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PREFACE

This report contains the second set of contributions for the
1964 CERN Easter School which will be held at Herceg Novi, Yugoslavia
in May. This school is primarily intended for young experimental
physicists engaged in the analysis of bubble chamber pictures and of
events in nuclear emulsions. These notes and those in Volumes I and
IIT deal with topics that are relevant for their work. This Volume
contains two papers dealing with Phase space considerations and with

the Determination of spin and decay paremeters.,

We wish to express our gratitude to the authors for their
collaboration in the preparation of these papers. We also wish to
thank Mrs. V. Cooper who has kindly assisted in this work, the Documents
Typing and Reproduction Services whose efforts with the help of the
Scientific Information Service made it possible to produce three volumes
of the Proceedings within a short time, and to Miss C. Mason for her

careful typing of the text.

Finally we wish to thank the U.S. Atomic Energy Commission
for their kindness in allowing us to reproduce Tables 1, 2 and 3 (pages
20 and 21) from the Tables of the Clebsch Gordan Coefficients
(NAA-SR-2123).

Editorial Board

11th March, 1964

Geneva.
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NOTES ON PHASE SPACE

0. Skjeggestad
CERN and Institute of Physics, University of Oslo*

I INTRODUCTION

In the study of strong interactions of elementary particles a great
variety of different final state interactions have been detected by the
observation that relative yields, momentum and effective mass distributions
of the particles deviate from the expectations from phase space. We can
mention such discoveries as the hyperon isobars, the pion resonances etc.

The calculation of phase space predictions for the particular interaction
under investigation is, therefore, often useful and even necessary in order

to extract information about the interaction between the particles in the

final state.

The purpose of these notes will be to show the derivation of the
general phase space formula for a system of n particles in the final state
and demonstrate the use of a recursion relation in the calculation of the
Lorentz invariant phase space. We will discuss the momentum spectrum of a
single random particle and the angular distribution between any two particles
in the centre of mass of the n particles. The effective mass distribution of
any number of particles can also be calculated with the help of a recursion
relation. For some special cases we will also discuss the effect of a
resonance between two particles on the effective mass distribution of any
two of the particles in the final state. We will also write down some of
the special properties of the 3-body phase spacc first used by Dalitz in his
special representation (Dalitz plot). Finally we will make some comparison

between the predictions from phase space and the experimental data on hyperon
resonances.

mSupported in part by the Air Force 0ffice of Scientific Research, OAR
under Contract AF - EOAR 63-100 with the European Office of Aerospace
Rescarch, United States Air Force.
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The concept of "vhasc space' is closely connected to the calculation
of transition rates, and to introduce and dafine th:a concevt we will there-
fore consider the cxamvle of multipion production in a nucleon nucleon

collision

v

N+ N=>N+N+nw

which was first discusscd by Fcrmi (Progr. Theoret. FPhys. (Japan) 5, 570 (1950))

in his theory for pion production.

The probability per unit time that the above reaction will take
place (the transition rate W) can be expressed by Fermi's well-known golden
rule No., 2

2
W = %§I<¢f|H'lwi>l F (1)

where ¢i and ¢f are initial and final state wave functions resepctively,
and <¢f|H’|¢i> is the matrix clement (M) for the transition from i to f
caused by a perturbation of the Hamiltonian H'. The multiplication factor
F is what we call the phase space or density of state factor. F is a
function of the total energy of the system (E) and of the masses of the

individual particles in the final state.

We can express Eq. (1) in two formally different ways as:

2
W= |® p(E) | (12)
and ‘ ‘
W= %FINW|2 R(E) (1b)

where in Eq. (1a) the matrix element is expressed in a form which is not
invariant under Lorentz transformstions, (as is the casc for matrix elements
calculated in non relativistic quantum theory). In Eq. (1b) i” is Lorentz
invariant, (as is the case for the so-called Feynman amplitudes, i.e. the
matrix elements calculated in relativistic quantum field theory by application
of the Fcynman rules.) Since W should be the seme in both cases, i1t follows
that p(E) end R(E) are different; p(E) is not invariant under Lorentz trans-

formations whereas R(E) is an invariant.
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H

he matrix clements 1 and ¥ arc in generel completely unknown,
especially for transiticns causcd by strong interactions. The purposc of

the statistical thcory introduced by Permi for calculation of transition rates,
is therefore to make certszin assumptions about the behaviour of the matrix
element. The simplcst assumption one can make, is that the matrix element

is a constant, independent of the individual momenta of the particles in the
final state (but not nccessarily independent of E).  In this case, for a
constant matrix clement, the transition rate as well as individual particle

momenta in the final state, are detcrmined by the phase space factor alone.

It may be worth while here to stress that the approximation of a
constant matrix clement may well be a crude one, and it is not a priori given

which of the approximations:

i’ = constant (phasc space not invariant)

or

M = constant (phase space invariant)

is the best one. In his original trecatment Fermi used a non invariant
phase space. Lately it has become the fashion to use a Lorentz invariant
phase spacec. The best, and perhaps only, justification for this is that
the invariant phase space is the casiest to calculate. We will in these

notes mainly discuss the Lorentz invariant phase space.

IT NON INVARIANT PHASE SPACE

a) Definition and general formula

For one particlc a definite state of motion (i.e. specified position

(x,y,2z) and momentum (px,py

dimensional phasec space. Conversely each point in phase space corresponds

,pz)) can be represcnted as a point in a 6

to a definite state of motion of the particle.

Classical mcchanics places no limitetions on the density of the
representation toints. A given value of x can be combined with any value

of P etc. It is in principle possible to make simultancous measurements
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of x and Py with infinitc accuracy and then lecalize a poilnt in phase space.
Thus classicaliy thncre will be en infinite number of coints svailable in
phase space for a varticle confined to a certain region in space and with a
certain encrgy.

guantum mechanics on the other nand rejuires the representation points
to be separated by finite distances. The uncertainty rrinciple states that
it is imposéiblc to measure position and momentum simultaneously with infinite

precision. For each pair of canonical variables

tc.

)

Ax. Ap. 2 2mh

joRy s

A state of motion can only be given with this indefiniteness and corresponds
in phase space to a finite volume, or an elementary cell, of size (2mn)> .

The number of final states Ny available tc one particle will there-
fore be finite and equal to the total volume of the phase space, divided by

the size of the elementary cell,

1 1
Ny = ——ememe dx = d a [ S a3 3 .
1 (2171’1)3 / dy 4 dPx Py b, (271’}'1)3 / x d’p

If the particle is confined to a geometrical volumc V we can write

3

.

For a particle of total energy less than or equal to E and mass m, Ny will be

the number of cells in a volume enclosed in momentum space by the sphere

2 2 2 _ 2 _ 2
Py+ gy+ E, = E-n.
Given the total number of states we now define the density in

phase space as the number of states per unit cnergy interval

Enl >—\Y
P (B) = 2 . (2)

This is for short, callecd "phasc svace" for onc particle.
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The extension to a system of n particles with energy < E i1s quite
simple. The numbcr of final states Nn will be the vroduct of the number

of final states for ezch varticle, thus

4 -\ n n
N = | s T ax, @p. .
\In [(ZWB)Z | / =1 ! Xl : Il

X.P.
lpl

Since in practice all the narticles are confined to the same geometrical

volume V = Vi = d3xi we can write
n n
\ 3
N :(;==-a? / m&p. . (3)
n | (2rh) oo 1
By

For instance in our example of multipion production, the interaction
is assumed to take place in a sphere with as radius the Compton wavelength

of the pion.

This formula gives the number of available cells in the final state
for a system of n spinless particles. If the particle i has spir Si the

above expression should be multiplied by

n
L (2si+ 1) .
1=1

Now, since the geometrical volume factor, spin factor etc. can be
included in the final normalization of the phase space integral, we will

neglect these factors here and simply put:

dNn a n
E) =T /.“ &p; -
J =1

As alrcady said this integral should be extended over all possible
. . ; = .
values of P . Now, in order to conserve total momentum (P), the n particle

momenta are not independent but constrained by the equation

’

(&)

3
Ty
1
el
1l
o
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It is usual to indicate this restriction by putting

* N1

- a ,
B = gE Ty
T sy

where one does not include particle n since the momentum of this particle is

already given by Eg. (L).
We will, however, include the restrictions Eq. (4) by the intro-

duction of the Dirac & function. We use the fact that from the definition
of the & function

n-1
3 302 _ (B e -
/dpnﬁ(pn (B- = 3,)) =1
1=1
for all integrations including
n-1
- _-1-3_ 5 ->
Pn = 2Py
i=1

(that is for momentum balance).

We also wiant to introduce the requirement of energy conservation

n
I E.-E =0.
. 1 R
1=1
Since
n
/6(2 E.-E) dE =1
. i=1 1
and

n

a n n
5 /6( R Ei—E) dE = §( z Ei-E)
. 1=1 1=1

we can replace d/dE by
$( 2 E.-E).

1

We then get the general formula for the non invariant phase space.
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LalR
i
:_U/J,
[og
~~
o3 3
=
1
\t_ri

(5)

n n
pn(zz) = [0 d&p, 8702

-
[ N
il
-

This formule is symmetricel in all the n varticles, and the require-

ments of energy and momentum conservation arc explicitly given.

To illustrate th:z cxplicit calculation of p(E) for one particular
reaction we will consider one simple example, namely that of two particles
in the final stzate. The formulae for 3 and L-body non invariant phase

space are given by M. Block in Phys. Rev. 101, 796 (1956).

b) Two-body non invariant phase space

Let the masses of the two particles in the final state be my and

m, and their momenta By and p. in the centre of mass. From Eq. (5) we have

p2 () = /‘dzpt d’p» 53(51*'52) 5(Eq + E, = E)

= /~d3p1 Cp. 8% (py + p2) §(Vm? + p; + Vm2 +ps - E).

In the following we will make use of some general rules for inte-

gration of & functions given in Appendix A.

Integration over p. gives

pe (E) = [d3p1 §(VmZ + p; + Vms + p; - E).

In polar coordinates we can write

2

Fpy = pi dpy Ay = p? dps d(cos ©y) dd; .

The integrations over cos ©® and & give a factor Lmw, thus

0o (8) = [ br B apy SUETE + AT - B)

. cmmea e

A
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G

Since

dh s + Py D4 B
dﬁ1 2‘11 E’) E1 I

and A = 0 for

{[E? - (mp+my)?] [E°- (m?___m1 )2];1/2
2E

bt =
we get by integration over p;

Lsr P4 Ey Es

Pz(E) = E

(6)

b ([ (- m)*] (B = (e m )2 B - (nh - )
E 2E LE?

This is the expression for non invariant 2-body phase space.

IIT LORENTZ INVARIANT PHASE SPACE

a) General formula

The phase space formula Eq. (5) is not symmetrical in E and p and
therefore clearly not invariant under Lorentz transfcrmations. The simplest
way to find an invariant expression for the phase space formula is to replace
d3pi in formula (5) by d?pi/ZEi. This corresponds to the relation between
non relativistic matrix elements i’, Eq. (1a) and Feynman amplitude M/, Eq. (1b).
We then get

n d3pi no_ n
- 3 - -
R (E) = /‘121 oF, 2( 42, p3-P) 8( ;2 E;-F) (7a)

which is invariant under Lorentz transformations. The factor 2Ei enters
from a normalization of the wave function in field thecry. Ve may qualitatively
understand the meaning of this normalizaticon factor as follows. In non

relativistic quantum mechanics we express the probability density of, say

one particle, as |¢|2, vhere ¢ is the wave function describing the particle
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and where Il¢‘2 dx dy dz = 1 when integrated over total space. This expres-
sion for the probability density is not a relativistic invariant. When
applied to a relativistic case, the density (probability per cm32 observed
from a moving system appears greater by a factor y = (1- vz/cz)— 2 because

of Lorentz contraction of the volume element. It is important to note,
howev~-.,, that the total energy of the particle has also changed by the same
factor y. If we therefore use as a probability density the expression
lv@ﬁ?¢l2, the density will be relativistically invariant. (The factor 2

is a convention). Introducing this normalization into formula Eq. (1a) we
can write
=202 p(s) = 2 |wle (n 2B (1 5 ) p(®)
A P R : i/ VOTE, /P
i=y 1=1 i
= constant |W |2 R(E)
where now
0
R(E) = p(E) 0 35 -
i=1 i

This formula which is also expressed in Eq. (7a) can be written in a more

symmetrical form by introducing the four vector

= (2 = 2 _ 2 _ 2
q, = (p;,E;) (pix,piy,piz,Ei) of length qf = Ej-p; .

Using the rules for integration over a 6 function given in the Appendix we
find that.

i

/ d*q 8(q® - n)

/d3p dE 5[E* - (p® +m®)] (for E > 0)

3
- Q;E 2 _ 2 2
u/ 5n for E° = p°+m

We must, however, eliminate the negative root of p® +m°, and do this by making

the convention that all integrations over E,Ei are limited to positive values.
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Similarly we introduce 0 = (B,E) and write

n no n
*(z q-9)=8(z p,-F)o(z E-E) .,
i=t © i=1 i=1
Introducing these expressions in Eq. (7a) gives
- N n
B - 4 2 2 4 - C
R (E) /11; [a*q, 8(f-m})] 6 (iz:1 9~ 9) (70)

Expression (7b) is in most literature presented as the definition of Lorentz

invariant phase space.

We can qualitatively understand the meaning of the term B(qg- mi),
since q;- mi = E;— pg- mi #will be zero for q; evaluated on the mass shell
of the particle. This term therefore essentially represents the constraint

that for all i's we must have

2 2 2
Ei =ML+ Ppyo.
(By convention we have limited Ei to positive values).

The Lorentz invariant expression given by Lg. (7) gives the total
volume in momentum space available for n particles of given masses and total
energy E. Clearly this volume Rn for a given energy E is just a number.
The knowledge of this number is necessary for estimations of cross-sections

and relative yields.

Before performing the integrations over all the momenta, pi, we may,
however, (at least in practice) regard R as a function of all p,, thus
Rn(E) = Rh(E,p1.,opn). This expression can now provide us with the differen-
tial momentum spectrum of any of the particles, k, simply by evaluation of
an/dpk' Clearly, dPLn/dpk is just the expression one obtains from formula

Eq. (7) by omitting the integration over the k'th particle.

b) Lorentz invariant two-body phase space

. . > -> .
Fer two particles of masses my and me, with momenta py and p» in the

centre of mass we get from Tg. (7b)

7863/p/cm



R, = /d4q1 d4q2 6(q§-—m$) 5(q§-m§> 54(CL1+Q2'Q)

o[ @o @re am am o[F - (o + 5] B[ - (uk 4 52)]

/

x 63 (Dy +p2) 6(By + B - E)

By using the integration rules for a & function we obtain

= 51321 d322 32 .2 A
Ro —, 5%, DL 6(p1+pg)6(E1+Bg E)

which we could have written dovn directly from Eq. (7a). We further get

by integration over pz,

&zfﬁ?%31d%1am+&®d-E>

: ) ]
- mdﬂ d 6E --E .
/1+E1 T (pr ) v pi dpr 8(By + Fa (p1) )

Since the two particles are emitted isotropically in space the integration

over A0y gives a factor 4w. Thus integration over p; gives

2
R2_7TP1 1

“EiEe py Pt
Eq B,

and finally

- -my )? - +my )? %
R, = QEEL - % E[EF (Hh 1) gE[E? (Hh 1) ]} . (8)

We note that this Lorentz invariant expression for 2-body phase
space R, is different from the non invariant expression p, evaluated earlier.
For this special case (2-body) we also sce that

- SR
R2 - p2 . 2E1 [ 2E2 .
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We can proceed similarly to calculate Rs using the generel formula
Eq. (7). Then we will soon find however, that the expressions cannot be
integrated straightforwvardly. Instead of attempting to derive the 3-body
phase space dircctly from Eq. (7) we will first evaluate a useful recursion
relation for phase space, first given by Srivastava and Sudarshan (Phys. Rev.

110, 765 (1958)).

¢) Recursion relation

We re-wirite formula (7) for the Lorentz invariant phase space for

n particles with initial state four vector Q = (ﬁ,E) as

R,(B) - [1 (et 8(&-a)] 6" (3 9-0) - )

1=1 1=t

In the centre of mass of the n particles we can write (compare our

preceding example for 2-body phase space)

n d.3pi no_ n
- 3 -
Rn(O,E) _/.n = 8 (.z; pi) 6(.)3 E, E)

1=9 1 1=1 1=t

d.’pn n-1 d.’pi n-1 . . n-t .
- [ B 3 - (- - (E- .
-/?_E /.n 55— 8’2 p,-(-p)lslz B -(B-E)]
n i=1 i i= i=1
We seec that the last integral is the phase space:for n- 1 particles

with total momentum (—;5) and total energy (E—-En).

Thus

3

R (0,E) = / ZEP" R_[(5), (®-2)] .

Moreover, since R is Lorentz inveariant, Rn—1 must also be the same in

a system with zero total momentum vhere the total energy is

« =V(E-E))® - (-p))
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so that

R, [('E£>) (E- En>] = Rn_1 (0,€).

This gives the following recursion relation between n and n- 1 body Lorentz

invariant phase space.

I

Rn(O,E)

d3pn
/mZEn Rn_1 (0,¢€) (10)

where

2 a_m V2 L2
€ (B ﬁ,n) r, -

We will next use this recursion relation to derive the 3-body

phase space.

d) Three-body phase space

For three particles with masses my,m ,m; and momenta in centre of

mass Pp1,p2,ps formula Eq. (10) gives

d3P3
Rs (0,E) = S R (0,€)

3

where
€ = (BE-E5)® - 1§ .

From the determination of R, in the preceding paragraph we get

d3p3 .
R (0,E) = /7E=3-=- (35-)

where p’/ is the momentum of each particle in the 2-body system with energy E’

in their centre of mass.

Thus

E/' = E{ + E{ :\/m? -!-p’z +\/m§+p’2
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Since obviously ¢ = L/ we get by solving for p’

U - (mam )] [ - (m-m )

P! = = S .

2¢

Substituting this expression for p’ into the above formula for
R3(O,E) one gets

bopd dps || B2 +m-2EF; - (my ~mp )2 ] [E? +m3-2EE; - (mq +m, )2]§%‘
Rs (0,E) = / T (11)
s  2%s 2(E? +m3 ~ 2EE; )

This integral should be taken between the minimum ps(min) and meximum ps (max)
values of ps. Obviously ps (min) = 0, which takes place when particles 1

and 2 are emitted antiparallel with equal momenta. The maximum momentum

of the third particle will be obtained when the other two are emitted parallel

end with the same velocity (opposite to ;;). In this case we have

E =V + p2 (mex) +V(m +m;)? + p2 (max)

which when solved for ps(max) gives

[ - (m1+m2—m;)2] [ - (m1+nb+m3)2]}1/2
P (o) - 2F - (12)

For the general case where the three particles have different masses, Eq. (11)

is an elliptical integral.

Finally, we want to point out that the differential momentum spectrum
c? a particle from 3-body final state is given by dRs/dps which is explicitly
given in Eq. (11). We see that the momentum spectrum is a function of the

total energy E of the system and the masses of the threc particles m¢ ,mp

and ms only.
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IV ANGULAR DISTRIBUTION

2) General formula

The gencral invariant phase space integrel Eg. (7) can be used to
find an expression for the angular distribution betwcen any two particles
among a system of n particles. The distribution will be derived in the centre

of mass of the n particles.

The angle © between the two particles, say n and n- 1, can be found
from

We will in the following, interpret Rn (before performing the inte~
gration) as a function of all the momenta pi,ps .. Ps thus we can also
express R as a function of cos @, that is R = R, (0,E, cos ©). The
angular distribution function between the two particles is then given by

dr
n

d(cos @) °

Applying the same procedure as for the derivation of the recursion relation
Eq. (10), we get

d'3pn dan-« »
Rh(O,E, cos @) = /hiﬁ?% =F Rn—a (o’en—a) (13a)
n n-q
where
2 _ - - 2 - -> -> 2
€n—z - (E En En—1> (Pn+'pn-1)

il

E+m®+m® -2 (EE +EE_ -EE  +pp
n n-=1 n n-1

cos @),
nn-1  “n‘n-4
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In polar coordinates, with én
and ¢ and © the direction of En_i

can write

and ©

with resoect to ;n

(see Fig. 1), we

giving the direction of Eﬁ

ey © Pig. 1
Bn 7 ! )
. '
R |
_ : >\
A ,—} S . | /
¥ T
M
X
3 _ 2 _ .2 o
d P, = Pp dpn dQn =P, dpn sin ®n an d@n
3 _ .2 _ .2 .
d Pp-y T Ppoy dpn—1 Wy = Pn-y dp,., 8in & d© @ .

The integration over dQ =

dRh(O,E, cos @) o pn pn_
d(cos ©) EE
n n-1

The integration limits of dpn__1

sin @ d@ d§ gives a factor 4w and the inte-

gration over 4% a factor 2w, so that Eq. (13a) can be expressed as

. (13b)
dp  dp _ Rn~2 (0,€ 2) (13b)
and dpn will depend on cos ®. In

general for all possible values of cos © the integration limits of P, have

to be equal to or

where

0
{[Ez - (m1+...+m

pn(min)

and

n-

+-mn)2] (B2 - (my + ...+m

-1

greater than pn(min) and equal to or less than pn(max)

-m )1}

1

p, (max)

The corresponding limits for 1

in the above equation.
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are found by replacing n by n-1

The value for pn(max) represents the configuration
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where all the first n- 1 particles are emitted with the same velocity (that

is as one body) oppositec to the particle n.

Let us now look in more detail at the integration limits as a
function of cos ®. If we first integrate over dpn—1’ we went the limits for

fixed P, and fixed cos ©.

It is easily verified that Ppey will now have its maximum value

if the momentum (Bna-gn_1) is compensated by one body of mass

n-2

This determines the maximum value of p _ = for fixed P, and cos @ to be the

positive root in the equation:

2 2 1/2 noe 2 2 2 1/2 E
B+ (>  +p2 ) +[:(.2 m )®+po4p)  +2pp _ cos®| =E.

n-1 n-1
i=1
(14)
The positive solution of this equation is
- - 2 -
. _ ap cos © + (E En)'Va Lmi_1b (15)
n-t 2b
where
n-2
- - )2 . 2 2 _ .2
a = (E Bn) (.E mi) to, TPy
i=y
- - 2_ 2 2
b = (E En) p; cos® © .

The upper limit of P, for fixed cos © can, in principle,be found
if we interchange P, and P, in Eq. (15) and determine the value of P,

for which apn/apn_1 =0.

b) Three-body angular distribution

Using formula Eq. (13b) from the preceding paregraph, we find for
the engular distributicn between particles 2 and 3 from a 3-body phase

space
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Ba(0,8. c08 ©) | [r2 B3 4 ( ¢
d(cos ©) « | £ E, o P Ri (0, €) (16)

where

2 (B~ (Be+3))7 - (;2"';3)2

m
]

We first find

Rs (0,€)

i

/d3p1 a8y 5% (30) 6(Br-c) 8[E - (g +uf)]

which upon integration over ps and E; gives
Ri (0,€) = 8(e® - mi).

Thus

dRs (0,E, cos ©) _ D2 D5
d(cos ©) E Es

dp. dps 8(€® ~mi)

—e

P C T e Ta )2 = 2o p2 o Ao 2
- /2&_2:2, dp. dps & [(\E Ez - E3)® - p3~ p5~ 2p2ps cos © m1]
N

A

Integration over p, can be done easily here because of the § function. We

calculate

22 = -2(E- Ey) - EE-z- - 2ps cos ©

for the value of p, for which A = 0. This value of p, can be found from
formula Eq. (45) if we put n = 3.

‘The integration over p. therefore gives

dRs (0,B, cos 8) _ [p5 ph L
dleos )~ = | T® o W TR T o R ses s (1)

where p. is given by Eq. (15) as a function of ps. The final integration
over ps cannot be performed exactly in the gercral case where &ll three

particle masses are different and all different from zero.
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V EFFECTIVE MASS

a) Definition 2nd special case

The effective mass of two particles with masses my and mp is

defined as
B, = (Br+5)% - (Br+e)° g (18)

We will in this Chapter discuss the effective mass of a system of
particles with momentum distributions determined from phase space. To
illustrate a possible straightforward method, we will first calculate the' -
effective mass of two particles from 3-body phase space. H

In the preceding Chapter we evaluated the differential momentum

spectrum of a random particle in 3-body phase space

’ 1
ARy _ r°ph {[F-2BE; v mf - (m+me)?] (B - 2R, +mf - (my - me )21} 72
dP3 E‘_':. EZ"ZEE3+m§ L
. (19)

We are interested here in the differential distributiob' dRs/dM2
for the effective mass of particles 1 and 2.

Introducing energy and momentum conservation in Eq. (18) one gets

(E-B5) - g2 (20)

F? - 2EE; + m5 .

M 2

I

I

From this follows by differentiation
E Eps
M1 2 d.l‘;‘h 2 = -0 d.E3 = - E3 d.p;

Now, ps can be found -rom Eq. (20) a2s an explicit function of M,

U - (s em)?] (B - (e -ms)?]] 72
2E '

Ps
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- 20 -

We then get

_dR3 - dR3 d.p:; = quE; d.R:;
d:l‘.’h 2 dpz. d:l“h 2 Ep; dp3

(dropping minus sign)
and finally by the use of Eq. (20) and (19)

dRs  _ 7 ([, ~ (my+me )] [, - (my-me )] [F2 - (ms+lyp)°] [F® - (m;-l\.’l12fl§1/"’
M 2 2F% My »

(21)

which is the differential effective mass distribution of two particles from
3-body phase space. The lower and upper limits of My, are easily found from
the limits on ps given in Eq. (12). e get

M2 (min) = my + m,

My2 (max) = E-ms .

With reference to the next paragraph which gives a general formula
for the effective mass distribution, we want to re-write Eq. (21) in a form

which reveals the features of the general formula.

We put

By 6 = (my v me)?] e = (mo = me)* ]} 72
Eﬁ%z = (2My2) ;ﬁ”:-z +#12M12 m

i {[E2 - (ms + M2 )2 ] [E2 - (mz—qu)z]E%

*E oR T

Recalling formula Eq. (8) for the 2-body phase space we see that

the expression above is a product of two different R, 's, thus

%%%2 = (2My2) Re (0,My2,my,m:) Rz (0,E,ms,Ms>)

where the first factor R, is the 2-body phase space for particles of masses

my and mx and total energy M,. The last factor represents a system of

masses ms and My, with total energy E.
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b) General formula

e

The effective mass of k particles selected from n body phase space

n. . .
Il 1s given by
k
k k R k
e = (3 B.)® - (250" = (2q)° (22)

k . i
i=1 i=1 i=1

or from energy and momentum conservation

l

n -> no
EB-2 E)*-F-2 p)°
i=k+1 i=k+1

n
Q-2 q)° .
i=k+1

We have chosen here the k particles to be the first k when numbering

the n particles in order 1,2 ... k, k+1 .. n. This convention does not

restrict the generelity of our evaluation. “ie would now like to find an
expression
dRn d ( , )
£(1°) = = R (P,E,my, o.. m
a(e ) a(ur) ° n

where £(1®) is the probability that the effective mass of the first k particles
has the value . We have explicitly written for clarity that R.n is a function
of all the masses of the n particles. Using the expression for Rn from formula

Eq. (7b) we can write £(i) as

n n
£08) = [ L7 atag 8(g-a))6* (2 - 0) BGIE-02). (23)
i=1 i=1

The & function 6(§M2~ 1?) makes all contributions from phase space

vanish except for the cases where EMZ = 2.
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We will now try to transform Eq. (23) to a form where we can make use

and its recursion relation®. This

of the earliesr developed formula for Rn

will be more convenient for practical calculations.

Since K
4 _n s N,
/6(‘2 a kn)d A=
i=1
for integrations including y
n.
2oag =i
i=1
we can write
n k
8( 2 q-Q) =8"(2 q + 3 q;- Q)
1= 1=1 i=Kk+1

k
=/64(zqi §M>64<M+Z q, - Q) a* M .
i=1 i=k+1

When we put this expression into Eq. (23) we get

£(7) = /[raqam-m>1[w & g, 8(e2 - n)] x

—k+1

k
8°( 3 gy - M) ® (“M+ z q; - Q) 6(“m12—u)c1‘nM
1;1 * _ 1=k+1

. . |
=/u"y%a@;ﬁH#(g%;@M

1=t

x i m d‘q 5(q - mz)] a4 nM 6( W -~ 1P) 64( Mo+ E q - QD .

i=k+1 i=k+1

Since with the introduced nomenclature we can write

K K
R (0, H, me wovm) = ./[ 7 d%q, 8(qf-m3)] &° (iql-ﬁ i)

i=y

%

The following use of the recursion rclation to calculete the effective mass
distribution was, according to the author's knowledge, first made by A. Muller
and A. Verglas in an internal rcport (1962) at Centre d'Etudes MNucleaires

de Saclay, Paris.
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and N
v;. N : 4 2 2 Z N.o 2
n_k“(O,L,mkHa.° mo, Hj o= /i 7 4 qﬁ.6(%i mi) a EM 6(ku i) x
Ji=k+1
8% (i1 + ; .- Q)
X . i 7
i=k+1

we finally get
£(12) = Rk(O,u,m1 cee mk). Rn_k+1(O,E,mk+1... mn,¢0 . (en)

This is a general formula for the effective mass of k particles from n body

phase space.

We see that £(1?) is a product of two functions. The first, Rk’
gives the probability that the first k particles have total energy i in

their centre of mass. The second factor Rn_ is the probability that the

n-k particles plus one other particle with magziu (equal to the effective

mass of the first k particles) have total energy E in the centre of mass of
the original n particles. In other words, f£(1®) expresses the probability
that all n particles have energy E and simultaneously the k first particles

have energy u.
Exercise

Make use of the rule

dR 1 dR

e =

du2~ 2u du

and derive from Eq. (24) the formula for effective mass distribution of two

particles from 3~body phase space given in Eq. (21).

Compare this result with the curve for the (=Km) system given in
Chapter VIII.

c) "Shape" of effective mass distributions

The purpose of this paragraph is simply to show that all effective
mass distributions (the probability to find the effective mass u between u
and p+ duy) may be classified into a few groups of distributions; each group

has a characteristic shape determined by the values of n and k. The general
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appearance of each group may be used in a gualitative check of a particular
calculation of an effective mass distribution. A comparison of the different
shapes for different final state configurationsmay also give an indication

of, for instance, in which configuration it will be most fruitful to look for a
predicted resonance, in order to minimize the background expected from phase

space.

In general the effective mass distribution has zero probability for

two values of the effective mass ;M

i

EM(min) Mp o+ M+ evs 41

1

n, -

kM(max) E (mk+1+-...+-mn) .

The tangents to the curve at these points (minimum and maximum) will to a
large degree determine the shape of the distribution, and we have chosen

to characterize the curve according to whether these tangents are horizontal

or vertical. The following drawings illustrate the four different shapes

one can have

A
Rﬂ)
A
n=23 k=2 /////~’~—_—_N‘\\\\\ 2
) >-}k
A '
| [\ B
nxhL =2 e
N '
C
nz4 k =n-1
N\ .
/\ D
nzxb5. 3¢ kgn=-2
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Show that the distribution of type A hes vertical tangents at both
the minimum end meximum velue of “H. To do this calculate ar(u?)/du

2
from formula Eq. (21) and (24).

Snow by the same method that the distribution of type B has vertical

tangent at the minimum value of SM.

VI EFFECT OF A RESONANCE ON THE EFFECTIVE MASS DISTRIBUTION

a) Statement of problem

We will in this Chapter consider a system where we observe in total
n particles in the final state but where we also observe, or know there exists,
a resonance between the k first particles so that QM = I*, For this system
we ask the question: ‘hat is the effective mass distribution between any
number of rendom particles in the final state? It is clear that the presence
of a resonance between some of the particles will influence the effective mass

distribution between all pairs or groups of particles in the system.

We will assume in the following discussion that only (n=-k+ 1)
particles, with masses M*,mk+1 eee m, are produced in the original production
process which can be well separated from the decay process M* > my+ .00 m .
This description may be meaningful in particular if the resonance has narrow
width. To simplify the calculations we will also make the extreme assumption
that the resonance has zero width and can be described by a § function,

S(EM- M), It is clear that this assumption is in most cases gquantitatively
not correct, but it will, even for a broad resonance, describe in a qualitative

viay, the effect which the resonance has on the effective mass distribution
of the particles.

Our problem can be separated into three cases according td the method

of calculation of the effective mass.

(1) Calculation of effective mass of a group of particles none of which
participate in the resonance. In this case we can use directly the earlier

developed formulae applied to a (n-k+ 1) body final state, where one particle
has mass M¥, that is

R e (O,E,I\JI’",nqk+1 mn) .
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(i1) Effective mass of & group of particles wiiich all participate in the
resonance. This can elso be calculated from the formulac in Chapter V using

a k body phasc spacc with total energy M*,
Rn(O,M*,m1,m2 vos mk) .

(iii) Effective mess of a group of particles, some of which participate
in the resonance and some do not. This problem is more complex than (i) and
(i1) and cannot in the general case be performed with the help of a recursion
relation. We will in the following paragraphs discuss some very simple
special cases. In these calculations we have again assumed a resonance of
zero width. In principle the calculations might as well be performed with a

resonance of finite width as for instence with a simple Breit Wigner shape

£(0) = const [ (- w¥)? & (1/2)2]7 .

b) Three-body

We startwith the invariant 3-body phase space f ormula

3 3 3 | 4
Ry « d°py &°p2 4 ps 8% (Dy +pe+ps) 6(By +Eo+ E5-E) .
' Eir E» Es

We want to find the distribution of effective mass of particles 1 and 2 -
(dRs/dMy2 ) for the case where particles 2 and 3 are already in a resonant
state. We will first assume the resonance has zero width and mass M*. 1In

that case we can write

by, _ _d py Epp Eps .
dMy 2 - dMy 2‘/ Eq s Es 6(P) 8(E) 6(Mz3 M*) .
Integration over ps gives
dRs d ] Fp, Cope 1 , Y
T E -E Mo~ 1M
a2 diy » ] Ey T B (p1p2) 5( 1+F2+E3(P1p2) ) 8(1‘]23 I )
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Integration over angles sives (as demonstroted severel times earlier)

Ry _ 4 [ pidpe pedee p1p2d(cos O) gexy s
d.-l‘/ng B d.i‘."l'.12 ;/ E1 E2 E3 (P1 Pz) ( ) ( )

Now for py and p. constent we heve from nmomentum conscrvation

psdps = p1 p2 d(cos @)

and since

p3dp3 = E3 dE3

we get by substitution and integration over Es

Ry _ _d /dE1dEg & (M5 — M%)

Aty Ao

where momentum and energy conservation require that

nr B 2 2 2 .2
B = B~y -5 = B-F - ogietls o Balthem _ 5

For constant Ey it follows that

M
B = =-1ﬁ=2= dMyo &

Substituting into the expression above and recalling that

Mos = VE +m? - 2 By

we get

)
r%@gx. - /dE1 %% §(VF + mf - 2EE~ i) .

Integration over E4; gives

ARy _ Mip VE +mi-2E By

akiy 2 E E

E? - it*2 + mf
for E = '='='——"'§=E==~*===1== .

7863/p/cm



Finally

dR D4 2, l‘i

o

d.l\,'l1 2 *x E E (25)

We need the maximum and minimum values of Miz . Due to the resonance

Mas = M* particle one always has a fixed cnergy

2 -
_ F? 4+ mf - 1P

E1 2E .

We see that
Mz = m§ +ms + 2E E, - 2p; p» cos ©

is a minimum for cos €@ = 1. To find the value of E, for which this takes

place we put

M 2. = B, - . =22 -
12 aEz 1 P4 P2 0
and find
-~ M2
P2 = oy P1

which gives

M, (min) = mf + md + 2 % (EF - %)

(my +m2 )%

Similarly for cos ® = -1 we find

1

8, (max) = mf +0d +2 22 (B} 4 p?)
jat] p

"

2 2 n
md o+ ms - 2my ms +L+;5-Ef
1

2
2 le (Ez + ]“2 - 1’1[*2
( . 2 ) m1 E; I\ )

1
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Exercise

e mes

A 3-vodv final state ..ith a resonance beticen two of the particles

(s = 1i*) can be thought of as an original 2-body decay

< e i

T
3

followed by a decay of the resonance

M

N

O
|
-0
23
2
w

into two particles which in the M* centre of mass arc emitted with fixed
energy. ilake a Lorentz transformation of particle 1 to the M* centre of mass,
and from the fact thet m, is emitted isotropically in this system, derive

the effective mass distribution of iy, given in formula Eq. (25).

¢) Four-body

We want to find the distribution dRs/dMi» for the case where we have

a resonance between particles 2 and 3. Assuming again that the resonance

Mz2s = M* has zero width, we can write

dR4 d d3p1 d3P2 d3p3 d3p4 3 > - - >
Ao & il 2 /‘ E, B, EB; Ea 8% (p1 + p2 + P3+ Da)

X 6(E1 +E2+E3+E4- E) 6(1‘.'.123_1\‘{*) .

Integration over ps gives

AR 4. [ &p &£pp &ps 1 . - i s = 3
dM12 = di“"hz / E1 Ez ~E3 T, 6[E1 +E2+E3+E4 (p1 pzp;) E] 6(1;123 R )

for momentum balance.
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We introduce polar coordinates as illustrated in Fig. 2.

N7 Fig. 2

Integrations over dy and d¢ give constant factors only; there-
fore

4Ry d psdp; padp. d(cos ©) p3dps d(cos ©s) dds 1
Mz & A o E, Es Es (p1 p2p3)

x 5(By + B2+ Es + B, = E) 8(Mps - M*) .
From momentum conservation we have
o= (Br+Pe+Ds ) = /% + 05+ 2p ps cos 6
so that for constant p’, ps and cos ©
ps dps = E4 dE; = p’ps d(cos 05) .

Substituting and integrating over E, one gets

dRy, _ 4 pidps pzdpe d(cos ©) dEs %5 s/ _ v
dlly,  dilya / B, R o/ 8 (M 5 - M¥)
for E; = E- By - E; - Es (energy conservation). If we express E; by ps from

the expression above we get

p'? + p3+ 2psp’ cos O3 = (E-Ey =By =~ Es)? - m}
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or when solved with respect to cos ©s

_E-EB-F-E)-m-p’-5 (26)
- 2p'ps .

cos Os

Formula Eq. (26) will be used later to find the integration limits of Es.

Since

(By + B2 )2 —(I_J)H'Ez)z

i

}.’12

m§ + m3 + 2Ey E; ~ 2py p» cos ©

we can for constent py and p2 put
My 2 dMy . = F1 pzd (COS @) .

If we also put dp; = %L dEs; etc. we get
1

dE dE; d®
By :1\1112/ 0t 2 5 (s - 1Y)

Interpreting the argument of the 8 function as a function of &5 we get by

performing the integration over this variable

QRs_ _ [ 4B d aE,
dl\"112 12

s
/ Sy | .
P ‘_S.%%TJ( (i s=1*) = 0

Here Mz3 is given by
Né;; = (E2+E3)2" (;24-;3)2 :m§+m§+2E2 E3‘2p2p3 cOS @23

where ©,5 (the engle in space between p» and ps) is a function of ©,,0s and

®s .+« From spherical geometry
cos Op3 = cos O cos Oz + sin O, sin @5 cos &5

®s is given by Eqg. (26) and ©, can be found from
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!
\N
N
|

> > - - -> 2
o, - B'.P2 _ (PitPe) Pe _ P1pe 0OS O+ 15 5
cos B = & = - = n ( 7)
D" Do P’ pe L P2

m% + mg - I’ﬁg + 2E1 _EZ + Z‘E-ga .
2p' pe

1]

By proper substitution it is therefore possible to express explicitly M,z as
a function of &, and determine o (My;-M*)/8%5 . This expression should then
be evaluated for the & that makes 13- M* = 0. wWe find

m5 + m5 + 2B, Ex ~ 2p, ps cos O, cos O = L*?
2p2 Pz sin ® sin CH

cos &5 =

Recalling that ©; and ® by Eq. (26) and (27) are expressed as
functions of E,,E,,Es and My,, we see that we are left with a triple integral
in E,,E;, and Es . This integral has to be solved numerically. The inte-
gration limits can be found as follows. For fixed E, and E, are E;(min)
and Es(mex) determined by Mps = M* f‘of cos @23 = -1 and cos ©z3 = +1 respectively,
together with the possible restriction that from Eq. (26) -1 < cos 05 < +1.
Similarly the limits for E, with fixed E; are determined from My, = mj + m3 +
2Ey E, - 2p; p2 cos © by putting cos ® = *1 if for these values Eq. (27) '
satisfies -1 < cos € g +1. : '

The lower and upper limits of E, are given by ‘

E, (mln) 2 Iy

and [ - (M eme+m )] [E2- (I\/I’°"+m4...1:f11)2]}1/2

E1 (max) o5 .

IA
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VII DALITZ PLOT

a) Contours of the Dalitz plot

We will discuss herc in some more detail the 3-body phase space, and
especially the properties of the Dalitz representation.

First we take the general case of three particles with different
In their centre of mass the particles are emitted

rest masses my ,m; and ms.
The Dalitz representation is a scatter

with kinetic energies Ty,T: and Ts.

plot of the kinetic energies of any two of the particles, say Ty and T., along

the x and y axes of a Cartesian coordinate system. The kinematical limits of

the reaction imposed by energy and momentum conservation will now confine the
points to the area within a closed curve which touches the two axes, see Fig. 3.

The kinematical constraints are

Es = E- (Ey + E») (By =Ty +my etc.)

I

(28)

05 + D3 + 2p1 P2 cos Oy, (0, angle between py and p)

3

It is clear that for given Ty and Tz (or equivalent pi and p2 )

we have also a fixed Ts. From the second equation (28) we then have
determined ©45. This means that for given Ty and T, we have a uniquely

specified situation.

B,

Fig. 3
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In other words, each point on the Dalitz rvlot corresponds to a well-defined

configuration in the final state.

The contour of the Dalitz plot revresents the configurations where

particles 1 and 2 are emitted psrallel or entiparallcel, that is for
cos @ = a = * 1

where a = +1 for ;1 and Ee parallel and 2 = -1 for 51 and 32 antiparallel,
that is at the lower (4¢ D A.) and upper (A; By B, A,) half of the contour
of the Dalitz plot respectively.

From equation (28) above we can eliminate E; and Ps and get

v+ aVv® - uw

T, = ” ‘ (29)

where

u = B? ~ 2ET,

v = BC - (AB+ C-2mym,) T, + ET3

w = (C- ATz )*

A=E- my

B =F - mp

C=%[(E-m-m)?-ni]

Formidea Eq. (29) gives the general relation between Ty and T.
along the contour of the Dalitz plot. We will look in more detail at some special

cases along the contour and see what they mean physically.

First let the curve touch the Ty and T, axes at points Ay and A
respectively (Fig. 3). Point A; corresponds to the case where particle 2 has

zero momentum, that is 51 = -53. The value of Ty at A is

- (E-m1~m2)?‘—m§
2(E - my)

Ty (A)

Similarly point A, corresponds to the case where particle 1 has zero momentum

and p, = -ps. To(A) can be found by irterchanging particles 1 and 2 above.
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The straignht line in Fig. 3 represents states where lp1‘ = pzl.

This line crosses the contour at pocints C and D. Point C corresvonds to

the state where ps = 0 and 2 value of Ty given by

D (0) = B Bemm)om
Z(E— m3)

We denote the maximum values of Ty and T, by By and B, respectively.
Point By corresponds to the situation where particles 2 and 3 are emitted

parallel and with equal velocity, that is

Ty (max) =Vl + pj (max)

where py (max) is given by equation (412) in Chapter III.d.

Point B, is found in the same way by interchanging particles 1 and 2
above, and corresponds to the case where particles 2 and 3 are emitted parallel

and with equal velocity but opposite to particle 1.

In the case where the three particles have equal masses as in the
decay of the T meson, the w resonance etc. another coordinate system is
mostly used. This representation is based on the fact, that from any point
inside an equilateral triangle (Fig. &) the sum of the distances to the sides
is equal to the height of the triangle. One therefore plots the kinetic
energies of the particles along the normels to the sides; then Ty + T +T5 =
Q value = height of triangle. Not all points inside the triangle are avail-

able because of momentum conservation.

If/;ﬁ treats the pions non-relativistically, one sees easily that

the points have to be within the inscribed

- Lr // circle of the triangle. For more details
k"j‘ Y Tz\\/T/; ebout this special kind of Dalitz plot we
Y refer to the original work of R.H. Dalitz
/,f’ T \ (Proc. Phys. Soc. A69, 527 (1956), and
// : \\» Reports in Prog. in Phys. 20, 163 (1957)).
/ N For the relativistic case, see Fabri, Nuovo

Cimento 11, L79 (1954).
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Exercise

Place a Cartesien coordinete system with origin in the centre of the

inscribed circle in Fig. 4 with y axis along Ty .
Show that
L= T
V3

Py~ 2 (g value = height of triangle)

3

n

N

and prove that for non-relativistic particles (of equal mass) the constraint

equations
Ty + T, +T5 = Q (Energy conservation)
[;1+.§2+.§3 = 0 (Momentum conservation for collinear particles)
cos @12 =11
lead to
eyt = (9

which is the equation for the inscribed circle of the triangle.

Exercise

A resonance between particles my and m, will give points clustering
along a 45° line crossing the Ty and T, axes on a Ty T» plot. Derive the

equation for this line for a given resonance mass My, = M*.

b) Distribution of points on Dalitz plot

We will show here one of the special advantages of the Dalitz
representation, namely: egqgual areas on the Dalitz plot correspond to equal
probabilities in the Lorentz invariant phase space. In other words, phase

space predicts uniform population of points on a Dalitz plot.

The importance of this fact appears in practice when one plots the
kinetic energies (for 3-body states) on a Dalitz plot to see if the points

are equally distributed throughout the plot. If the points are clustered
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in certain regions on the vlot or along certain lines, this indicates that
(apart from experimental bias and statistical fluctuation) some final state
interaction has affected the distribution. The density of voints is pro-

portional to the square of the invarient metrix element of the reaction.

We will now prove that phase space predicts uniform population of

points. From formula Eq. (7) we get

_ a° py d3p2 d° ps 307 > I
Rs ~/ B S5 35 85(By + B2+ Es-E) 6 (py + p2 + ps )

which by integration over ps gives
Ry = | mee—e A0y P2 dpy A% P2 dpe 8(Ei + B + By - ).
8Ey E. Es
Integrations over space angles other than ©,, gives

1 ‘
Rz = /°8E1 B, B, Lr p; dpy 27 d(cos ©12)ps dpe 8(Es + Ex + Es - E).

Now, the space angle between 31 and 32 is for fixed py and p. determined from

momentum conservation

P2 = pi+ P2+ 2p1 Do COS Oy

so that
P> dps = p1 Pa d(COS @12) .

Further: from
p2 - EZ_m2
we find

pdp = EdE = E 4T

which when substituted into the expression for R; above, gives
Ry « /d’l‘1 T, daTs 8(Ey + E, + Es = E) .
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Integration over T; finally gives

Rs /AdT1 dT.

which expresses the fact that the density of final states is proportional

to the area in 2 Ty T, plot.

Exercise

Show that for non-relativistic particles, that is for

it is the non-invariant phasc space p and not the invariant phase space R

which is proportional to the area in a Ty T. plot.

¢) Effective mass plot

We showed in the preceding paragraph that equal areas on a Dalitz
plot correspond to equal probabilities in phase space. We will now introduce
another much used form of Dalitz plot, namely one where the effective mass
squared of any two particles from 3-body final state is plotted along the x

and y axes in a Cartesian coordinate system*®.

We will now show that phase space predicts a uniform population of

points on this plot as well.
We have
.-)
(B + B )? = (P +pe)°

(E - E3>2 - p§

}ﬁz

E? + m§ ~ 2FEs

I

E? + m5 - 2Em; - 2ETs

1

®

A useful representation for the messes of a pair of particles from a L-body
final state has rccently been given by Goldheber et al. in Phys. Rev. Letters
9, 330 (1962) and Physics Letters 6, 62 (1963).
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Fig. 5

We see that M5, is a linear function of Ts, which by differentiation gives

A(if,) o ATs »

This means that

d(M§3) d(M?3) oc dT1 d—TZ 9

or put in words: Areas on the M3; M§s plot are proportional to areas on the
Ty T> plot. From this follows that equal areas on the M plot correspond

to equal probabilities in phase space.

We may note that the minimum and maximum values of the invariant

masses are given by
iy 2 (min) = my + mp

M12 (max) =5 - Mx .

Similarly for iiis, by interchanging particle 2 and 3. The contours on the if
plot can in general be found by using the relation between Ty and T, given

by equation (29). For cach value of T, we have p» :'VT§+-2m2T§ and

7863/p/cm



M35 = (E-E2)®~ 2. From Eq. (29) we find the corresponding Ty and can

then calculate

M2 = (Bi+E2)® - (pf+p3t2p p2) .

Exercise

Show that if a resonance Mys = M* decays isotropically in apace
with respect to particle 2 (that is dR/d cos @y, = constant) the points will
be evenly distributed along the Mj. axes on an M;, Mis plot.

We see also that formula Eq. (25)

E%%Z « My for Mys = M*

can be directly verified from the fact that the points are evenly distributed

along the My, axis on a M. M;s plot.

Show that the three possible effective mass combinations are
related to each other by the equation

2 2
Mo+ M55+ M35 = B2+ mf+ms+md .

d) Effects of angular momentum conservation

We have stated in the preceding paragraphs that phase space predicts
uniform population of points on a Dalitz plot. This statement is true,
however, only to the extent to which one can neglect the influence of con-
straint equations imposed by angular momentum conservation. In production
processes, for example, where one has a Q value high enough to expect some
contribution from production amplitudes with angular momentum states greater
than zero, one might expect these amplitudes to contribute differently to
different final states, since not all final states otherwise allowed by phase
space, will conserve angular momentum. The areas on the Dalitz plot

corresponding to such states will then be depopulated. Since one expects
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the contribution from higher vartial waves tc increase vith the § value of

the production vroccss, the relative depopulation of noints on the Dalitz plot
will probably vary with the § value in the production process. This makes

it important in the study of ;article resonances that the presence of an
apparent '‘bump’ on the phase space plot for cne particular incident momentum

is verifiesd for other incident particle momenta.

The effects of angular momentum conscrvation in connsction with the
production of the Y (1385) in the reection KS+p - A+ Tt 7°, has been dis-
cussed by R.K. Adair in Rev.iiod.Phys. 33, 406 (1961). A detailed quantitative
estimate of the cffect depends on the type of particles involved in the
reaction, such as the values of the particle spins, isospins etc. We will
give here a simple qualitative description of the angular momentum effect

with reference to the Dalitz plot for particles of different masses.

The configuration of three varticles in their centre of mass system
can be specified in terms of two momenta; E the momentum of say, the third
particle in the three particle rest system, and a the momentum of particle

one or two in the centre of mass system of these tio particles (see Fig. 6).

@

ol
!
®
rﬁ)l
S

©
N

-4
®

Fig. 6

Using this description of the threc particle statc we can express the total
anguler momentum (3) of the three particles as the vector sum of two inde-
pendent angular momenta 7 and T defined as follows: Particles1 and 2 revolve
about their mutual centre of mass with orbital angular momentum ?, while
particles 1 and 2 together with particle 3 revolve around the 3-body centre

of mass with orbital angular momentum I. The total engular momentum of
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the 3-body sys<tem is then F=T+L. Por simplicity we will in the following

assume all particles in initial end finel states to have spin zero.

For a given total cnergy of the system, the total production
amplitude (A) of a particular anguler momentum state J can be expressed as

a sum of partial amvlitudes of different 7 and T.

A =2 8301,
The summation is to be extended over all possible values of ¢ and L satisfying
7+ =73. The complex partial production amplitudes, a, are functions of
the individual perticle momenta, but are already integrated over space angles
i.e. the total production intensity is given by |A|2 =% laJZle' The

intensity of a specific pertial weave can be expressed as

|2 = K R5(0,E) P.P

'aJZL L ¢

where K contains the matrix element and is a function of the same variables
as aj; R3(0,E) is the invariant 3-body phase space integral, and PL and Pz
are the angular momentum barrier factors for the orbital angular momentum
of particle 3, and the two particle system 1 and 2 respectively. (The
labelling of the particles as 1,2 or 3 is of course in arbitrary order and
the labelling should be permuted in the summation above for the total pro-

duction amplitude).

PL and Pg can be calculated for different values of linear momenta
and orbital angular momentum of the system. For a simple qualitative
estimate it suffices to remember that for fixed angular momentum J,PJ
decreases with decreasing lincar momentum of the particle so that for J > O
is PJ = 0 for zero momentumn. For fixed momentum, Ejdeoreases with increas-
ing values of angular momentun. From this follows that contributions from
partial waves with L or ¢ > 0 diminish whenever one of the particle momenta
is zero or vhenever two particlas touch in momentum space, e.g. have zero
relatcive momentum. The points in phase spacc corresponding to *these con-

figurations can easily be found on the Dalitz plot.
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With reference to Fig. 7 we schematically indicate the physical
interpretation of a few special points on the Dalitz plot. We have not
indicated the kinetic energy of which particle is plotted along the axes on

Fig. 7, since the choice is arbitrary.

Points a represent states where one of the particles has zero momentum.

Points b represent states where two particles have equal momenta.

It follows therefore that partial amplitudes where L > 0, which we indicate

by a give no contribution around the points marked a, and partial

JLL>0°

amplitudes with £ > 0 (a are zero around points b in Fig. 7. The

J£>OL)
size of the region which in this way will be depopulated, obviously depends
on the absolute magnitude of the angular momentum vectors 7 and T. For
instance around points a we expect PL to be small for

17| < kb

P r

where r is an effective radius, which we can take as the Compton wavelength
of the pion. fe ©ind that partial amplitudes with L=1 are strongly reduced
for |p| < 150 ieV/c.
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Similarly we expect P, to be small eround the points b for [E‘ < 150+¢ MeV/c.
Thus, to summarize, in the prascnce of angular momentum states J 2.1 one
cxpects some depletion of events in the region of the points a and b in

Fig. 7. These ercas neve been shaded to give & quelitative illustration of
the effect.

So far we have seen that the requirement of angular momcntum con-
servation gives rise to a centrifugal berricr effect which tends to depopulate
the Dalitz plot in certain regions. The arguments are valid irrespective of

the direction in space of the angular momcntum vector.
p g

We will now consider another effect of angular momentum conservation,
mainly pertinent to production processeé. This effect arises from the fact
that the orbital engular momentum vector in the initial state is not arbitrarily
distributed in space but confined to a plane perpendicular to the direction
of the incoming particle. Even though the Dalitz plot representation does
not contain any informetion regarding the orientation of the particles in
final state with respect to the beanm direction or production plane, we never-
theless find that the rcquirement of the angular momentum vector perpendicular

to the beam will influence the distribution of the points on the Dalitz plot.

A convenient description of the angular distribution of the particles
in the three particle system (see Fig. 6) is in terms of the distribution
function AN/d cos @ where the angle © is given by

> -

cos © = 4
. pPq

One particular advantege of this description is the following. Equel
intervals along lines paraliel to the axes on the Dalitz plot correspond to
equal intervals of cos ®. This nmeans that if E is isotropically distributed
in space with respect of E the Dalitz plot will be evenly populated with
points along lines parellel to thc axes and along lines at L5° with respect
to the axes. (This can casily be proved by performing a Lorentz transforma-
tion of a and @ to the threc particle centre of mass system. (cf. also

exercise in Chapter VII.c).

Since 7 and T arc randonly orientated in planes perpendicular to

-
q and B respectively, an isotropic distribution of a with respect to S results
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in a uniform distribution of the spacce angle betwcen ¢ and L. Wie will now
, -
show that the rostriction on the dirzction (given by the vector sum of J =
T . e, . . . . . _
¢+ L perpendiculer Lo the bearl) leads to & non-uniform distribution in space

- -
betieen g and p.

e introduce a Cartssian coordinate system with z axis in the beam
direction and assumc the physiczl system to exhibit rotationel symmetry about
this direction. iith no loss of generality the y axis can therefore be
taken in the dircction of the total angular momentun 3. Angular momentum
conservation now requires T and 7 to lic in a plane through the y axis.

For all combinations of L and ¢ satisfying

obviously

All plane anglecs 8 between T and 7 are equally probable. e will
now scek the angular distribution between 5 and 3 for a fixed and arbitrary
value of B, that is, we want the distribution function dN(B)/d cos ©. e
recall that p lies randomly in a plane (S in Fig. 8) perpendicular to L and g
randomly in a plane (T) perpendicular to ¢. Ve arbitrarily fix p to be
perpendicular to the intersecction linc between the 4o planes. The direction
of E is given by its angle ¥y with a plane containing E and f, see Fig. 8.

It then follows that the angle © in spece between a and ; is given by

cos @ = cos y cos (m= )
"1

-
g |
— ff"T:fA//)d JY
e ~

/\»//O o \2 ~ .
™~

N T

/ AN
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. - . . . dN( 5 . .
Since q can hove any direction in T, mﬂéﬁl = const, or eguivalently

dy
(<)
d cos ¥ sin ¥
we find
_an(g) . _ _an(p) , dcosy _ __1 1

T cos ® dcosy dcos®  siny cos (1)

Eliminating ¥y we get the distribution function for fixed f

\ 1
e, (cos® B- cos® @) /2 .

d cos ©

Finally, since all plane angles  have equal weights we find by integration

over f
+0

A
T - / (cos? p-cos 6) 7/ ap .
0
For numerical calculation this expression can be given a more convenient form
on éubstituting
sin® =k sin 8 = kt .
We then get a standard form of an elliptical integral of the first kind

an
d cos @

- (k)

1
/ at

« | - -~
J V-2 V-2 42
o]

which is tabulated in, for instence, Jahnke and Emde "Tablcs of Functions”.

The distribution function is shown in Fig. 9.

We also sec from Fig. 9 that dAN/d cos ©, which is symmetricel about
cos ® = 0, 1is strongly peeked forvards and backurards. This results in an
uncven populetion of voints on the Dalitz plot, i.u.‘thure w7ill be more points

concentroted near the boundary then in the middle of the plot.
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In summing up we conclude: The effect of angular momentum barrier
is to decrease the point density in special regions ncar the boundary of the

Dalitz plot. The uncven distribution in space of the angular momentum

vector will lead to decreasing point density around the centre of the plot.
We stress, however, that these remarks are qualitative only. In a specific
case, the effects will depend strongly on the particular type of particles

in question due to the conservation of isospin and parity.

e) Dalitz-Stevenson plot

From a very detailed study of the distribution of points on a
Dalitz plot Maglic and Stevenson et al. (Phys.Rev.Letters 7, 178 (1961),
Phys.Rev. 125, 687 (1962) were able to det:rmine thc spin and parity for the
three particle decay node w® - 7w o+ . Their elegant treatment is also
applicable to other threec particle decay modes proceeding via strong inter-
actions. Stevenson et al. made some special essumptions about the form of
the matrix element. This enabled them to perform a quantitative comparison
between prediction cnd exnerimentol data. Before revieving their arguments,
hovever, we will stete some more general and quelitative arguments given by
Dalitz which arc valid irrespective of the porticuler form of the transition
natrix element and which erc velid for spin velues less than three. [R.H.
Dalitz: "Three Lectures on Elenentary Particles" BNL 735 (1961) and "Strange

Particles and Strong Interactions, Oxford University Press (1962)].
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The fcundetion of the following discussion is the expcrimental fact
that no charged stote of the w has been found. Consequently w has isospin

I =0, i.e. the isospin irevefunction @w is & scalar.
We cssumc that the decay
+ - 2
W > T +T 4T
proceedsvia astrong interaction, i.e. isospin and parity are conserved. There-
fore, the isospin wavefunction of the final state nust also be a scalar. The
only way to obtain a scaler guantity from the threc isovector wavefunctions

®4,%, and ®; of tnhe pions, is to forn a triple product

e, = %1 (82 x @5)

@w = 0 and the transition matrix elcment will vanish if two or more of the

.particles are equal. Thus, the 37’ decay mode of the w’® is forbidden.

The triple product @w is antisymmetric in any pair of pions. . Since
the pions are Bose particles their total wavefunction (which can be expressed
as a product of a space function and isospin function) must be symmetric.
Thus, the space wavefunction of the w must also be antisymmetric in any pair
of bions. This fact has important consequences on the symmetry of the points

on a Dalitz plot representing the decay configurations of the pions.
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We consider in Fig. 10 o trianguler olot (cf. Fig. L in Chapter VII.a)
of the kinetic energiles of thec thrue pions. The contour deviates slightly
fron a circle because of the relativistic encrgics of the pions.  From the
antisymmetry of thc specce wavefunction in all pairs of pions it follows that the
distribution of events is unchanged by a reflection across any onc of the
three symmetry axes of the triengle.  This means that the distribution of
points should be the samc in all six sectors of the Dalitz plot; one of these
sectors is shaded in Fig. 10. In 2 study of the statistical distribution
one can, therefore, very conveniently, concentrate the points in a so called
6-fold Dalitz plot.

We will next consider some general features of the Dalitz plot dis-
tributions expected for different spin (J) and parity (w) assignments of the
w meson. (Sometimes we will denote the sign of the parity by a superscript

to the spin value, e.g. J,J° ).

(1) The density of points will vanish whenever one of the pions has its

maximum kinetic energy. This follows from the antisymmetry of the space wave-
function. An interchange of any two pions makes the transition matrix clement
vanish if two pions "touch" in momentum space. This happens when the third
pion has its meximum energy which is indicated by the points b in Fig. 10.

The above statement holds for all spin and parity assignments of the w to be

considered.

(i1) The density of points will vanish on the boundary of the plot for

w parity w = (~1)J. The contour represents configurations where the three

pions are emitted collinearly and their directions can therefore be specified
by & single vecctor. The space wavefunction will be a spherical harmonic
Y?(cos @), which has parity (-1)J. Since the intrinsic parity of each pion
is (-1), the total parity of the collinear configureation is (~1)>. (-1)J =
—(-1)J. Hence, if thewparity is (-1)J, the matrix clement must vanish on the

boundary of the Dalitz plot.

(iii) The density of points will vanish &t the centre of the plot if the

w parity is even. The centre of the plot rcpresents configurations where the

pions have equal cncrgy and their dircctions of motion meke cngles of 120°
with each other. Therefore, if the three particle system is first rotated
120° around an axis (N) normal to its plene it can be returned to its initial

position by intcrchaonging the perticles 1 » 3 and 2 » 3.
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exp <23= ) (-1) (-1)

If the angular momentum is quantized along N with a magnetic quantum number m,

the rotation corresponds to an operation

exp <%g mi) .

Each of the two successive interchanges corresponds to multiplication of the

space wavefunction with a factor (-1). Since the system is restored to its

initial position we must have

exp (-3- mil. (-1)(-1) =

For J < 3 (recell that m < J) this.equation can only be satisfied for m = 0.
This means that m = 0 is the only possibility for a non-vanishing matrix element
of the symmetrical configuration. This information will now be used when

we perform the following operations.

We reflect the symmetrical configuration with respect to the origin
and return it to the initial state by rotating the system 180° about N (the
normel to the plane of the system). The effect of the first operation is to
multiply the space wavefunction by (-1)>+w (w = intrinsic parity of the w)
whereas the second operation for m = 0 leaves the wavefunction unchanged.

Thus, we require
(=1)? w(+1) =
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This means that the matrix element must vanish at the symmetry point if the

w parity is even. This statement is valid for all J < 3.

(iv) The density of points will venish et the centre of the plot if J is

even. To show this we rotate the configurction at the symmetry point about
an axis along the direction of motion of one pion, say pion 3, and return

the system to the initial state by the interchange 1 « 2.

The first operation corresponds to an operator
= imr J
exp (im y)

where the y axis is oriented along e direction of motion of particle 3. Now,
since m = 0, J_ can also be guantized. Therefore the rotation multiplies

J
) .

the wavefunction by (-1 The second operation (interchange 1 ¢ 2) changes

the wavefunction by a factor (-1). In total we must have

-1)7(=1) =+ .

Thus, the matrix element has to be equal to zero at the centre of the plot if

J is even. This statement is also valid for all J < 3.

The above gqualitative but general considerations are sufficient to
distinguish between the possible spin and parity assignments of the w meson
if J < 3. A 0" state of the w decaying via the mode w - 7 + 7 +7° violates
the conservation of parity. The other possible states are O-,1-,1+,2- and
2%, Prom (iii) and (iv) follows that the states 1% and 0 ,2%,27 respectively,
would all demand zero point density at the centre of the plot. The experi-
mental distribution on the 6-folded Dalitz plot in Fig. 11 clearly reveals
that the dénsity of points does not vanish near the centre of the plot. Thus,
of all the admissible spin parity assignments for J < 3 we are left with only
one possibility, 1 , which from (ii) should require a depopulation of events
near the contour. This is in agreement with the observed distribution in
Fig. 11.

e conclude therefore, that the w meson probably has J = 1 and w = =1.
This was already shown by Stevenson et al. in their original paper, and we
now proceed to discuss their assumptions about the transition matrix element

and the quantitative comparison they made on the basis of the assumptions.
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The transition metrix element of the w decay is most conveniently
analysed in terms of the vectors ; and E introduced in Fig. 6. e recall
that E is the momentum of one pion (3) in the 3-body centre of mass system
and q the momentum of one of the other pions (2) in the centre of mass of

these two pions (1 and 2).

No rigorous derivation of the different matrix elements will be
attempted here. Our aim is simply to present some physical arguments from
which one can understand the qualitative form of the simplest matrix elements
derived from different tentative spin and parity assignments of the w. The
implicit assumption being that the wavelengths of the decay pions are large
compared to the interaction dimension of the decay which presumably is of the
order of the Compton wavelength of the w. Consequently the momentum dependence
of the transition matrix element will be determined mainly by the coefficients

for the centrifugal barrier penetration and will for L and ¢ greater or equal

L [/
| R R
= <yl lop é‘%:%?::é%‘:lﬁ?:

where R is the radius of interaction. Ve note that the momentum dependence

to one be of the form

of 1 is independent of R, so that in order to study the variation of M from

the Dalitz plot it suffices to write
il e« pL qe .

One general remark can be made about the possible values of {. A
reversal of E which multiplies the wavefunction by (-1)8 corresponds to an
interchange of the two particles (1 & 2 in Fig. 6) which changes the wave-

function by (-1). Thus we must have
{
("1) . (_1) = +1 .

It follows that only odd valuss of ¢ are allowed. Therefore only ¢ = 1 will
be considered in the following discussion of the three possible matrix elements

for w spin less or equal to one.
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0 meson (L=:<=1), Jince the intrinsic pority of the three plons is
(=1)® = =1 the 0 meson should rewuire a scaler transition matrix element.

The only scaler qucniity which is odd with respect to an interchenge of eny
- > .
two pions (say 1 end 2) is a scelar product of the form p .q (interchenge

of particles 1 and 2 corresponds to a rcversal of a).

We will now express this scaler product in terms of the centre of

mass energies of the pions. In the non-relativistic limit we can write

(-3

By = —=——— + m
2m
> 2
>
(i3
E; = =——————— +m
2m

where Ey and E, are the total energies of pions 1 and 2 in the 3-body centre

of mass system. From these two equations follows

E.E=m(E1-E2) .

Now, since the matrix element (i) should be symmetric in the labels of all

three pions, it will, for a 0 meson be of the form

i#07) = (By=E2) (Ba-Es) (Bs—-Ey) .

We see that M(O-) vanishes whenever two of the pions have equal energies,
that is along all three symmetry lines of the Dalitz plot. In particular
the density of points will be very low where the symmetry lines intersect,
that is, in the centre of the plot.

1 _meson. The matrix element describing the transition from a vector meson
state 1 to the three pion state must heve the properties of an axial vector
(pseudovector).  For the decay with L= £=1, ii(1 ) must therefore be of the
form Ex E. e note that this metrix element is also odd for an interchange
of two particles (reversal of q). Since ps = p and pz = -p/2+ q etc.

i can be expressed in terms of the momenta of the particles in their overall
centre of mass system as

. -> -> -> -> > -
{(1) = p1X P2+ Pax P3+ D3 X D

where M is made symmetrical in the labels of all three pions.
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We see that M(1_) = 0 vhenever the sions are emitted collinearly;

that is the density of voints venishes on the boundary of the Dalitz plot.

1t meson. The transition matrix element must in this case have the properties
of a vector. The simplest decay of ¢ 1% w meson 1s by the emission of one
s-wave pion (L= 0) and two pions in a relative p-state ({=1). Then the

matrix element will be of the form Es E. Since

v

3 ->
= 4 p2

ng

-
q:

we have from momentum conservation

- -> ->
q=- /o(p1=-p2) »

Thus, a matrix element symmetrical in the labels of all pions and odd for

the interchange of any two pions will be proportional to
A + - > ->
H(1%) = Es(ps = p2) + Br (e - bs) + B2 (P5 = b1 )

This matrix element vanishes whenever any two pions have the same momentum,
that is at the points b in Fig. 10. It also vanishes at the symmetry point
of the Dalitz plot where Ey = E» = Es.

The variation in the point density on the Dalitz plot for the
different matrix elements can be illustrated on a three dimensional plot =~
referred to as Dalitz-Stevenson plot (see Fig. 11) - where the height above
the Dalitz plot is proportional to the square of the matrix element. Due
to the finite width of the resonances (i.e. the variation of the Q value
from event to event) it is most meaningful to make the Dalitz plot in terms
of the normalized variebles T4/Q, T2/Q and Ts/Q. In a Cartesian coordinate
system with x axis and origin as indicated in Fig. 11 we now have

Tp = Ty

= e

V3 Q

y=g -
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Figures 11 4,3, and C show isomctric zravhs of |#(17)|%, |u(07)|?
and IM(1-)|2 respectively. The meximum height above the plane is arbitrarily
chosen as unity and the contours heve besn drevm at 0.2 intervals. For
comporison with experimental date the contours are projected onto the plane
of the Dalitz plot. Because of the symmetry of the »nlot referred to carlier,
it suffices to make the projection in one sixth of the Dalitz plot. Such a

projection is shown for the 1 meson in Fig. 11 D.

The matrix elements for the 17 and 0 meson show considerable and
different azimuthal variation. For instance H(O-) = 0 for x=y=0 whereas
M(1+) is large at the same point. The 6-folded Dalitz plot has therefore
more or less arbitrarily been divided into two sectors A and B. The contours
(for constant |i]|?) in turn divide each sector into sub-areas Ai ... As and
By +.. Bs as illustrated in the 1 case in Fig. 11 D. Finally, Fig. 11 E
displeys the number of events found within each areca As,A> etc., as well as
the theoretical curves of |Mlz (obtained by azimuthal integration from Fig.

11 A, Band C) versus the distance from the centre of the Dalitz plot.  (This
plot is also generally referred to as Stevenson plot). It is evident that
the 1~ assignment to the w meson is in perfect agreement with the experimental
result. On the other hand, a 0" orai’ assignment would contradict the

experimental date for both sectors A and B.

With reference to the general remarks made in the preceding para-
graph about the effect of anguler momentum barrier on the distribution of
points on the Dalitz plot, one comment should be made. It was shown that
the contribution from partiel waves with L > 0 would diminish whenever one
of the particles in final state had zero linear momecntum. In the case of
the 17 w meson, however, |il(1¥)|? has its meximum value at y = 0 (Fig. 11 A).
The reason for this, is, that the matrix element is celculated for L = O only.
Inclusion of higher L values would still give finite values of M(1+) for
¥y = 0, but M would show a decrease for Tz - 0 duec to smaller contribution

from L > 0 states.
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a) Branching ratio in 7 decay

One has observed two 2-body decay modes of the 7 meson

If the matrix clement of the transition is the same in both reactions
the branching ratio is determined by phase space. We will calculate here the

branching ratio predicted both from Lorentz non-invariant and Lorentz invariant

phase space. In the centre oI mass oi ‘ule pion we have
E = 139.59 leV
Ey = 109.78 leV
pu = 29.81 lieV/c
Eg = 69.80 eV
Pe = 69.79 MeV/c .

Using formulae (6) and (8) these values give the following phase space pre-

dictions for the branching ratio

Pa(llv) _ s .

s (ev) = 0.427 (non-invariant)
Re(uv) = 0.207 (invariant)

Rz (ev)

We notice firstly a marked difference between prediction from non-
invariant and invariant phase space. Secondly we have a large discrepancy

between the predicted values andvthe cxperimental result.

Experimental branching retio
J¢ g
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From this discrepancy follows that there is no resason to believe that the
matrix element is the same for the two decay modes. On the contrary, we
expect from the two component theory of the neutrino that the matrix element
will be very sensitive to the velocity of the emitted lepton. Since the
positively charged leptons arc preferentially emitted with positive helicity,
the decay rates of 7° = pT+ v and 77 » eT+ v are reduced by factors (1-V /)
and (1-ve/c) resnectively. Disregarding phase spece this gives a branching
ratio of the order of 10° [see for instence A. Lundby, Progress in Elementary
Particle and Cosmic Rey Physics V, 1 (1960) ].

Sy

To illustrate the use of formulae (21) and (24) and to show the

appearance of some effective mass distributions, consider the reaction
K +N->K+% +n7w

which has recently been studied at CERN (Belliere et al. Physics Letters 6,
316 (1963) and the Sienna Conference 1962).

The reactions were produced in a heavy liguid bubble chamber filled
with CFsBr by a separated K beam with an average momentum in the chamber of
about 3.4 GeV/c. A K interaction with a single nucleon at rest corresponds
to a total energy in the centre of mass of 2.75 GeV. Since in the heavy
liquid the nucleons are bound in a nucleus, the centre of mass energy will be
spread out due to the Fermi momentum of the nucleons. The effect of the
Fermi momentum on the phase space distribution of the E7 mass is illustrated
in Fig. 12 for the case vhere only one pion is produced (3-body final state).

We have calculated here from Eq. (21) the Em mass distribution for the case of
a nucleon at rest (No Fermi) and for the two rather extreme cases that the
target nucleon moves parallel to the beam end with a momentum of 200 MeV/c
towards or away from the beam particle. These extremes correspond to a centre
of mass energy of 3.01 GeV and 2.52 GeV respectively. For the cases with
two or three pions (L4 or 5-body final state) we heve used Eq. (24) to calculate

the Zm mass distribution for a target nucleon at rest only.

The experimental values of the Zm coffective massces are presented

as histograms in I'ig. 13 and Fig. 14 for events containing 1,2 and 3 pions.
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The & m system which hes a third conponent of isotopic spin I = ~3/2
. . . . e :" 0o
ond therefore I 2 3/2 is presented in Fig. 13 ond the & 7 and Z 7° nass

values which heve I 2 }E arc conbined in Fig. 1L,

The curves in Pig. 13 end Fig. 14 are phase space curves constructed
from Fig. 12 for interactions with terget nucleons ot rest, cnd azre simply a
super position of 3,4 =nd 5-body phase space weighted according to the respect-

ive number of events observed.

There seeils to be good agreement betieen the experimental E 7 mass
distribution and the predicted phass space curve. This is rather remarkeble
since we have neglected all efficts from Fermi wotion of the target nucleons,
secondary interaction in the targoet nucleus of primery and secondary particles
ete. On the other hand the phese space curve in Fig. 14 seems to fit the

experimental histogram rether poorly.

The above gualitetive statements should be expressed in a nore
objective and quantitative way by perfornming a goodness of fit test of the
distributions. To do this we divide the mmss valucs of Fig. 13 into four .
groups with approximntely equal number of cvents in each group. Recalling

the definition of X® of a varicble x

q’*[xi (experimental) - X, (theoretical) ]2

& R TR e R MR

X% =) - S .
a X, (theoretical)
i

we find from Fig. 13 X® » 3 for three degrees of freedom. This gives a pro-
bability of about 40%, so that our expérimental mass distribution should have

X% > 3.0. In other words, if our sanple of events is taken from a universe
which follows the laws of phase space there is 40% probability that new measure-
ments performed on an equivalent number of cvents will give a distribution

which deviates even more from the theoretical curve.

Correspondingly we find from Fig. 14 X® = 10 for four degrees of
freedon, i.ejr a probability'of about 2%. It is therefore rather unlikely

that the & 7° noss distribution follows phase space.

We interpret that data in Fig. 14 as e likely production of two Zm

resonances; one 1is the well-estcblished &, with mass 1.53 GeV, the other is

S
a possible resonance at about 1.75 GeV.
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The phase space cffective rass distributions of the Erm system fronm

the same 4 and 5-body finel states ere showvm in Fig. 15.

The effcct of a resonance on the effective mass distribution is

illustrated in Fig. 16 for the following reactions

K+ N> K¥e B
LK+ T
and
K +N->K+8 +7°
LK°+ at

Fig. 16 illustrates both the 2 7° and © 7' effective mass distribution from

the last configuration.

c) Angular distribution

To illustrate the use of the formulee evaluated in Chapter IV we
have calculated the angular distribution of two pions from the T-decay. This
example is particularly sinple since as a good approximation we can do the
calculation for three non-relativistic particles of equel mass. The result

is shown in Fig. 17.
Exercise

Show that for three non—relati?istio particles of equal mass, the

integration limits of ps in Eq.(17) will be given by

ps(min) = 0
1
ps (max) = ()
L~ cos®®

where m = mass of any of the three particles. Show that the angular dis-
tribution is independent of the mass of the particles and of the total energy

of the systen E.
d) Dalitz plot

In Fig. 18 is drawn the contour of a T"+ Tn— Dalitz plot for the

reaction

— + —
K+p2A+7m 7
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with total energy in the centre of mass of about 2.02 GeV. This reaction

has been studied at CERN in a 30 cm hydrogen bubble chamber (Cooper et al.

1963 Sienna International Conference on Elementery Particles) using a separated
K beam with momentum 1.45 GeV/c.

Fig. 18 shows the result from an analysis of 582 events, and reveals
an exariple of a non-uniform distribution of points. There is a marked
clustering of points for both a constant T - and a constant T ot value indicat-

ing the production of Am" and AT resonances respectively, i.e. Y§~ (1385)

Figure 18 shows also a tendency that the points within a resonance
band may not be evenly distributed along the axis. For the Y+" there seens
to be more points for high Tﬂ_ values et¢. One explanation of this is sone
production of the p° meson. e leave as an exercise the finding of the
band on the plot within which one should expect points due to the meson resonance

+ -
p’ >4 m .
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APPENDIX
We define the Dirac & function by the equations
5(){) =0 for x /é 0 } (i)
lim §(x) »« 1in such a way that /Ié(x) dx = 1
X->0
for all integrations enclosing the origin.
From this definition it follows that
b
[ f(c) forac<c<hb s
/'f(x) 8(x-c) ax = { 0 forc<aorc>ho. (i1)
a

Correspondingly if we define a three-dimensional § function 5(r) as
-
8(r) = 8(x) 8(y) 8(z)
the integration over a volume V gives

£(%o) if o lies inside V
/f(?) 5(3e To) &3 :{

v

0 if 7o lies outside V.

In the case where the argument of the & function is itself a function,
like 8(3(x)), we find by substitution

/’6[§(x)] dx = /'G(y) TETg%ijT

where the absolute value is nccessary to ensure that dx = @,% >‘ is always
X

positive.
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From the above follows

! ; - 1ii
e e o o

'/Téfé(x)] dx =

The equation (iii) can also bec gencralized, using Eq. (ii), as

Jo ir a(x) = 0 .

|37 (%0 )]

/g(x) 5[e(x)] ax = -

This rule is valid for all functions g(x) which arec continuous at x = Xo .
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SY:BOLS USED

Momentum of the system in initial state.

Total energy of the system in initial state. It will be evident
from the context whether this is in the laboratory or centre of
mass system.

Total energy of i'th particle in final state.

Rest mass of i'th particle.

Kinetic energy of i'th particle in final state.

Momentum of i'th particle in final state.

Effective mass of two particles i and j.

Effective mass of the first k particles taken from a system of
n particles.

_ (2 2 _ p2_ 2
Four vector = (pi’Ei) of length qf = Ef - pf.
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DETERMINATION OF THE E DECAY PARAILTIRS

W. Koch,

Track Chamber Division, CERN

Let us consider a two-body decay of a particle (A » B+ C). If

the decay interaction is strong (e.g. p = 27) parity is conserved, i.e.

g, = & &g (-1)F D
¢ .
where the E's are the instrinsic parities of the particles involved, L the
angular momentum of the final state, and (—1)L its contribution to the parity.
As can be scen from Eq. (1), only either odd or even L are allowed for the
final state. If, however, as is.usual in weak interactions, parity is not
conserved, relation (1) breaks down and both even and odd angular momenta

are permitted, as far as the total spin can be conserved.

We choosc the Z decay
E>AN+T

as a specific cexamplce to discuss how the wave function describing a non-
leptonic weak two-body decay can be found experimentally. It will turn

out that this wave function (of the decay products) is most conveniently
described in terms of the so-called "decay paremeters" which are more closely
related to measurablc quantities than the wave cquation's amplitudes them-
sclves. We shall assumc that both £ and A have spin % (well established
now). The 7 has spin 0. The following considerations, though presented

for spin % particles can easily be generalizcd for higher spins.

As initiel statc we choose 2 & in its ce.m. with the spin pointing

into the positive z dircction of the refcrence framc:
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Initial stete:
Z
T,

- 3:31/2-
[}

Now we ask for all possible final states allowed by angular
momentum conservation. Only the spin angular momentum part of the wave
function need be considered. Angular momentum conservaticn aliows only

the following spin configurations of the decay products:

Final state:

Y
=
-
It

0 _ 1
A ‘ AsY° S?é = AS.1. <0 )
z/T :
\Lj ’I L=t 1 Py .T -4
\‘ A-a) Vs Ap (-\/;) Y, S% = Ap <-\/ 3) (\/3_ cos @) (0 >
T [2 v - 2(.[2 sin 0 1) (0)
A.p 3 Y3 S~Dé = A.p \/3 ( 5 sin @ e > <1> N

Here the complex numbers AS and --A.p are the amplitudes of the S and P angular
momentum state. We use --A.p instead of A as P wave amplitude to obtain

the sign convention of Teutsch et al.1). The Y's are orbital angular

i

i
~
i
B
w
1

momentum eigenfunctions and

sy, = (5 ) ey, < (5)

are the Pauli spin functions. The fectors (=¥4) and V% are Clebsch-Gordon

coefficients arising from the decomposition of the initial spin Yo state

into two spins, Yo and 1:

S% =-\/1H/; Y? S1/2 +\ﬂ: Y} S_%Z .
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The totel final-state wave function ¥ is, of course, a linear superposition

of the three possible spin configurations:

_ _ 1 ip . 0
¥ o= U+ ¥+ ¥s = <AS+ Ap cos @) <O> + <Ape sin @> <1> (2)
3

and its conjugate
* .
¥* = (A +A cos © 1 +(ae™® sin @ 0 .
s D 0 P 1

The angular distribution of the decay as measured in the & c.m.

system is given by

dN

d cos © v = IAS*.AP cos ©]* + IAP91¢’Sin-®[2 . (3)

With the general relation between two complex numbers

|a+B|2 = |a]%2 + |B|? + 2Re (a*B) .

Eq. (3) can be written as

=u*y = |A |2 + |A |? cos® @+ 2Re(A *A ) cos ©
s P s P

+ |A |? sin® ©
2

1

la |12 + |Aa |2 + 2Re(A*A ) cos @ .
s D sp

Now let us normalize the wave f‘uriction so that

2 2 _ )
lagl® + la|® =1 ()
This gives
an
e = 1 4 2Re(A¥A ) cos @ . (5)
d cos © s’ p
2
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2Re (A’;Ap) is called the a-decay parameter. If a = 2Re (A:Ap) £ 0,
an up-down asymmetry is observed in the decay which directly indicates
parity non-conservation; so a can be regarded a measure for parity viola-

tion.

Now we introduce two other decay parameters, which in a similar

way to a are related to some angular distributions to be discussed below.

We define
= *
« = ZRe(AsAp) |
= *
g = 2Im(ASAp) (6)
- 2 _ 2
v = lal® - Ia

Not all the authors use the same sign convention. Ours agrees with that
assumed in the article of Teutsch et al.‘). For example Crawford?) defines

a = -2Re(A*A ).
5 p

One may easily verify that
o+ fF ey’ =1 | ()

Two of the decay parameters determine the absolute value of the third one,
but not its sign. Further, we notice that «,B,y are invariant under a

phase transformation

A > A ei(P
s s

A - A et .
p D

So two decay parameters and the sign of the third will completely determine
the final-state wave function; that means, Asband Ap which are subject
to normalization condition (4) will be known up to a common irrelevant

phase factor e'?,

a and B may be written in the following way:
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-i@sﬁ-i¢
@ = 2Re{A*A ) = 2Re <|A A |e P>
sPp s 'p
=2 |aflal cos (o -0,) (8)
p =2Im(A*A ) = 2Im ( |A_||& ie_i%“qep
- s p’ s''p

| . i
2 |alla)l sin (o -0))

¢P- Py = Pl is the relative phase between the S and P waves. Now, as

shown in AppendixII, if therc are no final-state interactions, time reversal

invarience requires § to be 0. As a consequence of Eq. (6), 9oy = 01in

this case, which means that AS and Ap are relatively real, and a = 2IA3||AP"
So far we hcve seen that the a parameter can be determined from

the decay angular distribution of a polarized =, In the following we

shall investigate the polarization of the daughter Fermion A. It will

turn cut that the polarization of the A is related to f and y so that these

can be determined by polarization measurements.

Before going into details of our problems we shall briefly recall

how the polarizction of a spin yé particle is described guantum mechanically.

The most general pure spin state of a spin % particle is

¥

n

8,51/2 +b S_1/2

a<®+b<?> (9)

with a and b being complex numbers normalized to 1

lal® « [b[2 =1 . (10)

a and b are related to the direction in which the spin of the particle is
actually pointing, or more precisely the direction for which the spin

expectation value is 1.
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The spin expectation values along the x,y,z axis are

— % . -1
<I > =V Y ;. I = yA o,
<J > =v*Jv¥v ; J =Y & 11
y y 'y Z y o (11)
:ﬂ!* M '_‘.1
<J,>=vRY ;g YA o,

where the o's are the Pauli spin matrices

_(0 1 _(0 -i _(1 o
Gx~<1 o>"’y"<i o>’°'z‘<o -1)‘

The polarization vector for spin % particles is
B=2<3> = i3y ' ’ . (11a)

OO YOO
O OO0

eb* + a*b = 2Re(a*b)

d
n

o Lo (00 1C D0 O)]

_ (12a)
L (0) () () 02 ()]
= -ia*b + iab* = i(ab*-; a”“b)
PL: i(ab*=- a*b) = 2Im(a*b) (12b)
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In the same wey one finds

P, = a*a=b% = lalz - |b]2 . (12¢)

From (12) follows
PP+ PP+ P2 =1,
x 'y Tz

So the polarizatior is 1 for the direction

B = 2Re(a*b) éx+ 2Im(a*b) éy+ (la]? - |p]?) éz

where the & are unit vectors in the x,y,z direction.

Conversely one can show that if the spin points in a direction -

defined by the polar angles ©,%, the corresponding spin state is

vone) = gomn 04 0) (g) o ¢ con % 9) ()
a b

a and b are of course der'ined only up to a common phase factor elcP.)

Now let us apply these relations to calculate the polarization
direction of the A from the E decay. The problem will be treated here
in a purely non-relativistic way. However, in Appendix I it will be
shown how the non-relativistic formulae are to be interpreted in the

relativistic case.

The final state wave function (2)

¥ =(A +A cos © 1>+Aeiq>sin® 0
s 'p 0, o) 1

contains of course all necessary informstion about the A spin. In order
to obtain the standard form (9 ) of a spin %% state, the coefficients

of the spin function have to be normalized:
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4 A +A cos © 79\ .; e™? sin © <0>

A—|‘I‘|2 14+ a cos © k) 1+ cos ©

— o N

a b

So the spin state of the A, characterized by 2 and b, depends on its
emission direction ©,% in the ¥ system. As in our problem only the z
direction in the E system is fixed one can, without lack of generality,
neglect the ¢ dependence by choosing ® = 0, ei';f" ='1. With this choice
we have bound the A emission da.rectlon to the z~ x plane. To calcu-ate
the polarlzatlon direction of the A we apply relations (42) to the A spin

state (13):

i

. * % (A sin @)1
(14 a ‘cos 0) Py, = 2Re [(A3+Ap cos @) (Ap_ sin @)]

oRe [A*A_ sin © + |A_|? cos @ sin 0]
S P D

=g sin © + 2|ARl2 cos © sin @ (14a)
_(:1+cx cos ©) P Ay = 2Im [(A:+A; cos @) (Ap sin 6)]
= ZIm(AgAp sin @) + ZIm(A;AP) cos.® sin ©
=0
=B sin © (14b)
- o A 2 - . 2
(1+ « cos ®) P, = IAS+ Ap cos 9| IAP sin 0|

l.As|2 + IAPIZ cos® @ + 2Re(A:Ap) cos @

-; IA lz sin® ©
p

4|AS|2 - iApI2 +2 || cos o +:2R¢(A;A§)"cos 0

I

Y+ a cos G + 2 |Ap|2 cos? © . . (1he)
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These relations describing the dependence of the A polarization on the
emission angle © held in this form only if the EZ is completely polarized.
They have to be modified for a E polarization P < 1. Naively one mighé
assume that then the A polarization is weakened by a factor P, but in

reality it is more complicated:

7863/p/cm
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We consider a source of Z's where N(T) particles have their
spins along the positive z axis and N(&) particles in the opposite direc-

tion. Then the polarization of the source is

p = N1 - (D)
N(T) + n(])

Now we fix a direction © in space and let either of the two sorts of particles

decay along this directien.

93

a) b) i )
FIG. 2.



- 85 -

i
\

To get the A spin expectation values for a fixed direction in space (Fig. 2a)
we apply formulae (14) to both the £ spin states (Fig. 2b) and (Fig. 2c)
and add their contributions weighted by N(}Y(N(}) + N({) and N(} YMN(}) + N(¥))

respectively. The system S in which the direction ©® in space is defined

coincides with the system Sy in which the spin-up E's were analysed. To
apply formulae (14) also to E's with spin down (with respect to S) we intro-
duce a new coordinate system S, (Fig. 2¢) in which again the E spin points
aleng a ﬁositive Zz» axis. The configuration of S, is translated into

S = 5y by the transformation:

y2 ==y
22 = -2
82 =g=-06

Thus for Z's with spin down in S, relations (14) are modified in the
following way

P - ~-P
h y

P -»-P
z 2

cos & - - cos 6

If corresponding terms in (14) have the same sign for both £ spin directions
they remain unchanged in the corresponding expressions for the mixture; if
they change sign they are weakened by a factor P. Therefore the A

polarization for a E source with polarization P, is

« sin 8+ 2P, |Ap|z cos © sin © \

el
u

xA 1+ P_a cos ©

P_8 sin ©
p e \ "
YA 44P_a cos © (15)
p = Pgr+a cos @+ 2P_|A |? cos® ©
SA = 2 2'"p

1+P3a cos 8 /
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For a source with P< 1 the decay angular distribution is of course different

from Eq. (4); it becomes

dN

T cos 6 - 14+ Pa cos 6 (16)

Let us transform the A polarization to another coordinate system

defined in Fig. 3 by the unit vectors &,,8&.,8s.

>N

(Y [T
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A |l s direction of E polarization

8 = SA direction of A in Z reat frame
& || Ax8& |y in our case

és | l 8 x &

The A polarization components along &:,8.,8 are

‘A=Pmsin8+PzAcose \

P. cos O+ a

[~

1+ Pa cos ©

Foa = PyA

P8 8in ©

N

(17)

1+ Pa cos ©

A PmsinB-PxAcose

a)
n

Py sin ©

14 Pa cos © ,

It is interesting to notice that even completely unpolarized Z's will lead
to a A polarization of magnitude a in the direction & = éA.

As relation (17) involves the decay parameters, it is clear that
they can be determined from polarization measurements. In order to
stress the close relation between the A polarigation and the decay parameters,
let us rewrite Eq. (17) for a A emission angle 6 = 90°:
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FIG. 4.

Usually a polarization analysis is performed by scattering experiments.
Here, however, we are in a favourable position, because the A in turn

has a parity violating &ecay with a large asymmetry parameter « A S 0.62‘).
So the asymmetry of the (A » p+ 7 ) decay can be used as polarization

analyser.
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From theory we know that the decay angular distribution of a

polarized sample is of the form

aN
Toos 5 - 1ty P, cos @p = 1+ a cos ep (18)

with respect to some direction ﬁ.

Let us now try to find the direction i and the asymmetry
parameter a for an experimentally observed sample of A decays. To
this purpose we first study the following problem. What does the
fngular distribution Eq. (18) look like with respect to another direction

B in terms of the polar angle & and the azimuth «?

Angular distributions may be regarded as density functions on
the unit sphere, so our porblem consists only in an angle transformation.

In the given density function

dN

d cos 6 FA(G’Q)

we have to substitute the new angles 3,a:

F,(6,8) = F,(6(2,a), &(8,a)) = Fy(9,a)

As our F, as defined in Eq. (18) does not depend on &, we need only © as

a function of # and a. Without lack of generality we choose the unit

vector B as coinciding with the z direction and K lying in the z-x plane.
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» X

FIG. 5.

The vector ¥ in Fig. 5 defines an arbitrary point on the unit sphere.

Writing © as

i"=sin19cosaéx-sinﬂsina8y+cosﬂéz

one immediately obtains cos © as

cos © = A# =sinﬁcosan+cosﬂAz.

Substitution of cos © in
FA(Q) = 1+a cos ©

gives

FB(G,a) = 1+a[sin 8 cos a Ax + cos ¢ Az]
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- Averaging over the azimuth a leads to

27

7
<Fp ZN/FB(ﬁ,a) »

o]

n

1+ a AZ cos ¢
or, as B is parallel to the z direction

<Ppx =1+ a(AB) cos ¢, (19)

Now we apply this result to our sample of A decays which has the

angular distribution

aN
T 05 ® = 1+~aA PA cos @p

with respect to the polarization direction §A' If one now introduces a
coordinate system defined by three unit vectors &:,82,&s and calculates the

decay angular distributions with respect to these directions, one obtains

d cos & T+oy, Py, cos &
an ~

T o0s B - ‘l+ocA PAz cos %2 S | (20)
dnN

T 508 5y = 14-aA PA3 cos Us

/

where PA1’ PAz’ PA: are the components of the A polarizationfk.in the
directions &4,82,85.  Thus, if a, is known, the magnitude and direction

of the A polarizetion can be determined by messuring the asymmetry. coefficients
of the angular distributions (20) with respect to the axes 8&;,8.,8s of an
arbitrary coordinete system. After heving shown how to use the A decay

as polarization analyser, we now apply the results to the A's produced in

the E decay.

7863/p/cm
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In Eq. (17) we calculated the three components of the A polarization

[

as a function of the & decay angle ©. Furthermore the coordinate system
81,8,,8s, in which the A polarization was defined, depends on the A emission
direction &; so that the polarizetion of every A is defined in a different

coordinate system.

For A's emitted under a fixed angle © one will obtain decay

distributions with respect to the three directions ék which are according to
Eq. (20) of the form

an
T 5, =1+ a, PAk(G) cos ak (21)

where ﬁk is the angle between the direction ék

A rest frame. Adding up corresponding distributions (21) for all = decay

and the decay-proton in the

angles @, will give the resulting distributions

= 1+o¢A <PAk>‘ cos ﬁk

where <PAk> is the statistical average of the poclarization components PAk(G))
over the E decay angle @  So with the E decay angular distribution

£(®) = ¥%2(1+ a_ P, cos ©)

the averages <PAk> are

<Py > - f P, (6) £(6) an
+1
= /PAk(G). Yo (1+ ag P cos ©) d.cos O .
-4 : .

With the expressions (17) for P (©) one finds in particular
Ak .

+1
<P, >= A /(PT cos O+ a_) d cos @ = a
-1
m m
<P > = Y /P,:. B sin® ® @@ =% P_ B % (® - sin © cos @)/
o}
G

"
=i
i

™
[£3]

7863/p/cm
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and correspondingly

=I
<PA3>*4P Y.

-
-
=

23]

so the distributions REq. (22) arc explicitly

aN _ . _ A A

ﬁggﬂ§1 =1+ aE OLA cos 4 3 cos %y = ep €1
dN _ g . _ A A

Toos 3. © 1+4 Po fgy o) cos %2 3 cos d2 = °p © (25)
dN _ 1 . _ A A

dGos s L FgY¥g @y 008 s cos by =C, 8

Furthermore one has the E decay distribution Eq. (16)

dN A A

Toos® = 1+ Pg g cos © 3 003 @ =& fi. (252)

In the definitions of the angles ép is the emission direction of the p in
the A rest frame and fi is the direcction of the E polarization. The ék
lavebeen defined before as

A
=C

w>
-

A
. A
é _ X eq
2 =
[ & ]
-~ N
€4 X €2

>

3 = A A
8y x G2

Relations, Eq. (25) have first been given by Teutsch et al. ‘.

How is the situation experimcntally? If the Z's produced in

some reaction, e.g.

- -~ +
K+p=>8 +XK +am

are unpolarized, one can, nevertheless. detcrmine the a- parameter from the

asymmetry coefficicnt a4 = ag N in the first angular distribution Eq. (25)

7863/p/cn
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if «, is known from another cxperiment (ay = 0.62% o.oz)“). For the other
decay paramcters, polarized E's are rcguired. Polarized fermions can be
produced cither in elastic écattering or in inelastic two-body reactions,
such as

K+p-58 +K
where the polarization has to be normal to the production plane, i.e.

parallel to the direction

(1>

A ~—
n=K x

Any other direction is forbidden by parity conservation. The polarization
depends on the production angle ®pr in the c.m. of the colliding particles.
P?(®pr ) tends to 0 for ®Pr > 0%, 180°. If the average E polarization

in an angle interval 04 < ®Pr < 0,

. e @(cos ©_ )\
<P.> = P’_'(® ) m————-—ap-_": . d cos ©
& &' pry d cos © pr.
pr.
€1

is different from 0, the method described above can be applied. The four

asymmetry coefficients in the angular distributions Eq. (25),

a1 = ag oy
m
az _LFPE 'BE aA
. (26)
8 = PgYg ay
as =P.;. oy

are determined experimentally which allows the solving of relations Eq. (26)
forPE,aE,ﬂE,ys, if a, is known. Actually a,fB,y are overdetermined because
they have to obey the relation a®+ g% ++4® = 1. Therefore a bestfit can

be obtained in minimizing the expression

2

Ny /%" % best) .
M=23 —-—ZZ;T~=-—- = ilin
with the constraint

az(ak best) *+ ﬁz(ak besf) + Y?(ak best) =1
7863/p/cm
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Here the &, are the experimentally observed asymmetry coefficients Eq. (26)

with the errors Aa]c and, ay are the corresponding bestfitted values.

The decay parameters o,f,Y QZiSEe expressed as functions of ak,bost and

so the constraint can be written in terms of ak,best' If the polarization
changes very rapidly with the production angle so that no large enough
angle interval can be found with average polarization # 0, another method
can be applied, as was done by Alvarez et al.”’. From a partial wave
analysis of tiic production angular distribution, the = polarization
PE(Opr.) may be derived. The decay paramcters are detcrmined by a maximum
likelihood treatment of the obscrved events. This works in the following
way. Firstly one writes down for each cvent, the probability Wi to occur
in all its cessential details (containing information about «,B8,y), as it
actually had occurred in the chamber. The Wi will contain a,f,y as unknowns.

The requiremcnt that the product of all Wi's becomes a maximum

H‘Wi(oc,ﬁ,y) = Max
together with the constraint
o+ B2 +y? =1
determines a,fB,Y.
What does W. look like? It contains two factors corrcsponding

i
to the two successive decays.

[1]

1)  The probability that the A of the E decay includes the angle QA

~
with the & polarization direction P.:

1

Ty = 1+ P, a (PA) 5 cos e, = (P A) .

2) The probability that the proton of the A decay includes the angle

6, with the A polarization direction P,
P, = 1+P, aA(PAp) ; cos @p = (PAA) .
Here P is a function of the production angle ®pr

ﬁE = ib)E(®pr.)

3

7863/p/cm
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and ?A is the A polarization, depending, according to relations Eg. (17),

on the A emission angle QA’ on aE’ﬁE’YE and PE:

- >
P.A. = PA(GA’aE’ﬁS’YE’PE) .

So the maximum likelihood function

N

N
M= 0OW.= OF.F,
. 1 . 11 21
1=1 1=1

depends on the decay parametcers which can be calculated by maximizing M.

The latest results about the ¥ decay parameters arc summarized
in the following Table. The data of Alvarcz et al.z) was obtained with
the overall maximum likelihood method described before. As no resulting
E polarization was obscrved, PE(Qpr.) was detecrmined from a partial wave
analysis. The other two groups (UCLA, EP+ ) found a resulting polarization

and applied the analysis method proposed by Teutsch et al.i)

Table I

gt

& decay parameters

Lab. Ref. . B~ Yo
LRL (5) | -0.41 * 0.03 | +0.08 * 0.26 +0.91
UCLA (5) -0.64 * 0.13 +0.65 * 0.16 +0.41 * 0.28
+ 0.57 + 0.05
- + -
EP+ ... (6) 0.4k * 0.11 0.2k _ 475 +0.87 _ o8

7863/p/cm
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APPENDIX I

RELATIVISTIC GENERALIZATION OF THE RESULTS

When calculating the A spin state as a function of the emission

angles ©,¢ in the Z rest frame

v, = a(®,) <(1)> + b(8,9) <1°>

we tacitly assumed that the A spin function WA refers to the A rest frame.

In fact the spin has a simple physical meaning only in the rest frame of

a particle where the eigenfunctions |j,m>'are defined. In the spin descrip-
tion we did not distinguish between the Z system where the decay orbital
angular momentum is strictly defined and the A rest system where the A spin
is strictly defined. It is clear therefore that our treatment is typically

non-relativistic.
Let us now try to find a relativistic generalization.

For this purpose it is necessary to construct spin states for

particles in motion.

The relativistic decay state of the & in its rest system can be

written as a linear superposition of states
it m
1 =
|L,M,s,m> /dﬂfg YJL(Qg) o3 Ty X (A.1)

where the quantities on the right side are defined as follows:

Q3 ¢ angles @g,@g, denoting the direction of the A momentum ; in the

~

Z rest system.

ds: d cos O, dd., .
P j

7863/p/cm
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i

|
YM(Qe) : decay orbital angular momentum state with angular momentum

L and z component I

>
¢ plane wave state ePX for A (and 7) in = rest system where

A has momentum ; and m has -;.

spin eigenstate of A in its own rest system which is so

w't

defined that its coordinate axes are parallel to those in

the E rest system. s denotes the A spin, in its z component.

/e

1
If for example the A spin is %, xéz and x1/ can be described by the Dirac
2

1
2
spinors in the particle rest system

— - —

XVZ -

- Vo _
Ve A

x,'/-

O O O =
o O =~ O

is a matrix that transforms the A spin state from the A rest

]
o

L)

system to the E rest system. It corresponds to the Lorentz

-~

transformation Lf which brings the A rest system to the &

rest system:

;’ ;?.ﬁY’Eéi}T E%- {}
Ly ¢ (4.2)

- | . 1
yi t=- Z] with = =
[ﬁ"v*m

where ﬁ is the velocity of the A in the E rest system. F§

tl

1}

reduces to the unit matrix in the non-relativistic case.
In the following we shall show that the rotation properties of
the relativistic states IL,H,s,m> are independent of the A momentum 3, il.ee

rest system as the corresponding

(1]

they transform under rotations in the
non-relativistic states. Once this is proved, one may argue as follows:
All angular momentum operators JX,Jy,Jz are proportional to operators of

infinitesimal rotations about the x,y,z axes. The commutation relations

7863/p/cm
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between Jx’Jy’Jz define the entire spin-angular momentum algebra. As in
our problem the relativistic states Eq. (A.1) transform under rotations as
the corresponding non-relativistic states, our non-relativistic treatment
of the E decay, which considers only angular momentum in the E rest system
is formally identical to the relativistic treatment when expressing the =
decay state as a linear superposition of the states IL,M,s,m> in Eq. (4.1)
So it remains to show that the rotation transformations of these states

are independent of the A momentum ;.

L)

Apply a rotation R in the = rest system to the state Eq. (A.1)

R|L,H,s,m > =f R A0, <R YJE(Q}_;) q>§> <R 1‘32‘;1) .

The factor YI(Q+)¢e- is a plane wave of amplitude YM(QQ) running in the
direction of p. Rotatlng this configuration gives another plane wave PR3
of the same amplitude but running in the direction of Rp, i.e. Yl(Qe)wa

Therefore we have

y f i
R|L,H,s,m > = /aan YTL(Qi))) ch3<R rﬁx‘;‘>

h i h a = -3 °
where we have replaced dﬂg by dQRﬁ (one has dQB dQRﬁ)
Below we show that

RDy = Tz R (A.3)

~

i.e. instead of first transforming the A spin state to the = system and then
rotating it, one can first rotate the A spin state in the A rest system and
then transform it to the E rest system along the rotated direction RZ. With
Eq. (A.3) one can write

R|L,H#,s,m> = /dﬂaﬁ Y‘L(Qﬁ Pp ->r 2 Rxm .

Substituting 3 for Rﬁ giveé

R|L,M,s,m> = /dn.p, Yf (9-13) 93 T3 RX?
7863/p/cm
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In terms of the D matrices for finite rotations of non-relativistic

spin states one can write

7y (ap-ry) = Z p{r) 7 (2y) and

M/
RXE = Z (S),(R)X
S mm
ml
and consequently:
R!L,M,s,m>=Z (L)(R) (s)(R) |L,M ,s,m’ > (A.L)

M/m’

just as in the non-relativistic case. So it is shown that the relativistic

-

states transform under rotations in the E rest system as non-relativistic
spin states. ' '

We still have to prove the relation
Rrﬁ = PR{;’ R (A.3)

which is essential for the simple transformation property Eq. (A.4) of the

states |L,M,s,m> Eq. (A.3) is equivalent to the relation

R Iz = Ly R (A.5)

where L; is the Lorentz transformation Eq. (4.2)

¥ = e | T (- o
RLi) is
t = Y[t- (Bx) ]
X = R§4~R§Y :l
L R is
R 2> =
? t o=y [t- (Rﬁ-RX):l
Hence

follows from (RE.Rx) = (Bx).
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Ll

Although we have now proved that our original treatment of the E decay
is formally correct for the relativistic case also, we have still to re-interpret
the results in terms of the relativistic decay states, Eq. (A.4). According
to the definition of these states the A spin eigenstates X? refer to that A
rest system which results from the E rest system by apnlying a Lorentz trans-
formation L_; (defined in Eq. (A.2)) to the E rest system. Therefore to
every A emission direction there corresponds a different A rest system, in
which the A polerization and its decay angular distribution are exactly described

by the non-relativistic formulae derived in this paper.

In this connection it has to be stressed that in the relativistic case
the A rest system defined as above by a Lorentz translation applied to the
& Cil system is only one among an infinite number of possible rest systems,
differing from each other by rotations of the coordinate system. For instance
if one transforms the A from the Z CM first to the laboratory system and from
there by a translation to its rest system, this rest system will, in general,
be different from the rest system defined above, by a rotation which tends
to zero for decreasing relative velocities. This rotation is g purely kine-
matical effect known as "Thomas precession". It comes from the fact that
translations are not a subgroup of the Lorentz group in contrast to the Galilei
group. That means the product of two Lorentz translations is in general a

translation coupled with a rotation.

To compare experiment with theory one has to transform experimental
quantitics such as polarization or angular distribution, to the system in
which they have bcen calculated theoretically. In our problem of the decay
parameters, we are, for instance, interestcd in the engular distribution of
the protons from the A decay with respect to the A direction of flight measured

-

in that A rest frame which is defined by the = rest frame and the A momentum EA

in this system. Ixpcrimentally everything is observed in the laboratory, so to

comparc with thc theoretical angular - or polarization distribution, one has

firstly to transform the A and thc decay proton to the & rest frame, and from

there, the proton to the A rest frame defined as above.

Let us finally calculatc the rotation which results from two

successive Lorentz translations.

7863/p/cm
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LJJb C;Fq

Fig. e

Assume system Sy moves relative to system S with a velocity f1
in x direction. System S, moves relative to system Sy with a velocity
EE lying in the x~y plane and including an angle a with the x axis.
System‘S moves with the velocity 33 = -E relative to S: where 5 is the

velocity resﬁlting from the addition of E, and E;

B |58 BB 1
3= - (A.6)
Y2 [14'§1ﬁ;]

In connection with our problem, systems S,Sy and S; can be identi-
fied with the laboratory system, the E CM system, and the A rest system
respectively.

The Lorentz translation

T(B:) transforms S into S

T(B.) transformms Sy into S,

so the product transformation

L = T(.) T(By) transforms S into S» .

7863/p/cm
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What we wish to show is that

L = T(F:) T(F)

can be written as the product of a translation T(B) and a rotation R(w):

R(w) T(B) = T(F2) (B )

or
R(w) = T(B)™" T(F) T(F:)
or, s L.
= -Ps
R(w) = T(Fs) T(F) T(3) - (4.7)

Let us represent the T's as matrices operating on four vectors:

—_ T
Y1 0 0 ifivy
- 0 1 0 0
T(B1 ) = 0 o 1 0
-igiye 0 O Y1
1+ (y2=1) cos® al(ya=1) sin a cos « | 0 | if2y2 cos «
. (ya=1) sin « cos o |1+ (y2=1) sin?a | 0 | iBf.y2 sin «a
T(ﬁz) =
0 l 0 | 1] 0
-iﬁz’\’z cOos « l"iﬁz’{z sin o l 0 I Y2

T(P5) is a matrix corresponding to T(Bz) but conteining instead of Ba,vyz

1 JEZT
= = V5 -1
B ¥ RE
Y3 = Y172[1+-ﬁ1ﬁ2 cos a]

and according to Eq. (A.6) instead of sin «, cos «

7863/p/cm
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Bzv2 sin « {;?%T P1B2 cos a+ 1 1

sin ¢ = -vy4
ETT
By + S22 cos a ﬁu’lﬂ f1B2 cos a+ 1]
COS ¢ = =¥y -

Vo = 1
Working out the product matrix

R(w) = T(F5) T(F) T(B1)

one finds that it has the structure

”-;: a2 0 "_0—

az 4 az2 0 0

R(o) = | o 1 o0
0 0 0 1

This Lorentz matrix can only effect a rotation about the z axis

by an angle w with

a44 = COS W a1 = -sin w

az1 = sin w 822 = COS W

The element a4, can be written in the form

1+Y1+ Yo + Y3
(1+y1)(1+v2) (T +v3)

221 = sin w = BBz sin a yiv2 57 =%

or in an arbitrary coordinate system

sin w =_ﬁ>1><76>2 1Yz EACERCEA (A.8)

(M+y1)(M+y2) (1 +y)

7863/p/cm
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Applied to our special case, E1 is the E velocity in the laboratory,ﬁé

is the A velocity in the E system and E is the A velocity in the laboratory.
The result means the following: When transforming the decay proton

directly from the laboratory to the A rest system one has afterwards to
rotate the proton momentum vector by an angle w defined by Eq. (A.8) in

the right-handed sense around the axis E,><E2 in order to make it coincide

with the proton momentum vector which was transformed via the E system to

the A rest frame.

Generalized treatments of the relativistic spin problem can be

found in articles by H.P. Stapp7), M.I Shirokove), N. Jacob and G.C. Wick®)
10)
and N. Jacob .
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APPENDIX II

CONSEQUENCES OF TIvE REVERSAL INVARTANCE
AND FINAL STATE INTERACTIONS

As already mentioned time reversal inveriance predicts a zero
B decay parameter in the case where strong final state interactions do
not modifyy the outgoing wave. For this theorem we want to give here, only
an intuitive argument which is essentially due to Crawford“>. A more
generalized and rigorous treatment of these problems can be found in an

)

article by Lee and Yang12 .

In the £ decay the f parameter is proportional to a A polarization
perpegdicular to the E polarization direction ﬁw and the A emission direc-
tion A. We shall assume a Z decay state as inaicated in Fig. a)with a
A polarization in the direction

A A

x A

(1]

and shall show that this ccnfiguration leads to a contradiction with

time reversal invariance.

>N

Os,_a\'o,-f)'\ﬂﬂ w Gve
J J

S
/
L TN N

7 o~

SV
L

vV
X

/N

sy

Prr Pa
Fig. a)
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In Fig. a the £ is polarized in the z direction, the A emission direction
is the x axis and the A is assumed to be polarized in the y direction.
Under the time reversal operation T momenta and spins change sign

-> ->
~p
-5 .

3
e
I

TS

The corresponding time reversed state of Fig. a) is indicated in Fig. b)
Z.
0

incident wove

—

Fig. b)

The time reversed incident state Fig. b) can give rise to a weak
scatter. 'Due to the low coupiing constant, weak interactions are in general,
sufficiently well described in first order perturbation theory which does not
contain spin-orbit couplings. As & consequence no spinflip can occur so that
in our case after the weak scatter the A has still the same spin direction.

After the scatter we have the configuration of Fig. c¢).

N

=

ou!'aoma W OVve

74 NN “
A S

7863/p/cm



- 109 -

Rotating the configuration in Fig. ¢) by 180° about the z axis

and by 180° about the x axis leads to the situation in Fig. d).

Cr\__}%C}O\\’\(\ wave

Prr

Fig. d

From state &) we came to state d)by the fime reversal operation and a weak
scatter that did not change spin and momentum directions. Now the principle
of time reversal invariance postulates that, to every state there exists
another time reversed state, which also satisfies the equations of motion.
So if state a) satisfies the equations of motion of the Z decay, the time
reversed state d) should also satisfy them. When starting from a £ in a
pure spin state after the decay the A has also to be in a pure spin state
i.e. completely polarized in a definite direction. As states a) and the
time reversed state d)have opposite A polarizations but the same Z polariza-
tion, they cannot both satisfy the Hamiltonian of the E decay. As a con-
sequence a non-vanishing A polarization in the direction §3x EA violates the

time reversal invariance of the weak decay interaction.

By the same kind of argumentation one can generalize our result
and show that in purely weak interactions all scalar or pseudoscalar observ-
ables that change sign under the time reversal operation, have zero expecta-

tion value. Such observables are for example:

3. (&xS)
By . (B x Ps)
$i. (&xB).
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On the other hand, strong final state interactions can flip the
A spin and produce a g # 0. By the strong final state interactions the

phases of the S and P wave amplitudes are shif'ted

1l
=g
(o}

A > A’
s s

1
b
(]

A > A" =
p 1Y

As shown before AS and A are relatively real if time reversal invariance

holds. So in the case of final state interactions the observed decay

parameters are

_ 1RA0 — % a -

o« =2 Re Al A.p =2 Re(AsAb) cos (sp 63)
= 1A — * 3 -

B =2TImAl A.p 2 Re(ASAp) sin (BP Ss)
— 8 K 1|2

v o= lagl® - larf® .

If the phase shifts are known the influence of the final state interaction can
be subtracted.
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.SOME METHODS OF SPIN DETLRMINATION OF
ELEMENTARY PARTICLES AND RESONANCES

W. Koch,
Track Chamber Division, CERN.

I. RECAPITULATION OF QUANTUM MECHANICAL SPIN DESCRIPTION

This chapter is mainly intended to supply the reader with the
necessary formulae used later on. As most of them can be found in familiar
textbooks, such as Shiff, Condon and Shortley, Messiah etc., almost no

derivations or proofs will be given.

a) Operators and Eigenfunctions

In analogy to the classical definition of angular momentum
T =7?xp

quantum mechanical spin operators, J Jy d for the components of the
total angular momentum, and 32 for the square, can be defined which obey

the commutation relations:
[Jx,Jy] = ihJ, [Jy,JZ] =ing, [3,,7 ] = iR . (1.1)
From this follows

-

J2,J =0 .

52,9 X,¥ 5 % )
As all the spin components commute with J2 but do not commute with one
another, only one component can have simultaneous eigenstates with 32,

It is customary to choose representations where JZ and 3% have the same

elgenstates.

Eigenstates and eigenvalues of the spin operators are defined

by the eigenvalue equations

)
hY)

“

I

7= 03 Y

(1.2)
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Applying the commutation relations to these operator equations one finds

as possible eigenvelues for J° and Jé'

Vo, 1, Yo, 2 oe

",j’ -j+1, o e e +j§

i

hj(j"‘ 1): J

hm m

1

O3

CJz

- (1.3)

1}
i

Only integer or half integer values are allowed for j, the (quantum
number of) total angular momentum. Each angular momentum j has (2j+ 1)
possible intéger or half integer values for the magnetic quantum number

m which runs fromm = -j tom = +j.

At the same time the cigenvalue equations define an eigenfunction
vy = ¥(§,m)
for every pair j,m, so that the solution of Eq. (I.2) is

32 ¥(j,m) = ni(5+1) ¥(j,m)

AmY ( j,m) | (T.h)

3, v(3,m)
j=1/2’ 1"3/2501,m:—j"'j+1 ouo"'j-
So far the symbol ¥(j,m) is a rather abstract object, a so-called "basis

" vector in Hilbert spéce“, specifying an éigenstate of angular momentum.

Instead of ¥(j,m) we shall use as well the Dirac ket vector notation
| §m>=9(§,m) .

Once a specific spin representation is chosen, |j,m> will be a well defined

mathematical object, e.g. a column vector or a spherical harmonic.

Examples
¢’(1/2,1/2) =I1/2’1/2> = 2)
o]
bChr %) = 1%, h> =]
...O.J
1 .
0(1,1) = [1,15>= [0] = ¥ = - ==V7; sin © &?
0] Viar

7863/p/cm



- 115 =

For any basis vector ¢(j,m) a conjugate vector

¢f*(j,m) = <j,m|
can be defined together with an operation

(¥ (Grom ), ¢(Ge,me)) = <jomy| jome >

which we call the scalar product of two stetes. This product is 1 for

identical basis vectors and 0 for different basis vectors:

(1.5)

<jy,mljema>=8., . &
Ji s 1I‘JZ 2 3¢ dz “myme

This property is called orthonormality. It can be shown that the |j,m>
form a completc orthonormal set of basis vectors.

In the matrix representation the scalar product of two states

is the scalar product of two vectors.

af| | by
ot | |bs
<j1 Py ,jz s > = . ] . (1.6)
af | b
“_E‘l
= Z/a*b = 5. . 6
m k Ji J2 mq Mz

3
u

(Note: Column vectors representing conjugatc stat:s should always be
regarded as row vectors in the conventional mathematical meaning.)
In terms of spherical harmonics Y?(@,w), the scalar product of two states

is an integral over the total solid angle

s
<G mlieme>= [ YR Y2 an =5, , 6 I,
JomeleRe == 0 Y Jrde Tmime (.7)

‘where Y* is the complex conjugate of Y.
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b) States and Matrix Elements

Consider a quantum mechanical system of spin j. The most general
pure state is by definition a linear superposition of basis vectors belonging

to the same j:

m%%j
wj =35> = L/,_Jaml;‘g,m> (1.8)
m=-j
and the conjugate state
=J
¥ = <3 = o .
Wj = <J|-— jg;am <j,m

m=-j

The a_ are coimplex numbers and a; their complex conjugates. It is use-

ful to consider only normalized states with

ifwa* a' = iz;la.|2 =1, (1.9)

m==j m=-j

From the orthonormality Eq. (I.5) and the normalization condition Eg. (I.9),
it follows that the scalar product of the state |j> with itself < j| j»

is 1.
<ils> = %;-a* a <j,mljm>=1. (1.10)
L/_" m m \ -
m=-=j 1

So far we have considered only purc states which are described by a linear
superposition of basis vectors. This mode of description implies that
the maximum information possible in a quéntum mechanical framework is
actually available. There also exist, however, "'mixed states" with less

than maximum information which are statistical mixtures of pure states.
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Example
In a system of spin % particles, a particle is with a probability
of py in the pure state ¢4y and a probability of p. in ¢=. A description

of this state could be e.g.

U =|1/2,1/2> pr = 0.3

1]

2 =\/":IT:‘1/2,1/2.>+"1=° |1/2:"'1/2> P2 0.7
2

V2

Mixed states will be treated in detail in connection with the density

matrix.

From the genersl concept of gquantum mechanics it is well known how
to calculate expectation values of physical observables. For every
observable g a Hermitian operator @ can be defined. Then the expectation
value of a physical observable g in a system specified by a state vector

|a> is
<Q>=<algla>. (I.11)

This means: Apply the operator Q to the state Ia> which will give you

a new state !b>
|b> = gla> .
Then form the scalar product of |a> and |b>
<Q> = <a|b> = <a| Qla> .

In terms of spin eigenstates we have the following relations:

|a> = Zaml j,m>

<a| = za* <j,nm|
m (1.12)
lb> = gla>=12b | j,m>
m
<Q> = <alqla> =<alb> =za*v_ <jm| jm>
mm,
1
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This can be written in a more convenient way:

<al|qla> = éa; <j;m‘ QIZakl ,jk>>

= 3 a* a <j,mlolik> (1.13)
m,k
where the guantities
<j,m|Qls,k>

are the so-called Mmatrix elements™ of the operator Q. They are defined
in the same way as the expectation value <Q> in Eq. (I.11) but now

connecting two eigenstates {j,m> and |~j,k>.

For the operators Jx’Jy’Jz’jz these matrix elements can be derived

from the commutetion relations. The result is:

YoV (5~m) (jm+1

<j,m+ 1| Jxl ,jk,m>

Y VvV (j+m) (j-m+1)

<j,m= 1|JX| j,m>

<j,m+1|Jy|j,m> %1V (§-m) (§+m+1)

(T.14)

Y% iV (j+m) (§-m+1)

1}

<j,m= 1| Jyl j,m>

<.j:ml Jz’ J,m> =m
<im|Plim> = 5(5+1) .

All other matrix elements are O. The factor h on the right side has been
omitted. As is seen from Eq. (I.14) the Jx and Jy matrix elements are

connected by the relation
i-g-(m- m’)

<j,m’|Jy| j,m> = e <j,m'Jx] jm’ >, (1.15)

Let us now calculate the spin expectation values in x,y,z dircction for
a general pure state of spin j ' '
.
—
j> = >‘am|j,m> .
m:j
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From the matrix elements given in Eq. (I.14) and the definition of an

expectation value Eq. (I.13) follows immediately
<j|JZ|j> =< >= ) mla |? . (1.16)

Furthermore

<j|JxI,j> =< >=

I

-4 J - 1 A
j{;a* a_ <j,m+ 1|3 |j,m> «+ S;»a* a <j,m| I |j,m+1>
jul x /m Tmw x' v

m+1 1)
m:-—j m:"j
3=t ek
- . T N VN7
j{;a;+1 a Vo(3-m) (G4m+1)  + yoata Ve j=m) (§+m+1)
m=-j m=-j

1]

J=1
Y j{:(a* a +a a* )V(i-m)(§+m+1)

m M m o meH
m=-j
J=1
— * N s . \
= ZE:Re(am+1 a_) /(3-m) (j+m+1) .
m=-j

A similer calculation yields a corresponding expression for <Jy>°
So the expectation values for the threec spin componcnts are:
J=1

<J > 21JR0(&$+1 am) V(i-n) (§+m+1)

m=-J
J=1
<{y> = ZE;Im(a;+1 am)'vxj-m)(j+mzq) (I.17)
m=-j
J+J
<J >= :T—m|a |2
S
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Let us now introducc the concept of the polarization vector
B(P_,P JP,)

Yy
Definition
<J > <d > <Jz>
P === | P =t | P = foe (I.18)
X J y dJ z d
B -1.3
or = 3 <J> .

This means, the component of the polarization vector in a certain direction
is given by the spin expectation value in this direction, divided by the

maximum spin expectation value, which is m = j.

Inspecting the expressions for <J_>, <qy> in Eq. -(I.17) one states

that only the interference of adjacent eigenstates
amlJ,m> s am+1lJ,m+ 1>
produces polarization in x or y direction. For example the states

¢ = L [1,1> + J:_|1,-1> or

V2 V2
S 1 RO H 1 R |
‘l’-\/.é_ |2’ 2>+\/§|29 2>
have P,P =0
Xy

so at least one pair of neighbouring amplitudes a in the expression for
the general pure state |j>»has to be different from O in order to give
non-vanishing polarization in x or y direction. his criterion for
polarization Px’Py # 0, however, is only necessary but not sufficiecnt,

as the following example shows.

Consider the state

¢ =ei“"‘=1— |1,1>+=3—|1,0>-—1-|1,-1>].
V3 V3 V3
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Applying Eq. (I.17) yiclds

<J_>= Re(o t? o*1®) {- %\/(1+1)(1-1+1) + %\/(’1"—0)(1+0+1) } =0
" r | ;___y___._J
RS V2 V2
<Jy> =0 because Im(c *® ™) =0
- 1) =
<JZ>~3.1+3( 1) =0 .

As we shall often deal with spin % particles in the following, let us

re-write rclations Ey. (I.17) for j = %.

General j = Y% state: l’/2>=a|1/2,1/2>+b|1/2,~1/2>
with lal?2 + |b|?2 =1
P = 2<J > = 2Re a*b
X X
P = 2<J > = 2In a*b (1.19)
y y
P =2<J >=|a|?2-|Db|?
Z Z

One cen easily verify
|B|2 = (2Re(a*b))? + (2Im(c*b))? + (Jal?- |b]2)2 =1 .

As a consequence, pure spin %4 states, e.g. nucleons or electrons in pure
states, are always completely polarized. This is an exclusive property of
spin %4 which is clearly no longer true for higher spins. Generally

valid, ¢lso for spin %, is the following statement:
Completely polarized arc only the stoates
¢ =13,3>end g =]3,-5>
and those which result from them by rotation of the coordinate system.

All other pure states arc only pertially polarized or have no vector

polarization at all, as for instance the integer spin states |j,0>.
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On the other hand, for j > %, 2ll incompletely polarized pure spin states
or even such with 0 vector polarization, hive a so-called tensor polarizeation
or spin alignment, where alignment means here every spin configuration

which is not invariant under rotations and thus gives rise to detectable
anisotropies. Forinstance in the eigenstates |j,m> the spin is aligned along

cones around the z axis.

Let us anticipate the corresponding proverties of mixed spin
states, which will become clearer in connection with the density metrix.
There again spin ‘4 states are an exception. Mixed states with j > %
can be spin aligned without having any vector polarization, for instance

an equal mixture of the states

‘%:1/2> and |3/2:"'1/2> .

In the case of spin ', particles, however, no mixture with resulting

polarization 0 is aligned.

c) The Matrix Representation

For a fixed J one can enter the matrix elements of the operator Q

= <j,m| Q| jm’ >

Q

'mm’

into a (2j+ 1) dimensional square matrix. This is called the matrix
representation of the operator Q in the system of basis vectors |j,m> .
We shall choose the convention where the indexing runs from the highest to

the lowest value of m. So, if we write Ai for the members of a matrix

k
A = Q. .
11 QJ,J
he = Qj:j’"
.A22 = ij-1,j_1l

the matrix has the structure
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m! 3 (3-1) (§-2) (-3)
n | : 2 3 (25+1)
1 Ay Ay2 Ass A1,2j+1
(3-1) 2 Az Az2 e A2’23+1
(3-2) 3 Az Asp Ass A‘3,2j+1 (1.20)
-5 | (2341) Bosit,e Pogee Bogen,s Poger,2i
Let us write down in this way the matrices of the operators
Jx’Jy’Jz' For a given j, the matrix elements are defined in relations
Eq. (T.14).
s o 1 o — —
=" o ,lo -1 y i 10
J =% J =Y J =Y
x 1 0! Y I_l 0 z 1o -1
g =1 40 1 0 ] 0 -i cT] ™1 o0 o0
I, \/=: 10 1 Jy \/=: i o0 -il J_ =0 0 © (1.21)
210 1 o0 2 [0 i ol 0 -1
=" _ _ - _
0 V3 0 o0 0 =3 0 0 30 0
1 V3 0 2 0 1 V3. 0 -2 0 1010
=" o 2 0 V3 Jy:/2 0 2i -\/3i~Jz=/2'0 0 ~
|0 o V30 0 0 V3 o0 0 0 0

The ¢ orresponding matrix for J2 is always given by a (2j+ 1) dimensional

unit matrix multiplied by j(j+ 1)
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If we now represent the basis vector Ij,m> by a (25+1) dimensional column

vector of the form

i [o
=110
=210

m 1
..J' _0_

containing 1 in the place corresponding to m and O's everywhere else, it

can be immediatcly verified, that the matrix element
~<j,mlel gm’ >

is given by an expression of the form

0 0
0 0
0 1
1 Q ., 0
o] ™ | lo
0 .
0 0
<jml @ lim'>

where the first vector should operate as a row vector, that means: apply
the matrix (Qmm,) to the vector corresponding to ]j,m’>'which gives you a
new column vector. Then take the scalar product between this and the

column vector corresponding to | j,m> .

The linecar combination of two states

¢ = a]j,m> + b|j,m’>

can clearly be written as
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-«

"

[V
co-~0o0o

The most general pure state
+J
lj> = E{;amlj,m> is now given by

m=-j

Example

Calculate the spin expectation value <Jx>»of a spin % particle
in the state '

N
-
NN
v
+
[\S]{Y]
-
[V Y
v

Sl
Sl

l !
o o ﬁhLA éhLA

With the matrices Eq. (I.21) we find

7863/p/cm



- 0 V3 o0 oi%_ E i
V2 V2 | il
1 1
— | 1 2 — | _11
A >= |13 Vi o0 2 0 ol =53 01 1
0 o 2 o0 V3lio0
0 o 0o V3 oll o
4]
[
R R I
“kio 2{'4 2/ = 3¥5
0 o;

d) Spherical Harmonics

Whereas the matrix representation is applicable to all integer
and half integer spin states, an analytic representation can be found only
for integer spins. In the abstract operator representation, the eigen-
states are found from pure operator algebra, defined by the commutation
relations. In the analytic representation one does not make use of the
commutation relations at all (though they are of course still valid) but
only solvesthe eigenvalue equation defined by differential spin operators.
The solutions of these partial differential equations are the spherical
harmonics which can represent only the eigenstates of systems with integer

spin.

—

The angular momentum operators are in terms of polar coordinates
L_ = ih(sin ¢ 2. 4 cot © cos Qw)
36 * ° ¢ 3o

L = ik(-cos ¢ g% + cot © sin ¢ §$)

y
5 (1.22)
L =-ih — :
Z o

2 _ 2| 193 (.. o0y, 1 32
L* = -n [sin@é@ (sin © 55) + o5z @a&]
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The eigenvalue equations

12 ¢ = Cge¢ and L_¢ = Cp ¢

are

1 d. . ) 1 -
-I:sin © 00 (s:m © ae)* sinz © a(pZ ¢ L(e+1) 9

(1.23)
- 1 'é% = my .
Solutions ¢, (09) exist for integer ¢ and m
(¢ =0,1,2,3,m, m==L,=L+1, .o. &)
(1.24)

PCEIER ACKY

0, .(0)-2 (o) .

The function ®£m can be calculated by the recursion formula

- (1) \/(c+1) (¢+m)! 1 1 glt-m) (s%?il e) (1.25)
(¢-m)! b1l sin® @ (a cos @) n)

or in terms of the associated Legendre functions Plzl(cos 0)

0, = (-1)”‘\/(2£+1) (¢=[m])? P}(cos ©) . (I.26)

(¢+|m|)!
The functions <I>m are

oime (1.27)

The Ym have the property of orthonormality:

\ :
‘/ / Ym Sin 9 a9 dp =8, , & (1.28)
dQ
Furthermore the following relations are valid
Y," = (- 7)™ Ym © (1.29)
+£
R
m=-{

7863/p/cm



7863/p/cm

Y

¥?

<+
Yi!

- 128 -

Table I

ey Ty sierees e

Spherical harmonics in the form

n

1]

1}

=¥

\/% \/(2“1) %{%,'L P?(x) ei<P

L
L

'\/g ’\/?}z
= /—I\/'; Ve (3x%-1)

Af b
=;\/‘TE\/§' 3x \/‘1—:{: o™
\/g\/'g;- 3(1-x7) o 21®
\/—ﬁ:,; J7- V2 (5%°=3x)
=+ \/}E AR ACE) \/Ec‘z o0
= JEJ—TZ'; 15x(1-x%) o 219

\EN

=L
720

. 15(1-)(2) \/1-}(2 ei}icp

X = cos ©
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Table I contains the spherical harmonics for Z =0 to 3.

Let us briefly sketch how to calculate spin expectation values

in this representation. Take as example the state
VAR ERRVAE N EEAS R
and calculate the angular momentum component in x direction. This is

done by performing the integral

<L _> = / ¢ pan

2T T
% *
= / /1/2 (¥i +731¢9) [i (sincp —g—é + cot® coso :%;‘l (Y} +Y9 ) sin@©de. 2rd

0 0

This is a tiresome job, but it gives of course the same result as the

matrix method

- i~ — 7 '
|V o 1 ol [V% i1| 0 1 0|1
a>= |V E R A BEEI P
\2' l
0 "io 1 0 0 0"_0 1 ollo
- - - —_ = - b — — L
11 (17
=1/2\/q/:!1 1——-\/172_.
Lol U]

Clearly the matrix method is a much more efficient tool to calculate spin
components than the analytic method.

Nevertheless in the spin analysis we shall always deal with
spherical harmonics when analysing angular distributions of decays. This
can be best explained by an example. Let us assume a particle of spin 1,
for instance a p meson, is produced in some reaction with its spin com-

pletely polarized along a direction z. So the p is in the spin state |1,1> .
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Afterwards the particle decays into 27 mesons which both have spin O.

The decaying system is described by a wave function
- -
‘//(r1,r2)

> = s . .
where ry,r. are the position vectors cf the two particles. As a decay in

two particles is collinear in the c.m. system we can write
- =
¢(r1,72) = R(r) £(0,¢)

where ©,¢ indicate the emission direction and R(r) is the expression for

an outgoing wave

R(r) = er .

As the spin of the two daughter pions is 0, the orbital angular momentum
state of the final 27 system is the same as the spin state |1,1> of the
mother particle. The angular part of the wave function is therefore the
spherical harmonic Y} (©,¢):

ikr
e

r

¢ = i (G:CP) .

The probability of finding one of +he outgoing particles at a point with

coordinates (r,0,¢) is clearly

1 *
gy =L 0 =L ony

therefore the angular distribution of the decay is

=

W - x(0,0) £(0,¢) (1.30)

£
Y} Y}=£;T--%sin2@.
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e) Vector Coupling

In this section we deal with the following two problems:
1) Consider two systems in the eigenstates ‘,j1 sy > and | J2,m > .
Together they form one state specified by

|54 domqmp > .

Expross this state in terms of possible eigenstates |J,M> of

the resvlting angular momentum. The result is of the form

|31 Jemyme > = 22 C |, M> (1.31)
JM
JM :

2) Consider a system in the eigenstate IJ,M> . Decompose this
system into two sub4sjstéms of well specified spins .j» and j. respectively.

BExpress the state !J,M> in terms of eigenstates ‘j1 Jemymp > @

|g,i>=2 2 c, v fomyme > & (1.32)

my mp 4 Mg

The rules of angular momentum combination require

m +m =M (1.33)

and allow for given ji J», the following values for thec total spin J

J = |33

| 50-321 + 1

J1+J2

The conaition Eq. (I.33) reduces the two summation indices in Eq. (I.3")
and (I.32) to one index only.
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The C. and C are the so-called vector coupling or Clebsch-
IM mqmp

Gordan coefficients. - We shall use for them the notation
Cpp = (3132 7 )31 3z moma)
C . . .
mimz = (§1Jz mimz|je e ) .

Let us re-write the coupling relations in this notation:

j1+j2

| 54 jemime > = Z | 34> (3132 3M| 31 Jemyms )
J='j1‘ﬁzl
+J1 . (T.34)
| 11> =-le1,jzm1 M-my > (§1 Joms Memq | Jy jo JM).

mq==j4

. We shall use a representation where all vector coupling coefficients are
real and where

(31320M §s Jemima) = (1 Jomema| s o IH) .

Purthermore we have the relations

ZE:(j1jzm1ma|j1szM) (343294 51 jomims) =
JM

6m,m{ 6mgmé

(1.35)

zgj(jquJMlj1jzm1mg)(j1j2m1m2 J1320'M) = 5JJ/ 8MM’ .

msmz

Formulae to calculate general Clebsch-Gordan coefficients are rather com-
plicated so that we prefer to copy the tablesas) for the most frequent

types of spin coupling (Table II). The different nomenclature in Table II
is related to ours by

Um1vm2

TV = [ dememe > andW];I = |om> .
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f) Rotations of the coordinate system
Consider a scalar field
b=y (Xa Y Z)

defined in the coordinate system S(x,y,z). Rotate the coordinate system

by an angle a around the z axis, in the negative sense, to a new frame

yo Y

x = x' cosa +y sina o

S/ (x!,y',z'). The coordinate transformation is

vy =~=x' sina +y’ cos a (I.36)

z = g!

Now keep the field ¢ fixed in space and express it in terms of x/,y’,z’.

This is simply done by inserting the substitution Eq. (I.36) in ¢(x,y,2).

zp(x,y,z) d ’ﬁl(xl’y’:z'l) .

An infinitesimal transformation by an angle da leads to corresponding

relations:

x4+ ax!
x'dao = y' + dy’

x = x' + y' dx

i

]
<
I

and

I

b(x,y,2) » ¢! (x',y,2') = ¢(x' + ax',y' + dy’,2') =

o) 0
= ‘/’(x':ylyzl) +5—%1 dx’ +=S;%/ dy’

ox’!

= wlx,y,a) + 2, (yrar) + 3, (-xaa)

=¢(x',y",z') + ¢ da

gle

where the derivative dg/da is

dy ) 3
Ao “—'("x’ B + ! -a-;;;->¢f(x’,y',z') = RZ¢'

7863/p/cm
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The infinitesimal rotation operator around the z axis

3 3
Rz_—<x5§—yax>

is proportional to the operator of the angular momentum in z direction

so that the relations hold

i o
R.Z = -E LZ (1.37)

The operators Rx v,z were defined as rotating the coofdinate system in the
3J 2

mathematically negative sense. - This is equivalent to keeping the coordinate

system fixed and rotating ¢ in the positive sense.

A finite rotation by an angle a can be constructed by repeated
application of the infinitesimal operator. From the infinitesimal

rotation
Yoy =g ap = (14 Ry

one constructs the finite rotation

g >4 =D(a)y = lim (1+R 2)%y

n-»>oo

(T4, e

(o]

S0 o w o
Da) = &% =3 I, (Ra)" (1.38)

5l

is the operator of a finite rotation by the angle a.
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The operators Rx,y, and the corresponding finite rotation
operators Dx,y,z(a) can clearly be app;ied to the wave functions of integer
spin representations. TFor half integer spin states where only the matrix
representation is available, one has to construct matrix operators. It
can be shown that for any integer or half integer spin state with total

spin J relations Eq. (I.37) become
J (1.39)

independently of a specific representation. From Egs. (I.39) and (I.38)
one constructs the finite rotation operators for rotations around the
X,¥,2 axis '

iy -.iJ J
D (a) =e ™7, D (a) = e BV, D (a) =e M. (T.40)

ot -

It is customary to describe the most general rotation as a product
of three rotations: a first rotation around the z axis by an angle y, a
second rotation about the y axis by an angle § and a third rotation again

around the z axis by an angle a

D(«,85%) = D,(«) D (F) D,(¥)

(T.41)
Jiey 187 L ix
h Jz ol qy R Jz
=€ e e .

In the following h will always be put equal to 1.

Let us now rotate an eigenstate |j,m> around the z axis. The

resulting spin state ¢’/ is

¢ =D ()] m>
-iad

. 1 ) .
e im>= = (-1an)n|J,m> .

1}

o ™3
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As JZ is diagonal
JZIj,m> =" j,m>
and

g =3 %:(—iam)nlj,m> .
(o]

Therefore
D (@)l 3,m> = 7 5,m> . (T.42)

Rotations around the y axis are more complicated, because J_ is not a

diagonal operator. Let us first teke the spin state |‘/2,’/‘> >

n

R @)% %> =3 Ly (-2p3) 1%, %> - (1.43)

o Iie

From the matrix representation of J_ Eq. (I.21) one verifies immediately

«

1]

1%, %=t 3%, 7 %>

From this follows

(1/2)n‘1/2,1/2> for n even

n
Jyl%: + 1/2>

(%)nil%,-%> for n odd

1]

So one can split the summation in Eq. (I.L3):

o) () [%, %> = i @ ( %2)21(%%}
ot

[

' im <;‘.;_'é>2{+ﬂ ilyzr’/n (Tou)

k=0

= cos (B)|%,%> + sin &%, -%> .

7863/p/cm



_139_

Correspondingly one finds

D)E%)(ﬁ)p/z,-f/p = - sin §1%, %> + cos &% ,-%> . (1.45)

The coefficients of the eigenstates in Egs. (I.44) and (I.L5) are the

matrix elements
1
<%l o) (8) | %4 >

which build up the y rotation matrix for spin %

~
cos - sin

Ce)ioy -
D) = | (1.46)

N
\V] oo

Applied to a pure state it rotates the state by f around the
y axis, so that the z direction moves towards the x direction. Rotation

around the x axis is éffected by the matrix

cos % -i gin g
(%) py
Dx . 8 = ~i sin g cos %

Here the y direction moves towards the z direction.

In a similar way one constructs the y rotation matrix for spin 1

Yo(1+cos B) =% sinp Y% (1= cos B)
2§1)(ﬁ) = | V% sin B cos g~/ sin g (I.47)

Yo(1=cos B) V% sin B o(1+cos B)

——
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The matrix elements D (ﬂ) , obey the symmetry relation Py(ﬁ)mm’
=D ( ﬁ)m, The y rotation matrlces have a particularly simple structure
for rotations of 90°. Therefore it is sometimes advantageous to decompose
an arbitrary rotation D_(8) in rotations around the z axis and 90° rota-

tions around y. Dy(ﬁ) may be written as

Dy(ﬁ) =D, <12’-> D, <%> D, (8) b, <- g-) D, <— 12’-> :.‘(I.l+8)

Dy(‘-n/z) D,(-n/2) transforms the y axis into the z direction. Then D, (p)
effects a rotation by p around the z axis. Finally the z axis is trans-
formed back into the y axis by D (w/2) D (v/2)

Table III gives the matrices D§J)(n/2) for j = Y%,1, ,4,2.

Table III

y rotation matrices for g = m/2.

- - o w vE

' A . R
p{%)(n/2) = Vw2 = |[VE o ~E

% Vho %

VE E T

” N A N
B % | o o
E VI VT

P —

A V. A A

1 -1 0 1 -1

1)352)(#/2):’/2 \/3/: 0o -1 :o VA

Yo 1 V% 1Y
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Example
Construct a spin % state completely polarized in the direction
(G"P)'
#(0,¢) =1, (9) D (0) |%,%>
— — — -
T 1
2 0 9 -sin 9 1
e cos 3 5
2 .. B S)
0 e R sin 3 cos 311 q-
- le - ie
2 .
e cos 5 -e sin 3 1
I ig
e2 sin 9 2 cos 9 0
2 2
e *? cos g
e ® sin %
- ie io
=e 2 cos 2%, %>+ e? sin G |%,-Y%> .
Exercise

Let & be a fixed direction in space. Show that the operator

A

-
o e

when applied to a pure state of spin %% effects a rotation of 180° around
the axis &. For the proof, it is convenient to express the rotation

matrices in terms of G;,c&,oé and the unit matrix:ﬂ .
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(%2) = X1 - 4 sin &
D, (a) = cos 511 - 1isinzo,
(2) = X1y - 3 sin &
PY (2) = cos 51 - 1 sin 3 o,
(%) = &f| - 3 sin &
D, (@) = cos 2fl isinzo,

[References: (1), (2), (35]

IT THE ADATR ANALYSIS

a) Spin Determination of Fermions

This type of spin analysis, theoreticelly at least, is most
adequate for the spin determination of fermions (half integer spin) pro-

duced in two body reactions of the type
31(0) + Py (%) » B2(0) + Fo(n/2)

where By and B, are spinless bosons, Fy is a fermion of spin %% and F.

is the fermion whose spin n/2 should be determined. To be specific we
consider the spin detcrmination of the A produced in the reaction

7 +p->K° +A.

Let us discuss the possible angular momentum configurations of initial

and final state in the c.m. The z axis is chosen to lie in the direction
of the incident particle. ’ '

Initial state

WL
i

i n

> <
. I'ig. 2

n spin

e
>z
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From classical arguments the initial orbital angular momentum fi has

to be aligned in a plane normal to the incident z direction. Quantum
mechanical argument: Developing an incident plane wave in tcrms of

angular momentum eigenfunctions |£,m> the series contains only the functions
|l,0> = Yz which corresponds to 0 angular momentum in 2z direction. -

The protons are assumed to be unpolarized and can be described by an

equal statistical mixture of two states with opposite polarization in +z
and -z direction, therefore the initial spin state is described by two

equally probable wave functions

¢

tin = 3 8, Yo%, Vo> oy =2aV5l%,-%e> .

The general final state is of much more complicated structure. Let us
discuss a specific example. Consider only one incident partial wave

{ = 1 and assume the A has spin JA =%, So the initial states are

Ui = BNV Ve> ey, = VVs=Ve>

T

The total angular momentum of the system J is, according to the vector

tot
coupling rules, a linear superposition of Jtot = Y% and 3 states. The

possible values for the orbital angular momentum of the final state Lfin

range from IJ - JA' to IJtot + JA[, in our case from O to 3. There-

tot
fore the most general final state for our assumption is

_ 0|3/ 1 _
P1pin = %, % Y°|/5’/?> :} Lein =0

o 3/ Y1_1‘3/23272>
135/2

+

+
i
-~

~r0 3 1
0‘1,1/2 e |/2,/2> Lfin
+ o _1/ Y?ll3/25_1/2>
19 2

(I1.1)

+

0z T %% )
2y /2

+

od 1/ Yg I%’VZ>

22 /2

. L,. =2
fin

+

a -V’ Y%|7£-?é >
2y 2

a3y Y2 %% >
2 2

+ corresponding terms for Lfin =3,
7863/p/cm



The « are some complex cocfiicients depending on the interaction mechanism.
The Y? describe the final angular momentum state and therefore will

x
determine the decay angular distribution, as shown in Chapter I.d .

Now we look at some propertics of the spherical harmonics:

Y, =0 form £ O
For cos © = # { “
Yz=1o

R . . m
This is because the Y? always contain a factor sin ~ O.

Applying this to our problem we immediately notice that when
selecting only A's emitted at 0° or 180° we fix cos © to %1 in the expres-

sion for the final spin state Eq. (II.1) which then reduces to

v _ 31
Yirin = 2 a1 70 Ve

That means, A's selected in this way are in the pure spin state l?@,}é > .
This is clearly valid.for any superposition of -initial angular momenta L

For the general spin JA the final spin states of A's emitted at 0° and

180°% would be of course
Digin = 1Ty e> 5 Yppsp = 19,5 =Ye> .

Let us now explain this result by a more intuitive pscudo-classical argumeht:
When selecting events with A emission at 0° or 180° we fix also the final

angular momentum ffin to the plane perpendicular to the_z direction.

BT

{

-

>
N
Ny

~

Fig. 3

e i T we

It should be mentioned that for a fixed Lj, only, either even or odd, Lein

are allowed because the interaction is strong and conscrves parity, however
this is irrelevant for our discussion.
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Therefore the angular momentum flips in a plaﬁe perpendicular to the z
direction. This cannot affect the spin z component of the total angular
momentum Mtot = +Y%,-% . As a consequence the outgoing A has spin z
component +% ,-% regardless of its spin JA. The two final spin states of
the A, |J,% > and |J,-Y. >, give risc to specific angular decay distribution

depending only on J.

Consider a A in the state |3§,7§> decaying into p and m. Spin
conservation allows the (pw) system to have orbital angular momentum £ = 1
and £ =2, If varity is not conserved, both P({=1) and D(£=2) waves will
contribute to the final state. Decomposing the A spin state Iaé,}£>
into the orbital angular momentum part and the proton spin part of the final
state, gives according to the vector coupling relations described in

Chapter I.e.

¥ =P{¢"Z WiV, %> +V% 1il%- %> }
- (11.2)
+D{-w/s 1%, %> + VT 1i| Y- /}

P and D are complex numbers representing the P and D wave amplitudes which

depend on the decay mechanism. Normalization is assumed
|p|? + [D]* =1

We re-write ¢: _
" :(xﬁ/: PY - V2L DY§><;>+<\/‘/_; PY! +V3L DY;><°>

and ¢* 2
w* = <\/“Z PFY{* - Vo D*Y3*> <;> + <\/'73 P*Y} % 4V D*Y;*> <‘1’>

The angular distribution of the decay is

=y = %P2 R|% « %IDI2[ 812 + 2V VT Re(PHDYP*Y)

Ble

+ %P2 vt]? + % |D|2|¥i|2 + 2V VB Re(PrDYI*YL) .
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To simplify expressions we omit the fé,ctor \/1/41r in the spherical

harmonics. As a consequence, all calculated distributions Emc%},\rs @'Will

be normalized to 2. With x = cos ® one finds

s = %P2 3 + 2% |D|2.5.Y (9% - 62 + 1) |
+ 2V NPl . Re(P*D) . V3x V5. V% (3x% - 1)
+ %P2 (1-%) + ¥%ID|2 % . 9x2(1- )

+ 2V L Re(P*D VE V1= 2 e 0V axV1-% ).
After a straightforrard calculation this reduces to

dN
A v Vo (14 3x*) (1+ 2Re(P*D)x) ; x = cos © .

The other A state |% - % > leads to

La,zééﬁm = Y% (1+ 3x%) (1~ 2Re(P*D)x)

so the resultant distribution is
S %o (1+3x*) ; x = cos © . (11.3)

In the same way one derives angular distributions for higher

fermion spins. They are given in Table IVa.

Table IVa

Adair - distributions for half integer spins

T =Ygy <

J =% =Yo+%h x?

J=5% =%=-% ¥+ x |

J =% =%e6+*%he ¥ = e x* + Ve x°

If the fermions spin is n/2, the highest power in the cos © distribution is
n-= 1.
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b) Spin Determinstion of Bosons

e

Let us now apply the Adair analysis to a case where both the
particles in the final state have spin, and one is a boson. Consider the

process

+ +

T +D>p +D.
p stands for any boson with integer spin J. When selecting events where
the p is emitted into the forward or backward direction, we fix the z
component .of the final orbital angular momentum to O. The combined spin

state of p and p is described by
g = |3 T MM >
pPrppPpP
where JP is the p spin, Jp = ' the proton spin and MP,MP the corresponding

z components. The z component of the total spin has to be conserved.

Thus the initial proton spin state

]

l‘/z,’/a>p leads to ¢y = o Jp,‘/z,o,‘/a >

+

ﬁil JP:1/2:1:"1/2 >

I

and I%,—‘/z>p leads to_glfz o(glJp,‘/z,O,-J/g>

+ :Q)'Jé>%_‘,'1:1/2 >

for the final states. The amplitudes a and B refer to non-spinflip and
spinflip production. Ir Y? describes the spin state of the p the two

possible final states can be written as

1 = a1YS, <;>+ﬁ1 Y:T <f>
Yo = o Y3 <j’>+ m}‘(‘o :

With af = a8 = o® and g}

n
=
NN
1
™
n
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the angular distribution of the p decay is
wig = Vo (ptun +pfee) = lal®1¥51% + (87| Y51% .
Assume o and § nomalized

L2+ |gl7 = 1

and call |ﬁ|2 = r, the fraction of the spin flip cross section, then

o= = 157w (Y517 - Y3 . | (IT.4)

Table IVb gives the angular distribution for J = 0,1,2.

Table IVb

Adair distributions for integer J. r is

the spin flip ratio. X = cos O
Jd =20 I 1

3%+ r(%-% %°)

oy
]
-—
I

J=2 =% -1% 2 4+ 4% a4+ 15 =" %)

The highest power in the cos ® distribution is 2J.  Observe,
however, that an appropriate r can make the highest power term vanish.

For instance r = 2/3 for J = 1 yields an isotropic distribution.

c) Choice of Acceptance Angle

The decay distributions are strictly valid only for particles
emitted at 0° or 180°. In practice however, one has to choose a finite
acceptance angle. How large may it be so that the decay distribution is

still significant for the spin of the produced particle? Take the case

7863/p/cm
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of a fermion. Here the requirement is of course, that nearly all produced
particles are in the states |J,% > or |J,-% > . Regarding the example

Eq. (II.1) we see that all other states |7,m> m # Y% ,-% are associated
with production orbital momentum states Y?(mﬁo). The Y?(m%O) are 0 at

0° and 180°, which is the crucial requirement for the Adair analysis to

work, and rise with sin” 0. So the cutoff angle should be reasonably
chosen smaller or equal to the first maximum of all substantially contributing
Y?(mﬁo). Looking at tables of the adjoint Legendre functions e.g. in
Jahnke~Emde, one finds that for fixed £,Yz reaches the maximum first and

in the same time covers a larger area from 0° to ®max than the other Y?

of the same ¢, So YZ is the most dangerous term for the Adair analysis for

a given £. ®max is roughly 1/¢, so the highest ¢ contributing substantially

to the production - call it zmax - determines the cutoff angle which corres-

1

ponds to the first moximum of Y . Thus we have

{max
L]
@cutoff ~ e *
max ..

If one assumes that the range of the interaction is given by the Compton

wavelength of the 7

- B
A==, (I1.5)
m
an estimate of zmax can easily be obtained regarding xﬂ as the maximum
impact parameter. Applying the classical definition of angular momentum
one finds the relation
CM Cii ol

hemax = pinc xﬂ = pinc ' m or

Q

CH , (11.6)

inc )

bnax =m0
m

Pgﬂc = momentum of incident particle in the c.m. system
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d) Examples of Application

The Adair analysis was originally ﬁroposeds) for the spin deter-
mination of strange‘parficles, Applied to A and I hyperons produced in
two body reactions, it gave the result that the A and I spins are Dée .
Later on it was widely used in connection with excited baryon states and
meson-meson resonances ’ though other methods to be discussed later, often
proved more efficient because they either permit larger samples of events
or because the Adair enclysis is inadequate to the problem. There are,
in fact, cases where the Adair anaiysis is bound to fail, namely in all
reactions having a zero production amplitude in forward and backward direc-
tion. It was L. Stodolsky and J.J.'Sakuraia) who pointed out that the
Adair analysis is not applicable if particles are produced in a certain channel
of vector meson (p,K*, spin 1 bosons) exchange where the amplitude is zero

for production angles © = 0, 7.

For instance the reactions
T N’§/+++ 7°
2
Ktep > N§/+++ K°
2
w+4-p s k't
K +p -~ YT+ T
are most likely to prdbeed via p or K*¥ exchange, because m or K exchange
ere forbidden by parity. In fact it seems that in none of these reactions

the Adair analysis has given satisfactory results for the spin determination

of the baryonsa .

An important result of Stbdoiskyis and Sakurai's calculations was
that the decay distribution of an N;, prodﬁced in the most probable i1 - pa,
2 . 2

transition of vector meson exchange should be of the form

Tl = % (14 3(a)% ]

where fi is the production normal and # the direction of the m in the N* decay

measured in the N* c.m.
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This anguler distribution corresponds to the eigenstate

wN‘»’,‘t = |3/2:1/2 >

with respect to the production normal. Let us see what the engular distribu-
tion would be if measured with respect to the Adair direction. Firstly we
rotate the state ¢N* by 90° so that the beam direction becomes the spin
gquantization direction. Applying the y rotation matrix of Table III

- ] —
1 w3 V3 - 0
: V31 4 V3 1
b = D (/2 =V 15 4 LA o
' IRVCRNRVE S 1 0

— /! ! ! 1
b = VRN % > = % %> 4 | Y- es « V3% %]
!
where the states | > are quantized along the beam direction. Averaging
over the azimuthal angular distribution we can neglect the interference
/

of different eigenstates | > , so that the resulting angular distribution
is ' given by

dN FS v %
Toos® = 2 W)y, Ly, + M)y, Ly,

where the two terms may be taken from Table VI. So

e =Y (%= %) + (bt %) = %(1- %)

d cos ©® ~

whereas the expected Adair distribution is % (1+ 3%%).

The Adair enolysis offers no possibility to determine the parity
of a baryon resonence of spin J decaying into a fermion of spin % and a
spinless meson. As seen in the example of a spin 3 particle, the decay
angular distribution does not depend on whether the decay proceeds via a

. o . . . .13
P or a D wave. This feature weas generalized in the theorem of Minami ).
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For the Adair case it has the consequence that the resulting decay angular
distribution of the two equally populated states ‘J,v§> and lJ,-7§> is

the same for the two possible orbital angular momenta Ly = J- Vo, Lo = J+%.

- In addition the daughter fermions show no polarization at all
if the decay is strong which means that no interference between L, and La_
is possible. This can be seen from the polarization distfibutions calculated
in Chapter IV, Table VI. Thus a polarization measurement of the daughter

fermions of Adair selected events gives no answer about the parity either.
Problem

Discuss the Adair analysis of a spinvig particle A strongly
decaying into a spiné?@ partiole B and a 7 meson. Try to find a method

to determine the relative parity A,B.

IIT THE DENSITY. MATRIX

a) The General Formalism .
In practice it is very rare that one deals with particles in pure

spin states. . llostly one has statistical mixtures of pure states.

Take as an example, the hypothetical case of a system of spin %
particles where 9@ is completely polarized in z direction, the other % in
x direction. furthermore for an individual particle it is not known to
which category it belongs. It has probabilities of py = Y%, p. = % and of
being in one or the other categories. Nevertheless it is possible to’
calculate expectation values of physical observebles. The natural procedure
is to calculate the expectation values for both the contributing states and

to add them up with their relative probabilities.

There is a convenient mathematical tool to do this, namely, the

formalism of the density matrix.

For a pure spin state

$ =3 alim>
m

the expectation value of an cperator Q is according to Eq. (I.15)
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<Q> =% a*a <jmlqlik>
m,k

=3 a¥

a, Q
m, k m k “m,k

where <j,le|j,k> is the matrix element Qm X of the operator Q.
3

For a statistical mixture of states ¢(1) with probabilities p(l)

the expcctation value is

cgs =z pd) (g5 Ly () { 5 a*(i)al({i) ka} .

. . m
i i m,k

Defining the density matrix p as

Prg = i p<l)a;(1)a£1) (II1.1)
<Q > can be written as
<Q> =3 Q, po = 2(Qp)
m, k m (III.2)
= Tr(Qp) = Tr(pQ)

Eq. (III.2) can be regarded as a definition of the density matrix and also

connects it to measurable qu:ntities <Q >.

Let us quote some important properties of the density matrix

which can easily be verified by the rcader.
1) It is hermitian

Pmk = Pﬁm

2) The sum of the diagonal clements is 1

I
-

Tr( p) = Tr(p) =2 Prm
m
3) The diagonal clements are positive
20

Pinm

k) Tr(p®) =z lp o [% < 1
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5) If the density matrix describes a mixture of N purc states
N Tr(p?) 2 Tr(p) =1

6) Under a unitary transformation U of the system of orthogonal

basis vectors the density matrix transforms as an operator
|
p! = TpU .

Expectations values < Q > stay invariant under this transformation.

<@ > = Tr(Q'p’) = Tr(uu™ UpU™" )

2r(UQeUT') = Tr(Qp) = <Q>

[t}

because the trace is invariant under unitary transformations.

7) A system of spin j has 2j+ 1 = N orthogonal basis vectors. The
Nx N complex elements of the density matrix correspond to 2N°

real paramcters which are subject to different constraints:
a) hermiticity Pok = pim gives N® constraints,
b) one constraint on the trace
N
e =1
1
so there are left
n=2P-¥-1=N8-1
real paramcters which determine the density matrix.

8) As the density matrix can be regarded as a hermitian operator
there exists always a unitary transformation that makes the
density matrix diagonal. This trensformation corresponds to a
new choice of basis vectors. As a conseguence a pure spin

state can always be described by a density matrix having all

elements 0 but one diagon2l element which is 1.

As an cxample let us construct the density matrix for the system

defined at the beginning of this Chapter.
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In the terminology of Eq. (III.1) we have

) -

)

ol
»1/2

)

) <A

e

P1 = vé P2 = %
and calculate
) 1 o! y VA %
9:3. ~-{-3 =
o of Tl onlTle
The polarization of this mixed state is
‘ <P& > = Tr(Pxp) = Tr(dkp) =

1}

Correspondingly one finds

<P.>=0 ; <P >
Yy z

as was expected from the construction of the example.

3
real paramcters, so it is presumably possible to exvress the density matrix
To this end one

The density matrix of spin ', particles depends on 2% -1

in terms of the three polarization components PX Py sP .

expands the 2x 2 density matrix in terms of the unit motrlxllland the

matrices o&,c&,dz which are all lincarly independent. From the condition

7863/p/cm



- 156 -
B=Y% <J>=<>=Tr(Gp) : (I11.3)
one calculates p in terms of 3

=1 (]
p=" ({+Bo + POyt Po,)

% (1 +33) =% (III.4)

I

One verifies immediately that Eq. (III.L) satisfies Eq. (III.3). So the
measurement of the thrce polerization components of spin % particles
completely determines the spin density matrix of the system.

Gencrally, for systems with spin j, having N = 2j+ 1 eigenstates,

N? - 1 linecar independent observables will determine the density matrix.

b) Random Mixture of Spin States

One may specify a random mixture of states with spin j by requiring
that all possible purc states in the mixture arefequally.probable, or that
the probability of the mixture to be in a definite pure spin state ¢ is

the same for all possible states ¢§l). ThlS probablllty is
p = slf’g P Y (III.5)

where the state wj is reprcsented by a column vector

—— .

and- ¢ by the correspondlng row vector. The cxpression Eg. (III.5) is

1ndependent of the particular ¢ (1 e. the normalized coefficients a )
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only if p is a multiple of the unit matrix. Because of the normalization

requirement of the density mctrix, all diagonal elemcnts have the value

1
Pom = 25+ 1

Therefore a random mixture of spin j particles is described by an equal

mixture of all eigenstates |j,m> .

This special structure of the density matrix for the random spin
state can also be derived by the requirement that it be invariant under

any rotetion D:

o/ = DpD” =p . (1II.6)

As the D matrices are irreducible representations of the rotation group,
and thus do not contain invariant subspaces, Eq. (III.6) is valid for

arbitrary D's only if p is a multiple of the unit matrix.

c) Density Metrix of Particles Produced in Strong 2-body Reactions
We consider the reaction
A+B > C+D

where all the particles may have different and arbitrary spins but particles

A and B are required to reprcsent a random mixture of purc spin states,

c.g. unpolarized protons. Now teke out of the mixture a certain pure

initial state @i described by
->
2 =4;(x) 8, 8

where ¢(7) is the space part of the wave function and S, and Sy are pure

A
spin states of particles A and B. The space part is an incident wave

in x direction

Apply to @i the parity operation P which effects a reflection at
the origin:

- -
r = -=r .
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P acts on the constituents of @i in the following way:

Py(7) = ¢ *PX
PS, =5,
pPS. =

5~ %%

where EA and gB are the intrinsic parities of particleé A and B. So

: _ . =ipx
P@i = EA EB e SA SB .

Now we rotate the state P@i by 1BQ° around the z axis, which is

chosen to be the production normal A

initial state . : . final state

n
n

N | _[s/
b P “f

C_ -ipx
ngﬂ)P@i =&, & Dz(n) e S, Sy -

For the special choice of the rotation axis the operation Dz(ﬁ):

is with respect to wi(?) equivalent to the parity operation P. So we have

D, (m)Po, = ¢, (7) l:gADz(w)sA][gBDZ(n)sB] .

The transformed spin states
-
S,! = gADZ(v)Sn

I —
SB = gBDZ(w)SB

7863/p/cm



- 159.—

must be contained in the initial random mixture with equal probability as

S

A and SB. Therefore

DZ(W)P@i

is another initial pure state with the same probability as @i. As this is

true for any pure initial state we have shown that the random initial state

is invariant under the operation

Dz(n)P .

Now, if this symmetry property is not changed by the interaction,
i.e. if parity is conserved in the interaction, the final mixed state

must also be invariant under Dz(v)P.

This requirement implies that for every production angle the spin
density matrices of particle C and D are invarient under a rotation of 180°
about the production normal, and thus imposes a special structure on the
density matrix. The density matrix transforms as an operator, so one

requires
p' =D (n) p D, (m) = p

or

eD,(n) = D_(m)p

Dz(w) being a diagonal matrix, if z is the spin quantization direction we

have for one matrix element Pk.m

Prn Do = Pk Prm
-imm -ikmw
Pym © =e Py
_i(m-Xk)w
pkm =€ Pkm
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As a consequence, all matrix elements Pyxm with lm-kl 2n+ 1 (n = 0?1,2 ces)

are 0 so that the density matrix shows a checker board pattern

KW O M O
O X o M
M O KW O

| o % o |

Now it is easy to show that, as a corollary to this more general
result, particles produced in strong 2-body reactions from random initial
spin states can huve a vector polarization only in the direction of the
production normal (z direction), the spin expectation values <J_>, <{Y>A
being O.

This can be immediately verified, recalling that in the J )

h
are different- from 0; so

matrices (cf. Eq. (I. 21) only the elements Ck -
<J > = T>.'J )
XYy T ( x,yp)
e e ]
{0 x- 0. 0 x 0 x O
X 0 X 0 0 X 0 X
=TrSlo x o0 «x x 0o x olf~9°
0 0 x 0 0 X 0 x
\ — J— S —
J
X,y P

P,

[References: (4), (10), (11), (12)]
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IV ANGULAR AND POLARIZATION DISTRIBUTION
WITH RGSPECT TO THE PRODUCTION NORIHAL

As discussed in the preceding Chapter, parity conservation in
strong interactions allows particles produced in 2-body reactions to be
polarized only in the direction of the production normal. Thus in view
of the spinvdetérmination it seems promising to study angular decay distribu-
tions with respect to this direction; for if the particles are polarized
or aligned along the production normal, the observed decay distribution

may allow a statement about the spin.

We take the production normal as spin ¢uantization direction z
and consider for the moment only spin states corresponding to the diagonal

elements of the density matrix.

First consider integer spin particles in the state IJ,M> decaying
into two spinless bosons. This case refers to 2-body decays of meson-

meson resonance. The angular distributions clearly are

S
Toscs = Yy 4y - (Tv.1)

The results for the same integer Jd values are listed in Table V.

Table V

Decay distributions of spin J bosons in state IJ,M>
into two spinless particles. X = cos @

State —
lo,0> 1

l1,0> 3x°

| 121> > = Y X®

|2,0> Ye=2%% + 4Yxt
|2,+1> " - 1%xt

|2,+2> V=T + Vot
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Observe, that according to the spherical harmonic addition theorem Eg. (I.29)
an equal mixture of all states from IJ,—J> to |J,+J> results in an
isotropic angular distribution. Furthermore, even if there is a resultant
polarization, the angular distribution might still add up to isotropy as

for instance in the case where only states from ]J,O> to IJ,J> are present
with equal weights for |J,1> to |J,J> and half that weight for |J,0> .

This also follows directly from the addition theorem Eq. (I.29), observing
that-lJ,M> and lJ,—M> lead to identical distributions.

Let us now turn to baryons decaying into a spin %% fermion and

a spinless meson, as
Y*—>A‘!'1T o
We confine ourselves here to parity conserving decays. Take for example a

Y* in the spin state I?@,i@ > . It can decay via a P wave or a D wave,

depending on its parity.
a) P wave decay:

17%,%> >0 =014, %> .
The angular distribution of the decay is

vy = (Y2 = - %

Now consider the polarization of the A. It is clearly 1 in z direction for

all decay angles because the A is in the eigenstate lbé,)é >

Instead of regarding the polarization B of the daughter fermion
itself, we shall use the quantity

y*4 B(6) = =i B(0)

|

fol]

because this expression is often less complicated than ?(@). Therefore for

our case

U P, =Kl
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b) D wave decay

1%, %> >4 = =% B1%, %> + V% Bl >

b =V V=R & (g)mz. 3(1-2) ¢ (3)
= a<3>+b<$>

The polarization in z,x,y direction is
d* P = la]? = [b]? =% (1-2) - %(1=2X +x*)
= % (-1+3x° - 2x*)

>\ 72
3x(1-x°)"% cos ¢

s P_ = 2Re(a*Db)

3
ad" Py = 2Im(a*b) = 3x(1- xz)/z sin ¢

so the total polarization has no ¢ dependence and the radial component is
Y.
g*¢ P = 3x(1-x)"

One may as well split the polarization P into a longitudinal component P,
parallel to the emission direction of the A and a transversal component P,
perpendicular to P, and lying in the plane defined by the z axis (production

normal) and the emission direction of the A in the Y* system.
NnZ N —
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8) y*y P, is an even polynomial in cos 9.

9) y*y P has the form f(cos® ®) cos ©® sin ©, i.e. an odd function
of cos ©.

10) The polarization component P, in the fermion emission direction
does not depend on the parity of the state 'J,M> \

11) The perpendiculer polarization component P, of the state IMﬁ>
changes sign for the opposite parity state.

12)  ¢*¢ P, has the form £y (cos® ®) cos €.

13)  ¢* P, has the form fz (cos® @) sin @.

14) If a state lJM> leads to o certain polarization distribution
in the z direction P;(@), the opposite parity state shows the same polarization

distribution with respect to the magic direction et v.v.
-+ _ -
Pz(@) = Pm(@).

Let us say a few words about the experimental situation. From
the above results it follows that the spin of a particle can be determincd,
at least in principle, from the decay angular distribution, if the contributing
states do not happen to add up to.isotropy. If the sample of events is
large:enough it is advantageous to consider separate subsamples corresponding
to.different production angles, because for small intervals of‘production
angles the spin density matrix of the produced particle is less likely to
contain the sums over many pure states which could ¢verage out the angular
distribution to isotropy. Remember that for a fixed production angle the
spin density matrix contains, e.g. for the reaction m+p » Y+ K, only two
pure states corresponding to the two pure initial spin states of the nucleons

which build up the unpolarized target.

Because of the ilinami ambiguity13) the decay angular distribution
does not give any information about the parity of the state i.e. whether
the decay proceeds over a wave with even or odd angular momentum. The
polarization distribution of the daughter fermion however, does depend on
the parity of the decaying state. In the example of the decay Y¥ »> A+ 7
the polarization of the A can conveniently be detected by its decay asymmetry,
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as discussed in connection with the decay perameters of the . How can the

polarization functions

listed in Table VI be obtained experimentally? As shown in the paper about
the & decey parameters, the decaying pion from the A has an angular distri-

- . - . =
bution with respect to any polarization component PC

A iy, [1- aA(‘ﬁoﬁ)] (1v.3)

me

where q
A

the 7 direction in the A-Cl and

is the a decay parameter of the A, # is a unit vector indicating

B #) =P cos® .
c c me

So, fitting the measured values cos @vc for the A polarization components
under consideration (PZ,Pr or P,,P,) to the distribution Eq. (IV.3) one
obtains PC (aA is knovm and = -0.62). This has to be done for different
intervals of cos @ (@ = emission angle of A in Y* system in the meaning
of Table VI) in order to obtain the polarization functions N Pc'

d cos ©
In the limit of large statistics the fit of Eq. (IV.3) is effected very

eesily:
Calculate the average cos @W:

+1

- |1 - :
<cos @ > = / A [} o, P cos @W:]cos ©_ dcos O

-1

(=) = 1
<cos @_> Vs «,P

P == <cos ©® >
T

N
_ 3.1
== 5 [? cos @ﬂi} .

7863/p/cm



- 169 -

The polarization functions in Table VI can now be written

Ng Ny 31 Ng
¢’*¢‘ P(@) = N ) P = N . 'l"’ {E cos ® }
tot tot %A Mo (s Ti
N@
l/}*(ﬁ P(@) = -ﬁ-j—, . -.-é— { % co0Ss 8‘”'} (IV.LJ-)
tot % Lo i

where N® is the number of events lying in a finite interval A cos ® and
Ntot is the total number of events. Observe that the distribution Egq. (IV.k)
is normalized to 1 whereas all cos © distributions in the Tables are nor-

malized to 2.
This type of analysis was applied; e.g. by Shafer et al.M)
to determine the spin and parity of the 1385 ieV Yf resonance produced in

the reaction

- +3% -
K+p->Y +nt >Asn +7 .
They obtained for the angular distribution

dN

ez

d cos

= 1+ (0.69 * 0.22) (AA)?

©]

and for the A polarization components in the normal and magic direction

"'1 + 305 (.&ﬁ)z

l
g
i

i

1~ 9.7 (AAP + 11.2 (AR)* .

Comparing these results to the theoretical distributions in Table VI the conclu-

sion was that the most likely spin parity assignment is P3/ i.e.
2

J = %, P wave decay.
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It should be emphasized that the theoretical derivations of
angular and polarization distributions were based on the implicit assumption
that particles should hove & definitive spin end should decay free from
interaction with other particles. In practice hovever, when dealing with
resonances decaying by strong interaction, there is always an inseparable
non-resonant background containing other anguler momentum states which
might interfere with the resonant state and considerably modify the pure

resonance effects in engular and polarization distributions.

Adair15) for instance, has shown that the above mentioned results
of Shafer et al. for the Y¥ could be explained as well by the spin parity
assignment Pvé assuning a specific background interference with other
angular momentum states. Without going into further details of the back-
ground problem it should be mentioned that background interference is most
likely to change rapidly with the c.m. energy of the production process.
Therefore if several analyses at different production energies give the
same spin parity assignment for a resonance, there is little chance that

background interference imitates the same wrong results in all cases.

Up to now we have only considered the decay of spin eigenstates
corresponding to the diagonal elements of the density matrix, which are the
only contributing ones, if averaging is done over the azimuth ¢ of the decay
distribution around the production normal.  However,it should be borne in
mind, that an experimental bias in the decay azimuth ¢ will, in general,
influence the observed polar decay distribution dN/d cos ©. All this
applies as well to events chosen at a fixed production angle as to a sample

corresponding to a finite angular region.

Let us now investigate what one might learn from the azimuthal
dependence of the decay angular distribution. Such ¢ dependences result
from non diagonal clcments in the spin density metrix of the decaying
particle. As discussed in Chapter III the parity conserving production

process allows only matrix elements of the form

% a * _
CkC o end CF G,k =1,2,3 ...

corresponding to pure stetes of the form

U= oo + lej,m> + Cm+2klj,m+-2> + eoe
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Take the simple case of a state with integer j decaying into two spin 0
mesons. For simplicity we confine oursclves to the superposition of only
.~ two eigenstates ,lj,m> and |j,m+2> which cre in our case two spherical
harmonics YJ:; and Y:g+z « Thus ¢ has the form

§=C_ £ @)e™ Cooc 2 (0)et(@#2K)0
S=vw=lc | nie2+lc,  |* £()
+ 2f,(0) £2(0) Re (c;;cm*_zk e ik‘*’) . (Iv.5)
With the substitution
C:lcm+2k = IC;Cm+ klei(S

the angular distribution obtains the form

% =® @) + e (®) cos (2kp+ 8) | ' (Iv.6)

Exercise
Prove the folléwing theorem:

Assume the angular momentum stete with arbitrary J
=0y ldme>+c |5 m>

performs a parity violating decay into two particles of arbitrary spin

J15J2 « The resulting angular distribution can always be written as-

% =F(0) + F2(0) cos [(my~m) ¢+8] .

As seen from formula Eq. (IV.6) the angular distribution is

invariant under rotation of 180° around the z aixs. This is just the
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property the density matrix was required to have, because of parity con-

servation.

For k = 1, & = 0 the second term in ¥g. (IV.6) would give rise

to a ¢ distribution sketched in Fig. 6 as a polar diagram

AY

an

NN Fige
N4
/

f
i

N

Terms of the form cos [(2k+ 1) ¢] give corresponding polar diagrams but

with an odd number of leaves so that the configuration is not invariant

under rotations of 180°.

These properties of the azimuthal distributions may sometimes
be of use as additional cvidence in the spin determination. In particular
a spin Y, perticle produccd in a strong interaction should not show any
azimuthal dependence in the decey distribution, even if it is a P wafe
decay, because the density matrix for spin %, does not contain any term
C*C . On the other hand a spin % particle could show a similar decay

m m+2
pattern as indicated in Fig. 6, resulting from the terms C%,C Y and
2 /2

¥, Cq)
23, %y,
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¥ LEE-YANG TEST FUNCTICNS' ®)

Let us now investigate parity non-conserving decays of particles
in spin eigenstates irith the production normal (z axis) as spin quantization
direction. As shown before, any statistical mixture of spin eigenstates
reduces to the diagonal elements of the density matrix if, in angular and
polarization distributions, averaging over the azimuth is done. The case
Tor spin Y% is treated in the paper about the & decay parameters. As for
higher spins the mathemetical procedure is essentially the same as for the
spin Y, case, no explicit calculations will be carried through here, but
to indicate the procedure once more, take the case of a particle in the spin
state |3§,3€ > . The decay into a fermion and spinless boson leads to the

final state wave function

[ Q> () 2 0]
e -5 210)- (% ()

\, /
a b

() (0)

The P and D wave amplitudes are normalized

=
I\

I

|P[* + [D[* =1
The decay angular distribution is
p*y = |al® + |v]|®

and the polarization of the final state fermion is expressed by
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P_ = 2Re(a*b)

X
Py = 2Im(a*b)
P, = la|® - |b]* .

Working out these expressions leads to the results in Table VII. There
the polarization of the daughter fermion is given in a coordinate system
defined in the following way. With the quantization direction fi and -
the fermion emission direction &, (in the c.m. system of the decaying
particle) we define the unit vectors

~ A
A Nnx €4
€ =
lﬁx é1|
» I3
€4 X €
é3 = 1 2
P.3 A
€4 X &

as indicated in Fig. 7.
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Table VII

Angular and polarization distributions of parity non-conserving
Initial state: |j,m>. x = cos ®. ¢* = dN/d cos ©.

fermion decays.

€ = polarization

of initiel eigenstates

1+ form>0
-1 form< O

mwn

N
-
1+
(V) PN

o] 1€V
1+
[N1IN

\o) (O
“
I+
V] B
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¥*y

$*yP,
y*yP2
$*yP,

*y
y*yP,
P*YPe

g*yp,

¥y
y*yP,
$¥yPo

P*yP,

1 - ¢[2 Re(S*P) x]
¢[x] - 2 Re(S*P)

~e[2 Im(5*P) V1= £ ]
e[(Is|z-|p?) vI- £]

[ (€Y
]
\S] SN

N

]
?)

%——gxz -e|‘2 Re(P*D)x(,

e[x(% -% f)]- 2 Re(P*D) <

-5[2 Im(P*D) V1= ¥ <—% - % x2>:‘

{(lpla- 21)ViTE (33 x>]

oI
NN

_e[g In(P*D) V1~ & (" 5+ % x2>] o

flor - )7 (4]
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Table VIT {continued

. ag 2
1= <[2 2e(0¥r) ]} w2
{elz] = 2 Re(D¥r)} %2’ e 2y

45 2
- ¢[ 2 m(D¥F) Vi- 7] ?2 (1~ 22)

NEMERY s

{1445 2% - ¢[2 Re(D¥) = (- 025 x2)]} -83— (1-x2)

fe[x(- 9+ 25 x*)] - 2 Re(D*F) (1+15 x2)} g- (1-x%2)

~<[2 Im (D*9) Vi =25 (- 125 x2)] -83— (1-x2)

2 2

LR -]y )\/’i-};t (-~ 1+25 x2)] —g.— (1-x2)

i ’_/ [
- 6':2 Im(D*F) V1 - =& ! f - HE 2 3’4>—]

iv- 2~ PN s /3 ) L_;-_?_‘. . 75
eL(‘DI DI RVRSIrCR g X% T x"'):’
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The polarization components in the directions &,&.,&s are

Py = Pu
P2 = Pz
P3 =P

I~

where P, and P, have the same meaning as in the preceding Chapter.

The symbol ¢ in Table VII is +1 for an initial state |J,M> with
M >0 and =1 for M < 0, so for a statistical mixture of two states (M > 0)

| J,M> with probability p:

and |J,-w> " " P2

€ gets the meaning of the polarization of the parent eigenstate:
€ = D1 = P2

When butting one of the two contributing decay amplitudes equal to 0, one
gains back, of course, the corresponding distributions for parity conserving
decays as listed in Table VI.

For an arbitrary spin state IJ,M> of the parent particle the
angular and polarization distributions may all be written in the form (cf.
Table VII for spin % % ) '

g = £1(f) -~ € 2Re (A.EALH)X 2 (%)
y*yP, = e[x £ ()] - 2Re <A§ALH> £1 (%)
WEYPs = -¢ [ZIm (A;“ALH >\/1Tx_2 f; () (V1)

i

wror, = e| (lag) = a1 )ViT# 200
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The AL’AL+1 arc the decay wave amplitudes with L = J- ', and the
f1,2,5 (x*) polynomials in x®. 4 (x*) is identical with the angular

distribution of the corresponding parity conserving decay.

Note for

The terms containing AL,AT+1 are called decay parameters.
L]

We define

@ = 2Re(A.}":AL+1)
B = QIm(AI":jALH )

(v.2)
vo=lagle - e 12

with o + 8% +4% = 1.

-

(In the paper concerning the E decay parameters « and 8, though being
defined as in Eq. (V.2), enter with opposite sign into the corresponding
expressions for the angular distribution and the polarization. This is
due to another sign convention in the decay wave function which corresponds
to that adopted by Teutsch et al.16) and Ticho17). The formulae given

there, and here, become identical under the transformation AL+1 - —AL+1).

The fact that the term containing o = 2Re(A{AL+1) in the expres-
sion for ¢*¢P, does not depend on the polarization ¢ and has as factor
£1(x*), the parity conserving decay distribution yields an easy method for
determining a experimentally for arbitrary spin: Calculate P, averaged

over all emission angles for an arbitrary state IJ,M> with polarization €.

S (‘ x x? + x°
P, = 7 L»[ f2 ( )] a £ ( )}

-~

+
<P,>="% /P,, gty ax

)
<P, > :}é/se[x f2(x*)] + « f1(x2)} dx

=1

+1
—"-0(1/:; [f1(X2) dx
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£1(x*), however, is always the parity conserving distribution normalized

to 2, so

<P,>=a . (v.3)

This is true for any initial state |J,M> therefore, also for any
statistical mixture of states, averaged over the azimuth ¢. This averag-
ing, however, is done automatically because the above relation is independent
of the coordinate system, in particular it no longer contains the original

spin quantization direction f.

It is shown therefore, that the method for determination of a

described in the paper about the £ decay, remains valid for a & spin higher
than Y .

However the relations given there for the determination of the
B and ¥y parameters are noAlonger true for spin > %% . Corresponding
relations for higher spins would contain, not only the polarization, but

also the population of the different eigenstates.

Now let us turn to the spin determination based on the decay
angular distribution. The distribution observed experimentally is, of

course, a statistical superposition of the distributions (g*y) referring

J,M
to eigenstates |J,M>. So

S\ I . *
d cos ©@ & pJ,M (4 ¢)J,M

M
where Py u is the population probability of the state |J,M>. According to
J
the general structure of (¢*¢)J w of Ea. (v.1),
SN

% _
W )5 00 = Ty (%) + ca Gy yy(x)

the angular distribution can be written as

dN

Tcos® - .0 (pJ,M+ pJ,—M) FJ,M(X)+

(Pr yi= Py _y) @ G - (%)
M>0 J,M “J,-M J,M

Z
M>0

(V.4)
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A necessary condition for a certain spin J hypothesis is, that
the observed angular distribution has the structure of Eq. (V.L). A
straightforward test method would consist in fitting the experimental
distribution to the theoretical expression Zg. (V.4) and finding the un-

known parameters Prap © which have to satisfy the relations
Jy Ll
L P = 1
M JIM

0 g Pyy < 1 (v.5)

"15“5_10

Unfortunately, if a is a priori unknown, only

(pJ,IxfI+pJ,-1VI) and a (pgy~ pJ,—M)

can be determined in the best fit, so that the only test relations are

Py,u* Py 2 | a (o= 2] (V.5a)

for all M > 0.

Instead of the fitting proccdure, one could as well expand
theoretical and experimental distributions in a series of functions and
express the test conditions as relations between expansion coefficients.

It is of great practical advantage to choose a series expansion of orthogonal
functions, because then the expansion coefficients of an experimental
distribution are, at lcast for large statistics, proportional to sample
averages of the corresponding orthogonal functions. This may be seen as
follows. Expand a given distribution f(x) in orthogonal functions Pe(x)

satisfying the orthogonality conditions:

b
i =
[Pg\x) P (x) dx = C. 8
a
C A0

e.g. for Legendre polynomials Cm = EE%%T when integrated between -1 and +1.
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From the expansion

£(x) = % a, P’;(x)

one calculates the averaged Pm(x):

b b
<P >= /.Pm(x) f(x) dx = P;(x) Pm(x) dx
a a
= Cp 8y

so the expansion coefficient a, is

For an experimental distribution f(xi) the sample average is of course

N
-Z Pm(xi).

B
2-

1=1

It should be mentioned however, that the coefficients a obtained
in this way, are in general, different from the corresponding maximum

likelihood solution for a in the case of finite statistics.

As in our problem, all distributions are polynomials, in cos ©
one chooses, of course, the Legendre polynomials as an appropriate set of
orthogonal functions. Consider the case J = % . The expected angular
distribution is according to Eq. V.4)

e

2 (o) F 3 M (x)
2

M=Y

L\ I
=3 cos © _
(v.6)
7
+ 21 (pM- p_M) aGB/g,M (X>

M= 2
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From Table VII we have, when normalizing ¢*y to 1~

Fs/z,% =% (o=-7x) G3/2372= Vo (<Fex+72%%)
' " (v.7)
F%,'/z =% (1/2"'3/23(2) | G3/2"1/2= Ve (ex-%%)

SO

vy = (szz ¥ p_3/2> 72 (’/a - 3/ax2> * <P3/2 - p_%> af/2<-;/zX+ ’/ax3>

+ (P:s/z"' p_%_> Ya <’/z + 3/e:»c2> + <p1/2- P_%) a%(%x- ’/zx’>

(v.8)
Now one can easily evaluate the averages

+1

<P,>= / b Pe(x) ax .

-1

The result is

<Po>= 1

<P1>=%s a <Pz/2'P_3/2> - Vs “<P72_P—’/z>

R AN A I

<Ps > = %5 a(p%-—p_%> - Y O‘(Pyz'P;%)'

All higher <Pe>, with £ > 3 are O because the highest power in ¢*y is x>.
The test conditions Eq. (V.5a)

o NV VAR
1> <p3/2,M+ p3/2,“M> > Ia (pB/Z,M p3/2$”M>‘, M= /2:/2 (V.9&)
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can now be written in terms of expansion coefficients, i.e. in averages

of Legendre polynomials. From Eq. (V.9) follows

Yo =% <Pa >:‘z |-% <Py >+ % <Ps>|

(V.10)

Yo + 7a <P§:{]z |-% <Py >~ "% <Ps>| .

An inequality of the type

a 2 |b|

can be replaced by two inequalities simultaneously valid

axb and a x -b.

Applying this to the test conditions Eq. (V.10) one receives four inequalities

<9P; + 5P, = /5P5s > < 1

]

<T3/2’3/2>

<T;72 _372 >

<T1/2,+1/2> = <3P1 - 5P2 <+ 7P3 >< 1

<=9P; + 5P, + /5Ps> < 1
(V.11)

<T3/2_1/2> = <"'3P1 - 5P2 i 7P3 > £ 1

The T are the famous Lee-Yang test functions’ for spin % .

8)
J,M
The inequalities Eq. (V.11) represent necessary conditions for the hypothesis
that the particle has spin 72 . They are clearly not a sufficient criterion
because a flat angular distribution which corresponds to an equal mixture
of all stateS'IJ,M> would automatically satisfy the inequalities, whatever
J may be. To further clarify this point, one immediately verifies that an

observed angular distribution of the form

dNﬁ
d cos ©

=% (1+a cos @)
gives

7863/p/cm
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I+

3a

T
kR (V.12)

!
I+
[

<Ts 1> =
/2’12

which is O for an isotropic distribution. Thus the proof of a certain spin
hypothesis has to consist in the rejection of all other hypotheses. 1In
practice one starts the rejection with high spins, which elementary particles
are less likely to have, e.g. with a spin hypothesis of J = 7@. The

corresponding test functions may be derived in an analogous way. They are

it

15Py + 2%P2 = >%4Ps = %ePa+ ' 10Ps

™ 1%
AR
™%
AR A
L%
™ Y%

]

-15P1 + 25/4P2 -+ 3%P3" %P4 - 11/10P5

9Py = YaP2 + *%Ps + 2YoPs = 1V, Ps

(V.13)
9Py - %Pz = *Y%Ps + 2Py + ' Vo Ps

n

3Py = 5P, + 7P5 - 9P4 + 11Ps

3Py = 5P = 7Ps = 9P4 = 11Ps

If J = % fails, one tries J = %, if J = 3% is rejected one tests the J = %
hypothesis with the test functions

T1/2 :1/2 - 3P1
(V.1y)

T - == .
1/2:"1/2 3P
As the decay angular distribution of a spin %4 particle is

Eﬁf%%—g = % (1+ Pa cos ©)

where P is the polarization and « the a decay parameter, the averages of the
test functions are simply

<T1/2’112> = *Pq . (V°15)
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By this procedure it was possible to exclude for the A19) and, with rather
high probability, also for the = hyperon‘7), all spins higher than % . It
should be emphasized, however, that this method need by no means always be
successful, even if statistical errors are negligibly small. This is
immediately evident for a completely inorientated sample of particles, but
it is for instance, also true for a completely polarized sample of spin Yo

particles with

a < 2Re(S*P) < Y% .

According to Eq.(V.12) the averages of the J = %, test functions would all be
<1 so that no decision between spin %, and 7 is possible. In this case
only the absence or presence of a cos’ © term in the angular distribution,

could decide between the two possibilities.

As a matter of fact, the larger the absolute value of the asymmetry
parameter a, the more spin hypotheses can be excluded for a given sample of

particles. This follows from the relation

1
557 or 1< (2T7+1) <cos ©> ¢ 1 (V.16)

- 53%5? £ < cos ©>¢
which is implicitly contained in the test functions and which was proved by
1
Lee and Yang ° for arbitrary spin J. <cos ©®> 1is clearly a measure for
the asymmetry of the distribution and therefore strongly dependent on a« .

Thus according to Eq. (V.16) the larger |<cos ©>| is, the more spin hypotheses
can be excluded.

In the case where « is known, the test condition Eq. (V.9a) can be
sharpened:

- REEVINIE VAN
1> <p3/2,M+ p%_m) P4 lp%,M pz/z,"MI s M= /2!/2 . (V'17)

Expressing these inequalities with relations Eq. (V.9), in terms of <P£>
leads to a similar set of test functions which differ from the original ones,

only by the factor Y in front of all odd Pz. This applies to all test
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functions of arbitrary spin. These modified functions together with the

ihdependently determined a parameters were used by Ticho et a1.17)-to

23]

exclude spins 7% for the = hyperon.

- In practice one always deals with finite statistics, so that the
statistical errors in the averaged test functions must be taken into

account. For a finite sample of N events the average T is
<T> = 1 T
TN D Ti
i

with the statistical error

1 11 1 2
FA<T> =t ==| =3 T - (=53 T.
w@& N i N i

CONCLUDING REMARKS

Finally we should like to draw the resder's attention to a few
more sophisticated spin test methods which have not been presented in this
paper. However, after becoming acquainted with the spin analyées discussed
here it should not be too difficult to understand these methods in their

original versions.

M. Peshkin%3) has proposed a method for the spin determination of

fermions which is similar to that of Lee and Yang but which uses also the
azimuthal dependence of the decay anguler distribution fer special production

processes. If the fermion F is produced in a 2-body reaction of the type
By+N > F+B>

where By and Bz are spinless bosons and N is a nucleon then the spin density
matrix of F contains for a fixed production angle only two pure spin states
which are connected to each other by a reflection and a 180° rotation about
the production normel. This special structure of the density matrix imposes

certain spin dependent conditions on the decay angular distribution in

7863/p/cm
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“addition to those of Lee and Yang. This method is strictly applicable

only to particle samples with the same production angle.

G.F. Wolters has derived sets of test relations for stroﬂg

21) 22)

of fheAdecay angular distributions. For fermion decays the diagonal spin

fermion decays and strong boéon'decays using only the © dependence
density matrix elements can be expressed in terms of the even parts of the
Lee-Yang test functions. The test conditions themselves are then formulated
as relations between the density matrix elements. An analogous method is

applied to bosons which decay into two spinless particles.

The most general method of fermion spin determination is that of
«)

N. Ademollo and R. Gattoza). Here the maximum information available from

N. Byers and S. Fenster: and an equivalent type of analysis proposed by

a sample of fermion decays, namely the decay angular distribution and the
polarization distributions of the daughter fermions of spin ¥, are exhausted
in a systematic way. Angular and polarization distributions are expanded
into spherical harmonics. The spin density matrix for a certain spin hypo-
thesis can be expressed in terms of the expansion coefficients obtained
experimentally. An overall fit of the observed angular and polarization
distributions to the constraints imposed bv theory can decide between differ-
ent spin- parity hypotheses. For weak decays this method will give the
decay paremeters as well. Ademollo and Gatto consider further constraints
the density matrix is subject to for the Peshkin case discussed above. The
method of Byers and TFenster was applied for the spin- parity determination

% 29)

of the = .

.2
Recently 1{. Peshkin ) has presented a spin- parity determination

. - - - - - . 2&
method for bosons which, in a simplified version is due to A. Bohr

It is applicable to bosons X produced in parity conserving reactions of the

type

Bi1+ B2 » X+ B3
and decaying into two particles

X->Bs+C .
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All B's stand for spinless bosons, C can either be a spinless particle or
a y. The virtue of the proposed method is its simplicity: all informa-
tion about the spin and parity of X is contracted in the highest possible
expansion coefficient of the angular distribution about the production

normal. In the special case under consideration this coefficient cannot

accidentally be O.

7863/p/cn
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APPENDIX

MINAiMT AvBIGUITY

If an exited baryon of spin J decays into a spin % baryon and a
spinless meson the decay wave has either L = J+ Ve or L = J- Y, depending
on the parity of the excited baryon. The decay angular distribution is
the same for both the cases. Tor this theorem we want to give a prcof

which is due to Dyson and Nambuzo).

The most general parent spin state is
g P p

g =% alau> . (8.1)
Mo
The decay state ¢ isa sum of states ¢ﬂi
L L
i - M-
B Wi m, 0l Y0 B@ | Gy (402)
i 4
M
b =L ey 1I‘, ’ (A.3)

-2
=y

L can be either J+ % or J- % . A is a unit vector in the direction

specified by (©,¢), the arguments of the spherical harmonics.

The decay a.nguiar distribution is
Q — ik - | i2
dQ (®3‘P) - ‘/’L (l;L - |<JL| .

Let us construct an operator which changes the parity of the decay

stzte when applied to gLrI . Suclk: an operator is
0=0.0

. - . . .
where the unit vector ¢ contains as x,y,z components, the Pauli spin operators

o—x’o-y’o‘z' When applied to ¢L, s clearly acts only on the Pauli spinors
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|7§,m> . The operator g\ 3 is odd under space inversion (3‘= axial vector
Q= polar vector) and thus changes the parity when applied to a state. It
is invariant under rotations and thus leaves the angular momentum of the

state unchanged. Furthermore o0 is unitary and Hermitian.

Therefore the decay state
-
A

has parity opposite to that of ¢L. Both ¢L and ¢ﬁ correspond to the same
parent state ¢J.

The angular distribution for the opposite parity state ¢£ is
an’ > %
5 (©:0) = ¢¥ =g (o) (50) ¢ (A.4)

where the asterisk indicates the Hermitian conjugate.

- s ¥ -
As & O is a unitary operator i.e. (6Q) = (o8Q) !

91\__! - I3l = ¥

gse.d.
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ERRATA
Page Appears as :
28 voe M23 = H* pC!.I‘tiCle one o
oM E
28 M1za-ﬁi£-=E1-p1OI—)g=O
B, - -->1 + - -
2 co @ - .ﬁ_E..2 = i&ﬁm vo o0

3 s Fe P’ P2 P’ P
40 ... axes on an 3, is plot.
Ll"9 vo e 6"f°ld Dalitz plo‘t.
59 +os and the Sienna Conference 1962.
81 However, in Appendix it will ...
82 +e. emission direction ©,% in the

& system.
85  weighted by N({)/(@(T)+ () ...
88 (Fig. 4)

PzA = PEY and PzA=PEﬁ
90 (Fig. 5)

8
98 s denotes the A spin, in its

z component.
100 RI» is ...

3 is
LReR is e
P
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Should be :

0o o0 T’/’IZB = M* partiCJ.e 1 " 00

Oy 2

.l‘!qugﬁ—z—:Ei-p‘,.-_z.:O

>, > > -> >

cos @2-= P—:'—Pﬁ. = KP__‘I +._22_.2’_22
P’ Pz -p’ pa

... axis on a Mi. 1%s; plot.

cos 6-f0lded Dalitz plot.

..s and the Sienna Conference 1963.
However, in Appendix I it will ...

.o emission direction ®,¢ in the
system.

°
=
-

weighted by N(T)/(N(T)+N{)) ...

P3A= EY and PzA.: Paﬁ

>

s denotes the A spin, m its
z component.

s 1 [

LRBR is {

L ]
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Page Appears as : _ Should_be :
104 The element ay3 can be ... The element az1 can be ... .
105 N. Jacob and G.C. Wickg) and M. Jacob and G.C. Wickg) and

N. Jacob™®). M. Jacob'®).
111 1) E.C.G. Sudarsham, 1) E.C.G. Sudarshan,

6) L. Janneau, D. Harellet, 6) L. Jauneau, D. Morellet,

L £

115 = ’ = . . ) = =

: 214,?§bk ®5e0e Pmime =) 7 % b,

- o N
J+J J '
— 2 N 2
119 .‘Jz> = > mlaml . <JZ> = > m]amlk .
m==] m==Jj
128 ...P(x) e ?; ...Pf<x)-e e,
i ' __i

136 R, =51, : R, = R Lz
147 With of =a =a® and pf =p%=p° with |ef| =|02| =|a?|and|p}| = 2] = | p?|
150 ... with excited baryon states «so With excited baryon states®®) and |

and meson-meson resonances’ ), meson-meson resonances? *31232), "
161 The results for the same integer The results for Some integer J

J values are listed in Table V., values are listed in Table V.

see|JyM> into two spinless soo|d,M> decaying ih’co two spinless

particles. particles.
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Apgears_ as

...(aA is known and = - 0,62).
(ef. Table VII for spin Ve,72)

%m*%%il“@m'%ﬂ”

Clebsch~Gordon

Should be :

...(ozA is known and = + 0,62).

(cf‘. Table VII for spin }/2,3/2 ,5/2)

1>%m+%mil“@m'%m”

Clebsch~Gordan
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