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with the same and different isotopic spins as the
ground state 1. e. from states with T = Tgand T =
To +1, To + 2. If Ais the mean excitation energy
of states in A, as defined by:
2 _ .9 2
foé = Vv, >
g l—«no} A ; <nl c 10 s

and if A’ is the similar quantity for states with
T # Ty, it is easy to show that:

A = 12(<0] V30> - <01V |0vP)
A'<[(2 Tg + 2) A'z]-l <°,|Vc[7e’ Vello>.

We have computed the three matrix elements
using Fermi gas wave-functions, ignoring space

exchange, as previously described Sy MacDonald 1).

Using MacDonald'a numerical expressions for the
space integrals:

2
A= %g ©0.017 2 + 0.3 &°

2
AT <oN-2Z4+2)1 (%‘,3) ,

where A¢ is the Coulomb energy cf a proton in the

nucleus (6Ze2/5R, R being the radius). There is no

evident reason why 4 should be much larger than

6c. 80 we conclude that A may be ~ 1 and that states

of T = Tg may be st :ongly mixed into the ground
state. The quantity A' must be greater than the
energy needed to excite the lowest state of T =

(To + 1), which, on the stability line, equai to 4,
Thus:

A" < 2N -Z+2)7),

so thai the mixing in of states with I # T, is very
small, and isotopic spin is a quite pure quantum
number.

This result, while surprising at first sight, is
of very little practical significance. What it says
is that the strong mixing in the self-conjugate core
(N = Z) of a heavy nucleus is considerably diluted
by the addition ~* the excess (N - Z) neuirons
(which are, of course, in a pu-e isotopic spin
state). Thus the isotopic spin purity of the whole
rucleus is a rather empty result, and indicates that
isotopic spin is irot a very significant quantum num-
ber. This ie confirmed by the fact that it is not
possible to derize any experiments to really test
isotopic spin purity as such in heavy nuclei. The
best that can be done is to test isobar correspon-
dence between immediately neighbouring nuclei
as has been done in the recent (p,n) studies 2 3}
from Livermore. As already pointed out 4) this
does not in itself imply anything directly about
igotopic spin purity.
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In a preceding paper 1) it has been shown that
the sum over all the ladder diagrams of fig. 1
(compatible with kinematics) with just low energies
cross~sections at any vertex, is an approximate
solution of the strip approach to the Mandelstam
representation 2) of the elastic amplitude.

In the same paper, it was suggested that the
same model could be used for the evaluation of the
inelastic processes. [n fact, the model proposed is
a simple extenaion to higher energies of the peri-
pheral model 3) whose soundness in the GeV region
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hag been recently well established 4) The model
in questinn, whose details shall te presented and
investigated in a forthcoming publication 5 , con-
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Fig. 1. Fig. 2.
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sists in a series of elementary peripheral produc-
tions of low energy systems ("multicentre" graphs
of fig. 2). .

The number of those systems i¢ limited, for
every incident energy S, by phase-space and by the
energy derominmators given by the pion propagators.
At any eawrgy the description of the entire process
shall therefore be given by a finite sum over multi-
centre uiagrams.

The method used to sum this series is to make
use of a recurrence formula in order to obtain an
integral equation for the whole absorptive scatter-
ing amplitude. From the solution of this integral
equation for zero transfer momentum (¢ = 0) we are
able to obtain the prediction of our model for total
cross-sections as well as the main properties of
inelastic collisions, &s spectra and multiplicity of
secondaries. The solutica {or ¢ # 0 allows us to in-
vestigate the diffractive elistic scattering and gives
us & relativistic field theoretical way to understand
the relation between asymptotic behaviours of am-
plitodes and existence of bound states or resonar -
ces. We shall collect in this note the main predic-
tions of our theoretical model for the asymptotic
pehavicurs of both 1nelastic and elastic scattering
leaving the details and criticism to the forthcoming
paper 9.

1. Asymptotic properties of inelastic scattering

4. Total cross-sections behave
otsy = s%071 (1)

where s is the square of the total energy. The ac-
tur | value of 25 is given by the theory from a solu-
tion of an eigenvalue problem of a linear integral
equztion 8): as a result, it is given in terms of
iow~cnergy physics (mainly an integral over low-
energy = cross-section). Our little knowledge on
~— rross -sections does not allow for an actual eva-
luation: the value cg = 1 (constari total cross-sec-
tions) seems to be however quite compatible with
present low-energy ~v experimental e¢vidence.

b. Value of total cross-sections. Fixiag oo =1,
tne eigenfunction of the integral equation previously
mentioned allows the calculation of ti.e actual value
of total eross-sections by means of a non-l'near re-
lation among am siitudes that our mode! provides.
Tais calculation involves again only low-energy
phusice but, comtrarily to the value of 2, it is not
onlvy seneitive to integrated low-energy cross-sec-
iions. Mt also to the structure of it {(energy m
resonances). Using reasonable values of ¢ry at low
energy. we obtain too big high-cnergv crosg~sec-
tions (by a factor around five . 1enj as compared
3 experimental values. Olur model indicates, how-
¢ver. thal a more refined self-cousistent calcula-

Loehat A

tion shouid be done in order to caiculate the cross-

36

gections. This refinement, whose characteristics
we shall discuss later in this note, tends to remove
the above-mentioned discrepancy. Contrarily to the
calculation of actual numbers, the trends and ener-
gy behaviours shall not be modified by the refine-
ments of the model.

c. Nature of secondaries. The setondaries are
mainly pions. K mesons, and other particles can
also be emitted with rates that can be easily eva-
luated for each particular case.

d. Muiltiplicity. The multiplicity of aecondaries
predicted by our model grows logarithmically with
the energy.

e. Spectra of secondaries, 1. Spectra of trans-
verse momentum. These spectra, as calculated
from the theory, turn out to be independent of the
incident energy as well as independent of the longi-
tudinal momentum of the secondary itseif *. The
width of the spectra is characteristically a low-
energy quantity. 2. Spectra of secondary energies.
These turn out to be given by dB1ap/E gy (where
E\jap, 18 the ¢nergy of the secondary in the lab. ays-
tem) independently of the incident energy (except
obviously for the fact that the maximum value of
E)ap, increases with the incident energy).

2. Asympiotic properties of elastic amplitudes

The absorptive part of the elastic amplitude
A(s, t) is given in our theory by the sum over all
graphs represented by fig. 1. ¢ stands for the
square invariant transfer momentum, whose value
is negative in the physical scattering region (dif-
fractive region). Thke asymptotic behaviour of
A(s, t) as given by solving our theory is

A(s, ) = C@) 3 | @)

where «(f) i» again given by an eigenvalue condition
in a solution of a iinear homogencous integral equa-
tion 7). Again a({) i8 given in terms of low-energy
nm eross-sectiond. For the absolute elastic proces-
ses (no charge exchange, no spin flip) (0) = cq of
eq. (1). For charge exchange amplitudes af0) | <o
as a result of our eigenvgalue problem. ’
As a matter of fact 1

de(t)/dt >0, 3
and Um a(f) =~ i .

Besides, the application of unitarity { n the s chan-
nel} limita

aft) s 2 t<s0. (4)

Using fixed moementum transfer dispersion relat.ons
and uging (2) one can obtain the following asympto~-

wor all

* These proverties seem to be in good agreemant with
present experimental information (sce for instance G.

Cocconi, 1961 meeting of Argonne Accelerutor Users
Group),
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tic behaviour of the whole scattering amplituc{e
T(s,0)

T(s.0 = s eotg "5+ 1) 6a)
for symmetric amplitudes under crossing s~ 5as
for instance absolute elastic scattering (in which
there i8 no exchange of guantum number between
the scattering particles)

T(s. ) = 530 C(0) [tan 15

+ 1] (5b)
for antisymmetric amplitudes under crossing
S -5,

From eqs. (5) the elastic scattering cross-sec-
tions can easily be calculated. We find the following
properties

. For the absolui 2 elastic processes, for which

«(0) = 1, the forward amplitude is asymptotically

imaglnn-y in the forward direction and develops

a real part for increasing angle. Due to (3) the

elastic cross-section decreases as (log s)~!; in

other words, the diffraction peak is predicted to
decrease logarithmically.
b. For charge exchange elastic processes s,(O) <1)

the cross-sectiuns decrease as (s{1

In this case the forward amplitudes contain a real

part.

The equations obtained could well be considered
also for the unphysical case ¢ > 0, For ¢ > 4 u2,

() would develop an imaginary part. We see from
egs. (5a) or (5b) that any time x passes through an
even (odd) integer T(s, ) develops a pole. We know
from S matrix theory that this means the existence
of a bound state for that particular value of ¢ (or a
resonance if ¢ haa also an imaginary part). Polo-
logy tells us also that the angular momentum of
such a bound gtute is just the entire value of a in
question. These poles (i.e., the relation between
bound states and asymptotic properties of elastic
scattering) have been found first by Regge 8

n po-
tential Schridinger theory and have been guessed
recently to be of more general character 9). These

poles, that appear explicitly in egs. (5), have here

as a ground a {ield theoretical model which has the

characteristics:

1. to be relativistic,

2. to satisfy, at least partially, crossing and v-i-
tary,

3. to state clearly the relation between a pole in
the real part of the amplitude and the asympto-
tic energy dependence of both real and {ragin-
ary partr,

4. ta give simu'taneously the properties of inelas-
tic scattering that seem to be in rather good
agreement with experimental evidence.

It would be a legitimate question to ask whether

it would b nogsible to obtain the condition for a

) 10gs)~1.

bound state nrt through the poles of the S matrix but
by a direct calculation of a relativistic bound state
problem. The affirmative answer comes from the
following result 6,7,8) obtained by analyzing the
Bethe-Salpeter equation in the ladder a2pproxima-
tion (represented again by the graphs of fig. 1. The
condition for the existence of a bound state with
total square energy g and angular momentum lis
identical with the condition that our eigenvalue prob-
" 2m discussed before has a solution for z(fg) = {.

3. Culs in the angulay momentum

. The simple version of the multicentre model
developed up to now contains the assumption that
the main contribution to total eross-sections shall
be given by purely inelastic effects. Even if we
know that the pure elastic (dffractive) scattering
shal! decrease logarithmically with the energy if
compared to the inelastic one, there shall be mixed
diffractive and inelastic effects, as the one repre-
gented in fig. 3, whose importance was already
pointed out in peripheral calculations
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Fig. 3.

Difiraction, however, is a resuit of the same
model, therefore a self-consistent solutior of the
whole elastic a .} inelastic problem can be attempt -
ed.

1a fact, in this treatment, the elastic diffractive
scattering shall not uniy be given by the diagrams
of fig. 1 but also by those of fig. 4 in which diffrac-
tion itself appears.

Fig. 4a,
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The only meaning of such a ghost is to warn
physicists to disbelieve any theory “B to values of ¢
where it appears. In some papers 11) the hope was
expressed that C (¢ g) would in some way vanish, but
this is an ad hoc hope that - in our point of view -
can last as long as one has not 2 method to calculate
C{8). In cur theoretical model, for instance, C{l)is
s calcuiable function that coes not show any chance
to act as ghost xiller. Our impression is that for
potentials sc good as to satisfy the Regge conditions
- or as in our ladder theory, finite mass scalar in~
teractions - there is no hope to avoid the ghost and
simulianeously have constant total cross -gections
{(z(0) = 1). This hope can perhaps be achieved by
allowing for less restrictive vpotentials” *; in any
case this i8 a subject we have still under investiga-
tion whose solution, however, we need in order to
trust our model, not only for calculating properties
of inelastic collisions and diffraction properties,
but to push it still further so as to calculate masses
and properties of bound states or resonances.
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« the difference of our x (- ®) = - 1 and the - } limit of
Hegge %) can be understeod ip terms of the dilference
of structurs between the relativistic Bethe-Salpater
cquation and the Schrdinger potential equation. Be-
sides, both these results depend on the propertes of
the potentials for very small distances or, in our lan-
guage. in the way in which high masses appear in any
‘ink of the multicentre chain of our model.

x £ = T ®



