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Some effects of inelastic channels on elastic partial wave amplitudes are dis- 
cussed. A Levinson’s theorem for both the real part of the phase shift and the 
total phase of the elastic amplitude is derived. The CDD singularities required 
to make the elastic amplitude calculated by single-channel inelastic N/D equa- 
tions agree with the many-channel calculation without CDD singularities are 
fully characterized in both the 7 and R methods. Finally, a simple explanation 
of multiple resonance poles on different Riemann sheets of the amplitude is 
given in terms of the analyticity properties of 9. 

I. INTRODUCTION 

In this paper we study some of the effects of the presence of inelastic channels 
on the properties of elastic partial wave amplitudes, and also how the N/D 
equations are affected by these additional channels. In particular, we consider 
the following subjects: 

1. Levinson’s Theorewz. In the absence of inelastic channels the change of the 
phase shift bet’ween threshold and infinite energy is related to the number of 
bound states’ (I). With the assumptions that the amplitude is analytic in the 
angular momentum 1 and tends to zero for large values of 1, we derive a Levin- 
son’s theorem for the real part of the phase shift and for the total phase of the 
amplitude. The Levinson’s theorem for the real part of the phase shift 6 involves, 
as usual, the number of bound states, but also depends upon the number of zeros 
of the X-matri.c that retreat through the inelastic cut as the angular momentum 
becomes large. These zeros correspond to the presence of inelastic resonances (2). 
The Levinson’s theorem for the total phase p is found to depend upon the number 
of bound states and the number of zeros of the awlplitude that retreat through 
the inelastic cut as the angular momentum becomes large. 

2. CDD Singularities. Several methods have been suggested for the inclusion 
of inelastic effects in the partial wave dispersion relations for the elastic amplitude 

* Work supported by the U. S. Atomic Energy Commission. 
t Permanent address: Palmer Physical Laboratory, Princeton University, Princeton, 

New Jersey. 
1 This is strictly correct in potential theory or when the amplitude is computed by the 

N/D method with no CDD poles. 

348 



INELASTIC RESONANCE POLES 349 

A (3-5). In these methods the input information consists not only of the dis- 
continuity across t#he left-hand cub but also of anot,her function used to describe 
the presence of inelastic channels. We discuss here what CDD (6) singularities 
must be added to the N/D equat’ions for two of these methods in order to ~nalict 

the single channel calculation agree with a many-c*hannel N lD calculation ( 7 1. 
In the first single-channel method that we discuss, the D-function has the 

phase -6; this gives rise to the Frye-Warnock equations (3). In the secontl 
method, D is required to have the phase -cp and the resulting equat,ions are 
those of Chew and Mandelstam (4). 

Rather than solve these methods explicitly and compare them with the matris 
N/D method, we exploit the fact that at large 1 both methods agree with the 
matrix N,lD result without CDD poles. Whatever CDD singulariCes are required 
then emerge from the inelast,ic cuts when the angular momentum is analytically 
continued to lower values. 

3. Multiple EZesonance Poles. In the presence of inelastic channels, t,herc are 
generally many poles on different sheets of t’he amplit’ude associated with a given 
resonance as has been discussed by many authors (8). These poles become par- 
ticularly important’ in the physical manifestation of t)he resonance if its position 
is near the threshold of one of the inelastic channels. A discussion of t-he analytic 
properties of the function q = e?‘, where a1 is the imaginary part of the phase 
shift, leads to a simple understanding of the presence of these multiple poles, 
which does not depend on an expansion of the amplitude near threshold or :L 
restri&ion to two-particle inelastic channels. 

II. THE ELASTIC AMPLITIJDE 

In t)he absence of inelasticit#y only one real function of energy is needed to 
specify the part’ial-wave elastic scattering amplitude A (8). This is the phase 
shift. When inelastic channels are present, however, t,wo real functions will be 
needed. These t’wo functions can be introduced in several ways. Two ways, whkh 
we shall consider in some detail, are: 

where 6, 17, ‘p, and R are functions of the energy and angular momentum and 
are real above the elastic threshold. The function 6(s) is t’he real part of the phase 
shift, (o(s) is the total phase of the amplitude A(s), and p(s) is the phase space 
factor. The functions R and 7 can be related t,o the inelastic cross section gin in :I 
given partial wave by t.he formulae: 
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TABLE I 

RELATIONSBETWEEN R, ~,ANDTHEANALYTICALLYCONTINUEDAMPLITUDE A(S) AND 
S-MATRIX (S = 1 + 2ioAja 
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ZipR 
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112 = s+s- 
1 
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1 

1 - S, 
+- 

1 - s- 

o A ,(+)J subscript denotes an energy just above the real axis and a “-” subscript de- 
notes an energy just below the axis. 

Here eel is the elastic cross section, q is the center-of-mass momentum, and Z is 
the angular momentum. 

We assume that the amplitude A (s) has the familiar analyt,icit,y properties in s: 
it is real analytic with a left-hand cut, and a right-hand cut beginning at s1 . 
Inelastic thresholds will be denoted by s; with s1 < s2 < s3 . . . . The only other 
singularities are the bound-state poles. Some useful relations between 7, R and 
the amplitude above and below the cut are summarized in Table I. We also 
assume that A (I, s) is an analytic function of the angular momentum 1. 

III. LEVINSON’S THEOREM FOR THE REAL PART OF THE PHASE SHIFT AND 
THE TOTAL PHASE OF THE AMPLITUDE 

It will be valuable for our consideration of the N/D equations in the next sec- 
tion as well as of interest for its own sake to derive a Levinson’s theorem for 
the phases 6 and p (1). We shall assume in this section only the analyticity 
properties mentioned in Section II and the following: 

a. A(Z, s) + 0 as s + cc so that S(Z, s) ---f 1 as s + cc. 
b. A (1, s) + 0 as 2 --) m for all energies except possibly at the branch points. 

Therefore, X(Z, s) -+ 1 as 1 -+ 00. 
c. The discontinuity across the left-hand cut is finite. 
d. For sufficiently large Z there are no poles or zeros of X(Z, s) for any s. 
Since S carries the phase 26 on the right-hand cut,, we obtain an expression for 

the change in 6 between s = s1 and s = m by considering the contour integral 
of the logarithmic derivative of 8: 

27ri(No - Ne) (3.1) 
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FIG. 1 

where the contour C is shown in Fig. 1. The integers No and N,3 are the numbc~r 
of zeros and poles of S respectively. 

These zeros and poles of X may be classified by their behavior as the angular 
momentum 1 is varied. At large I the S matrix approaches 1 for all energies and 
no zeros or poles are present on the physical sheet. As I is decreased, zeros can 
emerge from the left-hand cut or the right-hand cut. 

On the sheet, t#hat is reached by going through the elastic cut there will be a pole 
corresponding to each zero on the physical sheet (this follows from elastic uni- 
tarity). Those poles which retreat through the left-hand cut on t,his sheet :LS 1 
becomes large are called elastic resonance poles and those which ret’reat through 
the right-hand cut are called inelast’ic resonance poles (2). 

As 1 is decreased, some of t’he poles on the second sheet may move onto the 
first sheet to become bound states (the corresponding zero moves onto the second 
sheet at the same time). The classification of t,he poles into inelastic and elastic 
resonances may t’hus be extended to a classification of the bound st,ates as elastic 
bound states or inelastic bound states. 

We denot’e the number of inelastic and elast,ic bound st.ates by N,, :tnd NER 

respectively. Thus 
N, = Nm + Nm . (X.2) 

Inelasbic or elastic resonance poles always occur in complex conjugate pairs 
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(2) so that for each bound state pole there exists a companion resonance pole 
located on the real energy axis below threshold on the second sheet. We denote 
by 2N, the number of inelastic resonance poles that are not companions for 
inelastic bound state poles. In a similar way the number of elast,ic resonance 
poles that are not companions to elastic bound st,ates will be denoted by 2NE . 
Since every zero of S on the first sheet corresponds to a pole on t,he second sheet, 
the total number of zeros is 

No = 2NE + 2N, + Nm + Nm . (3.3) 

We now return to an evaluation of Eq. (3.1). Following closely at t,his point 
the development given by Hwa (9), we note that the integrals over t,he semi- 
circular contours at infinity in Fig. 1 vanish and we can thus write 

I = In S IcR + hi X IcL, (3.4) 

where CL and CR are contours around the left-hand and right-hand cuts. The 
first term on the right side of Eq. (3.4) can be evaluated in terms of the change 
in the phase shift: 

lnSIc, = 4i[6( w ) - 6(Sl)]. (3.5) 

In order to evaluate the term In S IcL it is convenient to begin at high angular 
momentum, I -+ 00. In this limit, it followsfrom assumption (b) that, In S IcL = 0. 

We now continue X to lower values of 1. Since the left-hand cut, has a finite 
discontinuity (assumption (c)), no poles can emerge from the left-hand cut. 
The integral around CL in Eq. (3.1) thus changes by 2ai every time a zero crosses 
the contour and we can write 

In S Ic, = 2riNuL (3.6) 

where NoL is the number of zeros that emerge from the left-hand cut as 1 is de- 
creased. But NoL is just the number of elastic resonance poles plus those poles 
which have become elastic bound states so we have 

NoL = 2(N, + NE,). (3.7) 

Combining Eqs. (3.1)-( 3.7)) we have the Levinson’s theorem for the real part 
of the phase shift 

s(a) - S(w) = r(N,, - Nr). (3.8) 

If there are no inelastic channels, the second term is absent’ and the usual 
Levinson’s theorem holds. As we see from Eq. (3.8), the presence of inelastic 
channels modifies Levinson’s theorem by an amount -aNr , where Nr is the 
number of inelastic resonances. (We assume in this discussion t’hat poles on the 
second sheet that emerge from the right-hand cut as 1 is decreased do not pass 
through the left-hand cut on the second sheet and vice versa.) 
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In an analogous manner, we can derive a Levinsott’s theorem for the t)ot aI 
phase (o of the amplitude A. We define the contour integral ? by: 

where N, represents the nunlber of bound state poles and iv0 is the ttumber of 
zeros of ;2. The (sontour C is the same as in Fig. 1 and we write, as before, 

1 = 111 .4 1 cI1 + III A I,.,, . i3.10) 

Here we have 

111.4 /CR = 2i[p( 1; 1 - cp(Sl,]. (X.11 1 

We shall also assume that under some variat,iott of the angular tnotnetttuttt OI 

coupling strengt,hs, the zeros and poles of 9 will emerge from t,he right-hand or 
left,-hand cut)s of A. As before, we shall suppose that 110 poles of -4 will ctnergt’ 
from the left,-hand cut,. Thus we may write 

111 A ICI, = 27riN,IL (Y.lL?l 

where IvoL is the number of zeros of A associated with the left-hand cut,. If S,,‘” 
is t,he number of zeros of A on the physical sheet which came frotn the right-hand 
cut,, we have LT’, = No” + NOR and deduce that2 

cp(slJ - p(x’) = r(NH - AT?). (3.13 i 

The physical interpretation of Eq. (3.13) is less direct t’hatt that of Eq. (3.8 1 
since the number of zeros of A is not closely linked with t#he ttunlber of resonart(‘(Ls 
or bound states. 

IV. CDD SINGULARITIES IN INELASTIC &V/D METHOI)S 

111 t’his section we consider the problem of solving a set of single channel N ,‘f> 
equations for the elastic amplitude A (s). Our goal is t.o clarify and to cotnpnrc 
t’he role of (‘DD singularities (singularities of D which are not singularities of 
t,he ampMude1 for the D functions defined in two ways of formulating this proh- 
lem. What we discuss here are not the CDD singularities associat,ed with clc- 
ment,ary particles. Our concern is rather with those CDD singularities that, must, 
be introduced into a single channel calculation of il in order to make it agree wit,11 
the more complete method of incorporating inelastic states by mean9 of Iht> 
matrix NjD technique.3 

The two methods we consider are distinguished by the way in which I) is 

z If some of the zeros that come from the left-hand cut move oFf the physical sheet 
through the right-baud cut, Eq. (3.13) must be modified accordingly. 

a See in this colluection ref. 10. 
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defined. In both methods for the cases we study D can be defined such that: 
a. D(s) is ELII analytic function of s with a right-hand cut and possible CDD 

singularities; 
b. D(s) -+ 1 as s + 0~ ; 
c. the zeros of D(s) are in one-to-one correspondence wit,h the bound states 

of A(s). 
In order to complete the definition we give t,he phase of D OIL the right-hand cut. 
In the met#hod we shall call the 7 method, D, has the phase --6(s) on the right- 
hand cut (5) ; in t#he method we shall call the R method, D, has the phase -q(s) 
on the right-hand cut (4). We shall distinguish the functions employed in t’he 
two methods by the subscripts 17 and R. The relationships between the S-matrix 
and N and D defined by these requirements are given in Table II. For a deriva- 
tion and discussion of the integral equations that result from these definitions we 
refer the reader to the original papers of Frye and Warnock (3) (the 11 method) 
and Chew and RIandelstam (4) (the R method). The equations that relate D to N 
are given in Table II. 

As a basis for our discussion of C’DD singularities, we may imagine the following 
procedure : 

1. The matrix N/D equations are solved without CDD poles; 
2. From this solution the functions R and 71 are computed; 
3. The single channel N/D equations employing the R and q methods are then 

solved. 
We then ask when CDD singularities must be included in these methods to 

make the single charmel calculations agree with A (a) calculated by the matrix 
N/D method. 

It is more convenient, however, to adopt a procedure that from the beginning 
assumes and exploits the analyticit’y of the amplitude in the angular momentum. 
At large 1 we shall assume that the amplitude is tending to zero. An,examination 
of Eq. (2.1) reveals 

6(b) --+o 

T(S) --$I. 
(4.la) 

If we further assume that t’he imaginary part of A tends to zero faster than the 
real part,4 we have also 

v(s) -0. (4.lb) 

Only the first assumption will be used in our discussion of the q method while 

4 Thus we exclude here a problem in which the elastic force BII is identically zero. For 
such a BI1 the following conclusions about the number of CDD poles at large 2 are not valid 
since in the absence of CDD poles t,he amplitude A L1 obtained from the single-channel R 
method equations would be identically zero. 
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i\s a c~n~r(~uenc~ of Eq. (1.1 ) the phase differences 6( sI j - 6( x I and cp(.s, ) - 
‘p( = ) vanish :tt, large 1 and D functions sat,ixfping requirements (I - c m:~y t)ca 
written as 

where we put QD( so ) = 6( CC ) = 0. These L) functions have ILO C'DD singularit it+ 
and we conclude that< with our assumptions about t)hc force no ("DD singuklri t i(is 
are required at large 1 in either method. 

We shall now amlytically continue t’hexe I) functions lo lower valuc~s ol’ 1; 
my necessary CDD singularities will then emerge from the cuts in the prohlcm. 
This is equivalent to the procedure outlined above hccwusc the many ch:mncl 
N,'D equatSions give solutions that are analytic in 1 if the force is. The 1ua11y 
channel NiD equations also do not require CDD poles as I is decreased. Wr shall 
see that although a close analogy exists between t,he 7 and R methods, the prcsm 
encc of CDD singularit,ies in one method does not, imply their occurrcncc iti t ht. 
ot’her. 

A. THE R-~IETHOD 

We shall 110~ examine what happens t’o D, ns I is decreased. Zeros or poles (XII 
emerge from the cut of DR as 1 is decreased, but IIO obher form of singularit,y, 
since otherwise the amplitude would not have the assumed analyticity in the 
energy variable. The zeros of DR which emerge are bound state poles of ihc 
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amplitude. The emergence of a pole or zero in D, will correspond to a logarithmic 
singularity in the phase cp and the contour integral over (o in Eq. (4.2) will have 
to be distorted. As long as the distorted contour is not dragged to infinity, that is, 
as long as the emerging pole or zero of DR remains at a finite point of the energy 
plane, DR will maintain its normalization to one as s --+ co. This enables us to 
exploit the Levinson’s theorem for cp, Eq. (3.13). Setting P( 30 ) = 0, we have 

Near s x s1 we have 

cp(Sl) = T(NB - NOR). (4.3) 

* exp [ 1 1 &’ cp(s’> -- sIs 1 4 const (s - .s~)~~-‘@. = 
81 

Now since DE is generally finite and nonzero at s = s1 , the only form for D, 
consistent with the asymptotic property (b) is 

1 (4.5) 

where sgi indicates the location of bound states and sPi the location of poles of 
DR. There are thus NOR CDD poles and the emergence of CDD poles in DR is 
concomitant with the emergence of zeros from the right-hand5 cut of the ampli- 
tude A. This, in turn, means that N can have no CDD poles at sPi since then A 
would be nonzero at these points. 

We now demonstrate that the CDD poles, which have been shown to cor- 
respond to zeros of the amplitude which emerge from the right-hand cut, must 
emerge from the inelastic part of the cut. First we show that such zeros of the 
amplitude cannot come from the elastic cut. On the elastic cut we can write 

(4.6) 

where the “+” and “-” refer to above and below the cut. Suppose we are at 
large 1 where DO CDD poles (i.e., zeros of the amplitude) have come ont)o the 
physical sheet. If an emerging CDD pole is on the sheet reached by going through 
the elastic cut, then we may continue Eq. (4.6) downward into the complex 
s-plane until DR’ has a pole. But in order for S to be one at this point and the 
amplitude to vanish, DE- must also have a pole at the same position. The func- 
tion DR-, however, is now evaluated in the lower-half s-plane and this contra- 
dicts our assumption that there are 110 CDD poles on the physical sheet. Thus 
no CDD poles can come from the elastic cut. 

To see that poles can consistently emerge from the inelastic right-hand cut we 
consider the following expression for S evaluated above the inelastic threshold: 

6 The emergence of zeros of A from its left-hand cut corresponds to zeros of N 
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s+ = 1+;(g - 1). (4.7 1 

Again we consider large 1 where no CDD poles have yet emerged onto the physical 
sheet,. We now continue downward from the real energy axis t)hrough an inelastic 
cut in order to locat’e a CDD pole. Since 

R=-++, 
1+s+ A 

C-13) 

R will also have a pole at the location of the CDD pole on this second inelastic 
sheet. So we see from Eq. (4.7) that S = 1 at the CDD pole as it should. 

We may, in fact, also see the emergence of the CDD pole directly from thcl 
dispersion equat,ion for DR : 

i-k.!,) 

As we have already noted, the occurrence of a CDD pole in the D-function does 
not, result, in a corresponding CDD pole in the N-function, so from Eq. (1.7) 
we see that a pole of R crossing the real axis distorts the contour of the integral 
and gives rise to a pole in DR . This again demonstrates why the pole must co~ne 

from the inelastic cut as R is one at all points on the elastic: csut. 

B. THE rl ~IETHOD 

In the 17 method as 1 is decreased, singularities of D, as given by Eq. (1.1) 
may emerge from the right-hand cut. In contrast, t)o t,he R method, singularities 
other than poles may emerge from the inelastic part of the cut because in thr 17 
method, t,he N-fun&on, N, , also carries an inelastic right-hand (out. From the 
inelastic c*ut, of N, , cancelling singularities may arise leaving the cut plant 
analyticitJy of the full amplitude A = N/D intact. We shall find, in fact, t,hat 
generally both D, and N, have branch-point singularities emerging from the 
inelastic rut’. 

As in t,he R method the poles, zeros or ot’her singularities of D, will arise from 
singularities in 6 which distort the cont,our integral over 6 in Eq. (1.2 j. If these 
dist’orting singularities do not move off to infinity the normalization of D, to 
u&y at infinite energies is preserved. The emergence of these singularities of 6 
generally give rise to a change in the phase shift difference [6isl j - 6( = )I. By 
Levinson’s theorem for 6, Eq. (3.8), this phase shift difference is, in turn, rc- 
lat,ed to the number of bound states and inelastic: resonanc*es. The hound states 
correspond to the emergence of zeros of D, whereas the inelastic resonances caomc 
from zeros of S t#hat’ migrate ont,o the physical sheet from the inelastic cut. Thcscl 
zeros of S give rise to cuts in D, as we shall now demonst~rate. 

We recall the relation 
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s+s- = q2, (1.10) 

which applies along the inelastic cut where the “ +” and “ - ” subscripts as before 
refer to above and below the cut. At large 1 we may continue Eq. (4.10) down 
into the complex energy-plane to find a zero of S+ at s = sr- . At this point, S- 
must be nonzero and finite since it is evaluated on the physical sheet, where the 
boundary condition S --f 1, 1 + m applies. Thus as s E sr. 

s+ - (s - S”) 
112 ( 9 - (s - SY) 

4.11) 

We may also employ the relation 

(4.12) 

to see that, 

D,f - (s - sp2 (4.13) 

since D,, which is evaluated at the corresponding point in the lower-half energy 
plane of the physical sheet,, must be near one in this limit of large 1. As r! is de- 
creased t’his inverse-square root singularity of D, at s = so and a corresponding 
branch point at t,he mirrored position s = sI,* may move onto the physica, sheet, 
corresponding to a pair of zeros of S migrating onto the physical sheet from the 
inelastic cut. 

It is clear that N, must cancel the branch point in D, at s = sV since S has 
just a simple zero at this point,. This fact can also be seen directly from the rela- 
tion 

(4.14) 

A detailed examination of the question of analytically continuing the integral 
equation for N,, in 1 is given in ref. 2. 

We emphasize here that the CDD requirements in the R and 7 methods are 
generally quite different). As we have seen, CDD poles in the R method are associ- 
ated with zeros of the amplitude that emerge onto the physical sheet from the 
inelastic cut. In the 7 method, CDD singularities become required when zeros of S 
come onto the physical sheet from the inelastic cut. In the 11 method, there is a 
simple physical criterion for CDD poles, since the emerging zeros of S correspond 
to inelastic resonance poles being fed into the second elastic sheet of the ampli- 
tude. The requirement of CDD poles in the R method, on the other hand, ap- 
pears to have no simple connection with poles in the amplitude. 
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V. PI:OPERTIE8 OF TJ AND MITLTIPLE I:ESO?;ANCK POLES 

Recently, it) has been emphasized by many aul,hors t,hat resonance pole>- in 
t)he scattering amplitude do not occur singly (8). h given rcsonau(‘e will generally 
manifest itself as a pole on many Riemann sheets of t,he amplitude. Thus if OIIP 

increnses the angular momentum (or decreases the all-over c*oupling strength I, 
a resonance that progresses through a threshold during this process will h:rvc 
different~ poles producing t,he “bump” in the cross section, depending upo11 
whether the resonance energy is above or below t,hc threshold. 

We shall show here that these many poles associated with a given reso11:ulpe 
have a simple interpretation in terms of the analyt)ic*ity properties of 7. The, 
discussion that we give here frees one from the need to discuss thrcsholtl (IS- 
pansions :md also is not, restricted to two-body inelastic c~hnnnels. h dk;c*ussion 
of multiple resonance poles without using threshold cspansions has also ~WII 
given by Eden and Taylor (8). 

Although we have not explicitly considered the fncat up to now, :t(*tu:ill? 
there are rl, ditierent analytic functions 7 where 11 is the number of c*harm&;. 
We shall write q1 to represent, the function that is appropriate in Eq. (2.1 1 
between the ith and (i + 1 )st thresholds. Thus v1 = 1. The functions 7S :IIY 
real between t,hc ith and (i + 1 )st thresholds but will geller:llly bc c*omplcs if 
continued to other regions. Let us suppose a resonan~o pole at s,. is present on 

t,hr second elastic sheet,, that is, the sheet reached from a point I’ on the physical 
sheet by continuing down through the elastic physical region as shown in I;ig. 2. 
The various Riemann sheet,s that are adjacent to the physical region arc labelled 
in Fig. 2 as R1 , R, , . . . . The resonance pole we arc csonsidcring is on shc>et Ii, 
\;l’c may now write 

s+&i = VIZ ( .Y .I ‘1 

where S+’ denotes S evaluated slightly above the real axis between the ith and 
(i + 1)st thresholds. By analytically continuing Ey. (3.1) down to the point 
s = s,. , WC find as in Section IV that, Xi has a simple zero at s = s,. : 

~2 = const. (S - s,.) s 7z S). . ( 5 ,2 ) 

Xow we imagine t#he coupling between the channels 2, 3, . . i and ckmncl 1 
being gradually and analytically switched off. During this process the func*tion 
vi2 must approach unity at all points. Thus 72 must have a pole at SOIW point 
s = spi where spi + .sr during the decoupling just desrrihed in order for v,2 to 
approacsh unit8y. That is, 

$ = .sz2! - 2 
s - &,i qi 



360 HAItTLE AND JOXES 

S PLANE 

FIG. 2 

where +? is neither singular nor zero at sV and sPi. 
Continuing Eq. (5.1) down to the point s = sPi , we find that Sfi will have a 

pole there since Ki, which is now evaluated on the physical sheet, should be 
nonsingular at this point. Thus the existence of a pole in the amplitude on sheet 
RI of Fig. 2 leads to the presence of poles at s = sPi on the sheets Ri . There are 
in addition, of course, mirror image poles to all of these just discussed on Riemann 
sheets reached by analytically continuing upward from below the physical cut. 

We can, of course, invert the above argument. That is, a pole on the sheet 
Ri for i > 1 gives rise to a pole of 7:. From this we conclude that there must be a 
zero of 7’ at s = sv . Since X+“XPi = qt2, t,he zero at s = s17 may either occur 
in S+ or X- . In either event it can be shown that n poles occur on n different 
sheets of the amplitude, not including the mirror image poles.6 

These poles associated with a given resonance are just those discussed recently 
by a number of authors (8). By making use of threshold expansions they have 
been able to show that if sPi is close to the threshold (i + 1) then si” is also 
near this threshold. The existence of these poles, as we have seen, follows simply 
from the analyticity properties of 7, 

6 The poles considered here are on the sheets adjacent to the physical region and are, 
therefore, the most important for the physical manifestation of a resonance. There are, in 
addition, other correlated poles on more distant sheets of the S-matrix. These poles are 
discussed by Eden and Taylor (8). 



INELASTIC HESOh-ANCE POLES Xl 

l-1. CONCLUSIOX / L 

:\ [urh infornlntion is contained in the assumption that. the scattering amplitudta 
is an analytic function of the angular momentum 1. By making use of this analyt- 
irity, we have been able to connect by analytic c:ontinuat.ion the region of high 
I, where properties of the amplitude are generally simple, to regions of lower 1, 
where resonances and bound states may occur. By making use of this connection 
between high and low I, we have been able to deduce Levinson’s theorems for t,hr 
real part of the phase shift and for the total phase of the scatStering amplit.ude. 
The number of multiples of 7r by which the real part of the phase shift changes 
between threshold and infinite energy is equal to the number of elastic bound 
states minus the number of inelastic resonance poles which are not companions 
of inelastic bound states. The number of multiples of ?r by which the total phase of 
the scattering amplitude changes bet’ween threshold and infir& energy is equal 
to the number of bound states minus t’he number of zeros of the amplit,udt> that 
(‘merge t,hrough it’s right-hand cut. 

With reasonable assumptions about’ the forces, we have been able to give> :L 
complete analysis of CDD singularities that are required in the R and t,hc 7 
N.;‘D methods in order to nlake their solubions agree with those of the mat,ris 
N,, I1 method. III the R met.hod CDD poles are required whenever t’here is a zero 
of t,he amplitude on its physical sheet that retreats t,hrough the right’-hand (out 
at large 1. In the TJ method CDD singularities are required whenever there is :l 
zero of t,he S-mat’rix on its physical sheet t’hat retreats t,hrough the right-hand 
cut at. large I. In the R method t,he CDD singularit,ies arc poles, but the criteri:b 
for these poles are difficult to state in physical terms. In t,he 17 method the cnf) 
singularities are usually brancah points; however, the locations of t,hese singulari - 
ties have a simple interpretation as the positions of inelastic resonances (2). 

Finally, by assuming analyticity in the interchannel coupling strengths, we 
have demonstrat’ed in a simple way the existence of many poles on different 
Riemann sheets of bhe amplitude all corresponding to CHIC resonancae. 

iY;ote Added: After this work was completed our attention was drawn to a paper t,v ,J. 
P’inkelstein (l’hys. Keu 140, Blll (1965i) where criteria similar to ours for CDD poles ill the 
II’ method are oht ained. 
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