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By considering many coupled two-body-channel scattering amplitudes that possess a unique continuation
in the angular-momentum variable /, we show: (1) that several methods of obtaining the single-channel
N/D solution for the elastic amplitude with an inelasticity factor agree with the corresponding many-channel
matrix N/D solution at high /; (2) that in order to preserve agreement when continuing to low angular mo-
mentum one must generally introduce Castillejo-Dalitz-Dyson (CDD) cuts or poles into the single-channel
D function; (3) that the integral equations for N/D may be continued in /, automatically yielding the CDD
cuts mentioned above. Finally, we introduce a distinction between elastic and inelastic resonance poles
based on continuation in ! and show that the latter will not appear in calculations that fail to include the

requisite CDD singularities.

I. INTRODUCTION

HE incorporation of inelastic effects into N/D

equations is an important problem of S-matrix
theory. When such effects are incorporated in boot-
strap calculations, the answers are generally quite
different from the results obtained when inelasticity is
ignored.!

In particular, inelastic effects may alter in an im-
portant way the position and width of a resonance
which is bootstrapped on the basis of elastic unitarity.!
Here we develop the idea that the very existence of the
resonance pole may be a consequence of inelastic states.
Any calculation in these cases, which neglects such
states and considers only elastic effects, should not
produce a resonance pole at all.

We will distinguish two types of resonance poles on
the unphysical sheet reached by passing through the
elastic cut. Elastic resonances are defined as those which
migrate to the left-hand cut on this sheet as the angular
momentum !/ becomes large.? Inelastic resonances are
those which retreat through the right-hand inelastic
cut in this limit. Resonances of the latter type will
not be produced in any calculation which ignores
inelasticity.

In order to calculate inelastic effects, the most direct
approach would be the many-channel matrix N/D
equations.® Alternatively, several authors*? have
proposed methods for introducing inelastic effects into
the single-channel problem. In such problems an in-
elasticity coefficient must be given as input information
in addition to the specification of left-hand cut
singularities.
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Scientific Research and Development Command.
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On the basis of models, Bander, Coulter, and Shaw,?
Squires, and Atkinson, Dietz, and Morgan®® have
recently shown that many-channel N/D and the single-
channel methods with an inelasticity factor do not
generally give the same answers. We demonstrate here,
in a manner which is independent of detailed models,
that the discrepancy between these various techniques
arises as a consequence of the presence of inelastic
resonance poles.

Assuming analyticity of the amplitudes in the angular-
momentum variable /, we readily establish the relation
between the various N/D procedures at high ! where
there are no resonances or bound-state poles. By
continuation in / we find that the single-channel schemes
with inelasticity depart from the many-channel result
at the point where inelastic resonances first emerge
from the inelastic cuts. At that point the analytically
continued single-channel D function develops branch
points on the physical sheet at the positions correspond-
ing to the inelastic resonances on the second sheet. We
then show that one may retrieve the analytically
continued result for the amplitude by solving the single-
channel problem with a newly defined D function which
has Castillejo-Dalitz-Dyson (CDD) poles that produce
the inelastic resonance poles. Since the position of these
resonances is then a part of the input data to the
problem, these numbers cannot be computed by any
single-channel calculation without CDD singularities.

In our discussion we make the requirement that the
left-hand-cut contribution to the amplitude vanish for
large energies and also for large angular momenta. This
enables us to find solutions to the N/D equations for
which the S matrix approaches one for the same limits.
We also assume the left-hand-cut contribution is finite
at all points along the left cut.

One can carry out a discussion similar to the one
given here by considering analytic continuations in the
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coupling constants. The angular-momentum variable,
however, has the advantage of constituting a single
strength parameter, which is well defined and relevant
in all problems.

II. SOLUTIONS FOR LARGE ANGULAR
MOMENTUM

We shall now consider several methods for solving a
single-channel problem for the elastic amplitude A
incorporating inelastic effects. Because the force
vanishes and the S matrix approaches one for large /,
we shall be able to determine what (if any) CDD
singularities must be included in the solution.

The elastic amplitude 4 can be written

A= (2ip)(S—1)= 2ip)* (ne?—1)=Re**, (1)

where 7, 8, ®, ¢ are functions of the angular momentum
! and energy. They are real for real angular momenta
and energy above the elastic threshold so. The function
n is one below the inelastic threshold s;, and above it
satisfies 0<9<1. The function p is the phase-space
factor; 6 and ¢ are normalized to zero at infinite
energy.

The first method we consider is that of Frye and
Warnock.* In this method the amplitude is written as
N/D, where D is required to have the following
properties:

(a) D(s) has the phase —8(s) on the right-hand cut;
(b) D(s)—1ass— x;

(c) the zeros of D(s) are in one-to-one correspondence
with the bound-state poles of A4 (s).

In the large-/ limit the phase § must be tending to
zero for all energy in order that the amplitude approach
zero. For sufficiently large /, then, §(so)=0. Also in this
limit there are no bound-state poles. A D(s) consistent
with (a), (b), and (c) can then be defined as

D(s)=exp(——1- /“ 6(5')ds’) . )

TS §—S

Under our assumptions about the asymptotic be-
havior of the left-hand-cut contribution, the equations
for N (s) [see Eq. (8)] which result from this form of D
are soluble. The solution is also seen to have the desired
property that A4 (s)— 0 as s— . This form of D(s)
cannot be modified by adding CDD poles or square-root
singularities of the type discussed in Ref. 12 without
violating properties (b) and (c).

2 7. B. Hartle and C. E. Jones, Phys. Rev. Letters 14, 801
(1965).
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We remark that a similar result also holds for the
method of Froissart® where

1 r2als
D(s)= exp(—— f S,(S 1ds') ,
T §—

P ®Iny(s)
a(9) =09+ / |

n $’—S

’
ds’,

and in the method of Ball and Frazer.®

One cannot always dispense with CDD singularities
at large [. In particular, let us consider solving for 4 by
replacing assumption (a) by the assumption (a’) that
D carries the entire right-hand cut of 4, the so-called
R method. We shall consider the question of whether
CDD poles can be excluded in this case at large angular
momentum. The N/D equations which result from
(a"), (b), (c), including possible CDD poles are

n B(s)—B($:)+ A4 (ps
YO=BO+E ¥ s: 2]

=1

1 r°  B(s)—
+- / ds’wR(S’)p(S’)‘\’(S'), )
™ J so s

—S
L] ’

i 1
D(s)=14% — —f

is—p T

R(sp(sIN (). ()

!
o §'—s

Here B(s) is the left-hand-cut contribution to the
amplitude; R(s) is the ratio of total to elastic partial
cross sections; pi, s, and A (p;) specify the CDD poles
and together with B and R provide the input informa-
tion to the problem.

At large I where bound states are absent the D func-
tion which results from (5) must have the form

DE)= (=TI () exp( ! f ) ¢(S')ds') . ©

wSa S—S
Since D has no poles or zeros at s=so we must have
& (s0)=—mnr. )

We now show that with this method ¢(so) may be
nonzero at large ! and one must, therefore, generally
include CDD poles at large I. For example, consider a
problem in which B(s)=0. If there were no CDD poles
Eq. (5) would imply N(s)=0 and therefore 4 (s)=0.13
Now, it is easy to conceive of models in which the direct
force is zero, but for which the amplitude does not
vanish. For example, the model studied in Ref. 8 is of
this type. For such problems CDD singularities are
clearly required.

In summary we relate the single-channel methods
discussed here to the many-channel matrix N/D solu-

18 We are indebted to Professor R. Blankenbecler for calling our
attention to the failure of the R method in this case.
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tion. The matrix N/D equations without CDD poles
and with a driving term B;;(s), which vanishes at
infinite energies, are easily seen to have solutions with
the desired properties (44— 0 or Sij— 1as!— « or
s— ). We can compute from this result the inelas-
ticity coefficients 7 and R. If these coefficients are now
introduced into the single-channel methods discussed
above, we get agreement with 4,; without adding CDD
poles for large angular momentum except in the case of
the method involving R where generally CDD poles
must be added.!3»

III. CONTINUATION IN THE ANGULAR
MOMENTUM

Now we turn to the problem of whether CDD singu-
larities are required at lower values of the angular
momentum. We will consider in detail the Frye-
Warnock method. Assuming the form of D given by
Eq. (2), the integral equation for R N (s) takes the form

2n(s) _
ReN (s)=B(s)
14+n(s - _
1 r*B(s)—B(s) 2p(s’
—f =56 %) ReN (s')ds’, (8)
TJ)a s'—s 149(s")
where
- P 1—n(s)
B(s)=B()+— | ————ds', )
T J o 2p(s')(s'—5)
and then

1 r* 2o(s")ReN(s')
D(s)=1— | ——— " 4¢,
7w ('—5)(1+2(s))

10
N(s)=ReN(s)+ReD(s)(1—n)/2p. (0

We shall demonstrate how to continue the solution of
these equations obtained for large ! where there are no
CDD singularities to lower values of /. By CDD singu-
larities we mean poles or cuts of N and D which do not
appear in 4. If CDD singularities are required at these
lower values, they will emerge automatically from the
cuts of D during the continuation process.

We shall assume that the singularities of 4 are con-
fined to the left- and right-hand cuts and the bound-
state poles. No CDD cuts? can therefore develop out of
the left-hand cut as ! is decreased, since N (s) contains
all of the left-hand cut and there would be nothing in
D to cancel such CDD cuts. CDD poles cannot come
from the left-hand cut because of the assumed finiteness
of B(s).

No CDD singularities can emerge through the elastic
cut. Suppose that there were a CDD singularity in D
which retreated through the elastic cut as ! was in-
creased. Since, in the elastic region, .S can be written

S(s)=D*(s)/D(s), (11)

13 The method involving R will be more carefully discussed in
a forthcoming paper: J. B. Hartle and C. E. Jones (to be
published).
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it follows that S must have a zero (if D has a CDD
pole) or a cut (if D has a CDD cut) on the unphysical
sheet reached by going through the elastic cut. The
continuation of elastic unitarity, S(s)S*(s)=1, then
implies that .S must have a corresponding pole or cut on
the physical sheet. This violates our assumption that
the only singularities of S on the physical sheet for
large ! are the left- and right-hand cuts. No CDD
singularities, then, can come from the elastic cut.
Indeed, for a problem with no inelasticity (y=1) this
result shows that there can be no CDD singularities at
any value of the angular momentum if solutions are to
satisfy our boundary conditions as I— « and be
analytic functions of /. We have already seen that no
CDD poles are required in the matrix /D equations
in order to yield the right asymptotic behavior in / and
s. This has also been shown to be the case for the N/D
equations used in the strip approximation.!*

The only remaining source of CDD singularities is
the inelastic cut. As Bander, Coulter, and Shaw?® have
emphasized, if n>>0, Eq. (8) is of Fredholm type and no
singularity can occur in the solution. Only when 9
assumes the value zero on the real axis does the equation
cease to be of Fredholm type and the possibility of a
singularity occur.

The function n vanishes on the real axis when a
resonance pole emerges from the inelastic cut onto the
unphysical sheet reached by going through the elastic
cut (see Ref. 12). This type of resonance we have called
an inelastic resonance. The continuation of elastic
unitarity requires that S vanish at the corresponding
point on the physical sheet. We shall assume that the
resonance pole is simple.

On the real axis (s) can be written as

() =[S (s)S*(s) 1", (12)
where 7(s) is real for real s. If the position of the zero of
S on the upper-half physical sheet is denoted by s,, the
form of s is S(s)= (s,—5)S(s) where S(s) is nonzero at
s,. Now the analytic continuation of $*(s) will have a
zero at s,* and in general, will be nonzero at s,. Other-
wise at large ! when s, has retreated through the in-
elastic cut a pole would appear on the physical sheet in
violation of our assumptions about the singularities of
S in this limit. Thus #(s) may be written

1(s)=L(so—5) (s*—) 1" (s) (13)

where #(s) is regular at s, and s,*. The function 7(s) is
real above s; and has two complex-conjugate square-
root branch points which cross the real axis as an in-
elastic resonance emerges onto the unphysical sheet.
We assume this form for the input inelasticity 5(s)
and show that the solutions to Egs. (8), (9), and (10)
as [ is decreased can be continued through the value at

¥ C. E. Jones (unpublished).
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which s, crosses the real axis. Let us define

7(s)
] = , 14
ReN (s) ) 9 (s) (14)
where 91(s) then satisfies
1 *B(s)—B '
9U(s)=B(s)4+—- / —({)———9 ﬁzﬂl(s’) . (15
T J s s'—s ()

As ! is continued through the value at which s, crosses
the real axis the solutions to Eq. (15) are finite in s. To
see this we write
B(s")=B(s) p(s")
———————=K(5,s")[(s'— ) (s'—5,*) ] 2.

s'—s (s

(16)

The K (s,5") is then always finite in s and s’. This kernel
in turn can be written

K (5,8 )L(s'= ) (s'=5*) 2= P(s,8")+Q(s,5"),  (17)

where P(s,s’) is of finite rank and Q(s,s’) is of Fredholm
type. We can take

P(s;s)= K(S,Sv)/s’_s,,*>1/2_K(S,S,,*)/ s—s, )1/2 s

Sp— sv*\ §'— 5, Sp— S ¥ \s’ —5,*

Q(S,S’)=K(S’S’)—K(S?sv)/s’—sv*)l/z

Sy— S * \ s'—$,

_K(S,S,)—K(s,sv*)/ s'—s, )1/2‘ (19)

Sy—Sp¥ \s’ —s5,*

The solution to Eq. (15) can then be written as

AN(s)= f R(s,s")B(s")ds’, (20)

where R is the resolvent given in terms of P and Q by
R=[I—-{I—-P)"QI*(I—P). (21)

The operator (I—P)™! can be computed explicitly
and remains well defined as s crosses the real axis,
producing no singularities. A theorem of Tiktopoulos?s
then allows us to conclude that for such a kernel the
solution can be analytically continued through the
point where s, crosses the real axis.

It is not necessary to consider this analytic continu-
ation explicitly in order to determine what CDD singu-
larities are required at low values of . If 7 is assumed to
have the form of Eq. (13), then it follows from Eq. (12)
that S has a simple zero at s, and s,* on the physical
sheet. Since S can be written as S=7(s)D*(s)/D(s), it
then follows that D(s) is of the form

D(s)=[(ss*~5)(ss—5)T~D(s),

15 G, Tiktopoulos, Phys. Rev. 133, B1231 (1964).

(22)
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where D is regular at s, and s,*. (D* cannot vanish since
this would imply that D vanishes on the physical sheet
at large [ in violation of our assumption.) Thus, D has
CDD branch points at s, and s,*; V can be written as
(nD*—D)/2ip and therefore contains this CDD cut in
a multiplicative way.

The representation for D(s) corresponding to Eq. (2)
can be found by examining the behavior of § as the zero
of S emerges onto the physical sheet. Since &(s)
= (1/44)In[S(s)/S*(s)], we can write

8(s)= (1/43)In[ (s,*—s) (s,—5) ]+8(s) . (23)
When s, crosses the real axis the logarithmic branch
points of § distort the contour in the integral of Eq. (2).
The integral over the first term in Eq. (23) gives
rise to a multiplicative factor in D of the form (s—s,)
X[ (sv—s5) (s2*—s) T2, where s, is the point at which
the branch cuts of é cross the real axis. The phase é on
the real axis will have a discontinuity of = at s, so we
will write it as 8(s,p). Then D takes the form

s—Sp 1 r*8(s',p)
= exp( —= as). @
D= = xp( - / o s) 1)

There is no zero of D at s, since 8(s,p) has a discon-
tinuity there. The point s, can be taken to be any point
on the right-hand cut.

The D function represented in Eq. (24) is completely
determined as the analytic continuation of the D at
large I with the given information about 7 contained in
Eq. (18) and satisfies restrictions (a), (b), and (c) of
Sec. II. We can obtain a form of D which is more con-
venient for calculations at low / by relaxing requirement
(c) and allowing D to have zeros which do not cor-
respond to bound states. We define

D(s)={(s—s2)/L(sv—5) (ss*—5) ]/} D (s)
N(9)={(s—52)/L(ss=5) (ss*~ )2} N (s),

where s, is arbitrary but real.

The new function D has two CDD poles at s, and s,*.
Since s, is arbitrary, there is one linear relation between
the residues of these poles. If this relation is given,
together with 7 and the position of the resonance s,, we
can write a set of equations like Egs. (8), (9), and (10)
now including the CDD poles which completely
determine A4 (s).

The situation is simpler if the angular momentum is
decreased enough so that the resonance moves on to the
physical sheet at sy as a bound state. Then s, and s,*
move onto the real axis, one to the position of the bound
state sp and the other to a point s¢. During this con-
tinuation a simple zero emerges from the exponential
factor and moves to sp giving N and D the form.

D(s)=[(ss—s)/(sc—s)]2D(s),
N(s)=[(sa—s)(sc—s) TN (s),

(25)

(26)
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where D(s) and N (s) are regular at s and s¢. By multi-
plying both factors by [(s¢—s)/(sz—s)]2, we arrive
at functions N and D given by

N(s)=N(s)(sz—s),

D(s)=D(s). (26a)

An integral equation analogous to Eq. (8) can now be
derived for Re N

) ReN (s)=B(s) -I—D Ga)T
149(s) s—sg
®  B(s")—B(s) 2p(s"YReN (s’
i/ i (s)—B(s) 2p(s") (S), @)
7w s'—s 1+n(s)

where T is the residue of the bound-state pole in 4 (s).
The functions D(s) and B(s) are still given by Egs. (9)
and (10). If we evaluate Eq. (10) at s=s5 and insert it
in Eq. (27), we find

29(s) _ _ T 1 7~
ReN (s)=B(s)+ +— | ds
14+19(s) s—sg TJa
B(s")—B(s) r
X[ s'—s (s—sB) (s’—-sB)]
20(s")ReN (s")
—. (28)
1+4n(s")

If the position and residue of the bound-state pole in the
amplitude are given, Eq. (28) allows us to calculate
ReN(s) and with the aid of Eq. (10) the amplitude
A(s).

Equation (28) will give us the correct solution at low
values of /, but we see that information in addition to g
and B(s) must be included as input to the problem.

HARTLE AND C. E.
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IV. CONCLUSION

We have illustrated here the use of analytic continu-
ation in / as a tool for selecting unambiguously the
desired single-channel N/D solution at low J, when
inelastic effects are included. At large angular momen-
tum, where there are no bound states, the solution with
the requisite boundary conditions was easy to identify
as one having no CDD singularities. We have seen that
the integral equations could be continued to low values
of / so that the amplitude is completely given, in prin-
ciple, by a knowledge of #n and the left-hand-cut
contribution.

If in the continuation to lower values of / the ampli-
tude develops inelastic resonances, 7 was shown to have
square-root zeros crossing the real axis. The analytically
continued D function then develops square-root branch
points at the position of these resonances.

These branch points could be replaced by poles if D
were redefined, but the resonance poles could not be
expected to appear in the single-channel calculation
unless the appropriate CDD singularities were put in
by hand.

Elastic resonances, on the other hand, which emerge
from the left-hand cut on the second sheet of the ampli-
tude may well be present in a calculation where in-
elasticity is ignored.

This result suggests that a re-examination of elastic
bootstrap calculations might be important to decide
when there is a hope that the resonance being calculated
is elastic. For cases of inelastic resonances, it appears
that a bootstrap calculation based on elastic unitarity
is inaccurate and misleading.1®
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