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Many-Channel Dynamics, Levinson’s Theorem for
Eigenamplitudes and One-Channel CDD Poles
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Multichannel dynamical amplitudes can have CDD poles when viewed as
the solution of the appropriate one-channel inelastic problem. Manifesta-
tions of this phenomenon are investigated. The technique is to work via the
eigenamplitudes, in terms of which the essential many-channel dynamics
take a simple form; for them, individual Levinson’s theorems are derived.
On applying the method, it is found that, for a wide class of cases, the phenom-
enon always ocecurs in at least one channel and,in many cases, further analysis
enables one to say in which one. A speculative application is made to SU;
bootstraps.

I. INTRODUCTION

It has recently been pointed out (7) that the results of dynamical calculations
in a single channel with prescribed inelasticity do not always agree with those of
related many-channel calculation. The purpose of this paper is to present an
analysis of this phenomenon.'

A precise statement of the effect can be given as follows: suppose that ¢ is the
amplitude and » the inelasticity in channel one of a many-channel system. Then,
if 7 and the left-hand discontinuity of ¢, are used to caleulate an amplitude, ¢, in
& dynamic one-channel inelastic ecaleulation, in general t 5 t;, . To get equality,
one has to introduce a CDD pole.

Such considerations clearly have important bearing on the hypothesis that all
particles of high energy physics are composite, for compositeness is now seen to
be a relative concept. One has the choice of asking: Is such and such a particle o
dynamical bound state or resonance in this or that set of channels? or, alterna-
tively: Is it dynamic in any set of channels? The possibility opens that particle
democracy, although formally existing, might in practice display oligarchic
tendencies, and some particles be more dynamic than others. Every bootstrap
hypothesis embodies a choice of channels in which the dynamical caleulation ix
to be done.

* On leave of absence from the Rutherford High Fnergy Laboratory, Chilton, Berks..
England.

! The present paper is an extension of onr CERN preprint.
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In the discussion to follow, a one-channel inelastic calculation will generally
be taken to mean an application of the method of Frye and Warnock (2) (FW).
This employs an N/D representation in which arg D = —Re é. For brevity, the
phrases failure of FW and success of FW will be used to designate the situations
where respectively there are or are not one-channel CDD poles in #;; . Some brief
comments will also be made on one-channel calculations using the method of
Chew and Mandelstam (8) (CM). This is the appropriate method when the in-
put information on the omitted channels is not 4 but B = o4¢/0e1 . It should not
be thought that the FW method receives more attention because it has more
troubles: rather, it is because the troubles are easier to chart. It should be re-
marked that in this paper, as elsewhere (1), the underlying many-channel situ-
ation studied consists of n two-body channels.

Several analyses of the one-channel many-channel nonequivalence have ap-
peared.” The present one is based on the use of eigenamplitudes and repeated
application of Levinson’s theorem as a criterion of dynamicality. A chain of
argument is developed leading from dynamical many-channel solutions to
dynamic eigenamplitudes and so to the question whether the physical one-
channel amplitudes are in turn dynamical. The latter are expressible as linear
sums of eigenamplitudes and their phase changes from threshold to infinite
energy constitute the criterion. The problem is thus reduced to a study of the
phase development of a vector sum of individual vectors with prescribed phase
behavior, Sufficient conditions for success and failure are stated which essentially
say that, if one of the individual vectors is always longer than the rest, then its
phase behavior predominates. (This result, which is stated precisely in Section
IV, will be termed the crank-shaft theorem.) The general conclusion is that
failure results when there is a many-channel bound state or resonance and the
physical channel under consideration is insufficiently strongly coupled to the
resonating eigenamplitude. That is not to say that the phenomenon should be
thought of as a weak coupling effect. In fact, the interchannel coupling can
be large.

The arrangement of the rest of the paper is as follows. In Section I some simple
examples are presented which show how failure can arise. These fall into two
classes—weak coupling examples which furnish an immediate intuitive feeling
for the phenomenon and, second, instances with coincident thresholds. These
latter serve as an introduction both as to the general results and methods which
follow. The next four Sections are devoted to establishing the general techniques.
In Section III, the Levinson theorem for one-channel (FW) and (CM) ampli-
tudes is discussed. In Section IV, the diagonalization of the many-channel S

2 Tn addition to ref. 7 also preprints by J. B. Hartle and C. E. Jones, (Princeton Uni-

versity), P. Hertel (Heidelberg University), and Takeshi Kanki (Purdue University) have
appeared during the preparation of the paper.
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matrix is presented and in Section V a form of Levinson’s theorem for the eigen-
amplitudes is derived. These results are then applied in Section VI to derive the
crank-shaft theorem—a general criterion of the success or failure of FW caleu-
lations. Throughout this portion of the paper, the two-channel case is treated in
generality and, whenever possible, results are proved for n channels with n =2 2.
In particular, in contrast to the second set of examples of Section 1, distinet
thresholds are assumed. This allows in general a rich complexity in the relations
between the eigenamplitudes and the physical amplitudes and, as a result, less
detailed statements can be made than for the equal threshold case. In Section
VII, it is shown that under a regime of moderate interchannel coupling ( moder
ate in the sense of not too strong), the unequal threshold case is not qualitatively
different. from that of coincident thresholds and stronger statements ean be made.
The weak coupling example of Section II is then re-analyzed from the eigen-
amplitude viewpoint. The crank-shaft analysis for the CM method is sketched in
Nection VIII, and this coneludes the general discussion. In Section IX, a =peculi

tive application of the present results to SU; symmetric hootstraps is outlined.
In the final section, some comparisons are made with other work.

IT. EXAMPLES OF THE FAILURE OF W

In this section, certain specific examples are given in which an attempt to calcu-
late a bound state by the FW method would fail. The reason for introducing these
examples here is that they can be presented without the detailed formalism
which will be developed in later Sections, and which will enable certain general
eriteria of failure to be studied.

The technique, in these examples, will be to suppose a two-channel system to
‘be dynamically soluble by a matrix N/D method, in which specified bound states
occur, but no CDD poles. The effective inelasticity, n, could then be caleulated. A
FW system could be set up, in which the left-hand discontinuity of ¢, , the ampli-
tude in channel one, is supplied, together with the inelasticity . The question ix
whether the solution of the CDD pole free FW equations agrees, or not, with /;, .
[t can fail to do so if £, , considered as a one-channel FW amplitude, has one or
more CDD poles. The examples of failure will be cases in which {; has no CDD
pole in the:two channel system, but has ‘tone%such pole in the one-channel FW
caleulation.

In Section III, it will be shown that if certain conditions are satisfied by the
discontinuity of ¢;; and by 5, the FW solution satisfies Levinson’s theorem, in the
form

Re du( =) = w(ne — ng) (2.1

where 81;(s} is the phase shift, as a function of s, the energy squared, n. is the
number of CDD poles, and ng the number of bound states. The convention
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311 (threshold) = 0 is adopted. The criterion of a dynamical calculation is the
absence of CDD poles, so that failure of such a calculation is equivalent to ne = 0,
that is, to nonobservance of the relation

Re 611( 00) = — TNy (22)

Accordingly, examples will be sought for which (2.2) is violated by the channel
one amplitude.

As a first example, consider the case of weak interchannel coupling, in which
there is a bound state in channel two. Then, writing

t = ND™ (2.3)
the channel one amplitude has the form

_ NuD» — NuDa

== e 24
DuDyy — DDy (24)

L531
Since the channels are weakly coupled, one can write all the diagonal elements of
N and D in the form

Nu = N1 + 0()\2) ete. (25)

where X is some interchannel coupling parameter and the quantities Ny , Dy , ete.,
refer to the case of zero coupling. The off-diagonal elements will be of order A.
Then

tu = Nl/Dl + 0()\2) (26)

except in the neighborhood of zeros of D, and D, . In the example, it is supposed
that D, has a zero, corresponding to a bound state in channel two in the absence
of interchannel coupling, but that D, has not. Let the position of this zero be
s = sp. Then both the numerator and denominator in (2.4) will have zeros at
different values of s near s, , when X is small. If s, is below the threshold of channel
one, the pole of #;; near s, will correspond to a bound state in channel one.

From (2.6) it can be seen that the phase of #;; will be close to that of &, = Ni/Dy
for small )\, and that for sufficiently small, but nonzero A, the phase at infinity
will be the same. However, there is no bound state in the uncoupled amplitude
t1, so that, by Levinson’s theorem, its phase at infinity is zero. Hence

Re 511( 00) =0 (27)

but, since {;; has a bound state, the FW method would fail in channel one. The
zero that was induced in the numerator of (2.4) is in fact a CDD pole of the
one-channel amplitude. If s, is above the channel one threshold, ¢, has a reso-
nance, but no return of Re §;; through =/2, and the FW method fails again.
This example will be examined further in Section VII.
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As a second example, consider the case in which the thresholds are coincident.
1t will not be necessary in this case to make a weak coupling assumption. The 8
matrix can be diagonalized in the physical region in terms of eigenphase-shifts
by means of an energy dependent orthogonal similarity transformation. Thus,
in particular,

9

218 2 275(1) 2 275(2)
1761”5811:6!(’1 +6(’l

(2.8)
where o® + 8° = 1, and 6'”(s) are the eigenphase-shifts. The relation (2.8)
holds in the physical region: but it can be continued into the complex s plane, a
procedure that will be studied in detail in Section IV. A form of Levinson’s
theorem for the eigenamplitudes will be proved in Section V.

Suppose again that there is a bound state in eigenchannel two only. Thus, by
Levinson’s theorem

6(1)(00) — 0

(2.9
6(2>(OC) = —x

Clearly, S11 has a bound state, so that success or failure of the FW method
depends on whether Re 6y( %) = —7 or Re §( =) = 0. From (2.8), it cun
be seen that o’(s) < 13 for all physical s implies success and o*(s) > ', implies
failure. This fact can be visualized by thinking of ne’®!
and a short vector.

This situation can be realized in a simple example by replacing the left-hand
cut of each t;; by a pole with residue T';; and common position. Then the param-
eters of the diagonalization are

as the sum of a long

A) "
LD (2.10)
o — 1y Ty —Ty
and
» Ty+T ) T
' = “f 2 ¥ [(P“ . 2‘> + I‘izil (2115
where T'" are the residues of the corresponding poles of the eigenamplitudes.

For coincident thresholds, the numbering of the eigenamplitudes is arbitrary
and the convention T® > T' will be adopted. Suppose that I® is large enough
to produce a bound state, but that I'" is not. Then a striking feature of (2.10)
is that success or failure of FW for physical channel one (and the converse for
channel two) depends simply on 'y z I'ss . This condition does not require that
the off-diagonal residue T'y; be small. Hence, the example provides a contradic-
tion for success given in BCS, namely, that I's; should not be strong enough to
produce a bound state when T'y; = 0. One can check that the resulting amplitudes
do not have complex poles on the physical sheet.
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Certain simple examples of the phenomenon of failure of an inelastic calcula-
tion have been adduced in this section in the two cases:

(a) distinet thresholds but weak coupling;

(b) coincident thresholds and possibly strong coupling.
The case of strong coupling with distinct thresholds is more complicated: and
statements will be made in this more general situation in Section VI.

III. LEVINSON’S THEOREM WITH INELASTICITY

As has been noted in the Introduction, the method of calculating a one-channel
inelastic scattering amplitude depends on the input information available. If
one is provided with the inelasticity factor, given by

R=1 (3.1)
Tel
then the relevant equations are those of Chew and Mandelstam (3). Here
oot 18 the total and ¢ the elastic cross section. If the effect of the other channels
is represented by the inelasticity

2(s) = ¢ ™0 = 4/1 - w_—(]c;;f)l) (32)

then one can use either the method of Frye and Warnock (2) or that of Froissart
(4). Here &;(s) is the phase shift of the Ith partial wave, which becomes com-
plex above the lowest inelastic threshold, & is the cms momentum, and o.(s)
is the reaction cross section.

In this section, the methods of CM and ¥W will be considered in some detail.
In fact, it will prove easier to state conditions for success or failure of a dynamical
calculation in the FW system (Section VI) than for the CM system (Section
VIII).

The problem to be considered is the set of conditions under which the dynamical
calculation of an amplitude is possible, given the left-hand cut discontinuity
and, in the one case K(s), in the other 5(s). A calculation breaks down if a
CDD pole occurs, for then the parameters of the pole are not fixed by the input
information. The investigation therefore concerns the occurrence or absence
of CDD poles. In this section, a form of Levinson’s theorem that holds in the
absence of CDD poles will be discussed, so that the remainder of the work is
reduced to asking whether Levinson’s theorem, in this form, is violated.

In the CM method, the partial wave amplitude {(s) is written in the form

t(s) = N(s)/D(s) (3.3)

in which D(s) has the right-hand cut, and on which its phase is minus that of
t(s). Then N(s) has only the left-hand cut. The CM equations lead to the
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following integral equation for N(s):

N(s) = B(s) 1 f ! B(é r, - Bls p(s/")H(:s':)N('x’) (3.4)
s
where
1 " Im z‘(% ) X

7'('—:05—\

B(s) =

here p(s) = A/ (s — s1)/s and s, is the threshold of the channel, supposed lower
than any of the inelastic thresholds. If (3.4) has a solution, D(s) is then cal-
culable from

Dls) =1 — L [ a5 PEIEING (36)

Equations (3.4)-(3.6) have been written without (/DD poles; and a neeessary
condition for thom to be dynamical is that a unique solution exists.
In the I'W method, on the other hand, a decomposition

{s) = N(s)/D(s) (3.0

is made, in which D(s) earries the right-hand cut, as before, but on which its
phase is —Re 8;(s). Then N (s) has both a right and a left-hand cut. FW derive
the following integral equation for Re N(s):

2n(s) /B(s — B(s) . /. 2ReN(s) .
272 _ReN(s) = Bls) + - ] (s) (3.8)
1+ n(s) (s — 8 p&'l-l-n(s/)

where
1 s Im t(s Pf 1 — q(s) g
fffffffffffff - 3.9
B(s) = W_w(] i o — ) (3.9)
Then D(s) is given in terms of the solution of (3.8) by:
S 1 p(s’) 2ReN(s")
D(s) = f S BN, (3.10)
s) e "7( ] 10

Again, for a dynamical system, the CDD pole free equations (3.8 -(3.10)
must have a unique solution.

The form of Levinson’s theorem that is relevant to a discussion of a dynamical
CNI system is

el x) — pls8) = —wny (3.11)

where ¢(s) = arg t(s), and ng is the number of zeros of D(s) on the physical
sheet, For o FW osystem, the Levinson theorem is
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Re d( ©) — 6(s1) = —niip (3.12)

where §(s) is the phase shift, and 7y is the number of zeros of D(s). The integer
ng, Or N, 18 interpreted as the number of dynamical bound states in the CM,
or FW methods, respectively.

For (3.11) and (3.12) to hold, certain conditions must be satisfied by the
input quantities. The domains of validity of the two equations are not co-
extensive, although in many simple models both equations are satisfied (with
ng = 7). In a forthcoming publication (4), certain sufficient conditions will be
given under which R(s) — o and 9(s) — 0 as s — = (6). In general, however,
this involves introducing a subtraction into the N/D equations, and the con-
sequent necessity of specifying a subtraction constant. In this paper it will be
sufficient to restrict attention to the cases R(s) — 1 and 1 — 5(s) — 0, since
these relations are satisfied by all the examples considered (in which only a
finite number of channels contribute).

Sufficient conditions for the observance of (3.11) are:

(a) |B(s) | < Cs* for s, <5< 0, ¢>0 (3.13)
(b) limR(s) =1

C is a constant. On the other hand, conditions under which (3.12) holds are:
(a) |B(s)| < Cs*'* for s £s< », >0 (5.14)
(B) |1~ u(s)| < Ds” 7> 0 .

where C, D are constants.

IV. DIAGONALIZATION OF THE S MATRIX

In this section the problem of diagonalizing a many-channel scattering matrix
will be considered, Suppose that S is the seattering matrix which is already
diagonal in all the conserved quantities (total angular momentum, isospin,
ete.). Then the matrices 7 and ¢ will be defined by

S =14 2T =1+ 2" (4.1)
Here p is the phase space matrix
s — § 1/2
pir = 6ik< . k> (4.2)

where /s is the threshold energy of the kth channel.

In this paper, only a finite number of two-body channels will be considered.
Moreover, the formalism will be displayed for the simple case of two channels,
although it is readily generalized to the n-channel case.
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Suppose that there are two channels and two thresholds, s = s and s = s,
in general distincet. The matrix T can be diagonalized above the higher threshold,
82, by a real, orthogonal, cnergy dependent matrix O (7). Thus one can write

6]
T) = <TO T%) = 0T0™ = 0,'" (j” f”) 0™ h3)
21 2

for s 2 s, where

0 = <“B g) and o + 85 =1 (44

The quantities T*” and the related S (= 1 4 2;7) have a key-role through-
out the paper. It is of interest to display the physical matrix elements /;; in
terms of the diagonalized quantities T and T%. Equation (4.3) gives

ptin = OtzT(l) +- ,dsz
Vet = aB(TY — T (4.5)
p2t22 — 61‘.71(1) _+_ aﬂr[v(‘.))

The elements of the diagonalizing matrix O arc given in terms of the £ matrix
elements by

of(s) = L3(1L + 1 + FsiT™" "
5, . o e (4.6)
B'(s) = 15(1 — [1 4+ K* ()"
where the function K (s) satisfies
: 24/ p1 pa 133
K(s) = _L/ﬂ_p:L__ (47)

prtu(s) — pe 5y

The eigenamplitudes 7*?(s) obey a very simple unitary condition above the
higher threshold

o

Im 7 = | T

1=1,2 5 8 (4.8)
so that one can write
[ (i) . i .
T = ¢ gin 6 i =1,2, (+.9

where the 8(s), which will be termed “eigenphase-shifts,” are real for
Se = 8 < oo,

The analytic properties of the 7”(s) are not always as simple as those of
the T;(s). For (4.5) gives

TV = pitun + 5/“\/;)1\;2112

@ o (4.10)
T pofee — B/aN/py potie
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Fia.1

Sy Sy

F1a. 2
F1gs. 1 anp 2. Analytie properties of the eigenamplitudes in the s plane; the dotted
branch cuts arise from the diagonalization coefficients (Section IV).

so that the 77 (s) can have, in addition to the “unitarity cut” s; < s < oo, any
cuts arising from branch structure in the analytic continuations of «(s) and
B(s). A branch point oceurs in «a(s) and 8(s) whenever K(s) = =:.* To cal-
culate the positions of all such branch points would require a detailed knowledge
of the ¢;;(s). The cuts of «(s) and 8(s) in the s plane are taken to be the mapping
of the cuts in the K plane defined in Fig. 3. Suppose that a complex branch point
occurs at § = s on the physical sheet. Then a branch cut must extend on some
arc from s to the conjugate branch point s,*. It is of importance to distinguish
the case in which the “diagonalization cut” (i.e., a cut in 7*”(s) arising from
a(s) and B(s)) does not cross the unitarity cut, s; £ s < o, from the cases in
which such crossing occurs. If there is no cut crossing, the most general branch
structure which can be induced, in the case that K(s) = ¢ at only one point
§ = s, is shown in Fig. 1. Beside the complex cut labelled (1), the real cut (2)
is possible if, for instance, the branch point s, is of the square root type (as it is

30f course, a(s) and B(s) have also all the branch points of the physical amplitudes
(cf., (IV.6) and (IV.7)). For simplicity these are not emphasized here.
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¢
¢ K

(1) 2)

e Sa

Fia. 3. Cuts in K plane; cf. Eq. (4.6). Curves (1) and (2} show two possible trajectories
of the function K(s) between the thresholds s, aud s .

for two-particle exchange); but not if s, ix a logarithm branch point (as for
one-particle exchange). IFigure 2 shows an example of a diagonalization cut
which crosses the unitarity cut between s; and s, . Crossing ean only oceur above
3 = s if K{s) — o0 at some point, for on s, £ ¢ < % o and g are real.

Another way of looking at the eigenamplitudes 7" and 7' as can be scen
from Eqs. (4.10) and (4.6), is that they can be considered as different hranches
of one and the same analytic function.

It should be noted that due to the vanishing of the phase space factors p;,
the S matrix elements satisfy the equations S, = 1 and N;; = 0 for j # 1, af
the 7th threshold s = s;. One of the eigenamplitudes therefore coincides with
the 7th physical amplitude at its threshold. In the case of no cut crossing, one is
thus furnished with a natural labelling for the eigenamplitudes.

In this paper, in order to simplify the discussion, the case in which the extra
diagonalization cuts do not intersect the unitarity cut will be treated exclusively.
a’(s) and 8(s), considered through (4.6) as functions of K (s), can be defined
on a K plane cut as shown in Fig. 3, with Re (1 + K*17* defined to be positive
on sheet 7, negative on sheet I7. As s changes from & to s, K(s) undergoes
a complex excursion, beginning and ending at A = 0. Paths (1) and (2} in
Fig. 3 illustrate two possibilities. Path (1) corresponds to 2 case in which no
diagonalization cut crosses the unitarity cut between s; and s, . Then, from the
definition of sheet I of (1 + KZ‘)_M, it follows from (4.6) that

0]

Re o’(s) > Re go(s)
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for (4.11)

ItA
IIA

S1 $ 8o

If, in addition, K (s) does not become infinite on s, £ s £ , then

o’(s) > B(s) for 2 <s< (4.12)

Path (2) in Fig. 3 illustrates one of the cases that have been excluded from
the present discussion. For, in order that a(s) return to unity at s = s, , it will
suffer a discontinuity as the cut in the K plane is crossed. This will give rise to
discontinuities in T and T®, through (4.10): that is, a diagonalization cut
intersects the unitarity cut between s = s;and s = s,

The eigenamplitudes have a key role in the present analysis because it is to
them that the essential dynmical features can be attributed. Thus, except for
accidental degeneracies, each many channel bound state or resonance is re-
produced in just one eigenamplitude. It is therefore evident that a form of
Levinson’s theorem for eigenamplitudes will provide a powerful tool for investi-
gating many-channel dynamics.

V. LEVINSON’S THEOREM FOR EIGENAMPLITUDES

The next task is to investigate Levinson’s theorem for the eigenphases. Sup-
pose that the ¢; defined in (4.1) are calculated by a matrix ND ™ calculation, in
which the equations are dynamical with nonsingular left-hand cuts. Precisely,
it is assumed that all left-hand cut integrals B;;(s) satisfy

|Bij(s)| < €5 for 8§ £ s £ o; € > 0 (5.1)

(as in (3.13) and (3.14) for the one channel inelastic equations), and in the
sense that there are no CDD poles. Then the determinant

det D(s) — 1, §— (5.2)

Moreover, det D(s) has, by assumption, no poles; and each zero is to be asso-
ciated with a bound state.
From the definitions of the matrices N and D

t = ND™ (5.3)
one has the matrix relations
D ={'N = p"T'"N
= 0%07'T5'00"°'N
using the notation of (4.1) and (4.3). Taking determinants of both sides
det D = (IJ p,-)(IiI T det N (5.5)

(5.4)
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On the unitarity eut, det N is real, so that
arg (det D) = — Z 8t (5.6)

where

8 = arg (1T'%/p:) WS

and 8'?(s;) is defined to be zero. In Eq. (5.7) the “natural” labeling (see Sec-
tion IV) is assumed, whereby 7" coincides at threshold with T, and the dividing
out of the factor p; then serves to remove the kinematic zero of T, Since det 1)
has no poles, and each zero corresponds to a bound state, (5.2) and (5.6) lead to

Saf = = L3 59(x) By
7 ™ 1
where Z ns” means the total number of bound states in all channels (8).

By introducing further assumptions, it is possible to analyze the composite
Levinson relation (35.8) into statements about each eigenphase-shift individually.
First, it will be assumed that each zero of det D, which corresponds to a bound
state, is simple. Furthermore, any such zero is plausibly associated, through (5.5),
with a simple pole of just one diagonal element 7', The possibility that several
of the T have poles or zeros, or that det N has a zero, can be shown to he
unlikely. In the first place, a coincident zero of det D and det N implies, as in
the one-channel case, that certain elements of N must satisfy homogencous
Fredholm quations. This almost never happens, since the spectrum of a Fredholm
kernel is discrete. The possibility remains that more than one T might have a
pole (possibly multiple), while others have zeros, in such o way that the product
in (5.5) gives a simple pole. In the two-channel case, such a contingency is
ruled out by the assumption that the physical amplitudes T'.; have only simple
poles: in the many-channel case a contradiction is not involved, but the pos-
sibility requires the satisfaction of detailed conditions; and it seems that itx
occurrence could only be a coincidence.

Thus it is natural to associate a pole of a particular 7' with a bound state.
Suppose that one writes

T9/p; = NV /D (5.9

One channel N/D equations are to be written down, in which D (s) has only
the unitarity cut, while N (L.)(s) carries the left-hand cut and any diagonaliza-
tion cuts. The phase of D”(s) on its cut is defined to be —3%(s). Then, i
follows from (5.1) that

DY) >1 s— =» (5.10}

so that
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28 — nl = — 1 59 (o) (5.11)
™

Here ngs’ is the number of zeros of D (s) and n&” is the number of CDD poles,
Summing (5.11)

S - X = — 13 59(w) (5.12)

7 t T =
From (5.8) it is clear that one must have n&’ = 0, so that (5.11) is replaced by
n = — 269(w) (5.13)

which is the required form of Levinson’s theorem for the eigenphases §(s).

V1. THE CRANK-SHAFT THEOREM

In the preceding Sections III-V the tools have been assembled. They will
now be employed for their predestined task, which was to state conditions under
which a one-channe! caleulation would fail. When the thresholds are coincident,
it is possible,in terms of a simple inequality on the diagonalization coefficients, to
specify in which channel failure would occur; when the thresholds are distinct,
one can in general assert only that failure would occur in channel one or channel
two (or both).

Equation (4.5) can be rewritten as follows

238 2 245(1) 2 245(2)
et = e’ + e

248 2 245(1) 2 245(2)
1092 — Bel +aez

(6.1)

ne

According to Levinson’s theorem, 3" ( ») and 6®( ) are both zero modulo .
Thus (6.1) implies

n( o) =1
811{ ©)} = O mod = (6.2)
822( ©) = O mod =

In general, for a finite number of channels, Levinson’s theorem for the eigen-
amplitudes implies no inelasticity at s = . This is an important consideration
in other contexts.

The problem now is to relate the eigenphases 8 to the physical phase shifts
8:; at s = . The first step in the solution is to observe that if there exists some
sg = s such that o’(s) > 8°(s) forall s £ s £ o, then

bu( ») = 8V + mr
(6.3)

622( 00) — 6(2)00 _ m,’ll'
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where

™

m = [522(313) - 5(2)(322]

™

[511(33) - 5(1)(813)]
m o=
and

Here [y] means the nearest integer to v. If, on the other hand, o°(s) < 8*(s)
for all s, £ s < o, (6.3) must be altered by interchanging 6" and 8'”. Thesc
simple results follow from a geometrical interpretation of (6.1) (an application
of what will be termed the crank-shaft theorem (CST)).

In the simple case in which both thresholds are coincident (s; = s2), and none
of the diagonalization cuts of T M and T® intersect the unitarity cut s < s £ x,
it has been shown that

o’(s) > B(s) forall s < s < = (6.4)
Irurthermore, by definition
du(s1) = dnl(s) = 6% (@) = 67 () =0 (6.5)
Thus, setting sz = s in (6.3), one has

su( =) = §%( =)
and (6.6)
dop( ) = 87 ( )

Suppose that there is a dynamical bound state in eigenchannel two, but none in
eigenchannel one. Then Levinson’s theorem for the cigenphase shifts gives

@ (6.7}
7 () = —7
so that (6.6) gives
511( 00) = 0
; (6.8)
522( 00) = -7

However, from (6.1) it is clear that in general both physical channels have a
bound state. Hence this bound state cannot be calculated dynamically in channel
one, although it can be obtained from a CDD pole free FW calculation in channel
two. Summarizing, the condition (6.4), or the equivalent assumption that no
diagonalization cuts intersect the unitarity cut, is sufficient to ensure that a
bound state arising from a pole in eigenchannel two cannot be caleulated in
physical channel one. Specific realizations of this phenomenon have already been
given in Section II.
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Next, the more complicated case in which the thresholds s; and s, are distinet
will be considered, again with the assumption that no diagonalization cut in-
tersect the cut s; = s £ . Some care is needed in the phase conventions. As in
(5.7), one has

() = 6%@6) =0 (6.9)

The physical phase shifts are defined to be zero at their respective thresholds
du(s1) =0

E (6.10)
d2a(s2) = 0

The simple relations (6.6) no longer hold: however, it is possible to derive a
single composite relation even when the thresholds are distinet (again in the
case of no diagonalization cut intersection). Above the higher threshold, the
unitarity condition is

S'S =1 (6.11)
which can be rewritten in terms of the matrix ¢ that was introduced in (3.1)

as

t— N

For s; £ s = s, on the other hand, (6.12) is modified by replacing
p2 = /(s — s)/s by zero. This gives

Imty = pi| tu |2

Im by = pifiite s <8< s (6.13)
Im ty = pyf bz |°
Moreover, (4.1) gives
Tii = V pwitsi (6.14)
and for s; £ s £ sz, p2 = % pz |. The first equation (6.13) implies, using
Ty = € sin 8y (6.15)

that the physical channel one phase-shift 81 is real below s; . The second equa-
tion (6.13) shows that ¢, has the phase 61, . Hence one can write

Tw = /i Re™ (6.16)
where R is some real number. Finally, the third equation (6.13) gives
Re T = —R? (6.17)
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The T matrix has the form

W1 e i1
_ (e sin éy ViRe e
T= <\/ZR€M“ —RY(1 + ¢ (:ot<p)> (6.15)
where ¢ is a real angle. From (4.3)
det T = det T, (6.19)
so that, combining (5.7) and (6.18), this gives
R sin (8 + ¢) _ §| PO | R e (620

sin ¢

Equating phases on both sides of this equation (taking account of the conven-
tions at s = s; given in (6.9) and (6.10)), one has unambiguously

81 = Re (6(1) + 6(2)) forall § < s < & (6.21)

Above the higher threshold, when (6.11) is in force, one has

det (1 4+ 2T) = det (1 + 2¢T'5) (6.22)
ie.,
e:»i(au-(-agg) _ eQi(6(1)+5"‘2))
which implies
511 + 522 = 3(1) + 6(2) S g Sg (62‘3)

since this must agree with (6.21) at s, , when 8, = 0.

Equation (6.23), taken at s = =, replaces the two equalities (6.6) that hold
in the equal threshold case. If, as before, there is one dynamical bound state in
eigenchannel two, but none in eigenchannel one, then

5(1)( OO) + 6(2)( w) = —1 (6.)24)

Thus (6.23) implies that §1( ) and 8s( o) cannot both equal —, although
each physical channel has a bound state. Evidently at least one channel must
fail to be dynamical.

In the next section, the complications which can arise in the split threshold
case will be discussed in detail. It will be shown how, for not too strong inter-
channel coupling, these complications do not arise and a stronger statement
analogous to that for the equal threshold case will be obtained in place of Tiq.
(6.24).

VII. SPECIFIC EXAMPLES FOR DISTINCT THRESHOLDS

An apparatus has been produced in the foregoing sections to extend some of
the results of the equal threshold case to the more general possibility s; # s .
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In Section VI, it was found that the composite relation (6.23) replaces the two
equations (6.6) of the degenerate system. A broad class of examples will now
be exhibited for which (6.24) breaks up into the two equalities (6.6), even when
the thresholds are distinct. To do this, it is necessary to study in detail the phases
between s, and s, .

It is convenient to rewrite the first equation (6.1) in the form

Su = | ’S? 132“5(1)4’“’“)) + | 8°s® |e2i(5(2)+“’(2)) (7.1)
where
1 2 S(l)
SD(I'Z) — éarg <g2 S(z) _ 6(1'2) (7.2)
and ¢"® = 0for s = s, . The ¢’s that have been introduced represent two effects:

firstly phase changes of o’ and 8° between s, and s, (a phenomenon that will be
called “twisting”), and, secondly possible deviations of arg (8®) from 25,
(which will be called “winding’’). Note that these latter can only develop when
| 8% | 3 1 (see Eqgs. (4.1) and (5.7)).

It is of interest to consider the case in which ¢'?(s1) = ¢”(s.), when there is
no over-all twisting or winding. If | «’S® | > | #S® | for all s; < s < oo, then
(7.1) can be treated by the methods used in Section VI for the equal threshold
case. In a similar way it can be concluded that a bound state in eigenchannel
two fails to be dynamical in the physical channel one. An equivalent statement
regarding channel two (mutatis mutandis) cannot be made, since 8> = 0 at s = s
and the condition | o®S® | < | 8°8® | for all s; £ s £ « cannot be satisfied.

Since a specific statement can be made when there is no twisting or winding
in channel one, i.e.,

e(s1) = ¢P(s2) (7.3)

it is of interest to examine when this occurs. The existence of twisting (phase
changes of o) is directly related to the locations of the diagonalization cuts.
The function a’(s) is defined in (4.6), in terms of K(s), which is expressed in
terms of the ¢ matrix elements in (4.7). Because of the phase space factors in
(4.7), K(s) vanishes at the thresholds s = s, and s = s ; it describes some com-
plex trajectory between s; and s; (see Iig. 3). It is obvious that o suffers no over-
all phase change, i.e.,

arg o’(s1) = arg a’(s) (74)

provided the path of K(s) does not cross one of the cuts (as in path (2) in Fig.
3). However, this eventuality has been excluded by our general assumption
that no cut crossing is to occur (see the discussion at the end of Section IV).
Note that a sufficient condition for this is
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A

82 (7.0

|K(s) | <1 st S s
which can be written directly in terms of ¢ matrix elements, thus
2\—\/@tm[<ipltn—ilp2;f22’ 51 8 £ 8 (7.6

The requirement is thus that the interchannel coupling bhe not too strong.
Next, it will be shown that there is an appreciable class of amplitudes for
which winding does not occur, that is, for which

1 1 —-—
zu‘g;S()z(S(> forall & £ s £ 5 (7.7

Ats=s,8" =1, andat s = 55, S = &' 5o that the trajectory of 8°
begins at s; and ends at s, on the unit circle. Four possibilities are shown in Fig. 4,
of which only II and III exhibit winding. In fact, the criterion for no winding lies
in the possibility of deforming the trajectory topologically on to the unit cirele,
without passing over the origin in the course of the deformation.

It can be shown that winding will not occur for weak coupling. For, referring
to Fig. 4, winding can only occur if the trajectory of S, in its excursion from s,
to s, , intersects the positive real axis in the S plane. For the quantity [7"] ",
introduced through Eqs. (4.1) and (4.3), the corresponding trajectory must not
intersect the lines — o < [Im 7" £ —2and 0 £ [Im 77" < =. However,
for zero coupling [Im T(I)]_l = —1 (see Iig. 5), so that for winding to occur the
coupling must deform the trajectory [Im 7™ = —1 by at least one unit. Thix
is plausibly associated with at least moderate coupling.

It is of interest to re-analyze the example of Section II in which the decoupled

Fia. 4. Several instances of “winding” (Section VII)



96 ATKINSON, DIETZ, AND MORGAN

%
(1)]-1

S (]

q

D

q

D

g

b

g

D

q

D

¢

b

OC

s, TTTN~—_ s,

-i

=2i

D

q

)

q

D

)

q

Fig. 5. Complex excursions of the inverse eigenamplitude [T™]! in the case of no
“twisting’’ (Section VII).

channel two had a bound state between s; and s, . Suppose that the ¢ matrix be

written
_ Ry — 7:P1 Ry, :‘_l
t= |: Ry Ry — ip; (7.8)

where the R’s are the inverse K matrix elements. The weak coupling assumption
of Section II implies that R, is small, while the bound state in channel two re-
quires Ry — %ps to have a zero between s; and s, . From (4.1) it follows that

_[eott—2  Re/vam T
T= I:Rm/\/;l—;z —al(s — 80)/p2] (7.9)

where By = p1 cot 8, and the zero of Ry — 4p, is supposed to occur at s = & .
The coefficient o must be positive in order that the pole of S correspond to a
true bound state, and not a ghost. From (7.9)

_ P2
det T' = afcot 81 — 2)(s — sg) (7.10)

where
2§65 -
R12 6'61 Sin 61
ap

Sg = Sp

so that Im sz < 0.
The physical S matrix elements can be calculated from (7.9). In particular,
one has the approximate relation
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*
5, S — 8 ~
Su N 62161 R (7.11)
S — S
from which it follows that there is a resonance at s = Re ¢, in the physical
channel one, but that

Redy( =) = Redy(=) + 7 =7 17.12)

In the notation of Eq. (6.3), one has m = 1 and confirms that the resonance is
not dynamical in the single channel framework for channel one. The mechanism
of this effect in terms of the behavior of eigenamplitudes can be traced through
in detail. One finds that S© & &) 8% av S & const. /(s — s). The trans-
formation parameters K(s) and 8 (cf., Eqs. (4.4), (4.7)) always remain small;
but, in the neighborhood of the resonance, S becomes compensatingly large, <o
as to control the phase change of Si . Note that both cigenamplitudes patently
satisfy Levinson’s theorem and winding does not occur. The general form of the
physical and eigenamplitudes is displayed in Fig. 6.

To summarize, for distinet thresholds and with strong coupling the unalysis
can be complicated through the occurrence of phase changes of the diagonaliza-
tion coefficients (twisting) and of the expression (15 arg (S¥) — 8 (winding).

S
, =

asymptotic to 0 asymptotic to -

Fia. 6. Sketch of the behavior of the physical and eigenphases for a weak interchannel
coupling example (Section VII).
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Where neither effect is present, the simple sufficient condition involving
[a’S” | > | 8°S™ | can be made.

Under the same assumption, the generalization to an n channel problem is
immediate. If {7 is the transformation which diagonalizes the S matrix, and which
is therefore unitary above the highest threshold, then

Su = uﬁS(l) + u§1S(2) + e uilSm (713)

in analogy with the two channel formulas. This equation can then be continued.
If 8% has a bound state, the resulting bound state in Sy will be dynamical if

LS | > [usS® | + -+ 4 | udiS™ | (7.14)

on the whole of the right-hand cut. While the single channel dynamical calcula-
tion always succeeds for one of the channels in the two-channel case, it is pos-
sible in the many-channel case to construct examples in which the bound state
is not calculable in any of the single channels.

VIII. NOTE ON THE CHEW-MANDELSTAM AND THE FROISSART METHODS

If R = (otwti/ve1) 1s given instead of 5, then the appropriate method of cal-
culation is CM. Again there is the possibility of disagreement with the many-
channel results; but the instances are not coextensive with those for the FW
method. One can easily check that the weak coupling examples which have been
considered go the same way for both methods. Squires (7) has given an example
which fails for CM but which, it can be seen, would succeed for FW. One can also
find examples which do the opposite and suceeed for CM while failing for TW.

One would like to carry out for the CM method a parallel analysis to that
which has been developed for the 'W method. The essential difference comes at
the point where one tries to develop the analogue of the crank-shaft theorem.
One now has the relation

; . i5(1) . :5(2)
Tu = | Tule™" = o’ sin Ve + g° sin §Pe* (8.1)

and is led inexorably to requiring relations between | o* sin 8% | and | §° sin 6© |-
The situation is thus more complicated than for FW and even in the case of
energy independent o« and 8 no decision is possible without detailed knowledge
of §* and .

In passing, it may be noted & propos of the FW method that Froissart has given
an alternative calculational procedure when 5 is given. One defines

STy LUTE
T 0 VS —sa(s’ —s)

and then makes an elastic N /D decomposition of S/P (i.e., S = P(1 4+ 2ipN/D)).
Thus, D has the phase § — 8/2, where 8 is the phase of P on its cut. If 4 tends

P(s) = eXp[— (8.2)



MANY-CHANNEL DYNAMICS 99

to a nonzero constant as s — o, as would be expected for a finite number of
channels, then 8( ) = 0, and the previous FW classifications apply.

IX. AN APPLICATION TO SU; SYMMETRIC BOOTSTRAPS

The case of several channels with coincident thresholds was introduced into
the present, discussion because it furnishes a model which is eaxy to evaluate.
One can also look for direct applications.* The most important realization of
coincident thresholds in elementary particle physics occurs when there is some
kind of internal symmetry. If the symmetry in question is only approximate,
then in general the threshold coincidence will be approximate also; but one can
ask whether useful “first order” statements can be made. In the case of charge
independence (SUs), the results are entirely academic. The symmetry breaking
is small, so that to a good approximation one can and does work always in terms
of the eigenstates and the questions treated in the present work are simply not
asked. However, in the case of SU; symmetry, which is substantially broken in
the sense that considerable phase changes occur between the displaced thresholds,
there is more potential interest. The dynamiecs are now influenced by two di-
agonalizations—the one belonging to the symmetry and the other belonging to
phase space. One can therefore speak of an actual diagonalization matrix {7 of
the form discussed in Section IV and an “ideal” diagonalization nudrix (7,
which would obtain if the symmetry were unbroken. The latter simply consists
of Clebsch-Gordan coefficients (9). Tor the “ideal” case, it is easy to apply the
rules of Scction VI to the Uy elements and deduce which single ¢haunel ealeula-
tions would succeed and which fail. One may then conjecture that the resulting
statements perhaps hold good for the actual situation of broken symmetry,
particularly if the inequalities on the U, are strongly satisfied.”

Before proceeding to concrete instances, a few detailed points should be made.
Firstly, the one-channel CDD poles which have been discussed only oceur for
resonances and bound states lying in energy below the highest threshold. This
introduces what might appear to be an awkward distinction for a discussion of
broken symmetries, although it arises naturally from the terms of the problem
studied. In fact, it is not a difficulty if one categorizes situations according to
actual physical masses. For the examples to be discussed, the resonance does
lie below the highest threshold; and for the case of unbroken symiuetry the
resonances become bound states if masses are taken from the mass formula.
Another related point is that in order to make useful comments on bootstrap
caleulations one really wants to discuss what happens when certain channels
are omitted altogether. Now, if a channel has iis threshold high in energy above

4 This question arose from a discussion with V. L. Teplitz.
3 This will be referred to as the “crank-shaft analvsis survives symmetry breaking”
conjecture or CARSB.
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a multichannel resonance, it may very well be reasonable to omit it. Conversely,
to omit a channel may be viewed as being equivalent to pretending that its
threshold is very high.

A further point is that charge independence (SU;) is such a good symmetry
that one wants in practice in the discussion of broken SUj; to refer to SU, eigen-
states (precisely, eigenstates of I, I3, and Y) rather than the physical states.
This means that the elements of U, will not actually comprise Clebsch-Gordan
coefficients but isosealar factors (see ref. (9), Egs. (10.5) and (10.6)). In prin-
ciple, an extension of the methods of the present paper is implied, in that one
now considers the reduction of an n channel problem to one with m channels
(n > m = 1). In general, this would be a complicated process to analyze; in this
special case it is trivial.

We now turn to some examples. Consider first the p resonance and assume, as is
conventional, that this can be derived from a many channel dynamical calculation
with channels ==, KK, and n7. (This may very well not be true.) The correspond-
ing “conventional’’ assumption will be made in the subsequent examples. Under
unbroken octet symmetry, one can write

[0} = V24 [rm) + v/14 |KK) (9.1)
or, conversely, for the J* = 17 state
[rm) = V24 [8) + V14 110) — /14 [10) (9.2)

Note that in Egs. (9.1) and (9.2) use has been made for the first time of the
diagonalization matrix operating on state vectors (| £) = U | ) rather than as
hitherto on the scattering matrix (8" = U;*SU,). A certain conciseness is thereby
achieved. It is now simple to apply the crank-shaft rules (24 > 14) and deduce
that a single channel dynamical caleulation in the w= system with the correct
prescribed inelasticity should yield the resonance.’ This is a logical deduction and
also useless. But now by the CASSB conjecture, the statement can be read as
referring to the physical situation. In this case, since the KK threshold lies
rather high, it is plausible that the KK channel can be omitted altogether.
Generally speaking, interesting cases are to be sought where the many-channel
aspect is fairly complicated. For another example, consider the ¥,*(1385 MeV),
assumed to be a member of aJ* = 35" decuplet. In exact SUs,’ one has

8 Concerning another aspect of the p, E. Abers has recently made a numerical calculation
of the two channel problem r= and zw. Using the Zachariasen-Zemach method, he finds
that the p is a dynamical bound state only in the == channel. (Private communication.)

7 The formalism is here implicitly extended to the case of two-body channels with un-
equal mass.
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1) = | KN ) + -IK” - 2>+ﬁ1ﬂ —|2>
\/ V6 \/ " 03

(1434) (18121 (1331) (1253)  (1742)

The figures in brackets under the decay products are real thresholds in MeV. In
this case, one would guess that a caleulation with KE and Zy omitted would
probably be successful but to have the three channels 7A, 7=, and AN was prob-
ably an irreducible minimum.

In conclusion, it should be remarked that the whole question of the consistency
of broken SU; with conventional bootstraps is as yet extremely ill understood.
What has been offered here is a very simple rule for making prima facie judg-
ments on the correctness of particular dynamical models when the general notion
of SU; bootstraps is assumed. The resulting statements should, of course, only he
interpreted as a guide. For neither of the examples treated were they very
surprising. One has simply supplied a slightly stronger albeit still tenuous ra-
tionale for making them,

X. CONCLUSIONS

The question has been asked: When do one channel dynamical calculations
with preseribed inelasticity reproduce the results of many-channel dynamics? The
technique employed was to work via the eigenamplitudes. To this end, the
diagonalization procedure was analyzed in detail and individual Levinson’s
theorems derived for the separate eigenamplitudes. A study of the relation of the
physical to the eigenamplitudes yielded the crank-shaft theorem (Section VIj.
This led, for all the cases where the eigenamplitudes are analytic in a neighbor-
hood of the unitarity cut (Section IV), to the following general result: a multi-
channel dynamical resonance (or bound state) will appear as a CDD pole in the
single channel inelastic amplitude for at least one of the channels (Section VI).
In the case of equal thresholds (Section V1), it is possible by testing a simple in-
equality on the diagonalization coefficients to say in which channel failure will
oceur and In which success. After an analysis of “twisting” and ‘“winding”
(Section VII), an analogous criterion for an important subset of cases with
distinet thresholds could also be stated.

In Section IX, these results were tentatively applied to the physically inter-
esting question of bootstraps in broken SU; . The idea, admittedly speculative,
was to employ the above rules with exact S8U; diagonalization coefficients to
vield prognostications on the actual broken SU; situation. The result in the ex-
amples considered was that the usual notion of taking only the lowest lving
thresholds was upheld by our criterion.

It is of interest to compare the present approach with that of Bander, Coulter,
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and Shaw (7). These authors study the amplitude £ as a funetion of the eoupling
constants I';; in the underlying two channel situation. They remark that, for in-
creasing T'ys , the onset of failure coincides with the emergence of a zero of Sy; from
an unphysical sheet through the inelastic cut. In terms of the present formalism,
Su = 8" + g°8® with the 8 unimodular and «® and 8* real. Thus, Sy = 0
implies 8 = —8® and a? = B2 This can be readily understood on the pres-
ent “crankshaft” picture, if one considers a continuous transition from a success
to a failure regime. The curve described by Su in the complex plane will sweep
through a series of configurations, first circumscribing S = 0, then, at the
transition, passing through it, and finally cutting the real axis to the right of the
origin. A CDD pole has then emerged.

The whole subject of the present paper has been how one channel CDD poles
can arise in the framework of multichannel partial wave dispersion relations. A
different facet of the same physical principle has been exposed by Mandelstam
(10).F The problem which he considers has many channels through spin orbit
coupling, and the question studied is what happens when a continuation is made
in total angular momentum j from high values down to the value j, where one of
the orbital channels becomes “nonsensical”. The quantities compared are (a) the
result from the continuation and (b) the ‘“physical” amplitude which results
from a calculation at the value j = j, with the nonsense channels omitted. It is
concluded that (a) and (b) differ by CDD poles.

Clearly there remain tasks for the future, in particular a realistic treatment of
high energies, with the inclusion of an infinite number of channels.

As a final word, it is worth reiterating that the present topic highlights a
problem which faces the proponents of universal bootstraps. It may be that all
the particles of high energy physics are compound dynamical states; but, where,
from among the infinity of possibly inequivalent channels to which a particle is
coupled, is the dynamics to be done?
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