142

But if the potential function were to have a suitable
behavior to make N (—44)=0, the solution of the N/D
equations in the strip region, 4<s<s;, would be very
little changed because of the subtraction. Or, inverting
this argument, our solution does not determine N for
points a long way outside the strip with any accuracy.
However, for this value of X\ the 7=2 amplitude also
has a bound-state pole, as Fig. 10 shows, though again
it is not possible to determine its position except that
it is at s<—300. Since no 7=2 trajectories are known,
it seems that such solutions must be wrong. If the
scattering length is to be —1.7 we require a very large
A(=40), and the /=0 bound-state position at s=0.56
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is too close to the symmetry point to be identified with
any known trajectory.

According to our present information the best solu-
tion is that with A=—0.1.
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The new form of the strip approximation is used to obtain mutually self-consistent trajectories with
isopin 7=0 and I=1 in the == system. However, these trajectories do not correspond to those which are
obtained from experiment, and violate unitarity in the asymptotic region. The trajectories obtained from
experiment, which satisty unitarity, are shown not to produce sufficient strength to bootstrap themselves.
Also the =0 trajectory gives rise to a repulsive potential, and to obtain a solution of the N/D equations
we are impelled to the doubtful assumption that this repulsion is completely cancelled by other I=0 tra-
jectories that do not reach the right-half angular-momentum plane. It is concluded that both these difficulties
stem from the fact that the potential is included only in the first Born approximation, and that more satis-
factory results would be forthcoming if the potential were iterated in the way proposed by Mandelstam.

I. INTRODUCTION

HE new form of the strip approximation has been
proposed'? as a method of calculating scattering
amplitudes in accordance with the principles of maxi-
mal analyticity of the first and second kinds. The
amplitudes are constructed so that they satisfy the
Mandelstam representation, and all their poles are
Regge poles. Such amplitudes will have the correct
behavior in the low-energy resonance region where the
poles dominate, and also in the high-energy region
where Regge asymptotic behavior is observed. It is
hoped that these features include enough of the dy-
namics for the amplitudes to be self-consistent in the
sense that the “potential” due to the crossed-channel
singularities generates the direct-channel singularities.
For the m-r amplitude, in which identical processes
occur in the direct and crossed channels, this self-
consistency amounts to a ‘‘bootstrap”’ requirement. The

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Physics Department, University of Durham,
England.

L' G. F. Chew, Phys. Rev. 129, 2363 (1963).

2 G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).

dominant Regge trajectories, p, P, and P’ should
bootstrap themselves.

Chew and Jones? have devised a set of equations for
investigating this possibility using the N/D method,
with the N function having the cuts of the potential,
and the D function the unitarity cut in the strip region.
Results have already been reported?® for a self-consistent
p trajectory, but the p potential also generated an /=0
trajectory which was not included in the potential. In
this paper we complete the solution by obtaining a pair
of mutually self-consistent trajectories, one having /=0
and the other 7=1. However, these trajectories have
several unsatisfactory features, and we are led to dis-
cuss some deficiencies of the new form of the strip
approximation, and how they might be rectified.

In the next two sections the N/D equations and the
method of calculating the potential from the exchange
of Regge trajectories are reviewed. The fourth section is
devoted to a discussion of the potential for P exchange,
which is repulsive. The total potential for /=0 exchange
may be made attractive by means of a ‘“normalization”

3P, D. B. Collins and V. L. Teplitz, Phys. Rev. 140, B663
(1965).
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procedure* which is supposed to take account of the
effect of trajectories which do not reach the right-half
angular-momentum plane, but whose presence is im-
plied by the fact that the elastic discontinuity must be
positive. However, doubt is thrown on the validity of
this normalization procedure. In Sec. V we present
results for the self-consistent p and (normalized) P
trajectories. The P’ is not found. These self-consistent
trajectories are unlike the physical p and P trajectories
in several respects, having much larger residues than
are found experimentally, and smaller slopes. For this
reason the trajectories violate unitarity in the asymp-
totic region. In Sec. VI it is shown that the trajectories
which are obtained from experiment, and which do
satisfy asymptotic unitarity, cannot generate enough
strength in the new form of the strip approximation to
bootstrap themselves. In Sec. VII we discuss the in-
ability of the N/D method to treat combinations of
attractive and repulsive potentials such as we obtain
if the P potential is not normalized. Both these prob-
lems seem to stem from treating the potential in the
first Born approximation, and in the final section we
conclude that a more adequate strength, and a better
treatment of the P repulsion, would result from iterating
the potential in the way originally proposed by
Mandelstam.®

II. THE N/D EQUATIONS

The form of the N/D equations which we use has
already been discussed in previous papers.—* We review
them here only for completeness.

We relate the partial-wave amplitude for isospin /
to the total m-r scattering amplitude 47(s,t,#) by

AI(S,l,u) =Zl (2l+ 1)[1+ (— 1)I+l]

XPi(14+1/2¢H A (s). (IL1)

We note that, because of the Bose statistics of pions,
only the even signature amplitude A+(s,f) exists for
=0, 2, and only the odd signature A=(s,f) for /=1:

Al(stm)=A1(s )+ (— 1) 214 (s,u). (I1.2)
The forces in the /=2 channel are repulsive and no
trajectories are produced, so we shall limit our attention
to/=0and 1:

A (s)=e® gind, I (s5)/p(s), (I1.3)
where p(s)=[(s—4)/s]"? is the phase-space factor, and
we assume that the phase shift §;7(s) is real (i.e., elastic
unitarity) in the range 4 <s <s:.

We represent the partial-wave amplitude by

A ($) =g Bl (5)= ¢ !N (5)/ Dl (s),  (I1.4)

4 G. I'. Chew and V. L. Teplitz, Phys. Rev. 137, B139 (1965).
® S. Mandelstam, Phys. Rev. 112, 1344 (1958).
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where Bi/(s) is the reduced partial-wave amplitude,
with the kinematical singularities at threshold removed,
and NI (s) has the left-hand cut of B;!(s) and its right-
hand cut for s>s;, and D,!(s) has the right-hand uni-
tarity cut from threshold to s;. Here s, #, and % are the
squares of the barycentric energies in the various
channels with ¢s,:,. the corresponding momenta, and s;
is the strip width. We use the pion mass as the unit of
energy throughout.
We then obtain the equations!

B (s")—Br(s)

1 pn
No(s)= B (5)4— / a5 oIV A(s") (ILS)

(s'—s)
- L pE)N(S)
S p($T) V(S
Di(s)=1—= / a7 (IL6)
w4 (s'—s)
where

pi(s)=L(s—4)/s ][ (s—4)/4],

and By (s) is the partial-wave potential function.

The integral equation (I1.5) is not Fredholm because,
as we shall see in the next section, B;*(s) has a loga-
rithmic singularity at s;. In fact

By(s) - (1/7) ImBy*(s1) In(s1—5) , (IL.7)
and
sin%j; (81) = pz(sl) ImBp (51) (1[8)

=\; (say).

This singularity serves to match the phase shift
below s1, given by the solution of the N/D equations,
to the value above s;, given by Regge asymptotic be-
havior. Clearly unitarity at s; requires that

ISR (I1.9)
and Chew® has shown that if this condition is satisfied
Eq. (I1.5) can be transformed, by the Wiener-Hopf
method, into a Fredholm equation

81
Nzo(s)=B;”(s)+/ ds’ K/ (s,s)N,°(s"), (I1.10)
4
where N%(s) is related to N,(s) by

81
Nz(s)=/ ds’Oi(s,s" )N 2(s"), (IL.11)
4

Oi(s,s") and K,(s,s") being known’ functions of B;*(s),
Az, and s1. A FORTRAN program for solving these equa-
tions has been devised,® but the Wiener-Hopf trans-

¢ G. F. Chew, Phys. Rev. 130, 1264 (1963).

7V. L. Teplitz, Phys. Rev. 137, B136 (1965).

8 D. C. Teplitz and V. L. Teplitz, Lawrence Radiation Labora-
tory Report UCRL-11696, 1964 (unpublished).
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formations are rather time-consuming.® Equation
(I1.10), being Fredholm, can be solved by matrix
inversion.

However, more recently, Jones and Tiktopoulos®
have shown that any integral equation, the norm of
whose kernel is less than one, can be solved by matrix
inversion, whether or not it is Fredholm, and that for
an equation such as (I1.5) this is simply the requirement
that \;<1. Thus, if unitarity is satisfied in the asymp-
totic region (s>s1), (IL.5) can be solved, as it stands, by
matrix inversion, providing that care is taken with the
choice of mesh points for s near si.'* In view of the
difficulties in satisfying the unitarity condition we de-
cided to use the Jones-Tiktopoulos method rather than
Chew’smethod, which had been used in previous work.?*

A pole in the partial-wave amplitude is represented
by a zero of the D function, and the output trajectory
is the function a(s) such that

Da(s) (S)ZO. ([[12)

Above threshold both a(s) and D;(s) become com-
plex, but their imaginary parts are expected to be
small, in which case we can make the approximation of
supposing that

Re{Drefa(sy (5)}=0. (I1.13)

As previously,® the solutions we obtain turn out to
have Im[a(s)] large just above threshold, and, since it
is much more difficult to solve the equations for com-
plex I, we are unable to trace the trajectories above
threshold.

The output residue v (s) is obtained from the relation?

’: Ni(s) :I =’Y(SR)
dDy(s)/dsseep o (sr)’

where sz is the pole position.

(IL.14)

III. THE POTENTIAL FUNCTION

In Fig. 1 we show the six regions (41,2,71,2,k1,2) of the
double spectral functions employed in the new form of
the strip approximation.? The double spectral function
in region ji, for example, is given by

p(5,)= A3 () Pojiy (—1—5/2¢2) J0(s—51),

where

(I11.1)

L;(0=[2e;()+ 11y (gD, (111.2)
a;(t) being the trajectory function, and v;(#) the reduced
residue function, of the jth Regge trajectory. The con-

9 D. C. Teplitz and V. L. Teplitz, Phys. Rev. 136, B142 (1965).

0 C, E. Jones and G. Tiktopoulos, Princeton University report,
1965 (unpublished).

11 am grateful to Dr. N. Bali (Lawrence Radiation Labora-
tory) for discussions on this point.
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F16. 1. The Mandelstam diagram for the new form of the strip
approximation, showing the six strips (shaded) 71,3, j1,2, and &y, 2.
The curve enclosing A is the boundary of the elastic double
spectral function for the s channel, and that enclosing B is the
boundary of the t-channel elastic double spectral function.

tribution of this strip to the amplitude is?

ajy (—1—5/2¢#)
i Cis, (IL3)
(s'=s)

© P
Ry () =3T5() /
81

where this integral is defined, and for >0 we use its
analytic continuation

T S
Rw(s,t>=-%r,-<t>{—~——-~, Pa,-m(1+—)
sinma; (t) 2q2

N Pao(—1-5/22)
- / s 'ds'}. (IT1.4)
—4q,? (s’—s)

The full amplitude is given by?
Al(s,tm)
=2 R (s,0)+ (= 1) TRy (s,u) orr,
+22 BULI)IR M (4s)+ (— VIR (tu)]  (1ILS)
+ (=D 2k B[R (1,8)+ (— 1) e Rk () ],

where the sums are over the leading trajectories in the
respective channels.

The reduced partial-wave amplitude for complex / is
defined by

E 100 di ¢ ;
Bz (S)=—"27r‘/‘—°I° qs2l+2[11an(1+E(;;>]A (S,t), (1116)

a form first pointed out by Wong,'? and the partial-
wave potential function is® (remembering the crossing

2D. Wong, University of California, San Diego [private com-
munication to G. F. Chew (see Ref. 1)].
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symmetry)
1 0 { a w 1 (=1Dh
BZ”I(S)=Z / dt[Im@(l—l——)]’I‘jUi(t) du’ P'—"i(‘)<_1—_>[ + :I
i 2mwg2H)_, 2q: g 2¢/ L —s uw'—u

0 o 1
s 2q%/ Lo —u

1
etther

= I)Iu’it]

,,-1‘].11;'(;) s K s
+ [(—1)Iipaj(t)(_1_-—>+Pa(t)<1+—_—)]} if (—1———><1
sinmra; (£) 2¢¢ 27 2q¢

or

1 4t P(SI)B I: 3!
__/ ds/__,_’___ii__,/ dl’Pal’(s’)<—1_
4) o ("= (=g oy 2

where the sum is over the leading trajectories, and
s+itu=s+t'4+u'=4. Also,

T ()=B(I,1,)T;(1), (ITL.8)
B(I,I') being the isotopic-spin crossing matrix
11 5/3
B(I,IN=|1 T ] (I11.9)
1 1 i
3 2 6
Note that
Im =LrP,(z) for —1<z<+1
[Qi(@)]=37P:(2) (IT1.10)

= — (sinml)Qy(—3z) for z<1—.
From the first term of (II1.7),

1 0 14
/ dt[In‘le<1+——>:l7ernf(l')
i 2wq 22 2q,12

ImB(s1)=2.

S
xpa,.(t)<—1——l>. (ITL.11)
2(];2

We have included the contributions of the strips ;.
to the left-hand cut in B,;*(s), which we have called the
partial-wave potential function. Strictly these con-
tributions are not part of the potential, but represent
the reaction to the potential. However, these extra
contributions are unimportant and it seems reasonable
to use the term. The “potential” is the expression in
braces { } in Eq. (IIL.7).

IV. THE TREATMENT OF THE
POMERANCHUK REPULSION

When Eq. (IT1.7) is used to evaluate the potential
for an even signature trajectory such as the P ot P’
it is found that the potential function is negative (i.e.,
repulsive). Thus if we make the approximation of

15 5 cot(me;(#)/2] for I;=0,2 ~ s
+T; (t)[ﬂ'Pa(t)< 1 2‘]zz>x[—tan[1raj(t)/2] for I;=1 j, 2Q0j(t)< 1 zqt2>]}’

S
if <—1——>>1, TIL.7
2Qg2

4 4
) (-1-55):
gor? 2q,

setting =1 we obtain

s
2

)R] o

where V (s,f) is the expression in braces { } in (IIL.7).
For s we get

Vo) =100 | —si— g2 (a+)

s 1+
VE(s,t) zI‘”i(t)[—sl—}——— ln( )] , (IV.2)
S1—3S,

S1

and By can be approximated by the partial-wave pro-
jection of this expression. It will be noted that there is
a repulsion depending on s;, and the expected loga-
rithmic singularity. For s<s;

VP (s,t) =T () —s1+5%/51- - ], (Iv.3)

and the s term is related to the spin-two (fo) part of
the P, but it is reduced by a factor s;? compared with
the repulsion. The lack of s dependence of the repulsion
indicates that it results from the xpin-zero part of the
P exchange.

Chew has shown!® how one can understand this re-
pulsion also in terms of the Khuri-Jones formula for
VP(s,t). By expanding VP(s,) in partial waves in the
¢ channel, one finds

VP(s,)=2 QI+ DV (OPs(1+5/297)

with
L730)]

V() =8(I,0)(gd)*r®~
sO=Ba0 @)

B G. F. Chew, Lawrence Radiation Laboratory Report UCRL-
16101, 1965 (unpublished); Phys. Rev. (to be published).

(IV.4)

¢ W—erln

{IV.5)
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where

E1()=In{z:()— [’ () — 11"}

21 (t)=1451/2¢2.

and

For {<s; we have

V2 ())=B(1,0)(g)vp(D)s1*7 /[ 2—ar())]

and (Iv.6)

Vo()=—BI,0)yp()s12P®/ap(l).

We again see a much reduced attraction from the fo
and a strong repulsion from spin 0.

At first sight it would seem that this repulsion must
be incorrect, or at least that it must be cancelled by
other contributions to /=0 exchange. For, suppose we
use the Froissart-Gribov? form of the partial-wave
projection instead of the Wong form (IIL.6), i.e.,

1 dt t
Bu(s)=— / Ql(l-{——)Dt(t,s), av.7)
2r) s g2 2¢.

where D,(i,s) is the ¢-channel discontinuity of the
amplitude. Then, neglecting the strips i1, in Fig. 1,
we have

70) (o dt ¢
Bl”(s)=ﬁ( )/ Ql(l }
2 4 2

T qs2 +2 qs

2>D;(t,s). (1V.8)

Because we take the double spectral functions to be
zero outside the strips of Fig. 1, we can expand D,(f,s)
in a convergent partial-wave series for 4<s<(s; and
obtain

B(I,0) r dt ¢

X ¥ (L+1) ImAlt(i)Plt<1+—s—>, (IV.9)

1t even 2(1‘2

and since, for elastic unitarity, ImA4,;(f) must be
positive, we can see that B;?(s) must be positive. Thus,
if the strip approximation is to be correct, there must
be other contributions to ImA4,,(f) apart from the P
(or P’) trajectory. These could be provided by tra-
jectories which do not reach the right-half angular-
momentum plane, but give a background contribution.
(See Fig. 2.) Since such trajectories are not manifest,
either physically, or in this type of calculation, there
can be no hope of including them individually in the
bootstrap scheme, but Chew and Teplitz!* have shown
how to represent their effect by ‘“normalizing” the
potential. This procedure consists simply of subtracting
from VP(s,f) the part V?(0,f) and then adding back
V?(0,t) from (IV.4).

14 G, F. Chew and V. L. Teplitz, Phys. Rev. 137, B139 (1965).
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Fi6. 2. The /=0 tra-
jectories, including two
hypothetical low-lying
trajectories which might
give a positive back-
ground contribution to
the potential.

Thus
By (s)
1 0 ¢
- dtI:Isz<1+—>:|{VP(s,t)—VP(O,t)}
2wq ) 2g.2
B(L,0) = t
+ / dt Ql<1+———> > Q2lLH+1)
27l’qs2l+2 4 2(132 1t even
XImA#(5), (IV.10)

and ImA,,(#) can be made self-consistent in the s and
¢ channels. It turns out that the second term of this
equation is very small, and in practice we shall simply
use the first term, which is itself sufficient to ensure
that the 7=0 exchange force is positive. It will be seen
in Sec. VI that this “normalization” drastically alters
the form of the potential function. It would be difficult
to add the second term in a self-consistent way because
an adequate solution for /=0, which is sensitive to
short-range forces not included in the strip approxima-
tion, cannot be found, and our solutions for /=2 and
higher cannot be believed because we have considered
only a single two-body channel whose particles (pions)
have no spin. Our conclusion that this term would be
small if it were included is based on the fact that even
the force from saturated unitarity in the S wave
[ImAo(£)=1/po(t)] is small; and for the D wave, the
contribution of a fixed-spin fo, when modified by
Chew’s form factor,'® is negligible.

However, the argument presented to show that the
I=0 force must be positive could well be incorrect,
since it assumes that elastic unitarity holds for 4<¢<s;.
In fact it will hold exactly only for 4 <¢<16. The double
spectral functions are really nonzero within the bound-
aries shown in Fig. 1. The region A contains the elastic
double spectral function for the s channel, which, by
definition, should not be included in the potential, but
which will contribute to the #-channel discontinuity
where it represents inelastic processes. This sort of
contradiction between the sign of the f-channel dis-
continuity and the s-channel potential has been noted
previously,' and we shall consider it further in the
final section.

In the next section we describe the results obtained
when the normalization procedure, whatever its merits,
is in fact used.

15 P. D. B. Collins, Phys. Rev. 139, B696 (1965).
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F16. 3. A comparison of the input and output, approximately
self-consistent p and P trajectories. The input trajectories are:
a,=0.5540.27/(1—14/70), ap=0.625+0.375/ (1—1/110).

V. THE BOOTSTRAP TRAJECTORIES

In a previous paper?® a self-consistent p trajectory
was obtained, but the p force also produced an I'=0
trajectory which had not been included in the input.
If now we include a normalized Pomeranchuk tra-
jectory it is possible to obtain a completely self-con-
sistent solution.

As in Ref. 3 we use a pole formula to parametrize
the trajectory functions, insisting that the /=1 tra-
jectory pass through a=1 for =28, corresponding to
the p particle, and that the P pass through a=2 for
t=80, corresponding to the fo, and through the uni-
tarity limit a=1 for /=0.

Thus

Ol,,(t)-‘—‘1“‘6”3/28—(1(1—t3/28)/(1—15/t]g), (Vl)

where (1—a) is the intercept of the trajectory with
t=0, and

ap()=2—1,/80— (1—14/80)/(1—1t/ts), (V.2)

where ¢4 and /5 are the positions of the poles, which we
expect to lie towards the upper end of the strip.

The same type of parametrization of the residue as
was used in Ref. 3, making use of the Chew-Teplitz
formula, was found to be satisfactory, i.e.,

Co) (O[E,—1t 1 >0
7o (O =Coa (OTiy— ]Qa,,w( - 4)

P

i,,—4 ap(t)+1
/ ( 4 ) ’

56
w(t)=cpaP'<z>[ip—t]QaPm(1+t_ 4)

p—

£P_4 ap(t)+1
/ < ) . (V.4
4

The merit of this parametrization stems from the fact
that the principal force in the system is p exchange, and
the Reggeized p force is similar in its energy dependence
to the elementary p force. The parameter £,,p is some
mean energy within the strip. Thus in searching for self-

(v.3)
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consistency we have to vary the Regge parameters a,
la, ts, C,, Cp, I, and ip, and the strip width s.

For a given choice of the parameters we calculate the
potential, using (III.7) for a range of / and s, and then
solve the N/D equations for /=0 and 1, obtaining
output residue and trajectory functions. It was indi-
cated previously® that a large amount of computer time
is required to find self-consistent solutions, but the
self-consistency is now much more nearly unique than
it was for the p alone. Only with 80<s;<130 is one
able to approach self-consistency at all closely, and
we concentrated on s;=100. We were then able to
obtain fairly good self-consistency for ¢=0.18, t,=110,
15="70, C,= 125, Cp=230, {,=0.40, and {p=50.

A comparison of the input and output trajectory and
residue functions is given in Figs. 3 and 4. A slightly
different parametrization of the y’s might have resulted
in some improvement, but the solution shown is obvi-
ously close to the best self-consistent solution.

Ideally, in a bootstrap calculation, one ought not to
fix any of the parameters beforehand, but, since the
force only depends on «(f) for <0, fixing «,(28)=1 is
not a strong restriction. If the trajectory is made to lie
too high or too low, the force obtained is too strong or
too weak for self-consistency to be possible. Fixing
ap(0)=1 does, however, restrict the solution greatly.
The self-consistent p alone reported in Ref. 3 gave rise
to a P trajectory which exceeded the unitarity limit.
It is the exclusion of this type of solution which has
caused the greater restriction in the range of the pa-
rameters for which approximate self-consistency can
be obtained.

As before,? the output diverges widely from the input
as ¢ becomes positive, the rapid variation of the output
o’s and v’s indicating that they have large imaginary
parts just above threshold. The input parameters
v,(28)/a,’(28) correspond to a p width of 1.2m,, but
the output /=1,/=1 cross section (Fig. 5) shows a

T T T T T
0.6 s
output
0.4} P R b
"‘*~—’M
0.2 1
7 (1) O
06 P 1
04} 4
02 1
o 1 L L !

1
-120 -90' -60 -30 o

t (my2)

-180 -150

FI1G. 4. A comparison of the input and output, approximately
self-consistent p and P trajectories. The input residue functions

are:
Vo= 1250 () (40—1)0a, 0 (2.55)/ ()20,
vp=230ap’ (1) (50—1)Qu, ) (2.22)/ (11.5)ar®+1,
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width of 4.2m,. In fact, the equivalent input p width
is much larger than 1.2m, because of the unrealistic
way in which our residue function decreases for ¢>0.
Similarly the input v,(0) corresponds!® to a == total
cross section of 36 mb rather than the expected 11 mb
deduced from Ref. 17. As in Ref. 3, it was not possible
to find solutions in which vy (¢) falls off sharply as ¢ is
decreased from zero, and it was thought wise to set
v()=0 artificially for {<—s;+4. This makes the
second term of (ITL.7) zero, whereas it would be much
larger than is consistent with the strip approximation
were this cutoff not imposed. As was mentioned in
Ref. 3, it is necessary to have rapidly decreasing residues
in order to produce steep trajectories, and it is the fail-
ure to obtain such residues as output which forces us
to solutions with high trajectories, quite unlike those
found from experiment in Ref. 18.

In fact, our trajectories are not admissible solutions
to the problem because they do not satisfy unitarity in
the asymptotic region. From Eq. (I1.8), we see that for
unitarity to be satisfied at s; we require

)\l=pl(sl) ImB,V(sl) < 1. (VS)

A plot of \; versus / is shown in Fig. 6, where we see
that this condition is not satisfied for /<0.82 for /=1,
and /<0.95 for 7=0. The difference between the two
isotopic spins is simply that the p trajectory contributes
twice as strongly to /=0 because of the crossing matrix.
As we mentioned in Sec. II, \;<1 is the condition for
matrix inversion to give the solution of the integral
equation (II.5), and so the trajectories plotted in Fig. 3
are not to be relied upon below these values of /. How-
ever, there is no discontinuity in the solution of the
matrix inversion equations as A\; becomes greater than
one, so we can expect the solution obtained to be close
to that which would be obtained if unitarity were not

T T T T T T T T

80}

o (mb)

401

E (mg)

Fic. 5. The I=1,l=1 cross section obtained with the self-
consistent trajectories. The width is about 4.2m,.

( 18 S;,e G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154
1964).

7 R) J. N. Phillips and W. Rarita, Phys. Rev. Letters 14, 502
(1965).

18R, J. N. Philips and W. Rarita, Phys. Rev. 139, B1336
(1965). )
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Fic. 6. A plot of \; versus / for the self-consistent trajectories,
showing that the unitarity condition, ;< 1, is satisfied only for
the tops of the trajectories.

violated. But Fig. 6 shows that for /=0 unitarity is so
far from being satisfied that the self-consistent tra-
jectories we have found cannot possibly correspond at
all closely to the physical trajectories. One can see from
Eq. (IT1.11) that if & and vy did decrease more rapidly,
and v were smaller, this problem would not arise. In
fact, Phillips and Rarita!® checked that their trajectories
satisfied unitarity at high energy.

Our conclusion from the results reported in this sec-
tion is that there is no bootstrap solution to the Chew-
Jones equations which satisfies unitarity in the asymp-
totic region, but that, if we ignore this condition,
trajectories which are completely self-consistent for
t<0 can be found, which bear a rather remote re-
semblance to those determined from experiment.

There was no sign of a secondary /=0 trajectory cor-
responding to the P’, even when attempts were made
to include it as a force.

VI. FURTHER ASPECTS OF THE REGGE
POTENTIALS

Despite our inability to find a bootstrap solution of
the Chew-Jones equations it is important to understand
the nature of the potentials produced by Regge poles.

Chew has shown!® how the fixed-spin exchange po-
tential is modified, by what he calls a “form factor,”
when continuation in angular momentum is taken into
account. This form factor may enhance or reduce the
force, depending on the spin of the particle exchanged.
For a particle of high spin the form factor always re-
sults in a reduction of the force, but for the p the situa-
tion is less certain.

It is well known that though the p is the principal
force in the w-m problem, a fixed-spin particle of the
physical width does not give a sufficient strength to
bootstrap itself in the first Born approximation.

The potential function is

2s M2
Bz”(s)=3gmp(1+ 2_4)Qz<1+5&>, (VI.1)

oy
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F16. 7. The trajectories obtained with the exchange of a fixed-
spin p of width—A=0.7m,, B=14m», and C=2.3m», with a
cutoff at s;=200m,2.

where g is the width of the exchanged p in pion mass
units, and the results of using such a force in the N/D
equations with a cutoff at s;=200 are shown in Fig. 7.
It is seen that a width of 2.3, is required to produce a
trajectory which passes through m,? at a=1. We com-
pare this with the force obtained from two different
parametrizations of the p trajectory in Fig. 8. The p of
case (b) produces a force which is similar to that from
the fixed-spin p for /=1, though it is smaller for lower
values of /, but it still suffers from the difficulty that
unitarity in the asymptotic region cannot be satisfied

0 L S
0.6 T T T
£=0.6
0.4 -
b
v
B, (s) /
£ ——
0.2 J—— = g
= .
[0 Misns——— R S "
0.06 T T T
=1.0 ]
> ’ *——41)
7,,:-4’:7 — e 0|
0.02r _
B N
o] L I L
o] 50 100 150 200

S (mqy?)

Fic. 8. A comparison of the potential functions, B;*(s), for
three values of /, with s;=200m,% The input parameters for the
three cases are:

(a) Fixed spin p of width 0.7m.,.

(b) A p trajectory with the parameters:
a,=0.107+0.393/(1—1/50); v,=0.22X (49)-2® / (1—£/200).

{c) A p trajectory with the parameters:

ap,=—1.542/(1—1/140); ~,=0.01X (24)1"2(®/(1~1/100).
Both sets of parameters correspond to a physical p of width 0.7#.
[The presence of (numerical factor)~=® is to make I'(f) <~ ()
X (—gH*® dimensionless. ]
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T16. 9. A comparison of the unnormalized (a), and normalized
(b), potential functions for an input P trajectory having the
parameters:

ap=—1.04+2.0/(1—1/240);
vp=0.007X (24)F-2r®OXap(£)/ (1 —1/100)

for I=0. These parameters correspond to a 7-= total cross section
of 1 mb. The multiplication of the residue by «(#) is to ensure
that it vanishes where the trajectory cuts angular momentum
zero, so that there is no “ghost” pole.

even if we neglect the fact that the P and P’ trajectories
also contribute strongly to ImB;*(s). In case (c) the
input trajectories are similar to those found by Phillips
and Rarita,'® and the force is much smaller.

The addition of the even-signature trajectories is of
little help because if the normalization procedure is
used the remaining P force is very small, as Fig. 9
shows. If we use input parameters based on those of
Phillips and Rarita for the p and (normalized) P the
force is too weak to produce any output trajectory at
all. If the P contribution is not normalized the resulting
total force is repulsive, and it is not possible to obtain
a sensible solution to the N/D equations. This point is
taken up in the next section.

To summarize, the forces from the sort of trajectories
found by Phillips and Rarita are even smaller than those
from the exchange of a fixed-spin p with the experi-
mental width, and are too weak to produce any output
trajectories. The force can be increased by using residue
and trajectory functions which fall less rapidly with
increasing |¢|, but if they are flattened sufficiently to
produce a force equal to that from the exchange of a
fixed-spin p, unitarity in the asymptotic region is vio-
lated at least for low angular momentum, and even this
force is too weak by a sizeable factor to produce output
trajectories corresponding to experiment.

VII. THE REPULSION AND THE
N/D METHOD

We can see from Figs. 8 and 9 that, if we do not nor-
malize the P contribution, the P repulsion is much
greater than the p attraction for both the /=0 and
I=1 channels except for s near s;. If we try to solve the
N/D equations with such forces we obtain trajectories
of poles with negative residues, that is to say we find
“ghost” resonances which lie on the physical sheet (at
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a in Fig. 10). What is more, the stronger the repulsion
the more highly bound these resonances become. Since
dynamical calculations have usually obtained resonance
widths which are too large!® (e.g., at b in Fig. 10) it
might be hoped that some more moderate amount of
repulsion would result in narrow resonances (at c).

To explore this phenomenon further we examined a
potential scattering model in which there was a similar
combination of attractive and repulsive potentials, i.e.,

V(r)=—gile™"/r)+gs(e™/7), (VIL1)

If one solves the Schrédinger equation with any such
potential one is guaranteed that any resonances pro-
duced will lie on the unphysical sheet, but if we use the
first Born approximation

Wl1<1ﬂ2.

B 2 o1+
L(S)——‘zgﬂ—ﬂ)@l +ﬁ

82 ma
f Qz(l—'r > (VIL.2)
2(132”2 2.2

and solve the N/D equations (I1.5), (IT.6) with a non-
relativistic phase-space factor

pi(s) = (s—4/4)H1r2 (VIL3)

and let s;—c, we find similar ghost trajectories. For
example, at /=0, with g.=10.5, ms=10, and m;=1
(there is no particular reason for these values), we find
that for g;=0 a normal bound state is produced at
s=—3.1and N¢= B¢ If we add repulsion by increasing
g1 there is, paradoxically, greater attraction, so that
for g1=2.6 the bound state has moved to —23. Plots of
By, Ny, and D, are given in Fig. 11(a). For g1=2.7 a
pole is produced in the N function at threshold and the
bound state moves to — . For g1=2.8 the N function
just above threshold has changed sign [Fig. 11(c)],
with a ghost pole appearing at s=8.5. We see that again
No= By, because the changing sign of N makes the
contribution of the integral in (IL.5) very small, but
this clearly does not mean that the first Born approxi-
mation still holds good. Increasing g, further increases
the binding of the ghost resonance.

This result stems from the failure of the first Born
approximation, and would be improved if we were to
iterate the potential in the way suggested by Mandel-
stam.® After an infinite number of iterations the solution
to the Schrodinger equation would be obtained,?® and
it would not be possible to have resonances except on
the unphysical sheet. One would expect the iterations
to be more important for a repulsive potential than for
an attractive one because of the alternating signs of the
successive iterations in the former case.

19 This fact is discussed by, e.g., J. R. Fulco, G. L. Shaw, and
D. Y. Wong, Phys. Rev. 137, B1242 (1965).

2 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).
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F16. 10. Positions of resonance poles in the complex s plane at:
(a) on the physical sheet, (b) well onto the unphysical sheet,

giving a wide resonance, (c) just onto the unphysical sheet, giving
a narrow resonance.

It would seem that in our relativistic problem we are
facing the same sort of inadequacy of the Born
approximation.

The normalization procedure is a valid way of cor-
recting the {-channel discontinuity in the range 4 <t<16
where elastic unitarity is exact, and probably further
out than this, since we expect the discontinuity of the
potential to be small in the whole of the lower part of
the strip where there are narrow resonances. This is
because the double spectral function in the strip is
approximately proportional to Ima(f) [see Eq. (II1.1)]
and the width of a resonance at ¢g is?

d Re
P:Ima(tn)/zt}zlﬂ(
dt

4

)t . (VIL4)

In the upper region of the strip we can have no such
confidence in the normalization procedure, since here
the discontinuity has contributions not only from the
strips but also from the corner section of the double
spectral function (A in Fig. 1). This corner is not in-
cluded in the potential, by definition, but if it is an
important contribution to the amplitude its neglect is

(a)

By (s) :
(a) (o)

(b)

(b)
H———— —_—

No (s) T Reys]

(c)

7®5

Fi16. 11. A comparison of the potential function, B;¥(s), and
the N and D functions, for the potential model described in the
text. The three cases differ in having (a) g1=2.6, (b) g1=2.7,
and (c) g1=2.8.

)

(c)

|
{

2 G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962).
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a serious defect of the new form of the strip
approximation.

This part of the double spectral function could be
calculated by means of the Mandelstam iteration
procedure, from the equations

i ”D (' ,s)Dy(t" ,s2)

(VILS)
K2 (st ")

K—o
where D,(l,s) is the {-channel discontinuity, and

”l 2
20+ +1"1) -————]
2

K(stt' t")= [t2+t’2+l”2——
qs

and

Dg(t Si> Vt(l s)+—/ds :i:tp(s t) (VII.é)

Starting with the ¢ discontinuity of the potential,
V.(t,s), one could calculate pa(s,t), the elastic s double
spectral function in the region A [though this would
require a knowledge of the residue and trajectory func-
tions above threshold where they are complex, a region
which hitherto we have been able to avoid by using the
Wong partial-wave projection (I11.6)]. If we knew
pa(s,t) we could find its contribution to B;*(s), and this
would enable us to treat the P force properly instead
of using the normalization procedure for £>16, where
its validity is rather doubtful.

However, if pa(s,t) is important, so by symmetry is
on(s,t), the elastic ¢ double spectral function obtained
by iterating the s-channel discontinuity, and this implies
that the assumption of elastic unitarity in the s strip
for the N/D equations is incorrect; ps(s,¢) will also
contribute to By*(s), of course.

Thus the new form of the strip approximation is seen
to have two deficiencies, in that the cuts of the IV func-
tion are taken to be simply those of the potential, and
elastic unitarity is supposed to hold right out to the
boundary of the strip.

Chew has argued?® that a proper inclusion of the P
repulsion should result in a narrowing of the output
resonances. The argument is based partly on the fact
that, in controlling the asymptotic behavior, the P is
the main contribution to the potential for s>s;, and
represents the effect of the many channels opening up
above the resonance region, and in classical nuclear
physics it is the presence of such channels which is re-
sponsible for the narrow resonances. In terms of the
N/D equations, the inclusion of the long-range P re-
pulsion should reduce the NV function near threshold,
and hence the width of low-energy resonances, without

2 (3. F. Chew, Lawrence Radiation Laboratory Report UCRL~
16245, 1965 (unpuhhshed) Phys. Rev. (to be published).
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greatly altering the position of the zero of the D func-
tion, which depends on the shorter-range p force.

VIII. CONCLUSIONS

We have not succeeded in bootstrapping trajectories
in the new form of the strip approximation as it stands.
This appears to be due to the treatment of the potential
in the first Born approximation, which does not produce
sufficient force to regenerate the true physical tra-
jectories when the physical trajectories are used as the
input, and gives rise to a repulsion from the P and P’
trajectories which we are only able to cope with by
making doubtful assumptions about the presence of a
background contribution. If we neglect the require-
ment that the input forces should correspond to the
known trajectory parameters, we find that it is possible
to obtain self-consistent trajectories, but these violate
unitarity very seriously in the asymptotic region, re-
quire the input of a p resonance of too large a width,
and result in an even larger output width.

It is hoped that by iterating the potential it will be
possible to include the P force properly and obtain
narrower resonances, and that the iteration will pro-
duce sufficient extra strength from both p and P to
make up the deficit. However, in view of the fact that
it will no longer be possible to identify the left- and far
right-hand cuts of the partial-wave amplitudes with
those of the potential, nor to use elastic unitarity within
the strip, there will be difficulties in using the N/D
method. Rather one might try to obtain crossing an-
alyticity by iterating the potential from a given set of
trajectories out to the asymptotic region, and discover
whether the asymptotic behavior appears to be con-
trolled by identical trajectories in the crossed channel.
The success of Bransden et al? in iterating a non-
Regge potential and obtaining sensible output trajec-
tories gives strong grounds for hoping that this approach
will succeed, and it is expected that results will be
available before very long.
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