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Inelastic Levinson’s Theorem, CDD Singularities, and Multiple
Resonance Poles™
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Some effects of inelastic channels on elastic partial wave amplitudes are dis-
cussed. A Levinson’s theorem for both the real part of the phase shift and the
total phase of the elastic amplitude is derived. The CDD singularities required
to make the elastic amplitude calculated by single-channel inelastic N/D equa-
tions agree with the many-channel caleulation without CDD singularities are
fully characterized in both the n and R methods. Finally, a simple explanation
of multiple resonance poles on different Riemann sheets of the amplitude is
given in terms of the analyticity properties of .

I. INTRODUCTION

In this paper we study some of the effects of the presence of inelastic channels
on the properties of elastic partial wave amplitudes, and also how the N/D
equations are affected by these additional channels. In particular, we consider
the following subjects:

1. Levinson’s Theorem. In the absence of inelastic channels the change of the
phase shift between threshold and infinite energy is related to the number of
bound states' (7). With the assumptions that the amplitude is analytic in the
angular momentum ! and tends to zero for large values of I, we derive a Levin-
son’s theorem for the real part of the phase shift and for the total phase of the
amplitude. The Levinson’s theorem for the real part of the phase shift & involves,
as usual, the number of bound states, but also depends upon the number of zeros
of the S-matric that retreat through the inelastic cut as the angular momentum
becomes large. These zeros correspond to the presence of inelastic resonances (2).
The Levinson’s theorem for the total phase ¢ is found to depend upon the number
of bound states and the number of zeros of the amplitude that retreat through
the inelastic cut as the angular momentum becomes large.

2. CDD Singularities. Several methods have been suggested for the inclusion
of inelastic effects in the partial wave dispersion relations for the elastic amplitude
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1 This is strictly correct in potential theory or when the amplitude is computed by the
N/D method with no CDD poles.
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A (3-3). In these methods the input information consists not only of the dis-
continuity across the left-hand cut but also of another function used to describe
the presence of inelastic channels. We discuss here what CDD (6) singularities
must be added to the N/D equations for two of these methods in order to make
the single channel calculation agree with a many-channel N/D calculation (7).

In the first single-channel method that we discuss, the D-function has the
phase —3&; this gives rise to the Frye-Warnock equations (3). In the second
method, D is required to have the phase —¢ and the resulting equations are
those of Chew and Mandelstam (4).

Rather than solve these methods explicitly and compare them with the matrix
N/D method, we exploit the fact that at large [ both methods agree with the
matrix N/D result without CDD poles. Whatever (DD singularities are required
then emerge from the inelastic cuts when the angular momentum is analytically
continued to lower values.

3. Multiple Resonance Poles. In the presence of melastic channels, there are
generally many poles on different sheets of the amplitude associated with a given
resonance as has been discussed by many authors (8). These poles become par-
ticularly important in the physical manifestation of the resonance if its position
is near the threshold of one of the inelastic channels. A discussion of the analytic
properties of the function 5 = ¢ ", where 8, is the imaginary part of the phase
shift, leads to a simple understanding of the presence of these multiple poles,
which does not depend on an expansion of the amplitude near threshold or a
restriction to two-particle inelastic channels.

II. THE ELASTIC AMPLITUDE

In the absence of inelasticity only one real function of energy is needed to
specify the partial-wave elastic scattering amplitude A (s). This is the phase
shift. When inelastic channels are present, however, two real functions will be
needed. These two functions can be introduced in several ways. Two ways, which
we shall consider in some detail, are:

1’821.'8 — 1 e?i@ . 1

4[1 = < = - 2. l )
2p 2pR "’ (

where 8, 9, ¢, and R are functions of the energy and angular momentum and
are real above the elastic threshold. The function 8(s) is the real part of the phase
shift, ¢(s) is the total phase of the amplitude 4 (s), and p(s) is the phase space
factor. The functions R and % can be related to the inelastic cross section ¢i, in a
given partial wave by the formulae:

R =1+ ¢in/0a
it (2:2)
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TABLE I

RELATIONS BETWEEN R, n, AND THE ANALYTICALLY CONTINUED AMPLITUDE A (s) AND
S-MATRIX (8 = 1 4 2ipA)=>

7 R
2ié 2i
ne -1 e“t? — 1
Ay = N + = ;
240 2ipR
. 2ip __ 1
8, = 7e?® 8 =141
1 1
?=8,.8 R =
R 1- 8, 1S
@ A “4” subscript denotes an energy just above the real axis and a ““~" subseript de-

notes an energy just below the axis.

Here 0. is the elastic cross section, ¢ is the center-of-mass momentum, and [ is
the angular momentum.

We assume that the amplitude 4 (s) has the familiar analyticity properties in s:
it is real analytic with a left-hand cut, and a right-hand cut beginning at s, .
Inelastic thresholds will be denoted by s; with s; < s, < 83 - -+ . The only other
singularities are the bound-state poles. Some useful relations between », R and
the amplitude above and below the cut are summarized in Table I. We also
assume that 4 (I, s) is an analytic function of the angular momentum I.

III. LEVINSON’S THEOREM FOR THE REAL PART OF THE PHASE SHIFT AND
THE TOTAL PHASE OF THE AMPLITUDE

It will be valuable for our consideration of the N/D equations in the next sec-
tion as well as of interest for its own sake to derive a Levinson’s theorem for
the phases § and ¢ (7). We shall assume in this section only the analyticity
properties mentioned in Section IT and the following:

a. A(l,s) > 0ass— « gothat S(I,s) > 1ass— .

b. A(l, s) — 0 as I — o for all energies except possibly at the branch points.
Therefore, S([, s) = 1lasl— =,

¢. The discontinuity across the left-hand cut is finite.

d. For sufficiently large [ there are no poles or zeros of S(I, s) for any s.

Since S carries the phase 26 on the right-hand cut, we obtain an expression for
the change in & between s = s and s = « by considering the contour integral
of the logarithmic derivative of S:

/S,(S/) .
I = '/;ds ) = 27i(No — Ng) (3.1)
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where the contour C is shown in Yig. 1. The integers Ny and Ny are the number
of zeros and poles of S respectively.

These zeros and poles of S may be classified by their behavior as the angular
momentum [ is varied. At large I the S matrix approaches 1 for all energies and
no zeros or poles are present on the physical sheet. As [ is decreased, zeros can
emerge from the left-hand cut or the right-hand cut.

On the sheet that is reached by going through the elastic cut there will be a pole
corresponding to each zero on the physical sheet (this follows from elastic uni-
tarity ). Those poles which retreat through the left-hand cut on this sheet us !
becomes large are called elastic resonance poles and those which retreat through
the right-hand cut are called inelastic resonance poles (2).

As [ is decreased, some of the poles on the second sheet may move onto the
first sheet to become bound states (the corresponding zero moves onto the sccond
sheet at the same time). The classification of the poles into inelastic and elastic
resonances may thus be extended to a classification of the bound states as elastie
bound states or inelastic bound states.

We denote the number of inelastic and elastic bound states by Nys and Nep
respectively. Thus

NB = NIB + NEB . (3.2)

Inelastic or elastic resonance poles always occur in complex conjugate pairs
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(2) so that for each bound state pole there exists a companion resonance pole
located on the real energy axis below threshold on the second sheet. We denote
by 2N; the number of inelastic resonance poles that are mof companions for
inelastic bound state poles. In a similar way the number of elastic resonance
poles that are not companions to elastic bound states will be denoted by 2Ng .
Since every zero of S on the first sheet corresponds to a pole on the second sheet,
the total number of zeros is

N0=2NE+2NI+NIB+NEBo (3-3)

We now return to an evaluation of Eq. (3.1). Following closely at this point
the development given by Hwa (9), we note that the integrals over the semi-
eircular contours at infinity in Fig. 1 vanish and we can thus write

I=Wn8|eg+In8S]e, (3.4)

where Oy and Cg are contours around the left-hand and right-hand cuts. The
first term on the right side of Eq. (3.4) can be evaluated in terms of the change
in the phase shift:

InSep = 44f6(0) — 8(s1)]. (3.5)

In order to evaluate the term In 8 [¢, it is convenient to begin at high angular
momentum, [ — . In this limit, it follows from assumption (b) thatIn S |¢, = 0.

We now continue S to lower values of [. Since the left-hand cut has a finite
discontinuity (assumption (c¢)), no poles can emerge from the left-hand cut.
The integral around Cy, in Eq. (3.1) thus changes by 27t every time a zero crosses
the contour and we can write

In § |(jL = 2WiN0L (36)

where Nt is the number of zeros that emerge from the left-hand cut as [ is de-
creased. But N," is just the number of elastic resonance poles plus those poles
which have become elastic bound states so we have

NOL = Q(NE + NEB)- (37)

Combining Egs. (3.1)-(3.7), we have the Levinson’s theorem for the real part
of the phase shift
8(s1) — 8(») = 7(Ngp — Ni). (3.8)

If there are no inelastic channels, the second term is absent and the usual
Levinson’s theorem holds. As we see from Eq. (3.8), the presence of inelastic
channels modifies Levinson’s theorem by an amount —«Ny, where Ny is the
number of inelastic resonances. (We assume in this discussion that poles on the
second sheet that emerge from the right-hand cut as ! is decreased do not pass
through the left-hand cut on the second sheet and vice versa.)
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In an analogous manner, we can derive a Levinson’s theorem for the totual
phase ¢ of the amplitude A. We define the contour integral I by:

= A'(s)) e :
lzfd’ = 2ri(Ny — N3), 3.9)
. $ A (N B) (
wherc Ny represents the number of bound state poles and N, is the number of
zeros of A. The contour C is the same as in Fig. 1 and we write, as before,

I =mlmA|e, +Ind|,. (3.10)
Here we have
Ind o = 2l e} — @is)]. (3.11)

We shall also assume that under some variation of the angular momentum or
coupling strengths, the zeros and poles of A will emerge from the right-hand or
left-hand cuts of A. As before, we shall suppose that no poles of 4 will emerge
from the left-hand cut. Thus we may write

InAd e = 20iN,L (3.12)
L

where No¥ is the number of zeros of A associated with the left-hand cut. If N,
is the number of zeros of A on the physical sheet which came from the right-hand
cut, we have Ny = Ny* 4+ N® and deduce that’

e(81) — (=) = 7(Ny — NB). (3.13)

The physical interpretation of Eq. (3.13) is less direct than that of Eq. (3.8)
since the number of zeros of A is not closely linked with the number of resonances
or bound statex.

IV. DD SINGULARITIES IN INELASTIC N/D METHODS

In this section we cousider the problem of solving a set of single channel N/
equations for the elastic amplitude A (s). Our goal is to clarify and to compare
the role of ('DD singularities (singularities of D which are not singularities of
the amplitude) for the D functions defined in two ways of formulating this prob-
lem. What we discuss here are not the CDD singularities associated with cle-
mentary particles. Our concern is rather with those CDD singularities that must
be introduced into a single channel calculation of 4 in order to make it agree with
the more complete method of incorporating inelastic states by means of the
matrix N/D technique.’

The two methods we consider are distinguished by the way in which D is

2 If some of the zeros that come from the left-hand cut move off the physical sheet
through the right-hand cut, Eq. (3.13) must be modified accordingly.
3 See in this connection ref. 10.
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defined. In both methods for the cases we study D can be defined such that:

a. D(s) is an analytic function of s with a right-hand cut and possible CDD
singularities;

b. D(s) »lass— «;

¢. the zeros of D(s) are in one-to-one correspondence with the bound states

of A(s).
In order to complete the definition we give the phase of D on the right-hand cut.
In the method we shall call the  method, D, has the phase —é(s) on the right-
hand cut (3);in the method we shall call the R method, Dr has the phase —¢(s)
on the right-hand cut (4). We shall distinguish the functions employed in the
two methods by the subseripts 4 and E. The relationships between the S-matrix
and N and D defined by these requirements are given in Table II. For a deriva-
tion and discussion of the integral equations that result from these definitions we
refer the reader to the original papers of Frye and Warnock (3) (the n method)
and Chew and Mandelstam (4) (the R method). The equations that relate D to ¥
are given in Table II.

As a basis for our discussion of CDD singularities, we may imagine the following
procedure:

1, The matrix N/D equations are solved without ("DD poles;

2, From this solution the functions K and 5 are computed;

3. The single channel N/D equations employing the K and 9 methods are then
solved. \

We then ask when CDD singularities must be included in these methods to
make the single channel calculations agree with A (s) calculated by the matrix
N/D method.

It is more convenient, however, to adopt a procedure that from the beginning
assumes and exploits the analyticity of the amplitude in the angular momentum.
At large | we shall assume that the amplitude is tending to zero. An .examination
of Eq. (2.1) reveals

d(s) —0
(») (4.1a)
n(s) — 1.

If we further assume that the imaginary part of A tends to zero faster than the
real part,’ we have also

e(s) —0. (4.1b)
Only the first assumption will be used in our discussion of the 9 method while

+ Thus we exclude here a problem in which the elastic force Bj; is identically zero. For
such a By the following conclusions about the number of CDD poles at large [ are not valid
since in the absence of CDD poles the amplitude A1 obtained from the single-channel B
method equations would be identically zero.
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TABLE II

A CoMparisoN oF THE K AND 7 METHODS FOR INCLUDING [NELASTICITY IN THE SINGLE
CuanNgL N/D MEgTHOD

n Method R Method
AL = N/DT Ay = Ngt/Dp™
Nyt = ﬂiﬂ Nyt = pﬁ:.:ﬁ":
2ip 2ipR
S+ = 171),,7/1),7"' S+ =14 (I)R_/[)RT — L/R
1 [ 2(s3') Re N(s’ ) 1 (s ) R(s" )N (")
D =1~ 1 [ 2O ReNED D(s)=l—ff gy PN
mJ, 8" = 81+ n(s") . NN

1

the more restrictive second assumption will be emploved when the R method ix
considered.

As a consequence of Eq. (4.1) the phase differences 6(s;) — §( =< ) and ¢(s1) —
¢{ =) vanish at large [ and D functions satisfying requirements ¢ — ¢ mayv be
written as

Dgp(s) = exp [—1]- ds' —"f(s )—]
T vV s -8
. , (4.2)
Dy(s) = exp [—1 f ds’ »7(?(8 )}
T Jy s~ 5

where we put ¢(» ) = 8(c) = 0. These D functions have no CDD singularitios
and we conclude that with our assumptions about the force no (*DD singularitios
are required at large [ in either method.

We shall now analytically continue these D functions to lower values of {;
any necessary CDD singularities will then emerge from the cuts in the problem.
This 1s equivalent to the procedure outlined above because the many channel
N/D equations give solutions that are analytic in { if the force is. The many
channel N/D equations also do not require CDD poles as I is decreased. We shall
see that although a close analogy exists between the 7 and R methods, the pres-
ence of ("DD singularities in one method does not imply their occurrence in the
other.

A. Tus R-METHOD

We shall now examine what happens to Dz as [ is decreased. Zeros or polex cun
emerge from the cut of Dy as I is decreased, but no other form of singularity,
since otherwise the amplitude would not have the assumed analyticity in the
energy variable. The zeros of Dy which emerge are bound state poles of the
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amplitude. The emergence of a pole or zero in Dz will correspond to a logarithmic
singularity in the phase ¢ and the contour integral over ¢ in Eq. (4.2) will have
to be distorted. As long as the distorted contour is not dragged to infinity, that is,
as long as the emerging pole or zero of Dr remains at a finite point of the energy
plane, Dy will maintain its normalization to one as s — . This enables us to
exploit the Levinson’s theorem for ¢, Eq. (3.13). Setting ¢{ ) = 0, we have

¢(s1) = 7(Ng — N*). (4.3)

Near s = s; we have

0 4 -
exp [‘l [ as 2L )s] — const (s — 5;)"> "%, (44)
81 -

™ S

Now since Dz is generally finite and nonzero at s = s;, the only form for D
consistent with the asymptotic property (b) is

NBA _ ) n NOR 0 I3
Dy = Hi=1 (s — spi)(s — &) exp [_ }r ds’ o(s )S:I (4.5)

II20 (s — seg) (s — s)™® '

51 s —
where sg; indicates the loeation of bound states and sp; the location of poles of
Dz . There are thus N,® CDD poles and the emergence of CDD poles in D is
concomitant with the emergence of zeros from the right-hand’ cut of the ampli-
tude 4. This, in turn, means that ¥ can have no CDD poles at sp; since then A
would be nonzero at these points.

We now demonstrate that the CDD poles, which have been shown to cor-
respond to zeros of the amplitude which emerge from the right-hand cut, must
emerge from the inelastic part of the cut. First we show that such zeros of the
amplitude cannot come from the elastic cut. On the elastic cut we can write

Dy
where the “+" and “—"" refer to above and below the cut. Suppose we are at

large | where no CDD poles (i.e., zeros of the amplitude) have come onto the
physical sheet. If an emerging CDD pole is on the sheet reached by going through
the elastic cut, then we may continue Eq. (4.6) downward into the complex
s-plane until D™ has a pole. But in order for S to be one at this point and the
amplitude to vanish, Dz~ must also have a pole at the same position. The func-
tion Dy, however, is now evaluated in the lower-half s-plane and this contra-
dicts our assumption that there are no CDD poles on the physical sheet. Thus
no CDD poles can come from the elastic cut.

To see that poles can consistently emerge from the inelastic right-hand cut we
consider the following expression for S evaluated above the inelastic threshold:

5 The emergence of zeros of 4 from its left-hand cut corresponds to zeros of N.
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Dy -
=1+ = <DR+- 1>. (4.7)

Again we consider large I where no CDD poles have yet emerged onto the physical
sheet. We now continue downward from the real energy axis through an inelastic
cut in order to locate a CDD pole. Since
1 1
R = , (4.8)
1 + S+ + l - AS_

R will also have a pole at the location of the ('DD pole on this second inelastic
sheet. So we see from Eq. (4.7) that S = 1 at the CDD pole as it should.

We may, in fact, also see the emergence of the CDD pole directly from the
dispersion equation for Dy :

Dr(s) = lf af 2ERG ~\N(S g (49)

As we have already noted, the occurrence of a C'DD pole in the D-function does
not result in a corresponding CDD pole in the N-function, so from Eq. (4.7)
we see that a pole of R crossing the real axis distorts the contour of the integral
and gives rise to a pole in Dg . This again demonstrates why the pole must come
from the inelastic cut as R is one at all points on the elastic cut.

B. Tae 4 ANETHOD

In the 5 method as [ is decreased, singularities of D, as given by Eq. (4.1)
may emerge from the right-hand cut. In contrast to the R method, singularities
other than poles may emerge from the inelastic part of the cut because in the g
method, the N-function, N,, also carries an inelastic right-hand cut. From the
inelastic cut of N, cancelling singularities may arise leaving the cut plane
analyticity of the full amplitude A = N/D intact. We shall find, in fact, that
generally both D, and N, have branch-point singularities emerging from the
inelastic cut.

As in the R method the poles, zeros or other singularities of D, will arise from
singularities in § which distort the contour integral over 8§ in Eq. (4.2). If these
distorting singularities do not move off to infinity the normalization of D, to
unity at infinite energies is preserved. The emergence of these singularities of 8
generally give rise to a change in the phase shift difference {6(s;) — (= )]. By
Levinson’s theorem for 8, Eq. (3.8), this phase shift difference is, in turn, re-
lated to the number of bound states and inelastic resonances. The bound states
correspond to the emergence of zeros of D, whereas the inelastic resonances come
from zeros of S that migrate onto the physical sheet from the inelastie cut. These
zeros of S give rise to cuts in D, as we shall now demonstrate.

We recall the relation
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S+S_ = 4, (4.10)

which applies along the inelastic cut where the “+4"" and “—" subscripts as before
refer to above and below the cut. At large [ we may continue Eq. (4.10) down
into the complex energy-plane to find a zero of S, at s = sy . At this point, S_
must be nonzero and finite since it is evaluated on the physical sheet where the
boundary condition § — 1, { — o« applies. Thus as s &~ sy

Sp~ (s —sv)

(4.11)
7~ (s— Sv)m
We may also employ the relation
D, ,
=155 112
S+ n D,,+ (41 )
to see that

D~ (s —sy)™? (4.13)

since D, , which is evaluated at the corresponding point in the lower-half energy
plane of the physical sheet, must be near one in this limit of large [. As I is de-
creased this inverse-square root singularity of D, at s = sy and a corresponding
branch point at the mirrored position s = s, may move onto the physical sheet,
corresponding to a pair of zeros of § migrating onto the physical sheet from the
inelastic cut.

It is clear that N, must cancel the branch point in D, at s = sy since S has
just a simple zero at this point. This fact can also be seen directly from the rela-
tion

D, —D,"

N,F=T (4.14)

2ip
A detailed examination of the question of analytically continuing the integral
equation for N, in [ is given in ref. 2.

We emphasize here that the CDD requirements in the B and 5 methods are
generally quite different. As we have seen, CDD poles in the B method are associ-
ated with zeros of the amplitude that emerge onto the physical sheet from the
inelastic cut. In the » method, C'DD singularities become required when zeros of S
come onto the physical sheet from the inelastic cut. In the n method, there is a
simple physical criterion for CDD poles, since the emerging zeros of S correspond
to inelastic resonance poles being fed into the second elastic sheet of the ampli-
tude. The requirement of CDD poles in the B method, on the other hand, ap-
pears to have no simple connection with poles in the amplitude.
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V. PROPERTIES OF 5 AND MULTIPLE RESONANCE POLES

Recently, 1t has been emphasized by many authors that resonance poles in
the scattering amplitude do not occeur singly (8). A given resonance will generally
manifest itself ax a pole on many Riemann sheets of the amplitude. Thus if one
increases the angular momentum (or decreases the all-over coupling strength ),
a resonance that progresses through a threshold during this process will have
different poles producing the “bump’ in the cross section, depending upon
whether the resonance energy is above or below the threshold.

We shall show here that these many poles associated with a given resonunce
have o simple interpretation in terms of the analyticity properties of 5. The
discussion that we give here frees one from the neced to discuss threshold ex-
pansions and also is not restricted to two-body inelastic channels. A diseussion
of multiple resonance poles without using threshold expansions has also been
given by Eden and Taylor (8).

Although we have not explicitly considered the fact up to now, actually
there are n different analytic functions » where n is the number of channels.
We shall write #; to represent the function that is appropriate in Eq. (2.1)
between the 4th and (7 4+ 1)st thresholds. Thus 5 = 1. The functions 9, are
real between the 7th and (¢ 4+ 1)st thresholds but will generally be complex if
continued to other regions. Let us suppose a resonance pole at sy is present on
the second elastic sheet, that is, the sheet reached from a point P on the physical
sheet by continuing down through the elastic physical region as shown in Fig. 2.
The various Riemann sheets that are adjacent to the physical region are labelled
in Fig. 2 as By, Rs, --- . The resonance pole we arc considering is on sheet 2, .
We may now write

S8 =y (5.1)
where S, denotes S evaluated slightly above the real axis between the ith and
(i + 1)st thresholds. By analytically continuing Eq. (5.1) down to the point
s = s, we find as in Section TV that S_" has a simple zero at s = s, -

2 =
n: = const. (s — $y) SRSy . (5.2)

Now we imagine the coupling between the channels 2, 3, - -+ i and channel 1
being gradually and analytically switched off. During this process the function
5. must approach unity at all points. Thus 5 must have a pole at some point
s = sp’ where sp' — sy during the decoupling just described in order for 5 to
approach unity, That is,

N = el (5.3)
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where 4 is neither singular nor zero at s, and sp'.

Continuing Eq. (5.1) down to the point s = sp*, we find that S,° will have a
pole there since S_*, which is now evaluated on the physical sheet, should be
nonsingular at this point. Thus the existence of a pole in the amplitude on sheet
R, of Fig. 2 leads to the presence of poles at s = sp’ on the sheets R, . There are
in addition, of course, mirror image poles to all of these just discussed on Riemann
sheets reached by analytically continuing upward from below the physical cut.

We can, of course, invert the above argument. That is, a pole on the sheet
R for i > 1 gives rise to a pole of 5. From this we conclude that there must be a
zero of 7 at s = sy. Since S.'S_* = »/, the zero at s = s, may either occur
in Sy or S_. In either event it can be shown that n poles occur on n different
sheets of the amplitude, not including the mirror image poles.’

These poles assoclated with a given resonance are just those discussed recently
by a number of authors (8). By making use of threshold expansions they have
been able to show that if sp” is close to the threshold (¢ + 1) then s™ is also
near this threshold. The existence of these poles, as we have seen, follows simply
from the analyticity properties of 7.

¢ The poles considered here are on the sheets adjacent to the physical region and are,
therefore, the most important for the physical manifestation of a resonance. There are, in

addition, other correlaied poles on more distant sheets of the S-matrix. These poles are
discussed by Eden and Taylor (8).
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V1. CONCLUSION

AMuch information is contained in the assumption that the scattering amplitude
is an analytic function of the angular momentum [. By making use of this analyt-
icity, we have been able to connect by analytie continuation the region of high
{, where properties of the amplitude are generally simple, to regions of lower {,
where resonances and bound states may occur. By making use of this connection
between high and low [, we have been able to deduce Levinson’s theorems for the
real part of the phase shift and for the total phase of the scattering amplitude.
The number of multiples of = by which the real part of the phase shift changes
between threshold and infinite energy is equal to the number of elastic bound
states minus the number of inelastic resonance poles which are not companions
of inelastic hound states. The number of multiples of = by which the total phase of
the seattering amplitude changes between threshold and infinite energy is equal
to the number of bound states minus the number of zeros of the amplitude that
emerge through its right-hand cut.

With reasonable assumptions about the forces, we have been able to give o
complete analysis of CDD singularities that are required in the B and the 4
N/D methods in order to make their solutions agree with those of the matrix
N/D method. In the B method CDD poles are required whenever there is a zero
of the amplitude on its physical sheet that retreats through the right-hand cut
at large [. In the » method DD singularities are required whenever there is a
zero of the S-matrix on its physical sheet that retreats through the right-hand
cut at large [. In the B method the CDD singularities are poles, but the criteria
for these poles are difficult to state in physical terms. In the n method the CDD
singularities are usually branch points; however, the locations of these singuluri-
ties have a simple interpretation as the positions of inelastic resonances (2).

Finally, by assuming analyticity in the interchannel coupling strengths, we
have demonstrated in a simple way the existence of many poles on different
Riemann sheets of the amplitude all corresponding to one resonance.

Note Added: After this work was completed our attention was drawn to a paper by J.
Finkelstein (Phys. Rev 140, B111 (1965)) where criteria similar to ours for CDD poles in the
I method are obtained.
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