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Many-Channel Dynamics, Levinson’s Theorem for 

Eigenamplitudes and One-Channel CDD Poles 

,2lultichannel dynamical amplitudes can have CDL> poles when viewed as 

the solution of the appropriate one-channel inelastic problem. Manifest:t- 

tiorrs of this phenomenon are investigated. The technique is to work via the 
eigenamplitudes, in terms of which the essential many~channel dynamics 

take a simple form; for them, individual Levinson’s t,heorems are derived. 

On applying the method, it is found that, for a wide class of cases, the phenom 
enon always occlux ill at least one channel and, in many cases, further analysis 

enables one to say ill which one. A speculativtl application is made to SU,, 

bootstraps. 

I. INTKOT, UCTIOX 

It has recently been pointed out (1) that the results of dynamical calculations 
in a single channel with prescribed inelasticity do not always agree with those of :t 
related many-channel calculation. The purpose of this papc~ is t)o present MI 
analysis of this phenomenon.’ 

A precise statement of the effect can be given as follows: suppose that tll is the> 
amplitude and q the inelasticit,y in channel one of a many-c~hannel system. Then, 
if 7 and the left-hand discontinuity of fll are used to c*:\lculatc an amplit,udc, i, in 
:L dynamic one-c*hannel inelastic calculation, in genc~rnl t # fll To get, cqu:Jit,v, 
one has to introduce a CDD pole. 

Su(ah considerations clearly have important h(xring on the hypothesis that aI1 
particles of high energy physics are caompositcl, for c*ompositentrss is now seen to 
by a relative concept. One has the choice of asking : Is suc*h :tnd such a part klc :I 
tlynxmiral bound state or resonance in this or that set of c*hanncls? or, altclrnz 
tivcly: Is it dynamic in any set of channels? Thea possibility opens that pnrticalc 
democracy, although formally existing, might in pract,ice display oligarc*hica 
tendrncics, and some part,klcs be more dynamics than others. Every hoot,st ~1) 
hypothesis c>mbodies a (:hoice of channels in which thr clynwrniwl cdvlht ion i> 
t,o be dew. 

* OIJ leave of absence from the Rutherford High b;nergg Laboratory, (:hilt~lrl. l+rks.. 
lhgland. 

’ ‘l%e present paper is an extension of our CEltN preprint 

i7 
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In the discussion to follow, a one-channel inelastic calculation will generally 
be taken to mean an application of the method of Frye and Warnock (2) (FW) . 
This employs an N/D representation in which arg D = -Re 6. For brevity, the 
phrases failure of FW and success of FW will be used to designate the situations 
where respectively there are or are not one-channel CDD poles in tI1 . Some brief 
comments will also be made on one-channel calculations using the method of 
Chew and Mandelstam (3) (CM). This is the appropriate method when the in- 
put information on the omitted channels is not q but R = utot/uei . It should not 
be thought that the FW method receives more attention because it has more 
troubles: rather, it is because the troubles are easier to chart. It should be re- 
marked that in this paper, as elsewhere (I), the underlying many-channel situ- 
ation studied consists of n two-body channels. 

Several analyses of the one-channel many-channel nonequivalence have ap- 
peared.’ The present one is based on the use of eigenamplitudes and repeated 
application of Levinson’s theorem as a criterion of dynamicality. A chain of 
argument is developed leading from dynamical many-channel solutions to 
dynamic eigenamplitudes and so to the question whether the physical one- 
channel amplitudes are in turn dynamical. The latter are expressible as linear 
sums of eigenamplitudes and their phase changes from threshold to infinite 
energy constitute the criterion. The problem is thus reduced to a study of the 
phase development of a vector sum of individual vectors with prescribed phase 
behavior. Sufficient conditions for success and failure are stated which essentially 
say that, if one of the individual vectors is always longer than the rest, then its 
phase behavior predominates. (This result, which is stated precisely in Section 
IV, will be termed the crank-shaft theorem.) The general conclusion is that 
failure results when there is a many-channel bound state or resonance and the 
physical channel under consideration is insufficiently strongly coupled to the 
resonating eigenamplitude. That is not to say that the phenomenon should be 
thought of as a weak coupling effect. In fact, the interchannel coupling can 
be large. 

The arrangement of the rest of the paper is as follows. In Section II some simple 
examples are presented which show how failure can arise. These fall into two 
classes-weak coupling examples which furnish an immediate intuitive feeling 
for the phenomenon and, second, instances with coincident thresholds. These 
latter serve as an introduction both as to the general results and methods which 
follow. The next four Sections are devoted to establishing the general techniques. 
In Section III, the Levinson theorem for one-channel (FW) and (CM) ampli- 
tudes is discussed. In Section IV, the diagonalization of the many-channel S 

2 In addition to ref. 1 also preprints by J. B. Hartle and C. E. Jones, (Princeton Uni- 
versity), P. Hertel (Heidelberg University), and Takeshi Kanki (Purdue University) have 

appeared during the preparation of the paper. 
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matrix is presented and in Section V a form of Levinson’s theorem for the eigco- 
amplitudes is derived. These results are then applied in Srction VI to derive the 
crank-shaft theorem-a general criterion of t,he success or failure of E’W calcll- 
Intions. Throughout this portion of the paper, the t)wo-channel ease is trcatc4 in 
generality and, whenever possible, results are provrd for II c*h:tnnels with 11, 2 L’. 
In particular, in contrast to t.he second set of examples of Se&on II, distinct 
thresholds are assumed. This allows in general a rich complexity in the relations 
between the eigenamplitudes and the physical amplitudes and, as a result, lthss 
c&ailed stat,emcnts can be made than for the equal threshold CLSC. In Sec*t ion 
VII, it, is shown that under a regime of moderate int8erchannel coupling Cmotl~r 
ate in t,he sense of not t.oo strong), the unequal threshold case is not. qualit,:ltivclly 
different. from t)hat of coincident t’hresholds and st#ronger statemerits can br n~tl~. 
The weak csonpling example of Section II is then re-analyzed from t’hc (4gthtl- 
amplit~udc viewpoint,. The crank-shaft analysis for the CM nlrt.hotl is sketc~hc~l ill 
Section VIII, and this concludes the general cliscussion. In Swt iou IS, :L spwul:~ 

live :IpplicaCon of the present results to SU3 symmetric bootstraps is outlinc~l. 
In thr final section, somp comparisorls are made mit,h other work. 

II. EXAMPLES OF THE FAII,l’RE OF FM 

Iu this s&ion, certain specific examples are given in which au ntt)empt to Ac\I- 
lat,e a bound state by the FW method would fail. The rtlason for introducing t,hcscl 
caxamples hcrr is that they can bc presented without. the detailed formalism 
which will be developed in later Sec%ions, and whic*h will (>nablC cacrtwin gc>ncral 
cariteria of failure t,o be studied. 

The technique, in these examples, will be t.o suppose a two-channel syst.canl t0 

be dynamirally soluble by a matrix N/D method, in which spcc4fied hound stat-(as 
occur, but no CDD poles. The effective inelasticity, 7, c~ould then be c&ulatctI. A 
FW system could be set. up, in which the left-hand disront*inuity of tll , thr ampli- 
tude in channel one, is supplied, together with the inelast,ic$v 7. Thr question i,q 
whether t>hr solution of the CDD pole free FW equations agrees, or not, with I,, 
It (*an fail to do so if tll , considered as a one-chanuel 1% amplit~ude, has oncl 01 
morp CDT1 poles. The examples of failure will be cases in whic.11 tll has no (.‘/)I1 

pole in t,hcr$vo channel syst,cm, but, has ‘one*Fucah pole in the on+c:harmc4 ITW’ 
calculation. 

In Sec.t,ion III, it will be shown t.hat if caertain ronclitions arc snt.isfictl hy tlrct 
clisc~ontirluity of tll and by 7, the FW solution satisfrs I,cvinson’:: t,hcorem, in I h(a 
forJll 

Re &I( c=) = K(Q - llRj I t’ . I ) 

where 611 (R ) is the phase shift, as a function of s, the energy squared, nc iy t.hcs 
nur~lber of CD11 poles, and n, the number of bound st,atcs. The convc~n~ ion 
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&I (threshold) = 0 is adopted. The criterion of a dynamical calculation is the 
absence of CDD poles, so that failure of such a calculation is equivalent to nc # 0, 
that is, to nonobservance of the relation 

Re &I( w) = --nB (2.2) 

Accordingly, examples will be sought for which (2.2) is violated by the channel 
one amplitude. 

As a first example, consider the case of weak interchannel coupling, in which 
there is a bound state in channel two. Then, writing 

t = ND-l (2.3) 

the channel one amplitude has the form 

(2.4) 

Since the channels are weakly coupled, one can write all the diagonal elements of 
N and D in the form 

Nil = N1 + 0(X2) etc. (2.5) 

where X is some interchannel coupling parameter and the quantities N1, DI , etc., 
refer to the case of zero coupling. The off-diagonal elements will be of order X. 
Then 

tll = NI/DI + 0(X2) (2.6) 

except in the neighborhood of zeros of D1 and D2 . In the example, it is supposed 
that D2 has a zero, corresponding to a bound state in channel two in the absence 
of interchannel coupling, but that D1 has not. Let the position of this zero be 
s = so . Then both the numerator and denominator in (2.4) will have zeros at 
different values of s near so , when X is small. If so is below the threshold of channel 
one, the pole of tll near so will correspond to a bound state in channel one. 

From (2.6) it can be seen that the phase of tll will be close to that of tl = NI/D~ 
for small X, and that for sufficiently small, but nonzero X, the phase at infinity 
will be the same. However, there is no bound state in the uncoupled amplitude 
tl , so that, by Levinson’s theorem, its phase at infinity is zero. Hence 

Re &( a) = 0 (2.7) 

but, since tll has a bound state, the FW method would fail in channel one. The 
zero that was induced in the numerator of (2.4) is in fact a CDD pole of the 
one-channel amplitude. If so is above the channel one threshold, tll has a reso- 
nance, but no return of Re 611 through 7r/2, and the FW method fails again. 
This example will be examined further in Section VII. 
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As a second example, consider the case in which the thresholds are coincident. 
It, will not be necessary in this case to make a weak coupling assumption. The S 
matrix can be diagonalized in the physical region in terms of eigenphase-shifts 
by means of an energy dependent orthogonal similarity t#ransformntion. ‘I’hu~, 
in particular, 

where CY’ + 0’ = 1, and 6’“(s) are the eigenphase-shifbs. The relation i 2.x ! 
holds in the physical region: but it can be continued i&o t,he c~omplcx s pla~w, :I 
procedure that will be studied in detail in Section IV. X form of Lrvirism ‘5 

theorem for the eigenamplitudes will be proved in Section \‘. 
Suppose again that there is a bound state in c~igf~nc~hanncl t)wo onlg. Thils, 1)~ 

Levinson’s theorem 

gC2)(x) = --r 

Clearly, SI1 has a bound state, so that success or failure of the F’W mf>thotl 
depends OII whether Re &,( 00 ) = - K or Re &( m j = 0. From i2.S I, it! (VIII 
be seen that (Y’(S) < I,,; for all physical s implies sucress and asis) > 1 2 implicr 
failure. This fact, can he visualized by thinking of T#*” RR the sum of :t long 
and a short, vector. 

This sit’uation ran be realized in a simple example by rc>placGng t.hc left -hand 
csut, of each fbj by a pole with residue I’ij and Common position. Then th(h p:r.r:~~~- 
rters of t)hc diagonalization are 

M 2rp2 -=-- 
a’? - 1’) 

_ r2z - r11 
IL’.10 1 

:d 

where r’ i’ are the residues of the corresponding poles of the eigenamplit,uclcs. 
For coincident thresholds, the numbering of t,he eigenamplitudes is arbitrary 
and the convention r(‘) > r(l) will be adopt)ed. Suppose that rfe’ is large trnough 
to produc*e a bound state, but that I’(‘) is not,. Then a striking feature? of (2.10 J 
is I hat success or failure of FW for physical channel one (and the (‘onvcrs(h fol 

channel two) depends simply on I’ll ‘< I’22 . This condit,ion does not require I hat 
t#he off-diagonal residue rl2 be small. Hence, the example provides a cont.r:A(*- 
tion for success given in BCS, namely, that I’ZZ should not be strong enough to 
produce a bound state when I’12 = 0. One can check that the resulting amplitlldrs 
do not have complex poles on the physical shrct. 
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Certain simple examples of the phenomenon of failure of an inelastic calcula- 
tion have been adduced in this section in the two cases: 

(a) distinct thresholds but weak coupling; 
(b) coincident thresholds and possibly strong coupling. 

The case of strong coupling with distinct thresholds is more complicated: and 
statements will be made in this more general situation in Section VI. 

III. LEVINSON’S THEOREM WITH INELASTICITY 

As has been noted in the Introduction, the method of calculating a one-channel 
inelastic scattering amplitude depends on the input information available. If 
one is provided with the inelasticity factor, given by 

R = u”,” 

Uel 
(3.1) 

then the relevant equations are those of Chew and Mandelstam (3). Here 
gtot is the total and uel the elastic cross section. If the effect of the other channels 
is represented by the inelasticity 

Il(s) = e--2w(s) = 
J l 

h%(s) 
- 7421 + 1) (3.2) 

then one can use either the method of Frye and Warnock (2) or that of Froissart 
(4). Here &(a) is the phase shift of the Zth partial wave, which becomes com- 
plex above the lowest inelastic threshold, k is the ems momentum, and U,(S) 

is the reaction cross section. 
In this section, the methods of CM and FW will be considered in some detail. 

In fact, it will prove easier to state conditions for success or failure of a dynamical 
calculation in the FW system (Section VI) than for the CM system (Section 
VIII). 

The problem to be considered is the set of conditions under which the dynamical 
calculation of an amplitude is possible, given the left-hand cut discontinuity 
and, in the one case R(s), in the other q(s). A calculation breaks down if a 
CDD pole occurs, for then the parameters of the pole are not fixed by the input 
information. The investigation therefore concerns the occurrence or absence 
of CDD poles. In this section, a form of Levinson’s theorem that holds in the 
absence of CDD poles will be discussed, so that the remainder of the work is 
reduced to asking whether Levinson’s theorem, in this form, is violated. 

In the CM method, the partial wave amplitude t(s) is written in the form 

t(s) = N(s)/D(s) (3.3) 

in which D(s) has the right-hand cut, and on which its phase is minus that of 
2(s). Then N(s) has only the left-hand cut. The CM equations lead to the 
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ltcrc p(s) = d(s - sl)/ s and s1 is the tjhrcsholtl of the ~h:mn~l, supposetl lowt 
th:ut any of ihca inelastic thrrsholds. If (X.1) has n solutiott, D(s) is thwt (a:& 
ctdnhlc front 

Equations (3.4 )- (3.6‘) have hem written wit,hout C’DI1 poles; and a ncwss:try 
cwt~ditioti for them to bc tlytian~id is that a uttiqw solutiott exists. 

In tlw 1’W tncthocl, on the other hnrttl, :t clemntpositiott 

tits) = ,T(s'),/~(s) l :;.i ) 

is ntad~~, itt which Z>(S) carries the right-hantl (wt, as lwfow, lntl on whkh it!: 
ph:w is - 11~ 61(s). Then R(s) has both ~1 right mtl :I ldt -hand wt. T+W tlrriw 
the following integral equation for Rc IT : 

Tlwtt D(s) is given in terms of the solution of (33) by: 

iiis) = 1 - 1 
s 

oc 
PCS') 2 IhNis") 

(IS1 --~ ~ -~~ 
x .s, s' - s 1 + 7&s';) 

( 3.10 1 



84 ATKINSON, UIETZ, AND MORGAN 

Re 6( m) - 6(s1) = --7rfiB (3.12) 

where 6(s) is the phase shift, and fiB is the number of zeros of D(s). The integer 
n, , or fiB , is interpreted as the number of dynamical bound states in the CM, 
or FW methods, respectively. 

For (3.11) and (3.12) to hold, certain condit’ions must be satisfied by the 
input quantities. The domains of validity of the two equations are not co- 
extensive, although in many simple models both equations are satisfied (with 
nB = fiB). In a forthcoming publication (5)) certain sufficient conditions will be 
given under which R(s) --f Q) and q(s) -+ 0 as s t cc (6). In general, however, 
this involves introducing a subtraction into the N/D equations, and the con- 
sequent necessity of specifying a subtraction constant. In this paper it will be 
sufficient to restrict attention to the cases R(s) --$ 1 and 1 - q(s) -+ 0, since 
these relations are satisfied by all the examples considered (in which only a 
finite number of channels contribute). 

Sufficient conditions for the observance of (3.11) are: 

(a) 

(b) 

1 B(s) 1 < CS-~-~‘~ for s1 I s < 00, E > 0 

limR(s) = 1 
s+m 

(3.13) 

C is a constant. On the other hand, conditions under which (3.12) holds are: 

(8) 1 B (s) 1 < CS-~-~‘~ for s1 5 s < ~0, c > 0 

(b) 1 1 - q(s) 1 < Ds-” q>o 
(3.14) 

where 6, D are constants. 

IV. DIAGONALIZATION OF THE S MATRIX 

In this section the problem of diagonalizing a many-channel scattering matrix 
will be considered. Suppose that S is the scattering matrix which is already 
diagonal in all the conserved quantities (total angular momentum, isospin, 
etc.). Then the matrices T and t will be defined by 

S = 1 + 2iT = 1 + 2ip1’2tp1’2 (4.1) 

Here p is the phase space matrix 
l/2 

(4.2) 

where dsk is the threshold energy of the kth channel. 
In this paper, only a finite number of two-body channels will be considered. 

Moreover, the formalism will be displayed for the simple case of two channels, 
although it is readily generalized to the n-channel case. 
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Suppose that there are t#wo channels and two thresholds, s = ~1 and s = .+ , 
in general distinct. The matrix T can be diagona~lizcd above the higher threshold, 
s2 , by a real, orthogonal, energy dependent8 nrntris 0 (7). Thus OIW WIT n~ite 

for s 2 s2 where 

()= a fi 
( > -P CY and a2 + 8” = 1 

The quantities T(‘) and the related S”‘( = 1 + 2i7”i’) have a key-role through- 
out the paper. It is of interest to display the physical mat’ris element’s I,; in 
terms of the diagonalized quantities T(l) and T”‘. Equation (4.3 ) gives 

pltll = au”7’(‘) + &f”’ 

&&2 = cg(T(l) - 7”“’ ) ’ 4.5 1 

P2f22 
= /yT’” + Ly27,w 

The elements of the diagonalizing mat~ris 0 :WC’ giveu in t,cwns of the t nwtris 
elements by 

c?(s) = J.i(l + [l + x.C(~sl]P’~y) 

/j’(S) = I.$(] - [l + K’(k)]-“‘) 
1 -I.Ci‘) 

where t,he function k’(s) satisfies 

The eigenamplitudes Tci’( s) obey a very simple unitary condition abow t,hcb 
higher threshold 

In1 Tci’ = 1 T”’ I2 i= l,“, .S~& (-4.S) 

so that one can write 

1 7(i) is(‘) 
=e sin 13~~’ i = 1, 2, i 1.9‘1 

where the 6’i’(~), which will be termed “eigc~nI-‘hase-Rhifts,” arc rwl for 
spas< m. 

The analytic* properties of the Tci’(s) are not always as simple as thaw of 
the T<j( s). For (4.5) gives 

T”’ = Plfll + P.ladpl p&l:! 
.-- 

TC2) = pnfn* - plq/Pl p&12 
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FIG. 1 

FIG. 2 

FIGS. 1 AND 2. Analytic properties of the eigenamplitudes in the s plane; the dotted 

branch cuts arise from the diagonalization coefficients (Section IV). 

so that the Tci’(s) can have, in addition to the “unitarity cut” s1 5 s < 03, any 
cuts arising from branch structure in the analytic continuations of (Y(S) and 
p(s). A branch point occurs in Q!(S) and p(s) whenever K(s) = =tL3 To cal- 
culate the positions of all such branch points would require a detailed knowledge 
of the tij( s) . The cuts of 01(s) and p(s) in the s plane are taken to be the mapping 
of the cuts in the K plane defined in Fig. 3. Suppose that a complex branch point 
occurs at s = so on the physical sheet. Then a branch cut must extend on some 
arc from so to the conjugate branch point so*. It is of importance to distinguish 
the case in which the “diagonalization cut” (i.e., a cut in T’“‘(s) arising from 
(Y(S) and p(s) ) does not cross the unitarity cut, sl 5 s < 03, from the cases in 
which such crossing occurs. If there is no cut crossing, the most general branch 
structure which can be induced, in the case that K(s) = i at only one point 
s = SO) is shown in Fig. 1. Beside the complex cut labelled ( 1) , the real cut (2) 
is possible if, for instance, the branch point sL is of the square root type (as it is 

3 Of course, D(S) and p(s) have also all the branch points of the physical amplitudes 
(cf., (IV.6) and (IV.7)). For simplicity these are not emphasized here. 
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FIG. 3. Cuts in K plane; cf. Ey. (4.6). Cwves (1) :t~~ti (2) show t\vo possible ttxjwtories 
of the ftlnction K(s) between the thresholds sI :tud .s.’ 

for two-part,icle exchange) ; but not if sl. is a logarithm br:\nc~h point (:ts 1’01 
onepartkle exchange). Figure 2 shows an example of :I tli:~gorlnlizaiio~~ mt 
which crosses the unitarity cut between s1 and s2 . Crossing c:m only o(*(‘ur :thovr~ 
.s = s2 if K(s) + 30 at. some point,, for on s2 5 s < *L cy ant1 @ ml rml. 

Another way of looking at the eigennmplitutles 7’“’ ar~tl 7”‘), as WII b(b ww 
from Eqs. (4.10) and (4.6), is that they cm1 he c~onsidercd as tliffrrc~nt brat~c~hc~ 
of one and the same analytic function. 

It should be noted that due to the vanishing of t,he phnsc space fac*tors pi , 
the S matrix elenlent,s satisfy the equations S;, = 1 mcl Sji = 0 for j # I’, :II 
the ith threshold s = si . One of t’he eigenan~plitudrs therefore csoillc%lrs with 
the ith physical amplitude at its threshold. In the ww of no gut cr’osklg, OIIV ix 
t,hus furnished with a natural labelling for the cigell:~mli)litucl~~.~. 

In this paper, in order to simplify t,he cliscus4or1, the C:LBC in w1lic.h t hca c~tr:~ 
diagonalization cuts do not, int,ersect the unitarit,y cut wi I1 IW trcatc~tl cxc*lu4vc4y. 
a’(s) and p’(s), clonsidcred through (4.6) a~;: func%ior~s of K(s), c:tn b(, tkfinotl 
on a K plane cut, as shown in Fig. 3, with Rc ( 1 + K” )--I” tl(+inr~tl to 1)~ [KJSif iw 

on sheet’ 1, negative on sheet’ II. As s cahangc%s front s1 t.o s2 , Kc s 1 utltlc~rgot~~ 
a con~plcx excursion, beginuing and ending at K = 0. 15th:: [ I ) ~1~1 (2 I irk 

Fig. 3 illuskate t.wo possibilit,ies. Path (1 I c~orresponds IO :L (YIS(’ in wl&lt IIO 

cliagonalization cut crosses the unitarity csut br~twc~erl s1 n11t1 s2 . Tlrc~n, I’ro111 111~ 
definit,ion of sheet I of (1 + K2~)-“‘, It follows froni i -4.6) th:lt 

R.e cu”is) > ltcb p’c s ) 
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If, in addition, R(s) does not become infinite on s2 s s 5 a3, then 

(4.11) 

G(s) > p’(s) for s2 s s 5 00 (4.12) 

Path (2) in Fig. 3 illustrates one of the cases that have been excluded from 
the present discussion. For, in order that a(s) return to unity at s = s2, it will 
suffer a discontinuity as the cut in the K plane is crossed. This will give rise to 
discontinuities in T(l) and T@), through (4.10) : that is, a diagonalization cut 
intersects the unitarity cut between s = s1 and s = s2 , 

The eigenamplitudes have a key role in the present analysis because it is to 
them that the essential dynmical features can be attributed. Thus, except for 
accidental degeneracies, each many channel bound state or resonance is re- 
produced in just one eigenamplitude. It is therefore evident that a form of 
Levinson’s theorem for eigenamplitudes will provide a powerful tool for investi- 
gating many-channel dynamics. 

V. LEVINSON’S THEOR.EM FOR EIGENAMPLITUDES 

The next task is to investigate Levinson’s theorem for the eigenphases. Sup- 
pose that the tij defined in (4.1) are calculated by a matrix ND-’ calculation, in 
which the equations are dynamical with nonsingular left-hand cuts. Precisely, 
it is assumed that all left-hand cut integrals Bij( s) satisfy 

1 Bdj(s) 1 < CS-‘-“~ for sl S s S co; E > 0 (5.1) 

(as in (3.13) and (3.14) for the one channel inelastic equations), and in the 
sense that there are no CDD poles. Then the determinant 

det D(s) -P 1, s-+ 00 (5.2) 

Moreover, det D(s) has, by assumption, no poles; and each zero is to be asso- 
ciated with a bound state. 

From the definitions of the matrices N and D 

t = ND-’ (5.3) 

one has the matrix relations 

D = t-‘N = p1~29-7-1p11zN 

= p1~20-1~10p1~2N (5.4) 

using the notation of (4.1) and (4.3). Taking determinants of both sides 

det D = (9 pi)(g TCi’)-ldet N (5.5) 



On the unitarity cut, det N is real, so that 

arg (dct D) = -c 8”’ 

g(i) = arg ( 7wpi, I .i.; : 

and 6’i’(s1) is defined to be zero. In Eq. (5.7) the “natural” labeling (SW S(n(.- 
tion IV) is assumed, whereby TCi’ coincides at t,hrcshold with Tii, and the dividing 
out of the factor pi then serves to remove the kinematic zero of TCi’. Sinw (let I) 
has no poles, and each zero corresponds to a bound state, ( 5.2) and (, A.6 ) 1~~1 I o 

n-here c 71; ) means the total number of bound states in all channels (8 J. 
By introducing further assumptions, it is possible to analyze t,he wmpo.4tc 

Lcvinson relation (5.5) into statements about each eigenphase-shift indivitlu:llly. 
First,, it will be assumed that, each zero of dct’ II, which corresponds to a hout~tl 
state, is simple. Furthermore, any such zero is plausibly associatctl, through i’:i..; ), 
with a simple pole of just one diagonal element YCi). The possibility hh:tt, SPVC~I‘;II 
of the T”’ have poles or zeros, or that dct N has a zero, (*an bc shown lo 1w 
unlikely. In the first place, a coincident zero of dct, D and tlct N implies, :IY ~II 
t)hc one-channel case, that certain elements of N must satisfy homogencw~.- 
Fredholm quations. This almost never happens , since t’tie spectrum of a l~redl~~11~1 
kernel is discrete. The possibility remains that nlore than one TCi’ might h:l\rca ;I 
pole (possibly multiple), while others have zeros, in such a way that t.he procluc*r 
in (5.5) gives a simple pole. In the t,mo-channel case, such a cwitingw1c.y i3 
ruled out by the assumpt,ion that the physical amplitudes Ti,; haw only sinlpl(~ 
polrs: in the many-channel case a contxadiction is not involved, but tlw pot-;- 
sibility requires the satisfaction of drt:Cled rontlit.iow; and it SWIW 111x1 it,. 
occurrence could only be a coincidence. 

Thus it is natural to associak a pole of a p:~rtic~ul:tr 7’“’ with a hountl it ;IIC’. 
Suppose t’hat one writes 

p/p. = p ;I)“’ z I .?.!I I 

One channel N/D equations are to be writ,tcn clown, in which D”‘( s:) has only 
the unit’arity cut, while NCi’( s) carries the left-hand cut, and any diagonalizn- 
t,ion cuts. The phase of Dci’(s) on it,s cut is tlefinecl to he -66’i’is). Then, it 
follows from (5.1 j that 

Dci’(s) + 1 s--t -72 i .i 10 ‘I 

so that 
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(5.11) 

Here ,g’ is the number of zeros of D’;‘(s) and ng’ is the number of CDD poles. 
Summing (5.11) 

(5.12) 

From (5.8) it is clear that one must have ,g’ = 0, so that (5.11) is repIaced by 

&’ = - +) (5.13) 

which is the required form of Levinson’s theorem for the eigenphases aCi’ (s) . 

VI. THE CRANK-SHAFT THEOREM 

In the preceding Sections III-V the tools have been assembled. They will 
now be employed for their predestined task, which was to state conditions under 
which a one-channel calculation would fail. When the thresholds are coincident, 
it is possible, in terms of a simple inequality on the diagonalization coefficients, to 
specify in which channel failure would occur; when the thresholds are distinct, 
one can in general assert only that failure would occur in channel one or channel 
two (or both). 

Equation (4.5) can be rewritten as follows 

lle2i611 = 2 23(l) oL e + p2e2i6(z) 

ve2iszz = p2e2i6(1) + a2e2i6(2) (6.1) 

According to Levinson’s theorem, 6”‘( C=Q) and a’*‘( m) are both zero modulo K. 
Thus (6.1) implies 

4 a) = 1 

&( w) = 0 mod x (6.2) 

az2( w) = 0 mod K 

In general, for a finite number of channels, Levinson’s theorem for the eigen- 
amplitudes implies no inelasticity at s = co. This is an important consideration 
in other contexts. 

The problem now is to relate the eigenphases dCi’ to the physical phase shifts 
& at s = m. The first step in the solution is to observe that if there exists some 
sR 2 s2 such that a2(s) > p”(s) for all sR I s 5 CQ, then 

&( w) = P w + m7r 

622( w) = S(‘)w - rn’r 
(6.3) 
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where 

Here [y] means the nearest integer to y. If, on the other hand, a’(s) < $(s) 
for all .sR 5 s 5 m, (6.3) must be altered by interchanging c?“’ and 6’?‘. Thcscb 
simple results follow from a geometrical interpretation of (S.1 ) (an applical ion 
of what will be termed the crank-shaft theorem (CST) ). 

In the simple case in which both thresholds are coincident (~1 = .sz), and non( 
of t,he diagonalization cuts of T(l) and !Z’@’ . Intersect tht> unitarity cut s1 5 s 5 x, 
it has been shown that, 

a’(s) > /3’(s) for all s1 5 s 5 *L 

Furthermore, by definition 

(fi.4 i 

&l(Sl) = &?(Sl) = P(Sl) = d”’ (SJ = 0 

Thus, setting sH = s1 in (6.3), one has 

&I( x:) = P( “) 
and 

&2( 5) = P( “) 

(fi.5) 

(6.6 ) 

Suppose that, there is a dynamical bound state in eigenchannel two, but none in 
eigenchannel one. Then Levinson’s theorem for the cigenphase shifts gives 

so Ohat (6.6j gives 

az2( mj = -p 
(6.8,l 

However, from (6.1) it is clear that in general both physical channels have :L 
bound state. Hence this bound state cannot be calculated dynamically in channel 
one, although it. can be obtained from a CDD pole free FW calculation in channtll 
two. Summarizing, the condition (6.4), or the equivalent assumption that no 
diagonalization cuts intersect the unitarity cut, is sufficient to ensure that :i 
bound stat’e arising from a pole in eigenchannel two cannot bc calculated in 
physical channel one. Specific realizations of this phenomenon have alrea.dy Hun 
given in Se&on II. 
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Next, the more complicated case in which the thresholds s1 and s2 are distinct 
will be considered, again with the assumption that no diagonalization cut in- 
tersect the cut s1 5 s 5 cc. Some care is needed in the phase conventions. As in 
(5.7), one has 

s”‘(SJ = d2) (SJ = 0 (6.9) 

The physical phase shifts are defined to be zero at their respective thresholds 

Bll(S1) = 0 

822(s2) = 0 

(6.10) 

The simple relations (6.6) no longer hold: however, it is possible to derive a 
single composite relation even when the thresholds are distinct (again in the 
case of no diagonalization cut intersection). Above the higher threshold, the 
unitarity condition is 

sts = 1 (6.11) 

which can be rewritten in terms of the matrix t that was introduced in (3.1) 
as 

(6.12) 

For a1 5 s i s2, on the other hand, (6.12) is modified by replacing 
p2 = d(s - s2)/s by zero. This gives 

Im t11 = ~11 tll I2 
* 

Im t12 = f&1&2 Sl 5 s $ s2 (6.13) 

Im t22 = ~11 252 I2 

Moreover, (4.1) gives 

Tii = ~P<&j (6.14) 

and for al 5 s 5 s2 , pz = ij p2 I. The first equation (6.13) implies, using 

Tll = eisll sin 611 (6.15) 

that the physical channel one phase-shift &I is real below s2 . The second equa- 
tion (6.13) shows that t12 has the phase 6~ . Hence one can write 

T12 = 4 Reis'l (6.16) 

where R is some real number. Finally, the third equation (6.13) gives 

Re T22 = -R2 (6.17) 
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The T mat!rix has the form 

!X3 

where p is n real angle. From (4.3 ) 

det T = dct T, ((i.l!, i 

so that, combining (fi.7) and (6.18 j, this gives 

-iRZei611 sin (&I + cFJ 
-zc 

sin p 
i , ymT(2’ , eirtrw’) t6(21! 

Equating phases on both sides of this equation (taking account of the CO~VPI~- 
tions at s = s1 given in (6.9) and (6.10)), one has unambiguously 

611 = Re (6”’ + A’“‘) for all sl 5 s 5 sz it;.21 i 

Above the higher threshold, when (6.11) is in force, one has 

det (1 + 2iTj = dct (1 + 2iTn) (6.22 1 

i.e., 

e 2i(611+62,) _ -e 
2;(6(l)+p’2i‘ , 

which implies 

611 + I&? = 6”’ + I?(“’ 9 2 s2 (‘6.23 ) 

since this must agree with (6.21) at s2 , when & = 0. 
Equation (6.23), taken at s = %, replaces Dhe two equalities (6.6) that hold 

in the equal threshold case. If, as before, there is one dynamic:al bound st:~t(~ in 
eigenchannel two, but none in eigenchanncl one, then 

P( m) + 6’“‘( M) = ---7i- (‘6.24 i 

Thus (6.23) implies that All( a) and &( mj (*annot both equal -K, although 
each physical channel has a bound state. Evidently at least one channel rnr~st 
fail t,o be dynamical. 

In the next section, the complications which can arise in the split thrc&ol~l 
case will be discussed in det’ail. It will be shown how, for not too strong inter- 
channel coupling, these complications do not arise and a sOronger statement, 
analogous to that for the equal threshold case will be obt,ained in play of Erl. 
(6.24’1. 

VII. SPECIFIC EXAMPLES FOR DISTINCT THRESHOLDS 

Sn apparatus has been produced in the foregoing sections to extend some of 
t’he results of the equal threshold case to the more general possibilit,y s1 f R? 
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In Section VI, it was found that the composite relation (6.23) replaces the two 
equations (6.6) of the degenerate system. A broad class of examples will now 
be exhibited for which (6.24) breaks up into the two equalities (6.6), even when 
the thresholds are distinct. To do this, it is necessary to study in detail the phases 
between s1 and s2 . 

It is convenient to rewrite the first equation (6.1) in the form 
Sll = , a2fi(1) ~e2iw)+dw + , @25’2’ le2iW+d2U 

where 

(7.1) 

(0 
(1,2) = 1 

2 ( ) 

a2 s(l) _ p,2) 
- arg p2 g2) (7.2) 

and cp (‘**) = 0 for s 2 52 . The (p’s that have been introduced represent two effects : 
firstly phase changes of a2 and p2 between s1 and s2 (a phenomenon that will be 
called “twisting”), and, secondly possible deviations of arg (8’“) from 2sCi’, 
(which will be called “winding”), Note that these latter can only develop when 
1 SCi) j # 1 (see Eqs. (4.1) and (5.7)). 

It is of interest to consider the case in which (~(~)(a~) = pCi)(s2), when there is 
no over-all twisting or winding. If 1 or2SC1) / > 1 p2SC2’ 1 for all s1 6 s s to, then 
(7.1) can be treated by the methods used in Section VI for the equal threshold 
case. In a similar way it can be concluded that a bound state in eigenchannel 
two fails to be dynamical in the physical channel one. An equivalent statement 
regarding channel two (mutatis mutandis) cannot be made, since p2 = 0 at s = s2 
and the condition 1 (r2SC1) 1 < 1 p2SC2’ 1 f or all sl I s 6 ~0 cannot be satisfied. 

Since a specific statement can be made when there is no twisting or winding 
in channel one, i.e., 

$P(Sl) = p(s2) (7.3) 

it is of interest to examine when this occurs. The existence of twisting (phase 
changes of CX”) is directly related to the locations of the diagonalization cuts. 
The function CX~(S) is defined in (4.6), in terms of K(s), which is expressed in 
terms of the t matrix elements in (4.7). Because of the phase space factors in 
(4.7), K(s) vanishes at the thresholds s = s1 and s = s2 ; it describes some com- 
plex trajectory between s1 and s2 (see Fig. 3). It is obvious that a2 suffers no over- 
all phase change, i.e., 

arg (r2(s1) = arg ar2(s2) (7.4) 

provided the path of K(s) does not cross one of the cuts (as in path (2) in Fig. 
3). However, this eventuality has been excluded by our general assumption 
that no cut crossing is to occur (see the discussion at the end of Section IV). 
Note that a sufficient condition for this is 



I k-(s) I < 1 s1 5 s 2 s:! 

which can be written directly in terms of t matrix ekmcnts, t,hus 

t i .-I I 

“1 -&lP? t1:! I < / Pltll - i I P2 I fz:! $1 s .s 5 s2 i ‘T.li ) 

The requirement is thus that the interchannrl c*oupling h(~ not too strong. 
Srst, it will bc shown that t,here is an appre~*iahle c*lnsa of amplit.utl~~s t’or 

which winding does not, occur, that is, for mhicah 

arg $1’ = $1’ for all s, 5 s 5 N? i 7.; j 

Y(l) At s = Sl ) 3 = 1, and at s = s2 , 8”’ = (,?id”‘S”, SO t,hat the trajectory of S” 
begins at s1 and ends at s2 on the unit kcle. Four possibilities are shown it1 l:ig. 4, 
of which only II and III exhibit winding. In fact, the cariterion for no winding licks 
in the possibility of deforming the trajectory topologically on to t.hc unit, c*irc.l(s, 
without passing over the origin in the caourse of the deformation. 

It can be shown that winding will not oww for weak coupling. For, referring 
to Fig. 4, winding can only occ’ur if the trajectory of S”‘, in its excursion from s, 
to s2 , intersects the positive real axis in the S” plane. 1“~ the quantity [?““I ‘, 
introduced through Eqs. (4.1) and (4.3)) the corresponding traject,ory mu>1 tlof 
intersect, the lines - m < [Im TC1)]-’ 5 -2 and 0 5 (Im 7’“‘]-’ < x. Hontavcbr, 
for zero coupling [Im T(l)]-’ = - 1 (see Fig. a), so Ihat for winding t,o oc(‘ur 11~ 
coupling must deform the Drajectory [Im 7’(“]-1 = - 1 by at, lrxast one uuil. Tliii 
is plausibly associated with at least moderate coupling. 

It, is of interest to re-analyze the example of Section II iu which the tl~o~~~~l~tl 

FIG. 4. Several instances of “winding” (Section VII J 
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i 

-2i 

FIG. 5. Complex excursions of the inverse eigenamplitude [T(l)]-1 in the case of no 
“twisting” (Section VII). 

channel two had a bound state between sl and a2 . Suppose that the t matrix be 
written 

R12 -I 

R22 - ~PZ 1 (7.8) 

where the R's are the inverse K matrix elements. The weak coupling assumption 
of Section II implies that RI2 is small, while the bound state in channel two re- 
quires Rz2 - ip2 to have a zero between sl and s2 . From (4.1) it follows that 

(7.9) 

where RI1 = pl cot 61 and the zero of R 22 - ip2 is supposed to occur at s = so . 
The coefficient CC must be positive in order that the pole of S correspond to a 
true bound state, and not a ghost. From (7.9) 

where 

det T = -P2 

a(cot Sl - i)(s - s,) 
(7.10) 

SR = SO - 
Rf-2 eisl sin 61 

wl 

so that Im sR < 0. 
The physical X matrix elements can be calculated from (7.9). In particular, 

one has the approximate relation 
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from which it. follows that there is a resonanctt at R = lit? sli ill thch ~)l~y~ic*:~l 

&annel one, but that 

Re611(m) =Re&(w)+n= K IT.12 1 

In the notation of Eq. (6.3), one has 111 = 1 and confirms t,hat the rcson:m(‘tl is 
not dynamical in t,he single channel framework for channel one. The mecharlislrl 
of this effect in terms of the behavior of eigenamplitudes cam bc traced through 
in detail. One finds that S(l) E eni’ll, SC*) z 1\132 k=: w11st. ;(s - &I. ‘Jk !.l’:lns- 

formaOion parameters K(s) a,nd /I (cf., Eqs. (4.4), (4.7)) nlw:~y.~ rcnxlir~ sn1:111; 
but, in t,he neighborhood of t#he resonance, A‘?) becomes c~o~u~)clls:~tingl~ lurgcb, .N 
:LS t,o control the phase change of &I . Note that, both cigcnnlllplitutlps p:rtc~nt 1~ 
satisfy Levinson’s theorem and winding does not o(‘rur. The @Ywr:d fmu of tllcb 

physical and eigenamplitudes is displayed in I:ig. 6. 
To summarize, for distinct thresholds and with strong c*oupling the :ln:tly~is 

cm be complicated through the occurrence of phase changes of t.hc diagonnlix:t- 
tion coefficients (twisting) and of the expression (f,i arg i,SCi’ j - 6(” J ( winclirra ). 

=r 

6 
(21 

~. 

asymptotic t0 0 

.-.1_---- - 

Sl S, 

asymptotic to -n 

FIG. 6. Sketch of the behavior of the physical and eigenphases for :I \re:~l; interclmrlwl 

collpling example (Section VII). 
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Where neither effect is present, the simple sufficient condition involving 
1 azX(1) 1 > 1 +!3’8’2’ 1 can be made. 

Under the same assumption, the generalization to an n channel problem is 
immediate. If V is the transformation which diagonalizes the S matrix, and which 
is therefore unitary above the highest threshold, then 

Sll = &P + &s2 + . . . U2,1S(n) (7.13) 

in analogy with the two channel formulas. This equation can then be continued. 
If S(i) has a bound state, the resulting bound state in &I will be dynamical if 

on the whole of the right-hand cut. While the single channel dynamical calcula- 
tion always succeeds for one of the channels in the two-channel case. it is pos- 
sible in the many-channel case to construct examples in which the bound state 
is not calculable in any of the single channels. 

VIII. NOTE ON THE CHEW-MANDELSTAM AND THE FROISSART METHODS 

If R = (ctot/uei) is given instead of q, then the appropriate method of cal- 
culation is CM. Again there is the possibility of disagreement with the many- 
channel results; but the instances are not coextensive with those for the FW 
method. One can easily check that the weak coupling examples which have been 
considered go the same way for both methods. Squires (1) has given an example 
which fails for CM but which, it can be seen, would succeed for FW. One can also 
find examples which do the opposite and succeed for CM while failing for FW. 

One would like to carry out for the CM method a parallel analysis to that 
which has been developed for the FW method. The essential difference comes at 
the point where one tries to develop the analogue of the crank-shaft theorem. 
One now has the relation 

T1l _ 1 Tll lczidl’ = (y2 sin ~(‘)ei6(l) + p2 sin 8(2)62’6(2) (8.1) 
and is led inexorably to requiring relations between I (Y’ sin 6(l) ( and ) p2 sin 6@) 1. 
The situation is thus more complicated than for FW and even in the case of 
energy independent LY and p no decision is possible without detailed knowledge 
of 6”’ and $“. 

In passing, it may be noted a propos of the FW method that Froissart has given 
an alternative calculational procedure when 71 is given. One defines 

P(s) = exp 
C 

--i 4G m 
J 

log Tj(s’) d.s’ 

a s1 &=g(s’ - s> 1 (8.2) 

and then makes an elastic N/D decomposition of X/P (i.e., S = P( 1 + 2ipN/D) ). 
Thus, D has the phase 6 - p/2, where P is the phase of P on its cut. If r] tends 
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to a nonzero constant as s --+ a, as would be espect.cd for a finite numbctr of 
channels, then p( w) = 0, and the previous FW classifications apply. 

IS. AN APPLICATIOK TO ,!Ws SYhlME’I’I:I(: 1XN)TSTI:.WS 

The case of several channels with coincident thresholds w:w introtlwcd into 
the present, discussion because it furnishes :I model whicah is c:~y to c~valua~ t’. 
One (aan also look for direct applications. 4 The most import:mt waliz:ition of 
(soincident thresholds in elementary particle physiw owurs when t hew is SOHIV 

kind of internal symmetry. If the symmetry in qucstioil is only :\pprosinwt (b, 
then in general the threshold coincidence will be approsimatc~ also ; but ow WI 
ask whether useful “first order” statements can brh rnadc. In thr (*:w(l of c~harge 
independence (i’iUZ), t’he results are entirely ncntlemic*. Tlit~ syinmft ry 1Jrf3liirig 

is small, so that to a good approximation one fan ant1 tlow work nlw~ys itr tcww 
of the cigenstates and the questions t)reated in the prcsw t. dark :~rr‘ Alply INA 
asked. However, in t’he case of SUa symmetry, which is subst:mti:Jly broken ill 
the sense that considerable phase changes occur bt%wcw the displawtl t hrc~sl~oltl~;, 
there is more potent’ial interest. The dynamics arcA 11ow influenced by two tli- 
ngonaliz:ltions~--the one belonging to the symmetry and t,hc othw lwlongirrg to 
phase space. One can therefore speak of an actual tli:Lgon:tliz:ltio11 nlatris 1 I of 
t’he form discussed in Section IV and an L‘id~~al” clingou:~liz;~t ion n~atris I I,, 
which would obtain if t,he symmetry were unbrokw. Thea Iat t,c>r simply cwnsists 
of Clebsch-Gordan coefficients (9). For the “ideal” ws~‘, it is easy to :~pply thcb 
rules of S&on VI to the t:o elements and dcdwc whic~h singlc c~h:tt~nt~l ~YII~YII:~- 
tions would succeed and which fail. One nx~y thw cwnjwt UI’P that the txwlt ing 
statements perhaps hold good for t,he act~unl situation of brolw~l synml(xtry, 
particularly if the inequalities on the I;” are strongly satisfi(x(l. 

Before proceeding to concrete instances, a few drt,ail(atl points should bc nwl~. 
Firstly, the one-channel CDD poles which have bccw cliwuswl only fJW111’ fol 

resonances and bound states lying in energy below 11~ highest thrwhold. This 
introduces what might appear to be an awkwarcl dist irwtion for n diwussion ot 
broken symmetries, although it arises naturally fro111 thcx tclrms of the prol~l~wl 
studied. In fwt, it’ is nob a diffirult,y if one wtegorizw sit,uat ions aworcline to 
actual physical masses. For the examples t)o tw tliscwssed, t.he rwon:m(:e ~loll* 
lit> below the highest threshold; and for tjh(l ~~:~se of unbroken +wnnt~f ry (1~3 
resonances become bound states if masses arc taken front th(x nw:: fornlul;l. 
=\not,hrr r&ted point is that in order to make> usofal wnmwnfd m hfJfJtStr:tlJ 

calculatjions one really wants to discuw what hnppc’ns when wrt:lin ~~h;~~~t~l.~ 

are omitted alt,ogether. Now, if a channel has ii R thrwhol(l high in cncrgy ;I/ mvf~ 

’ This qltestivn arose from n discussion with V. L. Teplitx. 
j This will he referred to :IS the “crank-shaft, nnalysis s~~rvivcs syrunre~ry t)rc:ikitlg” 

conjectllre or CASSH. 
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a multichannel resonance, it may very well be reasonable to omit it. Conversely, 
to omit a channel may be viewed as being equivalent to pretending that its 
threshold is very high. 

A further point is that charge independence (SUS) is such a good symmetry 
that one wants in practice in the discussion of broken SU3 to refer to SU2 eigen- 
states (precisely, eigenstates of 1, 13 , and Y) rather than the physical states. 
This means that the elements of UO will not actually comprise Clebsch-Gordan 
coefficients but isoscalar factors (see ref. (9), Eqs. ( 10.5) and (10.6)). In prin- 
ciple, an extension of the methods of the present paper is implied, in that one 
now considers the reduction of an n channel problem to one with m channels 
(n > m 2 1) . In general, this would be a complicated process to analyze; in this 
special case it is trivial. 

We now turn to some examples. Consider first the p resonance and assume, as is 
conventional, that this can be derived from a many channel dynamical calculation 
with channels a~, Kz, and 79. (This may very well not be true.) The correspond- 
ing “conventional” assumption will be made in the subsequent examples. Under 
unbroken octet symmetry, one can write 

or, conversely, for the Jp = l- state 

(9.1) 

Note that in Eqs. (9.1) and (9.2) use has been made for the first time of the 
diagonalization matrix operating on state vectors (I l’> = UO ( 4)) rather than as 
hitherto on the scattering matrix (S’ = U,lSUo). A certain conciseness is thereby 
achieved. It is now simple to apply the crank-shaft rules (B > g) and deduce 
that a single channel dynamical calculation in the aa system with the correct 
prescribed inelasticity should yield the resonance.” This is a logical deduction and 
also useless. But now by the CASSB conjecture, the statement can be read as 
referring to the physical situation. In this case, since the Kz threshold lies 
rather high, it is plausible that the Kl? channel can be omitted altogether. 

Generally speaking, interesting cases are to be sought where the many-channel 
aspect is fairly complicated. For another example, consider the Y1*(1385 MeV), 
assumed to be a member of a Jp = 31+ decuplet. In exact SU,,’ one has 

6 Concerning another aspect of the p, E. Abers has recently made a numerical calculation 

of the two channel problem w and TO. Using the Zachariasen-Zemach method, he finds 
that the p is a dynamical bound state only in the ~a channel. (Private communication.) 

7 The formalism is here implicitly extended to the case of two-body channels with un- 
equal mass. 
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( 1434) (1512) (13311 (12.73 ) i 1742 ) 

The figures in brackets under the decay products are real thresholds in 1\ZeV. In 
this c*ase, one would guess that a calculation with KX and 2~ omitted no~11d 
probably be successful but to have the three channels aA, as, and Ir;‘N was protr- 
ably an irreducible minimum. 

In conclusion, it should be remarked that. the whole question of the consistency 
of broken SU3 with convent8ional bootstraps is as yet extremely ill understood. 
What has been offered here is a very simple rule for making prima facie judg- 
ments on t#he correctness of particular dynamical models when t,he general notion 
of SGa boo&raps is assumed. The resulting statements should, of course, only hc 
interpreted as a guide. For neither of the examples t,reated were they very 
surprising. One has simply supplied a slightly stronger albeit still t,enuous r:\- 
tionalc for making them. 

S. CONCLCSIONS 

The quest’ion has been asked: When do one channel dynamical calculat’ions 
wibh prescribed inelasticity reproduce the results of many-channel dynamics? The 
technique employed was t.o work via the eigenamplitudes. To this end, the 
diagonalizatjon procedure was analyzed in detail and individual Levinson’s 
theorems derived for the separate eigenamplitudes. A study of the relation of the 
physical t’o the eigenamplitudes yielded t’he crank-shaft theorem (Se&on VI j. 
This led, for all the cases where the eigenamplitudes are analytic in a neighbor- 
hood of the urlitarity cut (Section IV), to the following general result: a multi- 
channel dynamical resonance (or bound state) will appear as a CDD pole in the 
single channel inelast,ic amplit.ude for at least one of t,he channels (Section17). 
Tn the case of equal thresholds (Section VI), it is possible by testing a simpl(l in- 
equality on t)he diagonalizat’ion coefficients to say in which channel failure will 
occur and in which success. After an analysis of “twisting” and “winding” 
(Section VII), an analogous criterion for 311 important. subset of cnscxa nit,11 
distinct, thresholds could also be stated. 

In Se&ion IX, these results were tentatively applied to the physically intcr- 
esting question of bootstraps in broken XU, . The idea, admittedly speculative, 
was t,o employ the above rules with exact XUa diagonalization coefficient,< to 
yield prognostications on the actual broken SU3 situation. The result in the ex- 
amples considered was that the usual not,ion of t&n g only the lowest lying 
thresholds was upheld by our criterion. 

It is of interest to compare the present approach wit,h t(hat of Bander, Cloult’cr, 



102 ATKINSON, DIETZ, AND MORGAN 

and Shaw (1) . These authors study the amplitude tll as a function of the coupling 
constants rij in the underlying two channel situation. They remark that, for in- 
creasing r22 , the onset of failure coincides with the emergence of a zero of X, from 
an unphysical sheet through the inelastic cut. In terms of the present formalism, 
Sn = Q~,.‘!? + /32X’2’ with the Xci) unimodular and a2 and p2 real. Thus, Sn = 0 
implies S(l) = -S(‘) and a2 = /Y. This can be readily understood on the pres- 
ent “crankshaft” picture, if one considers a continuous transition from a success 
to a failure regime. The curve described by 811 in the complex plane will sweep 
through a series of configurations, first circumscribing Su = 0, then, at the 
transition, passing through it, and finally cutting the real axis to the right of the 
origin. A CDD pole has then emerged. 

The whole subject of the present paper has been how one channel CDD poles 
can arise in the framework of multichannel partial wave dispersion relations. A 
different facet of the same physical principle has been exposed by Mandelstam 
(10) .* The problem which he considers has many channels through spin orbit 
coupling, and the question studied is what happens when a continuation is made 
in total angular momentum j from high values down to the value j, where one of 
the orbital channels becomes “nonsensical”. The quantities compared are (a) the 
result from the continuation and (b) the “physical” amplitude which results 
from a calculation at the value j = j, with the nonsense channels omitted. It is 
concluded that (a) and (b) differ by CDD poles. 

Clearly there remain tasks for the future, in particular a realistic treatment of 
high energies, with the inclusion of an infinite number of channels. 

As a final word, it is worth reiterating that the present topic highlights a 
problem which faces the proponents of universal bootstraps. It may be that all 
the particles of high energy physics are compound dynamical states; but, where, 
from among the infinity of possibly inequivalent channels to which a particle is 
coupled, is the dynamics to be done? 
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