation of which is Slmllar to that  of 
(A8)--(All) ,  give a very good approximation to the roots when A > 1 

where 

--1 ~ t 1 , , (1--~b ~Y ~), xn ~. n ~ - - ( n ~ )  b nY,~--(n:~)-S(b' ,~Y'n)  2 (83) 

y,, ~ Y ' n +  lb',~(~',,--x,,) ~, (B4) 

Y', ,  = slnh-lz~, b'~ = (l+zn-2)-½, (B5) 

z~ = (I+~:~)½/A (B6) 

In particular, for 1 < A << ~'~, we have 

x~ ~ m r - - ( m r )  -1 l o g ( 2 m r / A ) +  , (B7) 

y~ m l o g ( 2 n ~ r / A ) + ½ ( m r ) - ~ { [ l o g ( 2 m r / A ) - - l ] ~ + { A 2 - - 1 } +  (B8) 

On the other hand, for A >> ~'~(zn << 1), we find 

zn ~ n ~ - ( n ~ ) - l z 2 +  (B9) 

(B10) 

Note  added ,n  proo] It  has been shown by Humblet (M~m ln-8 ° Soc Roy 
Sc Liege 12 (1952) no 4) that  the properties of the pole distribution which 
are mentioned in sect 5 1 are valid for a very general class of potentials of 
finite range and for arbitrary values of the angular momentum Humblet 
has also given a thorough discussion of the asymptotic behavuour of large poles. 
The results given in sect 4 1 of the present paper are in complete agreement 
with hls results The author wishes to thank Prof L Rosenfeld for bnngang 
Humblet 's  paper to his attention 
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