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An outline is given of a dynamical scheme based on rising Regge trajectories. The fundamental approxi-
mation is that the scattering amplitude can be approximated by the contribution of a finite number of
Regge poles. An additional simplifying assumption is that the Regge trajectories are straight lines or,
equivalently, that the scattering amplitude is dominated by narrow resonances. Unitarity is introduced by
means of the Cheng-Sharp equations, but, in the narrow-resonance approximation, we adopt a very trivial
solution of these equations. Crossing is introduced by means of the generalized superconvergence relations
due to Igi and to Horn and Schmid. Levinson’s theorem is not used; the bootstrap condition is the absence
of Kronecker-8 singularities in the J plane. It is hoped that this scheme avoids some of the disadvantages
of conventional schemes. In the narrow-resonance approximation one has to solve numerical equations, not
integral equations. The scheme is applied to the pseudoscalar, vector, and axial-vector nonets considered
as bound states of the NN system. As only one channel is being examined, we have to introduce certain
parameters from experiment, but we obtain reasonable values for the other parameters.

I. INTRODUCTION

HE current experimental data provide a number
of indications that Regge trajectories rise indefi-
nitely with energy, instead of turning over as they do
in potential theory or in single-channel unitarity
models. It is usually possible to determine two or three
points on the trajectory by measurements of the spin
of the appropriate particles or of the asymptotic be-
havior in the crossed channel. If the trajectory is now
projected linearly to higher energies, it often turns out
that narrow resonances appear at those energies where
the trajectory passes through integers or half-integers.
The spin of these high-energy resonances has not yet
been measured directly, but, owing to the small width
and the large Q value, it is presumably high. It is
tempting to assume that the resonances are the higher
members of the Regge sequence associated with the
trajectory in question.

It may be that the strong interactions are character-
ized by an energy, large compared with the mass of the
nucleon, above which the Regge trajectories do turn
over. If all particles are built up of real elementary
quarks, the quark mass may correspond to such an
energy. However, it appears worthwhile to attempt to
construct a theory on the assumption either that such
an energy does not exist, or that the limit in which
it approaches infinity represents a meaningful
approximation.

A dynamical scheme based on rising Regge tra-
jectories possesses several attractive features. The most
significant is probably that one may be able to work
with it in a narrow-resonance approximation. During
the last few years many correlations between masses
and coupling constants have been obtained by com-
bining group theory, current commutators, or super-
convergence relations with the assumption that scat-
tering amplitudes are dominated by a few narrow
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resonances at low energy. The success of the Gell-
Mann-Okubo mass formula, for instance, indicates that
one should attempt to incorporate resonances more
directly into a dynamical scheme than has been done
hitherto. This point of view has been constantly em-
phasized by Gell-Mann.

It has been remarked by van Hove! and by Durand?
that one can combine the narrow-resonance approxi-
mation with Regge asymptotic behavior if and only
if the trajectories rise indefinitely. They showed this to
be the case by the use of explicit formulas. Their
results may be paraphrased by saying that the narrow-
resonance approximation is never valid in the region
where the trajectories are falling. Thus, for the narrow-
resonance approximation to be universally valid, the
trajectories must rise indefinitely.

The assumption that Regge trajectories rise indefi-
nitely casts considerable doubt on the Levinson criterion
for determining which particles, if any, are elementary.
If this criterion is to be valid, it is essential that the
phase shifts begin to fall once we have passed above
the resonance region in those channels possessing
composite resonances. Intuition would suggest that
the energy at which the phase shifts begin to fall is of
the same order of magnitude as the energy at which the
Regge trajectories begin to fall. In a system with
indefinitely rising trajectories, therefore, the phase shifts
may never fall. This conclusion may be placed on
firmer ground by assuming that an infinite number of
trajectories rise indefinitely. At each energy where a
trajectory passes through a given integer or half-
integer, the corresponding phase shift passes through
an odd multiple of 3m. It will therefore not approach
zero, or a multiple of w, asymptotically. One cannot
assert this as a rigorous result, as the imaginary part
of the lower trajectories will probably be large. If so,
there will be no precise connection between the ener-
gies at which the real part of the trajectory passes

1 L. van Hove, Phys. Letters 24B, 183 (1967).
2 L. Durand, Phys, Rev, 161, 1610 (1967),
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through an integer and those at which the phase shift
passes through an odd multiple of 3w. Nevertheless, it
is strongly suggested that the phase shifts will not
behave in the manner required by Levinson’s criterion.

We have argued elsewhere® that the experimental
decrease of form factors provides further evidence
against Levinson’s theorem.

The above arguments, together with the absence of
any experimental evidence in favor of Levinson’s
theorem, suggest that one should attempt to construct
a scheme where the theorem is not used. If one is
attempting to construct a bootstrap theory, one can
use the alternative criterion that there are no non-Regge
terms in the asymptotic behavior or, in other words,
that there are no Kronecker-§ singularities in the
angular momentum plane.*5 This assumption can be
tested experimentally, and all available evidence points
to its being valid.

In previous dynamical schemes, such as the N/D
scheme, Levinson’s theorem has played the essential
role of removing the Castillejo-Dalitz-Dyson (CDD)
ambiguity. The phase shifts calculated in such dy-
namical models had the property of rising through the
resonance region and then falling. Furthermore, the
region where the phase shift was falling was important
in the dynamics. Thus, though one might be able to
construct narrow resonances within the framework of
such calculations, one could not express the dynamical
equations in terms of the resonance parameters alone.
In certain special cases one could obtain partial corre-
lations between resonance parameters, the Chew-Low
effective-range formula being an example. By dispensing
with Levinson’s theorem, we again raise the possi-
bility of constructing a dynamics which has a narrow-
resonance approximation.

We should emphasize that the presence of indefinitely
rising Regge trajectories or the nonvalidity of Levin-
son’s theorem does not necessarily imply that a dynam-
ics based on the N/D method is inapplicable. Approxi-
mation schemes have been discussed where the tra-
jectory or phase shift turns over at a value of s which
increases indefinitely with the order of the approxi-
mation.?¢ Nevertheless, it is certainly desirable to
construct a dynamical scheme based on rising tra-
jectories if it is at all possible.

II. OUTLINE OF THE DYNAMICAL SCHEME

The reasoning of the previous section suggests that
we attempt to formulate a dynamical scheme based on
equations for the Regge parameters themselves. The

3S. Mandelstam, in Proceedings of the 1966 Tokyo Summer
Lectures on Theoretical Physics, edited by G. Takeda (W. A.
Benz;min, Inc., New York, 1966).
( ; ) F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
1961).

5 S. Mandelstam, Phys. Rev. 137, 949 (1965).
F ¢ P. Carruthers and M. M. Nieto, Phys. Rev. Letters 18, 297
(1967); P. Carruthers, Phys. Rev. 154, 1399 (1967).
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infinite rise of the trajectories, as well as the absence of
Kronecker-§ singularities in the J plane, can easily be
inserted directly into the equations. It has been shown
by Cheng and Sharp? and by Frautschi, Kaus, and
Zachariasen? that one can treat a Schrodinger-potential
problem by using equations for the Regge parameters.
The fundamental approximation is that the amplitude
is dominated by a finite number of trajectories in the
direct channel. In the simplest approximation only
one trajectory is taken. Onc can then write dispersion
relations for the Regge parameters. The weight functions
in the dispersion relations are determined from uni-
tarity, the subtraction terms from knowledge of the
potential.

The scheme proposed in this paper is an application
of the Cheng-Sharp scheme to the elementary-particle
problem. Naturally, there will be some essential dif-
ferences between this problem and the potential
problem. The infinite rise of the Regge trajectories will
be effected by inserting two subtraction terms in the
equation for « instead of one. In the narrow-resonance
approximation, which we shall use, the imaginary part
of a is zero, so that the real part is given simply by the
equation a=as+b. Experimentally, the Regge trajec-
tories do appear to be roughly linear functions of s. We
thus adopt a very trivial solution of the Cheng-Sharp
equations to correspond to the narrow-resonance ap-
proximation. In fact, the equations are not used ex-
plicitly at all. It is well to keep them at the back of
one’s mind, however, and to regard the linear tra-
jectory as a trivial solution of them; one can then en-
visage how the scheme will appear when the narrow-
resonance approximation is not used and when the
imaginary part of « is not neglected. The dynamical
scheme which we are suggesting can thus be combined
with the narrow-resonance approximation, but it is not
tied to this approximation.

Another difference between the potential and rela-
tivistic problems lies in the determination of the sub-
traction terms in the dispersion integrals for the Regge
parameters. In the potential problem they are de-
termined from knowledge of the potential while in the
relativistic case they will have to be determined from
the crossing relation. There is no unique way of applying
the crossing conditions, but one attractive possibility
is to use the generalized superconvergence relations first
proposed by Igi, and discussed more fully by Dolen,
Horn, and Schmid, by Logunov, Soloviev, and Tav-
khelidze, and by Baldzs and Cornwall.? These relations

7H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963);
Phys. Rev. 132, 1854 (1963).

8S. C. Frautschi, P. Kaus, and F. Zachariasen, Phys. Rev.
133, B1607 (1964).

9 K. Igi, Phys. Rev. Letters 9, 76 (1962); R. Dolen, D. Horn,
and C. Schmid, 4bid. 19, 402 (1967); A. Logunov, L. D. Soloviev,
and A. N. Tavkhelidze, Phys. Letters 24B, 181 (1967); L. A,
P. Baldzs and J. M, Cornwall, Phys. Rev. 160, 1313 (1967).
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express the integral

N
/ ds ImA(s,t)
81

in terms of the Regge parameters in the crossed channel.
The sum over all the Regge trajectories is not conver-
gent but is asymptotic in V. When the external particles
have spin, we can decrease the high-s contribution by
dividing the integrand by appropriate functions of s,
just as we do with ordinary superconvergence relations.
In the narrow-resonance approximation, the relations
give us equations between the Regge parameters in
the direct and crossed channels. The ordinary super-
convergence relations are particular cases of the general-
ized superconvergence relations, which are valid when
the Regge poles in the crossed channel are sufficiently
far to the left. The correlations between resonance
parameters that have been obtained from supercon-
vergence relations!® will thus be incorporated auto-
matically in the dynamics.

The dynamical scheme which we shall outline in the
following sections should be regarded simply as sug-
gestive, and further work may well reveal the need for
substantial modifications or additions. Examination of
one channel alone (together with its crossed channels)
will not give us enough equations to determine all the
resonance parameters. This feature is to be expected
and occurs in all bootstrap schemes, since the same
parameters occur in the equations for different channels.
We shall not attempt to answer the question whether
examination of all channels provides us with a uniquely
determined, an underdetermined, or an overdetermined
system. The question is closely connected with that of
the number of trajectories in each channel. The greater
the number of trajectories, the larger will be the number
of resonance parameters. On the other hand, each
trajectory provides a sequence of external particles
which give rise to further channels and hence further
equations.

One parameter which cannot be determined in the
narrow-resonance approximation is the strength of the
coupling. The equations will be linear in the coupling
constants, and hence one will at most be able to de-
termine ratios of coupling constants. To complete the
scheme one will have to go beyond the narrow-resonance
approximation, which we shall not do in this paper.

In Sec. III, we shall discuss the dependence of the
Regge parameters « and 8 on the variable s. We shall
concentrate mainly on the narrow-resonance approxi-
mation, where we shall be able to obtain the dependence
explicitly, but we shall also mention the Cheng-Sharp
equation which can be used in more general cases. In
Sec. IV we shall give arguments which make it plausible
that several trajectories with different quantum num-
bers, and possibly all trajectories, have the same slope.

10 F, Gilman and H. Harari, Phys. Rev. Letters 18, 1150 (1967);
19, 723 (1967); and (to be published).
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Experimentally, all trajectories so far investigated do
appear to have approximately the same slope. In Sec. V
we shall discuss the use of the Igi-Horn-Schmid general-
ized superconvergence relations to obtain crossing
formulas, and in Sec. VI, we shall outline an approxi-
mation scheme based on the foregoing sections. In
Sec. VII we shall apply our scheme to a particular
problem, the determination of the pseudoscalar, vector,
and axial-vector nonets as bound states of the nucleon-
antinucleon system. Since we are only investigating one
channel, we shall not be able to calculate all the parame-
ters; we shall take the mass of the nucleon and the
relative masses of the mesons from experiment. We shall
show that there does exist a solution of our equation.
The solution predicts the correct sign for the ratios”of
the coupling constants and gives a reasonable value for
the absolute mass of the mesons.

III. DEPENDENCE OF THE REGGE
PARAMETERS ON s

In this section we shall obtain equations for the de-
pendence of the Regge parameters o and 8 on s, the
square of the energy. We shall concentrate on the
narrow-resonance approximation, which we shall use
in the following sections; the parameters will then have
a simple, explicit dependence on s. At the end of the
section, we shall indicate how we may go beyond the
narrow-resonance approximation. We shall then have
to use the unitarity condition to give us nonlinear
integral equations for a and 8.

We begin with the spinless case. The fundamental
approximation which we shall make is that the scat-
tering amplitude can be expressed as a contribution
from a finite number of Regge poles

a(s’l) _ i Br(s)

r=1 l—a,(s) )

(3.1

Strictly speaking, we require an expression which con-
verges as the number of poles becomes infinite. Equation
(3.1) should therefore be replaced by an expression such
as the modified Cheng representation.!! To our knowl-
edge such a representation has only been worked out for
the single-channel problem, but it would be surprising
if a generalization did not exist. The modified Cheng
representation has been applied to the potential
problem.!? The equations are more complicated than
those obtained from (3.1), but do not differ from them
in any fundamental way. In the narrow-resonance ap-
proximation the modified Cheng representation becomes
equivalent to (3.1), and we shall not consider it further
in this paper.

The reality conditions are

a(s), B(s)/(4¢%)=® real analytic,
11 H, Cheng, Phys. Rev. 144, 1237 (1966).

12W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 141, 1513 (1966).

(3.2)
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where g is the center-of-mass momentum. For simplicity,
we have considered the equal-mass case; the results can
easily be generalized. In the single-channel problem
where only Regge pole is considered, i.e., where the
series on the right of (3.1) is approximated by one term,
the unitarity condition is

Ima(s)=k(s)8(s) ,

where % is the usual kinematic factor in the unitarity
condition.” Note, in particular, that 3 is real in this ap-
proximation. The reality of 3 is not preserved in higher
approximations where more terms are included on the
right of (3.1).

In the narrow-resonance approximation, « is real
on the real axis and both sides of (3.3) are small.
Furthermore, the function B(s)/(4¢%)=®), which is real
analytic by (3.2), is also real above threshold, since «
and B are both real. This function therefore has no
right-hand cut. The analyticity conditions imply that
a(s) and B(s)/(4¢?)=® have no left-hand cut unless two
trajectories intersect. In this paper we shall not con-
sider the intersection of trajectories, though our equa-
tions could easily be modified to account for this possi-
bility. The Regge parameters as) and B(s)/(4¢?)«
thus have no left-hand or right-hand cuts and they are
real, entire functions of s.

When several terms of (3.1) are taken into account,
Eq. (3.3) is valid as long as the separation between
trajectories is large compared with their imaginary part.
It is thus valid in the narrow-resonance approximation.
In the multichannel problem, the right-hand side of
(3.3) must be replaced by a sum of terms, but it is not
difficult to show that each Regge residue is still real. It
thus remains true that a(s) and 8(s)/(4¢%)>() are entire
functions of s in the narrow-resonance approximation.

We shall assume that Regge trajectories do not rise
more than linearly with s. The parameter « will there-
fore be given by the simple equation

a(s)=as+b.

The equation for 8 is not quite so simple. When «
passes through a negative half-integer /; other than —%,
B must vanish unless there is a compensating trajectory
passing through the positive half-integer —/;—1 at the
same value of s. When the leading trajectory passes
through a negative half-integer there is no trajectory
with positive «, and therefore no compensating tra-
jectory. The Regge residue 8(s) must therefore vanish
whenever a(s) passes through a negative half-integer
less than —3. We can ensure this by inserting a factor
1/T'(a(s)+%) into the expression for 8. Since a(s) = as+,
this factor is an entire function of s. Thus

() )
(4g9)=@  T(al(s)+3)

where F; is an entire functions of s. Inserting the equa-

(3.3)

(3.4)
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tion a(s)=a(s)+b, we find that
EI(S)(4q2)as+b
s)=——""""—,
I'(as+0+%)
or, by redefinition of the entire function,

o 2N ag?/e)e 3.5)
I'(as+0+43)

The factor ¢=*—% has been inserted in order that the
right-hand side of (3.5), without the factor E, should
not increase exponentially when s approaches . It
is easily seen from Stirling’s theorem that the expression
(4aq*/e)*s+?/T (as+b+32) behaves like 1/s at infinite s.

There does not appear to be any simple argument for
restricting the entire function E to a polynomial of a
given degree, or even to a polynomial of arbitrary
degree. When s approaches infinity, the narrow-reso-
nance approximation will probably become invalid, and
one can therefore not combine Eq. (3.5) with assump-
tions about the behavior of 8 at large s. In the approxi-
mation scheme which we shall develop by combining
(3.5) with the crossing relations, we shall expand E in
powers of s; the number of terms kept will depend on
the order of the approximation. We shall apparently be
able to obtain equations for all the terms, but, as we
have pointed out before, questions of this type cannot
yet be answered with any degree of certainty.

We now allow the external particles to have spin, and
we shall begin with systems where the particles are both
bosons or both fermions. As usual, we shall work with
states of fixed helicity A, u. Equation (3.5) must be
modified in several ways. First, the behavior at ¢?=0
will depend on the orbital rather than on the total
angular momentum. We construct states of fixed
incoming and outgoing orbital angular momentum at
threshold by taking the usual linear combinations of
helicity states. These orbital angular momenta will
differ from the total angular momentum by integers
which we shall denote by 7 and /(| 7| < |\ ], ] 7| <]u]).
The states with fixed orbital angular momentum will
then have a factor

(4g7)ostbri(rte) (3.6)

instead of (4¢?)2st®.

We also require extra factors when as-& takes on
integral values where nonsense states are present. For
positive integers or zero, the factors will be as follows:

Factors (as+b—n)'/2,
IN<n<|u| or [u]|<n<\ (3.72)

Factors (as+b—n), N <#, |u]| <n if the tra-
jectory chooses nonsense at a=#n (3.7b)

Factors (as+b—n), IN|>n, |u]>nif the
trajectory chooses sense at a=n.

(3.7¢)



166

There are similar factors when « passes through negative
integral values:

Factors (as+b—n)l/?,

N <—n—1<|u| or |u|<—n—1<|\]|. (3.82)

Factors (as+b—n) for one of the inequalities

N<—=n—1, [p|<—n—1 (3.8b)
or
[A]|>—n—1,

[u]|>—n—1. (3.8¢)

If we are dealing with the leading trajectory, the factors
(as+b—n) occur in the case (3.8c). This is because the
alternative which occurs at negative half-integral values
of o also occurs at negative integral values with |\,
|u| > —a—1. Either 8 must vanish or there must be a
compensating trajectory passing through the point
—a—1 at the same value of s. For the leading trajectory
the second alternative is impossible, and 8 must vanish.
We thus have factors (as+b—n), where # is a negative
integer satisfying the inequality (3.8c).

In channels where one of the particles is a fermion,
the I' function in (3.5) becomes I'(as+b6-+1), since we
now require the zeros at negative integers. The extra
factors due to spin will involve half-integral instead
of integral values of 7.

We have emphasized that Eq. (3.5) is really the
narrow-resonance approximation to a more general
set of equations. Since we shall not go beyond the
narrow-resonance approximation in the following sec-
tions, we shall confine ourselves to the single-channel,
spinless, equal-mass problem, and we shall keep only
one term of (3.1). We can then write down the equations
by making slight modifications to the nonrelativistic
equations of Cheng and Sharp.” On doing so, we obtain
the following:

1 Ima(s”)
a(s)=as+b+- /ds’ - s (3.9a)
T s'—s
E 4 2 a(s)
B(s)=|: (s)(4ag’/e) ]
T'(as+b+3%)
1 Ima(s’) In(4¢'®
Xexp(—— / ds’—~—————————/ )
T s'—s
WIf 267 g
n=1as+bo+n+%
Ima(s)=£%8(s). (3.9¢)

We have assumed that Ima— 0 as s—o. If this is
not the case, we must modify the dispersion integrals in
(3.92) and (3.9b) in the usual way. The constants s, in
the infinite products of (3.9b) are those values of s
for which a(s)=—#n—%. The infinite product, together
with the factor 1/T'(as+b-+%2), ensures that 8 has zeros
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at those values of s for which « is a negative half-
integer less than —3.

We could formally have omitted the factor
1/T(as+b+%2) and rewritten infinite product as
TI[(sn—s)/sx], but this product does not converge.
The infinite product in (3.9b), on the other hand,
converges if Ima approaches zero at infinite s; if Ima
does not approach zero but Ima/a does, the ratio of the
infinite products in (3.9b) taken at two values of s
converges. Thus the divergence of the infinite product
will be cancelled by a factor independent of s in the
entire function E(s), and the final result will converge.

Equations (3.9) provide a system of nonlinear inte-
gral equations for a and 8, and they have been solved
by iteration in the potential model.” In the narrow-
resonance approximation, Ima=0, and Egs. (3.9)
reduce to the explicit form (3.5). One can easily modify
(3.9) to the case where the external particles have spin
or to the unequal-mass case. The modifications where
more terms of (3.1) are included, or where (3.1) is
replaced by a better representation such as the modified
Cheng representation, are straightforward in principle,
but they complicate the numerical work considerably.
We refer the reader to the treatment of the potential
mode].5:12

Whether we are using the narrow-resonance approxi-
mation or not, the constants ¢ and b, and the entire
function E, remain to be determined. In potential
theory, these quantities are obtained from a knowledge
of the potential; in the present problem we shall have
to use the crossing relations. Before we apply the cross-
ing relations to our problem, however, we shall ex-
amine the possibility that the constant ¢ is the same for
all trajectories.

IV. SLOPE OF THE REGGE TRAJECTORIES

By considering models where the sequence of reso-
nance on a Regge trajectory corresponds to the sequence
of external particles on another Regge trajectory, one
can obtain plausible results about the slope of Regge
trajectories. The work of Carruthers and Nieto is an
example of the type of model we have in mind. Car-
ruthers and Nieto examined the p/N channel and ob-
tained the Dj;» resonance as a composite system in
that channel. They then combined the pNV and pFs).
channels, the F5;; being the next member of the nucleon
Regge series, and obtained a Gr/» resonance in addition
to the Ds/e. As the Gy2 is the next member of the Regge
series beginning with the Dj;s, we can now envisage a
more complicated model in which the whole Regge
sequence corresponding to the nucleon is included in
the external particles, and the whole Regge trajectory
corresponding to the Dj;» resonance appears as a
composite system.

Let us now examine a more general case in which an
external particle of mass u is combined with a series of



1544

external particles of spin ¢ and mass m,, where

amqs*+b=a, 4.1)
ie.,

mq*=(c—b)/a. (4.2)

This system is assumed to produce a Regge sequence of
particles of spin ¢ and mass M ,, where
M2=(c—b")/a . (4.3
We may define the binding energy as the quantity
M ;—ms—pu, and we assume that this quantity remains
infinite as o approaches infinity. We can then easily
show that
a=d. (4.4)

We obtain the same result from the assumption that the
expression M ,4.,—m,— u remains finite. In other words,
we assume that a particle in the M sequence is built
up from particles of the 7 sequence of not too different
spin, and that the binding energy remains finite as the
spin approaches infinity. We can actually make the
weaker assumption that the binding energy increases
less rapidly then the mass of the particles.

If we do not use the narrow-resonance approximation,
so that the function « is given by (3.9a) rather than
(3.4), we can still derive the same result, provided that
Ima increases less than linearly with s.

The type of approximation which we are using in our
paper is fundamentally different from that used in the
Carruthers-Nieto model. Nevertheless, it may still be
that the definition of the binding energy which we have
just given, and the assumption which we have made
about it, are physically reasonable. We would then
have to restrict the slopes of our trajectories by (4.4).
Such a restriction could well be necessary in the sense
that, unless it were applied, our equations would not
yield convergent results as we increased the number of
resonances considered.

If the above assumptions are correct, the Regge
trajectories will occur in groups. Each member of the
group can be built from another member by means of
a Carruthers-Nieto model, and the trajectories in the
same group will have the same slope. The simplest
system possessing these features is that in which there
is only one group, and all trajectories have the same
slope. Now, it is a remarkable empirical fact that all
trajectories do have the same slope within the accuracy
to which the slope can be defined. One may therefore
adopt as a working hypothesis the assumption that the
constants ¢ are the same for all trajectories. This
universal constant ¢ will then fix a scale of mass and
only the constants & and the functions E remain to be
determined. The arguments for this hypothesis are ob-
viously far from compelling and, since we do not yet
know the extent to which our dynamical equations
determine our parameters, we must bear in mind the
possibility that it may have to be abandoned.
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V. CROSSING RELATIONS

We shall apply crossing with the aid of the generalized
superconvergence mentioned in Sec. IL.° These relations
are a consequence of Regge asymptotic behavior and
the usual analyticity properties. We assume that a
scattering amplitude 4 (s,f) satisfies dispersion relations
with only a right-hand cut and has the asymptotic
behavior

— f)ar(s)
A(S,t)"’z @(—ff)—’

4 sinma,(s)

{—.

(5.1)

The following relation is then asymptotically true as
N becomes large:

N 77(5)1\’7ar(8)+1
/ dImA(s )~y . (5.2)
T a(s)+1

By considering the functions "4 (s,t), we derive the
further equations

N ,Yr(s)]\]ar(s)+n+1
/ dt 1" ImA (s, )~ e (5.3)
T a(s)Fn+1

We can obtain amplitudes A4 (s,f) with only a right-
hand cut by taking the sum of the positive—and
negative—signature amplitudes. The right-hand side
of (5.1) will receive contributions from the fixed poles in
the J plane at nonsense wrong-signature integers!®4
as well as from the moving poles. One can evaluate the
contribution from the fixed poles in terms of the third
double-spectral function. At present, our dynamical
scheme is far from the stage where contributions from
the third double-spectral function should be included.

If the external particles have spin, one divides the
amplitude A (s,f) by the factor (14z)M#l/2(1—z)A—sl/2
before applying (5.1)-(5.3), since the resulting ampli-
tude will be free of kinematic singularities or zeros at
z=41. Thus

A,,)\(S,t)
(143) 21 — g) A—ul /2
1) (i

~y ——————, {—w, (5.4a)
T sinwy,(s)

where

7,(s)=a,(s)—max(|A[,|u]) (5.4b)
and

z=141/2¢%. (5.4¢)

Then

N ImA 5 (s,t) o (5) N1r (o1
f at , (59)
(4z)MHeli2(1—g)=uliz 7 ()41

13 C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967).
14 §S. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967).
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or, more generally,
v ImA “)\(S,t)
dt t*
(1+42)IMul12( 1 5) sl 12
ryr(s)N'lr (8)+n+1

~yY——— (5.6)
T on(s)+nt1

In practice, it is usually more convenient to work with
the fixed-parity combinations of helicity states than
with the helicity states themselves. The powers of ¢
in the denominator will make the integrals in (5.5) and
(5.6) less sensitive to the contributions from high ¢,
where the integrand is less accurately known.

The right-hand side of (5.2) depends on the Regge
trajectories in the s channel, the left-hand side on those
in the ¢ and # channels. Equation (5.2) therefore pro-
vides us with a relation between the parameters in the
direct and crossed channels.

We now examine in more detail the form of the two
sides of (5.5) in the narrow-resonance approximation.
The constants v,(s) will be proportional to the corre-
sponding Regge residues 3,(s); we find that

7+(8) = —sgn(u—N)2=ex M 1eDH(Y 1) T(a(s)+5)
XT(a(s)+1)[T(al(s)+A)T(als)—N)
X T(e(s)+w)T(als) — ) T-1/28,(s)/ (g2) .

The Regge residue (3,(s) is expressed in terms of the
function £ and the constants ¢ and 4 by using equations
(3.5)-(3.8). We note that some of the I' functions in
(3.5) and (5.7) cancel. If we are working to sufficient
accuracy, we shall have to include the contributions to
the right-hand side of (5.4a) with asymptotic behavior
g1 2 etc., from the Regge trajectory a,. The corre-
sponding functions v are given by formulas similar to
(5.7). Actually we shall use the equations at s=0, so that
these lower terms should only be included if we also
include the daughter and conspirator trajectories.

Turning to the left-hand side of (5.4), we shall
confine ourselves to the contributions from the #-channel
Regge trajectories; the #-channel trajectories can be
handled in a similar way. In the narrow-resonance
approximation, a #-channel trajectory with a(t)=at+b
will give the following contribution to ImB(s,t), where
B is the amplitude obtained from 4 by crossing:

(5.7

1 b J
ImBu(s,)=—-2 (2]+1)7r§<t-————)
aJ

a a

S

XB“x(t)dM*’<1+——->. (5.8)
29:2

The sum is over integral or half-integral values of J,
depending on the spin. After applying the crossing
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relation, we obtain the equation

ImA (5,0 .,
=Z Z C()‘W';ay)":“ e )S,t)

(14-5)Mul12(] — g) sl 2

b J s
><(2J+1)ms<z————)ﬁ,,,,N,a,(t)dWJ<1+~—>
a @ 2q:

{1\ tull2 ¢ \"I—nll2
NETEA st BA R e
2¢2 292

J Mp'a!

The index o refers to those quantities other than the
helicity which characterize the amplitude, e.g., isotopic
spin or SU(3) multiplet. The crossing matrix C will
be the product of the helicity crossing matrix and the
crossing matrix appropriate to the internal symmetry.

The left-hand side of (5.6) can be handled in a very
similar way. By substituting (5.7) and (5.9) in (5.5)
or (5.6), and using the formulas for 8 in terms of the
function E and the constants 4, one can obtain equations
for these quantities. As we have already pointed out,
we do not know whether the number of equations is
sufficient for a complete calculation. In fact, in the
narrow-resonance approximation, these equations are
linear in the functions E, and we shall at most be able
to obtain the ratios of the coupling constants, not their
absolute normalization. To determine the normalization
factor, one will have to go beyond the narrow-resonance
approximation.

VI. APPROXIMATION SCHEME FOR
CALCULATING THE REGGE
PARAMETERS

There is obviously no unique way of applying the
analyticity and crossing formulas in dynamical calcu-
lations. The method which we shall propose in this
section should be regarded as one possible suggestion.
Further work will almost certainly reveal the need for
substantial changes.

We assume that each channel has a leading trajectory,
together with subsidiary trajectories the number of
which will depend upon the stage in the approximation
scheme. Since the Q value of a resonance of given J
will increase as we go to lower trajectories, most of the
resonances on the lower trajectories may be fairly
broad and may not appear experimentally as resonances.
Nevertheless, it may still be a reasonable approximation
to represent the contribution from these resonances by
poles near the real axis, i.e.,, to assume the narrow-
resonance approximation. As we explained in Sec. IV,
we shall begin by assuming that all the trajectories
have the same slope.

The trajectories are now parametrized according to
the formulas given in Sec. III, and the crossing relations
(5.5) and (5.6) are applied. Several points remain to
be specified, including the values of V and s to be taken
in applying the crossing relations, the number of terms
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of the function £ which are kept, and the number of
relations (5.6) which are used.

To begin with the value of N, we should obviously
make this integration limit as high as possible, since
Egs. (5.5) and (5.6) are only assymptotically true. On
the other hand, we cannot take /V above the value of ¢
for which we know the function ImA(s,f) in the inte-
grand. In the narrow-resonance approximation the
function Im4 (s,#) will consist of a series of § functions
in ¢ at the positions of the resonances. The integrand in
(5.5) and (5.6) will therefore be known up to the lowest
resonance on the lowest trajectory which is kept; the
first unknown contribution will be at the position of the
lowest resonance on the highest trajectory which is
omitted. The value of V to be taken should therefore
be between these resonances. We may estimate the
position of the first omitted trajectory on the assump-
tion, based on the Schrodinger or Bethe-Salpeter
equation at high energy, that the trajectories are spaced
at integral distances in the J plane. If we have kept a
number of trajectories, we may alternatively estimate
the position of the first omitted trajectory from the
spacing between the trajectories which have been kept.

The energy of the lowest resonance on the lowest
trajectory included and that of the lowest resonance on
the highest trajectory omitted thus represent lower
and upper limits for . If NV is large, the result of the
calculations will be insensitive to the precise value of
N between the two limits. If IV is not large, the results
would not be expected to be quantitatively accurate,
and their sensitivity to the value of N between the two
limits represents a lower limit to their uncertainty.
Since we have no a prior: basis for assigning a precise
value to V between the two limits, we shall take it to
be midway between the two.

A related uncertainty lies in the form of the asympto-
tic expansion (5.1). We could equally well have used
the series

7 () 1)@

6.1
sinma(s) (D
The results will be insensitive to ¢, if a sufficiently large
number of terms are taken in the asymptotic series,
but they will depend on this parameter if only one or
two terms are taken. We shall refer again to this un-
certainty in the example of the following section.

With regard to the value of s at which Egs. (5.5) and
(5.6) are to be taken, we must bear in mind that the
narrow-resonance approximation neglects all partial
waves above a certain angular momentum at any
particular value of the energy, so that the approxi-
mation would not be expected to be accurate at an
unphysical value of the scattering angle where the
partial-wave series is badly divergent. The nonresonant
contributions from the high angular momenta would
probably be large at such angles. We should therefore
choose a value of s which avoids unphysical angles in
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the ¢ and # channels as far as possible. For the equal-
mass problem the obvious choice is s=0, though other
sufficiently small values of s should also be adequate.
For the unequal-mass problem, it is impossible to avoid
unphysical angles completely; we can avoid one un-
physical region only at the expense of going farther into
another. The choice s=0 still probably provides the
best mean. For very unequal masses, we may eventually
have to subtract off certain contributions in order to
reduce the divergence of the partial-wave expansion;
these contributions would be calculated by using the
double-dispersion relations. At the moment, however,
we shall neglect such complications.

We can obtain further crossing relations by dif-
ferentiating (5.5) and (5.6) with respect to s. The right-
hand sides of these equations will then depend on the
derivatives of the Regge residues 8 with respect to s;
they in turn will depend on the higher terms of the
entire function E(s) of (5.5). In the lowest approxi-
mation, this function is taken to be a constant and the
s derivatives of Eqs. (5.5) and (5.6) are not used. In
higher approximations, we take the first # terms of the
function E, expanded as a power series in s, and we use
Eq. (5.6) and its first (z—1) derivatives with respect
to s.

Thus, in higher approximations, we would use more
values of 7 in (5.6) corresponding to the larger number
of trajectories taken into account; we would also use
more derivatives of (5.5) and (5.6) corresponding to the
larger number of terms kept in the functions E(s). The
question of just how many trajectories to take in each
channel, and how to assign the choice of sense or non-
sense at the low integers, is not one to which we can
give a definite answer. For the characteristics of the
leading trajectories we can be guided by experiment ; for
the lower trajectories we may have to use trial and
error. We shall have to examine several trajectories
simultaneously in order to obtain a complete set of
equations, since the Regge residues 8 for different
trajectories are related to one another. For example, the
value of 8 for the NN trajectory at s=m,? and that for
the =V trajectory at s=m.> are both related to the
usual pion-nucleon coupling constant g2.

We also remark that the number of equations (5.6)
which we can use, given any choice of N and of the
number of trajectories taken into account, is limited by
the accuracy of these equations. The larger the value of
n, the larger the difference between the two sides of
(5.3), and hence the larger the error in (5.6). Estimates
based on potential theory and on the asymptotic distri-
bution of Regge poles calculated by Cheng and Wuls
indicate that the number of equations which we can take
is roughly proportional to NV, apart from logarithmic
factors. This limitation on the number of equations (5.6)
means that we must exhaust the content of any given
number of equations, applied to all relevant trajectories,

15 H. Cheng and T. T, Wu, Phys. Rev. 144, 1232 (1966).
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before adding another equation. In deciding the maxi-
mum value of # for each helicity state, we must remem-
ber that the factors (1-4z)/M#/2(1—z)I>—#l/2 decrease
the integrand at high values of ¢, in contrast to the
factor #» which increases it. Thus more values of # can
be taken for the states of greater helicity; the maximum
value of #—max(|\|,|u|) should be the same for all
helicity states.

VII. MESONS AS BOUND STATES OF
BARYON-ANTIBARYON SYSTEMS

As a simple application of the foregoing scheme, we
shall attempt to obtain the mesons (the pseudoscalar,
vector, and axial-vector nonets) as bound states of
the baryon-antibaryon system. In other words, we
examine the baryon-antibaryon system and include the
three trajectories of which the pseudoscalar, vector, and
axial-vector nonets are the lowest members. The
quantum numbers of the mesons do indicate that they
should be regarded as bound states of the baryon-anti-
baryon system rather than of boson systems. The two
S-wave bound states of the baryon-antibaryon system
have the spin, parity, and charge-conjugation quantum
numbers of the pseudoscalar and vector nonets. This is
not the case if we attempt to obtain the mesons as
bound states of meson systems. For instance, the p
would be a P-wave bound state of the pion-pion system,
and we encounter the well-known difficulty of the
absence of a corresponding S-wave bound state.

In the simple approximation which we shall employ,
we cannot expect to obtain quantitatively correct
results. Our aim in performing the calculation is to
show that we obtain a set of equations which yield
consistent, reasonable values for the quantities of
interest.

The kinematics of the nucleon-antinucleon system
have been worked out by Goldberger, Grisaru, Mac-
Dowell, and Wong.1¢ There are five independent helicity
amplitudes. After dividing by factors of (1—2)/2 and
(1+4-2)%/2 to make them analytic at z==1, and taking
fixed parity combinations, we may define the following
amplitudes:

fi=EF o+ H)—(++ o] ——), (7.1a)
fe={++[o|++)+(++ 8| ——), (7.1b)
fo=Q+a)(+—o|+—)

—(I=2a)X+—[¢|—+), (710
=42+ —[s]+—)

+A=2)+—[o|—+), (7.1d)
fo=(4m/ N ) 1=z ++ ||+ —). (7.1¢)

We have denoted particles of positive and negative
helicity by the symbols + and —. The normalization

1 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (19060), '
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used will be such that the unitarity condition involves

the integral
/d&) 42\ 12
41r< s ) '

We may also define fixed partial-wave amplitudes as
follows.
Singlet:

Sl =(F+1¢7 [ ++)—(++ 87| ——), (7.22)
Triplet, J=1:

fif=(+—|¢’|+—)—(+—|¢7|—+), (7.2b)
Triplet, J=1%1:

ful={++[¢7|++)+(++]¢7|—=), (7.2¢)

frl =2(+4¢7|+—), (7.2d)

Jut = (4= 197 |+ = 67| +). (1.20)

The pseudoscalar trajectory corresponds to the singlet
state, the axial-vector trajectory to triplet state with
J=1, and the vector trajectory to the triplet state
with J=I41. In the complete amplitudes (7.1) the
pseudoscalar trajectory will only affect f1; the vector
and axial-vector trajectories will affect the other four
amplitudes. At J=1, the value corresponding to the
lowest member, the vector trajectory will affect only
f2, fs, and f5, and the axial-vector trajectory will affect
only fa. Asz— oo the vector trajectory will again affect
only fs, fi, and f5, the axial-vector trajectory only fs.

In the lowest approximation we shall keep one tra-
jectory in each of the three channels (pseudoscalar, vec-
tor, axial-vector), and shall use Eq. (5.5) but not (5.6).
Furthermore, we remarked in the previous section that
the generalized superconvergence relations for ampli-
tudes with nonzero helicity should be used before those
for amplitudes with zero helicity, since the former rela-
tions contain a power of z in the denominator. Thus, the
superconvergence relations for fs, fi, and f5, but not
those for fi and f,, will be used in our approximation.

We have already pointed out that we cannot obtain
equations for all relevant parameters by looking at one
channel only. We shall therefore take the following
quantities from experiment:

(i) The ratio of the mass of the baryon to the con-
stant 1/a (a being the slope of the trajectory) which
fixes the dimension of mass. Since we are not examining
channels with baryon number equal to 1, we would
not expect to obtain the baryon mass in this calculation.
We shall take the mass of the baryon to be equal to 1/a.

(if) The spacings between the three meson trajec-
tories. We shall take the vector trajectory to be one
unit above the pseudoscalar trajectory and half a
unit above the axial trajectory. We thus do not attempt
to calculate ratios of the masses of the pseudoscalar,
vector, and axial-vector mesons, In particular, we
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assume the mass of the pseudoscalar and vector mesons
to be equal, as is required by SU(6).

(iii) We shall also make an assumption regarding the
ratio of the Regge residues for the three amplitudes
fu?, fi2?, and fae/ which depend on the vector tra-
jectory. Owing to the factorization theorem, there are
only two independent amplitudes in the approximation
where one trajectory is kept. The ratio in question is
that between the magnetic and electric coupling of the
vector meson. We shall discuss the estimation of this
ratio below. The electric coupling is, in fact, consider-
ably smaller than the magnetic coupling, and our final
results would not be very different if we neglected the
electric coupling completely.

In our lowest approximation we shall take the func-
tions E in (3.5) to be constants, so that there is only
one known parameter associated with each Regge
residue 8. Three quantities remain to be determined, the
position of one of the trajectories (the constant b) and
the two ratios between the Regge residues for the three
trajectories. Since we have three generalized super-
convergence relations, we should be able to determine
these quantities. We remark again that the absolute
value of any of the Regge residues cannot be determined
in the narrow-resonance approximation.

We next treat the internal symmetry of our problem.
We shall assume exact SU(3), and shall further assume
that each of our mesons consists of a degenerate octet
and singlet. The baryons will be assumed to be octets.
The crossing matrix in (5.9) will contain the SU(3)
crossing matrix as a factor. Thus, if (5.9) and (5.7) are
substituted in (5.4), the equations will have the form

x=CMzx,

where x is a vector in helicity and SU(3) space, C the
SU(3) crossing matrix, and M a helicity matrix. Each
solution of this equation will be proportional to an
eigenfunction of the SU(3) crossing matrix. We empha-
size that this is only true in the approximation where
we do not allow more than one trajectory for each value
of the parity and charge conjugation.

The SU(3) crossing matrix for an octet-octet channel
has been given by de Swart.!” There are two eigen-
functions which involve only singlets (S) and octets
(DD,DF,FD,FF):

(i) DD=5, DF=0, FD=0, FF=9,

S=16, eigenvalue 1; (7.3a)
(i) DD=0, DF=1, FD=1, FF=0,
S=0, eigenvalue —1. (7.3b)

Unfortunately, neither of these eigensolutions is factor-
izable between the D and F states, as it should be in our
approximation where we have only one trajectory.

177. J. de Swart, Nuovo Cimento 31, 420 (1964).
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We can obtain a factorizable eigenfunction which
resembles (7.3a) by writing

DD=5, DF=FD=3+5, FF=9, S=16. (7.4)

This is not far from the result which we would obtain
for NN scattering through the vector meson by magnetic
coupling according to the estimates of Sugawara and
von Hippel!®:

DD=5, DF=FD=2+y5, FF=4, S=16. (I.5)

We can now resolve (7.4) into components along the
directions of the two eigenfunctions (7.3a) and (7.3b)
If we weight each amplitude according to the multi-
plicity of the states involved, the eigenfunctions of the
crossing matrix will be orthogonal, so that we can take
components in the usual way. We shall demand that
the component in the direction (7.3a) satisfy the equa-
tions of Sec. V. The component in the direction (7.3b)
will then not satisfy our equations. We prefer to demand
that our equations be true for the component along
the direction (7.3a) than for that along the direction
(7.3b), since not every resonance gives a positive-
definite contribution to a given partial wave when re-
solved in the latter direction. We are thus more likely
to obtain cancelling contributions from higher reso-
nances when resolving in the direction (7.3b). The D/F
ratio for these higher resonances would have to be of
the opposite sign to that of the original resonance.
Another way of viewing the problem is to regard the
single resonance which we have taken as representing
the contribution of two or more resonances with D/F
ratios of both signs. The resultant resonance could then
have the decomposition (7.3a) in SU(3) space.

We shall also use the paper of Sugawara and von
Hippel to estimate the ratio of the electric to the mag-
netic coupling of the vector meson. The magnetic-
magnetic transition has been given in (7.5) ; the electric-
electric and electric-magnetic transitions are pure FF
and are equal to 1 and 2 on the same scale. If we denote
the components in the direction (7.3a) in SU(3) space
by (ga)? (gr)? and (gea)?, we easily find that

ge?=3/31)gn? (gem)*=(6/31)gsu®.  (7.6)

Throughout our work we shall assume that the only
important crossed channel to the nucleon-antinucleon
channel is the other nucleon-antinucleon channel. The
effect of the nucleon-nucleon channel will be neglected
owing to the absence of any low-mass resonances. The
existence of only one important crossed channel implies
that signature may be neglected in the nucleon-anti-
nucleon channel. In other words, we have exchange
degeneracy, and the trajectories of odd and even
signature coincide. It has been noted empirically that
exchange degeneracy is approximately valid for meson
trajectories. For instance, the p and A, trajectories

18 H. Sugawara and F. von Hippel, Phys. Rev. 145, 1331
(1966).
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appear to coincide within the limits of experimental
error.

We can now apply the formulas of Secs. IV and V to
set up our equations. We shall work in terms of the
coupling constants gp? for the pseudoscalar meson,
g4? for the axial-vector meson, and gu?, gz?% and (gza)?
for the vector meson. The residues of the functions f
have the following values in terms of the coupling
constants:

Im fi(s,t) = 5(ur?/4)gp*8(s—up?,

Im fo(s,t) =3 M2g g?(1+12/2¢2)8(s— uv?) ,

Im f3(s,t) = — 5 (M>—1ua?)ga®6(s—pa® ,

Imfu(s,t) =3 (uv?/4) gu?6(s—uv?),

Im f5(s,0) = — 3M*(gzar) 26 (s —uv?) - (1.7)
From Egs. (5.8) and (7.7), we can express the Regge

residues 8(u?), where p is the mass of the appropriate
particle, in terms of the g’s. Thus

Bo(up?)=—(1/8m)ur’gr?,
3Buluv?)=—1/2r)M?%g?,
3B1(ua?) = (1/m)(M*—1us?ga?,
3B22(uv?) = — (1/4m)uvga?,
3B12(uv?)=— 1/ 2x) M2*(gear)?.
We have defined our unit of mass so that ¢=1. The
subscripts on the #’s indicate that they are the Regge
resonances of the functions fo’, fu17, f1’, fae’, and f1s7.
The #’s at other values of s can now be found from
(3.5)-(3.8). For the pseudoscalar trajectory, corre-

sponding to the function fy’, both helicities are zero and
we can use (3.5) directly (with the entire function E
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set equal to a constant):

2 bp
19o(s)=~————-—-———con5t(4q e . (7.8)

T'(s+bp+3)

The constant can be expressed in terms of gp? by
normalizing at s= —bp=yp? and using (7.8). Thus

(1/16+/7)g pPur*(4g?/e)*+tr
I(s+bp+3) '

The formula for the vector trajectory is somewhat
more complicated, as three helicity states are involved
and the appropriate linear combinations have threshold
dependences of (4q2)s+ov=1 (4¢2)s+bv, and (4¢%)+or+i,
As the nucleon-nucleon threshold is some distance above
the energy region of the mesons, we shall not attempt
to obtain the correct threshold behavior but shall
assume a uniform threshold dependence of (4¢%)*+®v—2.
We also require factors of the form (3.7) and (3.8),
since nonsense states are present at J=0. We shall
assume that the trajectory chooses nonsense at J=0,
since the contrary assumption would introduce the
well-known ghost problem.® The helicity matrix
element in which we shall be interested is that with
A=1, u=0, corresponding to the function f1,”. Accord-
ing to (3.7) and (3.8), this matrix element will contain
a factor {(s+bv)(s+by+1)}!/2 Hence

const(4q2/e) v (s+bv)(s+bv+1) ]2
T(s+by+3) ’

Normalizing at s=—by+1=puy? and using (7.7), we
find that

(7.9a)

Bo(s)=—

B12(s) =

ﬂlz(S) =

(1/8v/7)(gma)*M*(4g%/€)*+*7 [ (s+by)(s+by+1) ]2

(7.9b)

I(s+bv+3)

For the axial-vector trajectory, J=I, and the threshold
factor is (4¢%)*+®4. We assume that the trajectory
chooses nonsense at J=0, as no appropriate particle
has been seen. The factors from (3.7) and (3.8) in
B1 are then (s+by+1). Thus, applying (3.5) and
normalizing according to (7.8), we find that

(1/84/m)1eg4%(4g%/)*+o4(s+ba+1)
I'(s+ba+3) '

We must next combine our formulas (7.9) with (5.4)
and (5.7) to find the asymptotic behavior of our ampli-
tudes at s=0 and large ¢. Looking first at f1, we find
from (7.9a), (5.4), and (5.7) that

$8p°up?(4/e)oP(—1)br
T'(bp+1) sinwdp

(7.9¢)

Bi(s)=

f1(0,5)~

(7.10)

We are not directly interested in the asymptotic
behavior of fi, as we are only using the superconver-
gence relations for f3, fi, and fs. However, at s=0, there
will be a conspiracy associated with the condition

fi—fa—zfs=0. (7.11)

We shall assume that the conspiracy is of the type IIT
of Freedman and Wang,?® since any other type would
require the existence of hitherto undiscovered par-
ticles. The function f; will then not contribute to the
leading term of (7.11) as z—, and

f4(0’t)~ - (2M2/t)f1(0:t) »

19 As we are assuming exchange degeneracy, the p and A:
trajectories are the same.
( 20 % Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560
1967).
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or, from (7.10),
Mg pup(4/e)?P(— )P
T(bp+1) sinw(bp—1)

Note that the vector trajectory does not contribute to
the asymptotic behavior of f4(0,¢), as it contains kine-
matic factors which vanish in that helicity state at
s=0. The asymptotic behavior of f5(0,) can be found
directly from (7.9b), (5.4), and (5.7):

(gmn) M4/ (— v
P(bv) sinvr(bv——l)

Similarly, the asymptotic behavior of f3(0,f) can be
found from (7.9c), (5.4), and (5.7):

Bt (/o) (= e
T'(by) sinw(bs—1)

f40,0)~— . (7.12a)

f5(0,)~— (7.12b)

S30,6)~— (7.12¢)

Having obtained the asymptotic behavior (7.12), we
can easily write down the generalized superconvergence
relations for our functions. They are as follows:

N lM2 2 2 4 bPIVbP
/ i T fo(0,)~ — 5% hrXd/e) . (7.13a)
bpl'(bp+1)
N l( )2M‘2(4/6 bv—l]\TbV
/ 4t T f5(0,))~ — o2t ) , (7.13b)
ry+1)
N 1 2M2(4/e)bA—1A‘bA
f 4 T fo(0,f)~ — 222 (7.13¢)
T'(ba+1)

In applying the criteria given in the last section to find
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a suitable value for IV, we observe that our assumptions
regarding the Regge trajectories imply that up?=uy?
while pa?=uy®+3% (in units for which a=1). If the
trajectories in the same channel are spaced at unit
distance apart, the next pseudoscalar and vector par-
ticles will have the squares of their masses equal to
up?+1. Hence, if we take the limit of integration to be
midway between the position of the first two resonances
in the pseudoscalar and vector channels, we obtain
N=up*+3.

We observe that the limit of integration /V is at the
position of the lowest resonance in the axial-vector
channel. Now, according to our criterion for choosing
N, a value of ¥ midway between the nth and the
(n+1)th resonance corresponds to taking the first =
resonances on the left-hand side of the superconvergence
relations (5.5). Hence a value of V at the position of the
nth resonance should correspond to taking the first
n—1 resonances together with half the contribution of
the #nth resonance. In evaluating the left-hand side of
(7.13), we shall therefore take only half the contribu-
tion of the axial-vector meson. Since the masses of the
resonances in this channel are greater than those in
the pseudoscalar and vector channels, this would appear
to be more reasonable than to take the full contribution
of the lowest resonance in all three channels.

The left-hand side of (7.13) can now be evaluated by
using (7.7) at t=0, together with the helicity crossing
matrix. This crossing matrix has been evaluated in
Ref. 16%; we could also use the general formulas of
Trueman and Wick and of Cohen-Tannoudji, Morel,
and Navelet.?? For the particular case s=0 and for the
elements f3, f4, and f5, the crossing matrix is as follows:

( 1 [ M2 M2 4M4 44 1( I
f4(07l) - - < fl (t;O)
¢ AM— ((AM2—i) H4M2—1)
00 . 2M? oM 20 ame fz(t,o; -
= £0)| . 14
Y AM2—t  AMP—i AM2—1 4M2—1 ;32‘0)
M2 M2 2M2(2M2—1)  2M2(2M2—i) Bl

f3(0,8) — = - — f5(t,0)
L B 4M2—¢ H(4M2—1) 1(4M2—1) J L

If we now insert the expressions (7.7) on the right of (7.14), with a factor  for the axial-vector function f3, and

integrate, we find that

C N SN r 1 M2 M2 M2 N
/ dt 14(0,8) —= - 0 P gp’
4 (AMP—py?)  AME—pyp? 2u4? ,
N v 2M? — 4 1 gu
dt f5(0,0) | =3M?* — gr? (7.15)
2AM2—py?)  AMP—py? AM2—py? 4 (eon)?
EM
N 1 2M2—puy?) M2 2M2— 42
dtf3(ort) - - 0 — gA2
{ J L 4 2(4M2—py?)  AMP—py? dug? I L J

2 We are interested in the crossing matrix between the s and the ¢ channels, whereas Goldberger, Grisaru, MacDowell, and
Wong write down the crossing matrix between the s and the # channels. The elements of our crossing matrix between fi, fo,
and fs on the one hand, and f; and fs on the other, will therefore have the opposite sign to that of GGMW. We thank Dr. D. Wong

for pointing out some misprints in their crossing matrix.

22T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322 (1964); G. Cohen-Tannoudji, A. Morel, and H. Navelet (to be

published). The former paper contains some phase ambiguities.
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c1 e 3 M N[
T

4 AM—p?\ 31 2us’
M2 a2 18 1
=3M*| 0 ( ——) — g’ (7.16)
AP —py?\2M2 31 4
LM M 3 M2 12
: _ __> el | P
L 4 4me—p2\ 22 31 42 JUY)

from (7.6). Equations (7.13) and (7.16) provide us with
an eigenvalue equation. From our assumptions about
the Regge trajectories, we can put

,u.p2=[J,V2= —bp= '—bV—f—l, (717&)
—bat+1=p2+1. (7.17b)

Also, since we have assumed the nucleon to have unit
mass,

pa®

M3*=1, (7.17¢)
and, finally,

N=py*+3. (7.17d)

We thus have an eigenvalue equation for up? and,
having solved it, we can find the ratio of the coupling
constants. There exists a solution with

ur?=0.29, gp*=0.21gy2% g42=0.18gy2%. (7.18)

VIII. CONCLUDING REMARKS

The solution to the equations of the model of the last
section does possess the correct qualitative properties.
We were able to solve the eigenvalue equation with a
value for the mass of the pseudoscalar and vector mesons
between 0 and 1, and with the ratios of the coupling
constants both positive. The coupling constant gp?
appears to be somewhat small, but this is not surprising
in view of the very simplified model taken. The error
may possibly be due to our assumption that the entire
function E(s), which occurs as a factor in 8, is constant.
Experimentally, the data for backward charge-exchange
VN scattering indicate that the residue for the pion
trajectory or its conspirator passes through zero near
s=0. If this is so, the effect of the trajectory at s=0,
for a given value of gp?, would be reduced.

The qualitative nature of our result is not very
sensitive to the precise value chosen for N [Eq. (7.17d)]
or to the choice #0=0 in (6.1). We have seen that these
choices represented uncertainties in the lower stages
of our approximation scheme.

One important qualitative feature of any dynami-
cal problem is the sign of the force in a particular
channel due to the exchange of a particular particle.
In this respect the present scheme is similar to more
conventional schemes as may be seen by using Eq. (5.9).
If the dynamical equations are to possess a solution, the
sign of the crossing matrix must be such that the left-

hand side is positive. When working with the conven-
ventional dynamical schemes, one has to calculate the
left-hand discontinuity from an equation similar to
(5.9), and, again, the result must be positive in a channel
where a resonance is present. When applied to the
particular case of the crossing matrix (7.16), the sign
requirement is that the elements in the first row must
be positive, those in the other two rows must be nega-
tive. By examining the matrix we can find the signs
of the forces in the three channels due to the exchange
of the three mesons, and a sufficiently large number of
them are attractive to give a consistent solution. Need-
less to say, one should not press the analogy between
the present scheme and the conventional schemes too
far; the quantitative features are completely different.

The calculations performed in the previous section
are considerably simpler than conventional calculations
of masses and coupling constants. We had to solve a
three-by-three eigenvalue problem, whereas even the
simplest conventional calculations require the solution
of an integral equation. The results which we obtained
are much less detailed than results of conventional
calculations. We only obtained the position and strength
of resonances, whereas conventional calculations give
the complete scattering amplitude as a function of the
energy. However, this extra detail is probably not
worth while as long as we do not consider exchange of
higher resonances. In the present scheme it may well be
feasible to include the exchange of a fairly large number
of resonances.

Even in the lowest approximation our calculations
were not a complete solution of the bootstrap equations,
as we only treated one channel, and we therefore had to
take certain quantities from experiment. The next step
would be to consider VP scattering, NV scattering, and
N4 scattering, where P, V, and 4 represent the pseudo-
scalar, vector, and axial-vector mesons. The parameters
occurring in the lowest approximation would be the
same parameters which occurred in our problem, and
we would obtain further equations which could be used
to determine some, and possibly all, of the parameters
which we had to take from experiment. The crossing
matrix would not involve the octet and singlet mesons
in the same way, and we would no longer have to assume
the existence of degenerate nonets. When considering
the meson-baryon channels, we would have to include
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the A trajectory and probably the Djj. trajectory in
addition to the baryon trajectory. We would in turn
have to consider the meson-A and meson-Dj3/s channels,
and also channels such as the AN and AA channels, as
these channels would involve the same parameters as
the meson-nucleon channels. We might then have a
complete set of equations which could be solved without
introducing any experimental parameters.

In higher approximations, one would include more
than one trajectory with a given set of quantum
numbers. One would then have further parameters, but
one would also have more equations from which they
might be determined. These extra equations would
arise, firstly by taking values of # other than zero in
(5.6) and secondly by considering channels consisting
of the resonances on the new trajectories in combination
with the original resonances or with one another. One
would also take the higher-spin resonances on the
original trajectory as external particles in further
possible channels. As long as one had external par-
ticles with spin, one would have to decide whether the
trajectories chose sense or nonsense at the lower integers
or half-integers. One might have to include trajectories
with all possibilities. Another question to be decided
would be what parity, charge conjugation, and SU(3)
states to induce at each stage of our calculation. We
need hardly add that the problem of symmetry breaking
occurs here as in all other approaches.

We shall not attempt to answer such questions in this
paper. One may be able to obtain some guidance from
experiment, but it is unlikely that such guidance will
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be unambiguous, as the resonances associated with the
lower trajectories will probably be broad and therefore
hard to detect. The quark model may possibly provide
further guidance, even if real quarks do not exist, but
at the moment, it is not evident whether or how the
quark model emerges from our scheme.

In this paper we shall also not attempt to include
partially conserved axial-vector current or current
commutators within our scheme. It may be that the
current-commutation rules can be deduced from the
other dynamical equations when the scattering ampli-
tudes are continued off the mass shell; alternatively, it
may be necessary to postulate them in order to obtain
sufficient equations to complete the scheme. If the
latter alternative is true, we would not be able to obtain
a complete and rigorous dynamical scheme without
going off the mass shell, but we could incorporate the
commutation relations in a preliminary approach by
making use of the low-energy theorems associated with
them.

In view of all the unanswered questions, we must
regard the present work as suggesting a method of
approach rather than as a complete scheme. It does
appear to open the possibility of a treatment free from
some of the drawbacks of more conventional methods.
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