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It is found that, in a crossing-symmetric model of a scattering amplitude 4 (s,#) which is dominated by
Regge-pole exchange, the restrictions imposed by analyticity on the Regge trajectory a(s) and by analyticity
and polynomial boundedness in s for fixed ¢ on 4 (s,f), suggest uniquely the asymptotic behavior a(s)~s/Ins
as s— o, if the large-s and large-¢ limits of In4 (s,#) are uniform. The use of a double-dispersion relation

for InA (s,#) is proposed.

N this paper, the problem of ensuring asymptotic
crossing symmetry between two channels of a two-
particle scattering amplitude which is dominated by
Regge-pole exchange will be considered. In particular,
the requirements on the trajectory function a(s) and
the residue function B(s) will be elucidated when

Rea(s) —. (1)

The problem is of relevance, among other things, to
crossing-symmetric finite-energy sum-rule bootstraps,
which have been treated by the present authors,! as well
as by others.?

Certain subtle restrictions on the permitted form of
a(s) are implied by requiring its analyticity and poly-
nomial boundedness. Moreover, although the scattering
amplitude 4 (s,t) does not satisfy a Mandelstam repre-
sentation with a finite number of subtractions, one
expects that InA (s,t) does satisfy such a representation,
although, in general, there will be extra ‘“dynamical
branch points” arising from zeros of 4 (s,t).

The task is to construct a function 4 (s,t) which has
the following asymptotic behaviors (in this paper,
A($)~ s20B(s) means A (s)/B(s)ssnl):

A(sh) ~ BO(=9, ®)
A(sD) r BE(=0=, 3

where signature and ghost-eliminating factors have been
absorbed into 8(s). Suppose that a(s) does not increase
more quickly than s?/In% as s —< for any direction in
the complex plane, and that it has only a right-hand
cut. Then

ds’ Ima(s")

— (4)

s'2(s'"—5) '
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s2 0
a(s)=a+bs+— f
m™

If Eq. (1) is satisfied, but if in fact
Rea(s)/st? —Hro0

then =0, and it may be shown from the Boas theorem?
that
a(s) —-—;—I— ©,

However, this would lead to a flagrant violation of the
Froissart theorem,? which requires a(s)<1 for s<0.
Hence, in fact, one must require

Rea(s)/s12 — o ; ©)

consequently, the trivial solution AB(s)=const, a(s)
=(ClIn(—s), and C>0, which is obtained by simply
equating the right-hand sides of Eqgs. (2) and (3), can
be definitely ruled out.

Thus, the term in some imagined expansion of A4 (s,f)
which gives rise to the large-s behavior [Eq. (2)] and
the one which gives rise to the large-¢ behavior cannot
be identical. The most straightforward possibility is that
envisaged in the interference model,® where one simply
adds the two terms, obtaining

A(s,t)=BO)(—95)*O+B(s)(—1)*. (6)

For large s, it is required that the second term does not
interfere with the first, and this can be arranged by
asking that B(s)[K(s)]*® remain bounded as s —,

where
K(s) —— .

8—>0

However, since a(s) satisfies Eq. (5), it is to be expected
that B(s), and therefore A(s,t), would diverge faster
than any power of (—s) as s —»— . However, 4(s,t)
should be polynomially bounded in s, for fixed ¢
(although the order of the polynomial increases as ¢
increases). This assumption, for example, ensures the
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existence of the Froissart-Gribov transform. Thus the
interference model, at least in the crude form in which
it is given here, cannot be satisfactory either. The truth
must lie somewhere between the two extremes of having
one term that reproduces both the s- and f-channel
asymptotics, and having the sum of two terms, one for
each channel.

As in Ref. 1, the following expression will be used

for A(s,t):
A(s,)=B(s)[als)+g(t:5) ]2, (N

where g(t,s) will be chosen so that Egs. (2) and (3) are
satisfied. As has already been explained, 4 (s,f) does not
satisfy a Mandelstam representation with a finite
number of subtractions, but In4(s,t) will be poly-
nomially bounded, and so it, as well as g(¢,s), will, in
general, satisfy a double-dispersion representation, with
extra branch points, arising from the zeros and poles of
A(s,t) and B(s) [see Eq. (17) below]. Consider first,
however, what would happen if g(s,f) had no extra
branch points, and suppose that the order of the s and
t integrals can be freely interchanged.
To satisfy Eq. (3), one must have

869/t —> —1. ®)

For large s, the form (7) reduces to

A(st) ~ B()[a(s)]* explelt,s)]; )

and, for this to agree with Eq. (2), one must have

g(t,s) ~ () In(=9)+InB(?)—In[B(s)als)*]. (10)
The simplest situation arises if
gt,5)/a(s) —0; (11)
and then, from Eq. (10), one must have
InB(s) ~ —a(s) Inals), (12)

a behavior that has been suggested by Jones and
Teplitz.b
Consider the double-dispersion relation for g(z,s):

sm p(s) v pi(?)
g(t,5)=P(1,5)+ / ds’ | f dt ——
s’ (s'—s) w (' —1)

smn pgt(s )
13
+ / / ""t’"(s s)(t'—t) (13)

where P(t,s) is a polynomial in s and ¢ In order to
reproduce the behavior (10), it must be possible to
express those parts of Eq. (13) that depend on s (i.e.,

8C. E. Jones and V. L. Teplitz, Phys. Rev. Letters 19, 135
(1967).
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the double integral, the s single integral, and the part
of the subtraction polynomial not independent of s)
in terms of the following large-s expansion:

o(f) In(—s)+f()+0(1),

where f(¢) is some function of ¢ only. On the other hand,
for fixed s and increasing ¢, g(f,s) must tend to —¢,
independently of s. This behavior cannot come from the
double integral in Eq. (13), which must give an s-depend-
ent leading term in the large- expansion (there is no
function that has a constant Hilbert transform). Hence,
the —¢ behavior must come from the rest of Eq. (13)
(i.e., the s-independent part of the subtraction poly-
nomial and the single integral over ¢'). It follows, then,
that f(¢) in Eq. (14) must tend to infinity less quickly
than ¢ as ¢ — o, for otherwise there would be an s-de-
pendent term which interferes in the large-¢ limit. This
means that the large-t behavior of Ing(f) in Eq. (10)
will be given by the s-dependent parts of Eq. (13), and
hence must be

(14)

ng() ~ —; (15)
and then Eq. (12) gives
a(s) ~ s/lns. (16)

This rather remarkable result, namely, that a(s) and
B(s) are asymptotically determined, rests crucially on
the assumption that the large- limit is uniform in s,
which would follow, for example, if the double spectral
function in Eq. (13) had only a finite number of oscil-
lations as a function of s.7

No attention has been paid so far to the extra
“dynamical branch points” that g(t,s) may have
because of the zeros of 4 (s,t):

g(t,5)=[A(s,0)/8(5) 1~ ®—af(s)

~ Ind(s,). an

Suppose, in fact, that 4 (s,t) vanishes on the surfaces

S=fi(t)a 1=1,2, - (18)
We define
AsH=AGHAL [0, (9)

7There is an apparent contradiction between the result (16)
and the model of Veneziano [G. Veneziano, Nuovo Cimento 57,
190 (1968)], which was brought to the authors’ notice after the
completion of the present paper. Veneziano satisfies crossing sym-
metry with linear trajectories. Strictly speaking, however, his
form does not have Regge asymptotics [Eq. (2)] because the
resonance poles necessarily lie on the real axis. The present paper
indicates that when a(s) is allowed to have an imaginary part, then
crossing symmetry forces the asymptotic form (16). Thus the
Veneziano model cannot be quite right; but, since the behavior
(16) is almost linear, the model may not be badly wrong.
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which has no zeros. Then

nd(s,) =Ind(s)—%, Wls—£:0].  (20)

So long as # is finite and f.(¢) is polynomially bounded
in ¢, the sum in Eq. (20) behaves only like Inf for large
¢, and none of the previous arguments are affected. On
the other hand, if these conditions are violated, a non-
uniformity in the large-¢ limit is possible. For example,
the zeros of 4(s,t) could produce a term

—In[14A(s)e’ @] (21)

in the expression (17) for g(t,s), where
h(s) — 0, (22)
10 ~ 1. (23)

Clearly, this example goes beyond the class of func-
tions that have been considered so far, since (21) tends
to zero for large s, and to —¢ for large ¢, but in a non-
uniform way.® Thus it is not claimed that the behaviors
(14) and (15) have been proved in general; but they
would seem to be the simplest ways of satisfying Eqgs.
(2) and (3). Within this class of solution, it is to be ex-
pected that a Mandelstam representation for In4 (s,)
might be of some practical or theoretical use, whereas,
for more general possibilities, this would seem more
doubtful.

It can be shown that, if Eq. (11) is not true, then
g(t,5) is not polynomially bounded in s and ¢, and so
falls outside the class of amplitudes for which one can
write a double-dispersion relation for InA(s,t). For in
this case, Eq. (9) is replaced by

A(sf) ~ B(s)g(t,s)* expla®(s)/g(t,s)].  (24)

8 Examples of crossing-symmetric amplitudes with almost
arbitrary trajectories have recently been constructed. However,
these examples fall into the class of amplitudes for which the
large-s limits are not uniform with respect to ¢. See, N. N. Khuri.
Phys. Rev. 176, 2026 (1968); C. Caser, J. M. Kaplan, and R.
Omnes (unpublished) ; J. Kupsch, Bonn University (unpublished).
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If this is to be consistent with Eq. (2), one must have

1
g(4,9) ot expl:;z;)-(a(t) In(—s)

a5(s)
1 —In — .
Hng)—np (9~ )>] (25)

,S

Because B(s) must decrease more quickly than a(s)—«
[since Eq. (11) is not true in this case], this means that
g(t,s) cannot be polynomially bounded in all complex
¢ directions for fixed s because of the Ing(¢) term in
Eq. (25).

Experimental evidence has been growing to support
the idea of linear trajectories?; and this behavior would,
of course, be experimentally indistinguishable from the
form

a(s) ~ s/Ins

that has been uniquely picked out, by the foregoing
conclusions, for the asymptotic region. In all the above
work, s has been taken dimensionless, the scaling factor
being in fact arbitrary. However, a most important
point is that the slope of the trajectory is determined to
be the same as this scaling factor. Hence, there is only
one parameter left to be determined by experiment. If
the slope is taken to be 1 GeV—?, as suggested by experi-
ment, then the scaling factor should be 1 GeV?2,

The result of the paper can be interpreted as an
asymptotic bootstrap, in which the power law of the
trajectory has been determined from very general con-
siderations, and in which the slope has been determined
in terms of the energy scale.

The next step, in a detailed bootstrap, would be the
inclusion of unitarity, perhaps through the Cheng-
Sharp equations,’® ‘as in a paper by Mandelstam.!!
However, one eventually envisages a treatment going
substantially beyond the narrow-resonance model,
which can at best be only a crude approximation.!
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