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Summary. — An approach for caleulating Regge-cut econtributions in
certain two-body inelastic reactions is formulated and it is shown that
it leads to amplitudes with all the properties established in dynamieal
models of cuts in complex angular momentum. With this, a model based
on a noncongpiring pion accounts well for near-forward yp—=*n, with
one free parameter which is approximately obtained from independent
information. The same model (based on o Regge exchange) describes well
yp—np for momentum transfers (—i)}<1GeV; the ¢-dependence of
do/dt in a wide range of energies and the ratio of cross-sections with
polarized photons is obtained with no free parameters. Finally, the model
accounts well for the absolute magnitude and variation of m+p-— pPAt*
at small ¢,

1. — Introduection.

It is well known that a Regge-pole description of np —>pn and of yp —=tn
necessitates a pion conspiring with a trajectory of opposite parity (). How-
ever, if a conspiring pion econtrols =N’ — pA, the differential cross-section of
this reaction should exhibit a forward dip (3); in constrast, a forward peak is
experimentally observed (*). Regge-pole fits of 7N’ — pA with a conspiring
pion are possible; but they correspond to a complicated physical picture and
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contain a large number of free parameters (°). Because of these undesirable
features and the absence of physical particles lying on conspirator trajectories,
other, conspiracy-free, descriptions of the experimental situation are of impor-
tance.

Such a possibility exists if, apart from moving poles, branch points in
complex angular momentum are algo considered. The theoretical importance of
Regge cuts has been known for several years (®7). From the phenomenological
point of view there are several models which can be interpreted in terms of
Regge poles and cuts and successfully describe elastic scattering (814). Also,
a similar interpretation holds for models combining Regge poles with absorp-
tion.

Our purpose is to provide a simple and unique description of certain two-
body inelastic processes with models combining nonconspiring Regge poles
plus cuts and containing a small number of free parameters. In their con-
struction we shall be guided by certain general features common to all models
of ref. (512). In our approach the dips observed in certain two-body reactions
are related to nonsense factors; for this and other well-known reasons these
reactions are treated more easily if decomposed in crossed-(¢-)channel helicity
amplitudes. Then the kinematical constraints known to hold in certain cases
will be used to further reduce the number of free parameters.

In Sect. 2 we discuss certain features in common to several (¥'2) Regge-cut
models successfully describing elastic scattering. In Sect. 8 and 4 we formulate
a prescription for the magnitude of the Regge cuts in inelastic reactions; and
we show that in most cases of interest this leads to asymptotic expansions
with all the properties established in dynamical models of cuts. In Seet. 5 our
approach is applied to near-forward photoproduction of charged pions; the
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model contains only one free parameter which determines the cut contribu-
tions; in order of magnitude even this parameter can be inferred from inde-
pendent information. Section 6 studies yp —np for momentum transfers
0< —1t<1.2 (GeV)? with a similar model; it turns out that the t-dependence
of the cross-sections in a wide range of energies and the magnitude and varia-
tion of the data with polarized photons can be obtained essentially with no
free parameters. Finally, Sect. 7 shows that our model of charged-pion photo-
production successfully accounts for the magnitude and variation of TN — pA
as well with essentially no free parameters.

Regge-cut models based on field theory or unitary iterations are known
to lead to infinite series of moving branch points (¢?); this is well accounted
for in our general formulation (Sect. 3 and 4). However, several phenomenolog-
ical analyses, in particular for —¢ <1 (GeV)? can well proceed with only the
first cut, which then represents the complete series in an average sense.

I. - Genefal Formulation.

2. — Henkel transforms and moving branch points in elastic scattering.

As in most of ref. (*2) we begin with the impact parameter expansion of
the amplitude f(s, t) for the elastic scattering of two spinless particles. As the
square of the total ¢.m. energy s — oo this is given by the Hankel trans-

form:
o

(2.1) f(s, t) = —is / E(b, s)Jo(bg)bdb

]

with ¢ = (--£)} == momentum transfer. Assume further that F(b, s) depends
on the variable b as follows:

(2.20) F(b, 8) = 57 (¢(2) —¢(0)
with

_8 b
o o]

where f and A are real constants (to be identified below) and
(2.2¢) g:—:lns—q;—?.

41 — Il Nuovo Cimento A.
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() is assumed to be a real function of x expandable in a Taylor series around
=0, so that

(2.3) F(b, s) -%2 (m(.o) (g) X p[ fAb;]

where ¢™(0) = (d"¢(x)/dz"),_,. Replacing in (2.1) and interchanging summa-
tion and integration we obtain after integrating in b

n—1 Gn(t)
w0 n=s g0 (7 e [ 2
where
(2.5) a,(t) =1+ (A/n)t

Suppose now that for » =1 (2.5) represents the Pomeranchuk Regge tra-
jectory (slope ). Then the term # =1 in (2.4) can be identified with the
contribution f®(s,?) of the Pomeranchuk pole to the scattering amplitude:

(2.6) 1P, t) = Pp(0)- (exp [—im[2]-s)*

For a given function ¢(x) this has a residue determined essentially by the real
constant f; also, it has the carrect phase determined by the signature factor,
here reduced to the form exp[— i(%/2)a, ()] = exp [— i(=/2)(1 +4Af)]. The ar-
gument x of (2.2b), which is the basis for the construction of the whole series (2.4),
is easily seen to be related to the inverse Hankel transform of f®(s, t):

(2.7) [f‘f"(s, t)Jo(bg) qdg = (;); ) g'exp [_ 1%] :

The terms of (2.4) with n>2 can also be associated with singularities in
complex angular momentum J; for:

i) It is well known (°7) that exchange of (n4-1) Pomeranchukons with
trajectories o,(?) (in proper nonplanar diagrams) leads to a moving branch point
®,(t) which at small || varies as

(2.8) %a(t) = nay (7%) —n+1;

with oy(f) =1+ At we immediately obtain (2.5).

ii) The phase of the leading contribution of the corresponding cut is
exp [—¢(w/2)a,(t)], in accord with general theorems on crossing-symmetric
asymptotic expansions of the scattering amplitude (14).
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iii) In the crossing symmetric form (*¢), as the number of the exchanged
Reggeons increases, the asymptotic cut contributions contain decreasing powers
of Ins—in/[2.

Thus it is reasonable to associate the n>2 terms of (2.4) with Regge cuts
and write

(29) f(-S‘, t) — f(P)(S, t) + fm'(s, t) ,
(2.10) o (s, t) =B 21_1’.1'_1; P™(0) (A_g)"‘l. (exp [_ ?_27_;] ‘S)a.m .

The specific form of the function ¢(x) represents an ansatz about the cut dis-
continuity near the branch point; on this very little is known theoretically.
In ref. (¢*) the form

p(z) = }[1— (1 —42)}]

is used; its derivation is based on the mechanism that produces, via elastic
unitarity, the Amati-Fubini-Stanghellini cuts. Reference (1°) uses

T
(p(x):l—m’

which can be derived by a similar mechanism applied on a somewhat different
model. Finally ref. (*1-1?) use the form

(2.11) p(z) = ¢ @< 0),

for which some analogy with Glauber’s formula for multiple scattering on
nuclei might be invoked.

3. — Henkel transforms and moving branch points in inelastic reactions.

Let f,;,.1,1, be the helicity amplitudes of the ¢-channel reaction 142->3+4.
Standard procedures allow us to define parity-conserving ones by

, . _ g\ g\l
3.1)  Jot = Faaa = (\/2 oS8 5) (\/2 sin E) Friotas &

—lA+ul

—lA=pl
+ (—)*=oy0, (\/2 cos 2;') ’ (\/Z sin %’) f-r-agana, »

where A=A, — 4, u=A— A, A.=max(|4], |u|), 0, the c.m. scattering angle
in the t-channel and ¢ =: + (—) denotes natural (unnatural) parity. The kine-
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Fig. 5. - Percentage np and nr effective-mass distributions for the reaction mtp —
&
->p2rteTat at § GeV. Curves as for Mg, 4.

is displayed clearly. It was pointed out by (LA that the charged pions of
the final state must be ordered on the multi-Regge graph. For example, con-
sider the reaction K p-»Axn*n~ where the only allowed graphs are those of
Fig. 6.

The great advantage is that now we can distinguish the pions immediately.
The consequences of this ordering of the pions, as far as single-particle distri-
butions are concerned, were pursued by CLA. We can now study the same
elfects in two-body distributions. According fo our parametrization for in-
cluding resonances, only those particles which are adjacent to each other on

(3.4 ?73:/1,.1112(3, 0)= 4 ;;xzé,zlz,(sy )

provided that |A|+]|u| = 0.

Suppose that the amplitude f,(s, t) receives a contribution f‘;;f"(s, t) from

a Regge trajectory, say, a,(f) of signature &.; this can be written

Zo(R e _exp[——(in/zi)(zan-{— 53_1)]' s &p—tm
(3.5) fi (5 ) = Ooult) G g — En 1) (so) '

We shall be interested in two-body inelastic reactions for 0 < —t <1 (GeV)z;
then sin (m/4)(20g(f) — &g +1) either is a nonzero function—in general slowly
varying—or it has a zero cancelled by a proper ghost-killing factor of b3.().
In these cases one can write

_ . aRp(h—2,,
(3.6) (s, 1) = Blu(t) -exp {—%ﬂ (2an(1) + £ — 1)] (si) ’

0.

where 7 (t) may contain only factors due to nonsense transitions and factors
vanishing at ¢ =0 due to analyticity-factorization requirements (). There is
one case of interest in this paper when sin (7/4)(20, — &, 4-1) is rapidly varying
in the low-(f| physical region; this will be treated in detail in Sect. 7.

(**) Y. Hara: Phys. Rev., 136, B 507 (1964); Lixg-Lie WANG: Phys. Rev., 142,
1187 (1966).
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1892 (1968); Nucl. Phys. (to be published).
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M. L. PacieLro: Frascati Nota Interna n. 390.
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In our approach it is assumed that fjﬂ(s, t) receives also contributions from
Regge cuts due to exchange of the trajectory R plus #» Pomeranchuk trajec-
tories {n>1). Thus

(3.7) Touls, )= T30, ) + T35, ) -
To construct f"‘““"" (s, t) we shall proceed in close analogy with the expansions
of Sect. 2. For purposes of comparison with recent analysis of elastic scattering

we shall use the form (2.11). Then, in our model the cut contributions are
assumed to be defined by the following Hankel transforms:

(3.8) fatmta(s, 1) :ng;,m(b, 8)(e*—1)Jo(bg)bdd

with « given by (2.2b) and

(39) Fa(R) b s __ffa(R) bq qdq

"‘B’ is given by (3.6). It is now our purpose to show that in all cases of physical
mterest (3.8) and (3.9) generate a series of cuts with the properties discussed
in Sect. 2. Note that in (3.8) and (3.9) b is not an impact parameter but merely
a variable defining the inverse function F3.;°(b, s).

We start with the case where g3, of (3.6) is finite at =0, does not con-
tain nonsense factors and stays approximately comstant in 0 < —¢ <1 (GeV)2.
Taking a linear trajectory for R,

(3.10) g (t) = 0g(0) + Agt,

and fixing s, =1 (GeV)? we get
(3.11)  F5P(b, 5) = Bg,s°m0~n-exp [—%” (205(0) + £r— 1)] :

1
'm'eXP [—b*/404s],

o=1Ins—in/2. Expanding ¢*—1=3 1/n!z" and integrating over b in (3.8)
we get »=1

1 A, i nlt)
(312)  Fom(s, 1) = Bius—n- exp[— (1—53)] 33 (’g) -E-(exp [—;f]-s) :

where

(3.13) V=24 nlt, o,(t) = ag(0) + Aat.
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Next we turn to the case f5.”(t)~? as t—0 so that an acceptable para-
metrization is

(3.14) BI®(@) =ty3,, y3,= const.

With a,(f) as in (3.10), eq. (3.11) gives
(3.15) F3(s, b) = — 93, 84RO—m gxp [— %T (2ar(0) + Eg—l)] .

1 2 b
Tingy Vg Iy (479) ,

where L,(2) is the Laguerre function of order n (**). The Hankel transform of
L.(2) exists in closed form:

(-]

(3.16) f bdbdo(bg) exp[— Bb?] Ln(ah?) — (/5; ;:‘1)" exp [_ _f] I, (_@22 ) _

0

Thus replacing (3.15) in (3.8) we get as before

(B17)  FEN0s ) = —pfsimexp [Z—’ (a— m] :

o 8 Gy (g) (%,) (eXp [J?n] .s)«.«) e

with A, and «,(f) as in (3.13) and

1 =tp—" - .
(3.18) r=tp i
For sufficiently small values of |t| so that |2|<<1 we can approximate
(3.19) L(g)=~1.
The analogy between the expansions (3.12), (3.17) and (2.10) is easily seen.
The n-th term in the sum of (3.12) or (3.17) can be identified with the asymp-
totic contribution to fj{” from a moving branch point in complex J due to

exchange of one E-trajectory plus » Pomeranchuk trajectories. Again: i) the
exponent of s, ii) the phase of each term and iii) the increasing power of

(%) A. ErpELYI (ed.): Tables of Integral Transforms, vol. 2 (New York, 1953).
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1/(Ins —4m/2)" is precisely what results from cuts in multi-Reggeon exchange
models. Moreover, the forms (3.12) and (3.17) considered as asymptotic ex-
pansions of fg,,(s, t) for s > oo and ¢=fixed <0 are in full accord with gen-
eral theorems on the s-dependence and the phase of crossing-symmetric asymp-
totic expansions of ¢-channel helicity amplitudes (*4).

With the slope 4 of the Pomeranchukon taken from elastic scattering the ex-
pansions (3.12) and (3.17) introduce only one free parameter: the real constant 8.
In these expansions as well as in (2.4) the power n of § is just the number of
Pomeranchukons forming the cut; this suggests that § can beloosely interpreted
as the overall « coupling » of the Pomeranchukon to the scattered initial and final
particles. A further assumption throughout this work is that § is independ-
ent of the helicity indices 1, u and thus essentially the same as in elastic
scattering of spinless particles; this allows a comparison of the values we obtain
in Sect. 5-7 to independent analysis of elastic seattering (11-12).

Suppose now that f3o(s, ¢) has a residue function behaving as in (3.14)
and at the same time 2ulSs ) satlsﬁes at t=0 a kinematical constraint of the
type (3.3a) or (3.4) (these cover all cases of interest in the present work). In terms
of kinematically singularity-free amplitudes these constraints take the form

(3.20) Fiulss 0) = R(2, w3 m)f7s(s, 0),

where h(4, u; m,) is a known nonvanishing factor depending on the helicities
and masses of the scattered particles. To order s*®** the constraint is satisfied
by evasion, but to orders s*®**»/(Ins)* it requires a conspiracy between cut
contributions. Now, it is well known that each Regge cut contributes to

helicity amplitudes with both ¢= + and o= —; in view of (3.17) J;3(s, ?) is
expected to have an asymptotic expansion that can be written in the form

st t)——ms-ﬂmexp[ (1—53)]
@ St (@) (o [-5]) " row,

where the /3; are unknown constants. However, the constraint (3.20), which
must be satisfied to all orders in s, demands

{3.21) g, =p", vn .
Hence, in the present model

(3.22) Tro(s, 1) = h2(4, p; m) [3(s, 1) + O(F) -
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0(t) stands for terms which as ¢t — 0 vanish like ¢¥, N >1; moreover the an-
alyticity of f“’(e t) demands that these terms vary smoothly with {, so that
for sufficiently small |{| they can be neglected; then f;;(s, t) is determined
without any additional parameter.

4. — Residues with nonsense factors.

In our approach, the dips observed in certain two-body inelastic reactions
(like m"p —="n and yp — =°p at photon laboratory energy <10 GeV) are due
to nongense factors of the residue funetions. Thus, it is necessary to consider
Hankel transforms and the resulting cuts for more complicated forms of 83 ,(?)
as well.

We start with the form

(4.1) B,(t) = y‘;”ocR(t)(aB(t) +1) Y5, = const ,

which will be used in our treatment of yp —n’p. Using (%)

[eed

(4.2) J y*do(wy) exp[— ty*lydy = n!22+t-exp[— 2] L,(a?)

0

and the linear trajectory (3.10),

(4.3) F35(b,8)=173,s*RO I exp [— %” (20(0)+&x—1 )]~ (204g) "t exp[—b2/40iz]-

{orn(0)(2=(0) + 1) — (1 + 2an(0)) g~ L(b*/40z) + (2/¢*) La(b*/404)} .

Introducing this in (3.8), expanding ¢*—1 = (#*/n!) and using (3.16),

n=1

@ 1
(4.4) cx(cuts)(s t) = V5.8 s~ exp {g a— ER)] z (ﬁ) (] + agx(0 )

n=1 ’i’b‘
e @ iz n®)
-{ocR(O) — a4 Gy }(exp — ?] -8) ,

where

ws) w1tz (7;’;) L), 9= > ("’1 ) L(@),

with 2 as in (3.18).
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The last expansion can be interpreted similarly to (3.12) and (3.17). With
L,(2) ~ 1 which is a good- approximation in all cages of presentinterest, (4.4) rep-
resents a superposition of 3 series of Regge euts differing in the type of discon-
tinuity near the branch point. Again each term has the correct exponent of s
and the correct asymptotic phase.

Next, congider the form

(4.6) Biult) = tyg,an(t)(ag(t) + 1)

again of interest in yp —=®p. The same approach gives

1 (B\" 2,
(£.7) (s, 1) = — 5,8 ""e“’[ (l—én)] 2171,' (g) .

; anlt
'{ocR(O)(OCB(()) +1 ) — 267+ 3G:.2)} (exp [_' t—?] '3) ' ’

for which the interpretation is similar.
Of special interest is the exchange of the pion Regge trajectory

(4.8) o (t) = o n(0) + Ant .

In yp- >w*n and yn—="p this contributes only to fals, 1); and gauge-inva-
riance requirements are known to lead to (*)

Foms 1) = - & 1+ expl—imon()] .
(8, 1) = — — ﬁ,, (tyotn(t)-— Sia ) PO

a.(t) is a factor due to the sense-nonsense transition at «, (¢) = 0 and p = pion
mass. We shall adopt a nonconspiring pion so that, as t — 0, f.(t)~1. At least
for small || we may then approximate

(4.9) —(n)(,g’ )~ —— \/—éeg -eXp [____ ag(t)] Lgom=1,

where e and g are respectively the electromagnetic and the pion-nucleon
coupling constants. Replacing in (3.9),

<

— ) ap (0) 2
Fo™ (b, 8) = V8egs™ (eXP [— ?] -8) f q—,_q;# -exp[— oArg?]J,(bg) gdg .
4min

(2 J. 8. BarL: Phys. Rev., 124, 2014 (1961); N. DomBEY: Nuovo Cimento, 31,
1025 (1964); G. ZwEiG: Nuovo Cimento, 32, 689 (1964).
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With increasing ¢ the function ¢2/(¢2+-u?) tends rapidly to 1; however, the
integrand is important up to, roughly,

4*~ 2( Aol )+~ 3Bu?

for the energies of interest (s~ 20 (GeV)?); hence we can take

) & (0)
B30, 5) 22V egi (exp |~ ] -5) ™ o fexpl— o100 004

0

where the factor r depends weakly (logarithmically) on s only and, for the
energies of interest, is of order 1 (21). With (4.2) we finally have

- ; 2 10)]
(4.10)  Fy™(b, 5) =~ V8egs— (exp [— “i‘] -s) 1I0S) oxp[— b2/
2 20

This is essentially of the form (3.11) and leads to a series of Regge cuts such
as (3.12).

IT. — Applications.

5. — Near-forward photoproduction of charged pions.

In our model photoproduction of charged pions near the forward direction
is assumed to be due to a nonconspiring pion Regge pole plus the cuts due to
exchange of one pion with one or more Pomeranchukons. As said, pion ex-
change contributes only to 70‘1(8, t), which has the complete form

(5.1) Fals, 1) =Foa™(s, ) + oot (s, ¢).

For - we shall use throughout

= — t 1 4 exp[—imo)
5.2 (s, ) = V2 : - gom—1
(5.2) o (851) ey p— Or i $

(**) An estimate of » can be obtained through the integral (7.6); for the energies
of interest it follows that r<0.1.
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with pion trajectory

Oy =0 (t) =—p2+t.

foow will be determined on the basis of (4.10).
In YN — 7N there is one kinematical constraint (eq. (3.3a)), which in
terms of kinematic-singularity-free helicity amplitudes reads

(5.3) FH(s,0)=2MF (s, 0)
(M = nuclear mass). The corresponding Hara-Wang kinematical factors are
(5.4) Kty =3 —p2), Ent) = pie—p)—4M).

With a nonconspiring pion, ~;1""(8, 0) = 0; thus the discussion at the end of
Sect. 3 implies '

(5.5) fr(s,t)=2M -Tr(s,1).

This is expected to hold in a range of |f| of a few u?, at least.
We shall study two different models for the cut contributions. In the first,
we keep only the term n=1 of (3.12), i.e.

(5.6) foleati(g, ) = V8 eg j—: gt (%?) (exp [— 1—271] -s)“lm .

This is expected to reflect the average behaviour of the series of cuts. We fix
the Pomeranchukon slope at A= 0.3 (GeV)~2 as in several Regge-pole an-
alyses of elastic scattering; and for simplicity take ¢ = Ins (asymptotic form
of one-cut contribution); we also fix »r=1. Using

do 1

(6.7) &~ 2msq iy

z [flyo,l‘ml‘ﬁ: 2
U

A5

(¢,= c.m. initial momentum in s-channel), we calculate do/d¢ for E,=8.11
and 16 GeV. Our results (Fig. 1, continuous lines) correspond to

(5.8a) f=—81.

The second model keeps the complete series of cuts (3.12) with exact factors
o =Ins—in/2. To facilitate comparison with a similar model applied to elastic
scattering use 4= 0.8 (GeV)-2 (2) and again fix » = 1. The remaining free par-
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ameter is taken to be

(5.8b)

B=—105

and the results are presented in Fig. 1 (broken lines).
The essential feature of charged-pion photoproduction is that the differen-
tial cross-section shows a forward peak of width ~ g2 One can see how our
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models operate to produce this situa-
tion. With increasing |{| the factor
H(t—pup2)~t in (5.2) increases very rap-
idly (rate ~u~?); however, at a
fixed s, the cuts provide f, and f7,
with a slowly varying contribution.
If the phases of f,,™ and f* dif-
fer by ~=n, due to destructive in-
terference the amplitude may de-
velop a narrow forward peak (22).
It is remarkable that £, the only
free parameter of the model, can be
chosen so that both the absolute
magnitude of the forward do/d¢ as

"Vt GeV)

Fig. 1. — Near-forward yp—=*n. Ccntin-
uous lines: one-cut model. Broken lines:
model with series of cuts eq. (3.12). Data
as in ref. (2°). o,e, 8GeV; o,a, 11GeV;
a,a, 16 GeV. Open symbols, SLAC 1967;
full symbols, SLAC 1968 (new data).

well ag the width of the peak are cor-
rectly reproduced.

More remarkable, the needed
value of § (5.8a,b) is fairly close
to that describing elastie scattering
in similar models (in ref. (12), =
=—10 for pp—pp, — 7 for pp—Dpp,
—4 for wp—mp). We argue that this is understandable. Accept, for defi-
niteness, vector dominance; then f represents an average «coupling» of
the Pomeranchukon to the nucleon, charged pion and neutral p. However, a
similar interpretation holds for elastic scattering, so that g should be, in order
of magnitude, the same. Granted this interpretation, we conclude that even §
is, to some extent, fixed.

Both our models give a forward do/d? varying slightly, with s. Note that
in the second model the variation is significantly reduced; this arises because
of cancellations between successive cuts and is in accord with the most recent
data on yp —m'n (%3).

(*2) A physically similar description of forward yp—n'n has been advanced by
F. HExNYEY et al. (University of Michigan preprint) who generate Regge cuts by absorp-
tion corrections to Regge-pole exchanges.

(*3) B. RICHTER: in Proceedings of the XIV International Conference on H.E.
Physics (Vienna, 1968), p. 3.
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Finally, note that a crucial point in the fit of yp —=n™n by a conspiring
parity doublet of Regge poles is the use of a pion residue function

(5.9) Bralt) ~1 4 At — )=

with 4= 0.4 (?); thus §.(!) must vary rapidly and even have a zero at small —1.
To justify this behaviour ref. (2) invokes the work of Mandelstam on relations
between PCAC and conspiracy theory (¢). In view of the theoretical difficulties
of this subject, the form (5.9) must be considered as a purely phenomenological
ansatz. In our models (and in ref. (*)) a zero in f,(s,f) at small —¢
naturally arises due to pole-cut interference.

6. — Photoproduction of neutral pions.

We shall describe yp-—>=p by a mechanism very similar to forward
¥p - 7tn except that now it is the o Regge pole (instead of =) that provides
the driving force. The o pole will be accompanied by a series of moving branch
points due to simultaneous exchange of one w plus one or more Pomeran-
chukons. Contributions from either pole (p or B) are possible, but turn out
unnecessary.

The  pole contributes to the helicity amplitudes 3, and f& (corresponding
Hara-Wang factor K, = }(t—pu?)). In accord with finite-energy sum rules (**)
we assume that its trajectory chooses nonsense at «, () = 0. Also, it is gen-
erally accepted that « does not conspire at ¢ = 0, so that combined require-
ments of analyticity and factorization (for the w pole alone) imply that the
residue of « in f+ must be ~¢ at small [{] (*¢). Thus we proceed with the

11
following pole contributions:

(6.1) Fr (5, 1) = b oot + 1) = eﬁﬁ;j”““] ey
where

(6.2) bu=vms  Bh=yht

{7}, = constants) and

(6.3) oy, = 0, (0) + Ayt .

The series of cuts arising from (6.1) has been given in Sect. 4. Here we con-

(z9) 8. ManDELSTAM: Phys. Rev., 168, 1884 (1968).
(2%) P. D1 Viocnia, F. Draco and M. PAcIELLO: Nuovo Cimento, 55 A, 809 (1968).
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sider the equivalent to the first model of Sect. 5 (one-cut), when

Frcou MB 14 (0 in ay =1
) s, 0= 20 A 2O o) gk ) (exp [ 5] )™

A 2-/3‘1‘9‘0‘&(0).
) 2 (ns)?®

65)]  Frs, 1) = — oy (AT.,

.{fxm(o) —2GW 3(}(2)} (exp [_ 7;27_1:] -s)u;(!)—l ’

where

14 2a,(0) 4 2 ( M )2

. 1) — . G2 = .
(6.6) O = T a(0) Alns’ T+ o00) \Zlns
and the trajectory of the moving branch point

_ Ma
e

(6.7) () = aol(0) + 4t, M

Ag we are interested in a description of yp —=°p in 0 <|f| <1 (GeV)? we can
well approximate L,(x)~1 in eqs. (4.4) and (4.7). Furthermore, the con-
straint (5.5) and the discussion following eq. (3.22), extended now to
|t| &1 (GeV)?, implies that the unnatural-parity amplitude 70'1(8, t) will also
receive a contribution fully determined from (6.5).

In the following calculation we take 4, = 0.86 (GeV)%(a, = 0 at ¢t ~ — 0.55)
and, as in the one-cut model of Sect. 5, a Pomeranchukon slope 4=0.3 (GeV)—2.
The residue constants ¢, and yf, can be treated as free parameters; however,
an estimate of the ratio y7,/yf, can be inferred from Regge-pole analysis of
pp —pp and Pp — Pp, where o exchange is also very important. It can be
seen (2%) that, roughly, 1 <y} /yt <3; and we shall take pf;/yH =2.

Thus, apart from the magnitude of, say, ¥, (27) there remains only 8 as free
parameter. However, with the interpretation of § as an average Pomeranchukon
« coupling » and with vector dominance as a guide, we can claim that at least
in order of magnitude § must be the same, as in the one-cut model of Sect. 5;
in both cases (n* exchange in yp—='n and « exchange in yp—>np) the
Pomeranchukon couples to nucleon, pion and p-meson. Thus we fix § as
in (5.8a).

(*) W. Rarirs, R. Ripprry, C. CHrv and R. J. N. Puiruies: Phys. Rev., 165,
1615 (1968).

(?%) Even y§;, can be inferred through vector dominance from the w-exchange con-
tribution to wN>— pN’; see A. Dagr, V. WEISSKOPF, C. LEVINSON and H. LipxiN: Phys.
Rev. Lett., 20, 1261 (1968).
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Our final assumption concerns the relative sign of the pole and cut con-
tribution, which for inelastic reactions is, in principle, completely undetermined.
Note that in our examples the cut contributions vary slowly with #, but, in
general, the pole contributions wvary
rapidly (due to nonsense factors and 4
factors ~t). It is obvious that a clear 10f
prescription can be formulated only
near t=0 when pole and cut have
the same phase. In yp— w*n the form
of ;™ (eq. (5.2)) and the requirement
of forward peak imply that, as t - 0+,
the pole and the first ecut contribution
to the t-channel helicity amplitude ]7;,‘1
have the same relative sign. In yp—
—>7'p We obtain best agreement with
the data if we extend this convention
to both f} and f},. We shall keep it
throughout all our work (28). 0 05 10 0 . 05 10
With the model thus formulated we ~t{icevy]

present do/d? in Fig. 2a), and the ratio

B do,/dt —do, /dt
do/dt

(0,(0,) is the cross-section with photons

Fig. 2. — a) Differential cross-sections
for yp—>n. Data: « ANDERSON ¢t al.:
Phys. Rev. Lett., 21, 384 (1968); T
BRAUNSCBEWEIG el al.: Phys. Lett., 26 B,
405 (1968). b) The asymmetry ratio E
calculated at E,=3 GeV. Data: BEL-
LENGER et al.: MIT preprint (also ref. (23)).

polarized perpendicular (parallel) to

the production plane) in Fig. 2b). As we are interested in producing basic
features rather than to fit data, no effort was made to vary 8. We note the
following:

i) The forward dip of do/d¢ is explained by the vanishing of ~‘1*1“°’(s, t)
at t=10 (eq. (6.2)) and the fact that §(s, t) enters in do/dt with a kinematical
factor vanishing at ¢~ 0.

ii) The dip at ¢~ —0.6, which disappears with increasing s, is due to
the vanishing of «(t) in the pole terms, which at relatively low energy control
do/dt (in particular fi*). However, at t~—0.8 (GeV)?, the i decrease
rather fast with s. On the contrary, our cut contributions (6.4) and (6.5) decrease
very slowly; this holds in particular for 7 which is (relatively) very impor-

tant for —t>0.5 (GeV)? (note that between B =3 and 16 (GeV)? the quan-

(#*) For yp—>n'n, yn—>n"p in 0<—1t<L.2 (GeV)? and for nlN°— N a similar
analysis (in progress) with the same sign convention leads to good results, as well.
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tity «,(0) —2G0 + 3G® of (6.5) increases slowly). Thus, for E, =10 (GeV)*
the cuts, which are smooth in ¢, dominate and the dip is washed out.

iii) As is well known, do, /d¢ contains only natural-parity exchanges
(f& and f};) and do,/d¢ only unnatural (f;). At¢~—0.2 and ¢ ~ —1 the w-pole
contributions enhance do, /d¢ so that R ~0.8. Att~—0.55 the f} vanish
and R shows a dip; however, f (s, ¢ ~ —0.55) is significant and this gives
R =~ 0.5 in the position of the dip.

A somewhat similar model of yp—7°p has been advanced in ref. (2%);
however, it contains 5 completely free parameters and is not concerned with
possible relations between pole and cut contributions or correlation of cuts in
¥p —n’p and yp—n*n. On the other hand (3}, » Regge exchange supple-
mented only by cuts calculated with the conventional absorption prescription
fails completely to explain the disappearance of the dip with increasing s and
gives B>0.92 for all ¢; good agreement is obtained only by adding p and B
exchanges with a B trajectory slope i,= 0.4 (GeV)2.

7. — The process ©+p — ®A** at small |¢].

Recent experiments (*) on =*p— p®A** at 8 GeV establish a forward peak
of width ~ u?*; moreover, for |f  1<|f| <0.04 (GeV)? the density matrix ele-
ment gy, is very close to 1. These features intuitively suggest that the forward
amplitude is controlled by pion exchange.

As in yp—7'n, our model describes w*p— p°A*" at small |¢| by exchange
of a nonconspiring Regge pion plus the cuts due to exchange of the pion with
one or several Pomeranchukons. Here, however, (unlike yp —w*n) a non-
conspiring pion has, at ¢= 0, a finite residue function. Due to the proximity
of the pion pole it turns out that simple pion exchange gives indeed most of
the forward cross-section; the cuts calculated according to our prescription
contribute to order 109, only.

Neglecting the helicity double-flip amplitude we have (%)

do 1 @ —(ma— M) [u>— (ma+ M)]

C0q T 6dmsp? t— (ma— M) [f—(ma - M)
{Ifools, 012 + 4D(t0) fuls, )2},

(7.1)

where @(stu) = 0 is the boundary of the physical region and the #-channel

(*) A. CapErLia and J. Tran THANH VaAN: Orsay preprint LPTHE 68/41.
(*%) M. BrackmoN, G. Kramieg and K. SCHILLING: Argonne preprint.
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helicity amplitudes

(72)  Fiagoagho = [t— (m + M)RIE— (my — MY Bstu) M2 fog 105

For =N —pA, at the pseudothreshold ?,= (m,— M)? there is the con-
straint (31)

(7.3) 701(8y 1) =~ 9—1(3)700(3; t)

as s — oo, g(s)—>2s4/t,. The pion Regge-pole contribution is

b4

i G () . n -1
() 7= (e [—7]-8) '(Smgau(t)) N PR )
7‘

l—»p'
- . i antt) [ o -1 2
(T.4b)  sf® = (0. (exp [— —2—] -s) -(smga,‘(t)) = Yo =

In accord with our general procedure, we shall take a constant pion residue,
equal to its perturbation theory value at ?-=pu? (3%):

V3o = Ghzp?,
where
(1.5) G:4n2m9_M(M)*
© o\ Poba

with p,, p, the momenta of p, A in the e¢.m. system of the t-channel and the
corresponding widths.

In the near-forward region (—?<2.5u? at 8 GeV) the helicity-flip contri-
bution is suppressed by the factor @(stu); thus we consider the nonflip ampli-
tude. Our prescription for the cut contribution (eq. (3.9)) gives

3 ar(0)
P30, 0) = -7 (exp [—%’]-s) F0,5)

F gd
(7.6) F(b, s)= f q2q+qM2eXP[— Az0q*)J4(bq) ,

min

(1) J. D. JacksoN and G. Hite: Phys. Rev., 169, 1248 (1968).
(®*) J. D. JacksoN and H. PiLkuHN: Nuove Cimenlo, 33, 916 (1964).

42 — Il Nuovo Cimenlo A.
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the pion pole enhances the low-¢g region of (7.6}, for b < ]an‘* a good ap-
proximation is

F(b, )= (1 + b*p?[4) B,(2) — (b*[40Ar) 6™,

(7.7)
= Qlﬂ(qiﬂn + Auz) ?

with E,(2) the exponential integral (33); note that for energies <30 GeV we
can further approximate

E(R)~2z—Inz—y

(y = 0.577 = Buler’s constant).
Here we shall be contented in an estimate of the cut contribution and will
proceed with the one-cut model (and again p=1ns). Thus we find

1 i ant®)
@) FRo0 ~ o (exe [ 5] o)™ a0 et paiens- o,

where
0,(s) = exp [A, u?Ins] E(z) (~1.65 at 8 GeV)
0s(8) == exp [—2]E}2) — Azpu*lns (=~ 0.55 at 8 GeV).

Then, in the one-cut approximation (3.8) gives

i7

~ 2 &, (8
(1.9 26,0~ 5 A8 (exp [~ 5] )
with

() = o (0) -+ Ayt, A= 0.257 (GeV)-2,

Using the asymptotic form of @(stu) for s — oo and ¢4 0 (3!) we reduce (7.1)
to the form

do G \2 mut t,— u? t
1 =) . . 2 __ 2
(7.10) Q00’35 (4712) s 1, —1 (]‘POI % A ) ’

where, in view of (7.9),

gols, 1) = (t—p) (exp [_ g‘z] -s)%+ I ils) (exp [‘ ?] -s)m’ :

() M. Apramowirz and I. A. StEGUN: Handbook of Mathematical Functions,
(Washington, D.C., 1964).
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Assuming that ¢,(s, t) is a smooth function of ¢, the simplest way to construct
it is by means of the pseudothreshold constraint (7.3); thus we take

Pa(sy 8) = (bo—po)y™ (eXp [— gz] 's)xﬂ(ﬂ“" Mp 61('3) (eXP [_ @—27-!-] 's)mq) ’

so that g,do/df has no pole at
t=1,(*); also, it has no pole
at t=pur.

In our numerical calculation
we take @ = 2200 (corresponding
to I, ~150MeV). The value (5.84)
for g (=—8.1) gives fair agree-
ment with experiment (Fig. 3).
However, in nttp—> g'Att, § can
well differ from its value in yp —
—>n*n; with §=—16 the agree-
ment is good. Figure 3 shows
clearly that, with § of the estab-
lished order of magnitude, the cut
contribution affects forward =N —
—pA very little.

0,, doldtlmbGev)]

Fig. 3. — Calculations of gy (do/dt) for 0 002 004 006 008
mtp— o®A** at 8 GeV. Data: ref.(4). itr=|e-t,, [Gew]

min

8. — Conclusions.

Given a Regge pole and the Pomeranchukon exchange, we have formulated
a prescription for a parameter-free estimate of Regge-cut contributions in two-
body reactions. We have shown in detail that this prescription leads to amplitudes
in full agreement with the forms established by dynamical models of Regge
cuts and by general theorems on crossing-symmetric asymptotic expansions.
Applied to near-forward yp —=*n, toyp—=°p in the range 0<—1?<1.2 (GeV)?
and to w™p— At at small |¢| our approach leads to nearly parameter-free,
simple and unique descriptions of the experimental facts. The same approach
applied to yp —>n"n, yn—>7"p and 7N’ - N in 0 <—1<1.2 (GeV)? leads to
very encouraging results (?¢); and in other charge exchange reactions to simple,
at least qualitative, understanding.

A different approach to estimate Regge-cut contributions proceeds through
absorption-type corrections to Reggeized particle exchange. From the S-matrix
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point of view, this also is a prescription on an equal footing to ours. However,
for yp —=°p the absorption prescription fails to give a simple picture and
does not substantially differ from multiparameter pure Regge-pole fits.

A shortcoming of our approach is that its details have not, so far, been
established in any explicit dynamical model of inelastic reactions. Such a pos-
sibility is an interesting open question.

& % ok
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RIASSUNTO (%

Si formula un’approssimazione per calcolare i contributi dei tagli di Regge in alcune
reazioni anelastiche a due corpi e si dimostra che cid conduce ad ampiezze con tutte
le proprieta stabilite nei modelli dinamici dei tagli nel momento angolare complesso.
Con ¢id, un modello basato su un pione non cospirante spiega bene lo scattering yp -
~wtn quasi in avanti, con un parametro libero che si ottiene approssimativamente
da informazioni indipendenti. Con lo stesso modello (basato sullo scambio di Regge
di ©) si descrive bene yp->n®p per impulsi trasferiti (—#)}< 1 GeV; si ottiene senza
parametri liberi la dipendenza da ¢ di de/dt in un ampio intervallo di energie ed il rap-
porto delle sezioni d’'urto con fotoni polarizzati. Infine, col modello si spiega la gran-
dezza assoluta e la variazione di mw'p-»®A*+ per |¢| piccolo.

(") Traduzione a cura della Redazione.

JIBRKYIIHeC TOYMKH BETBJICHHS H ABYX-YACTHYHbIC HEYNDPYTHE PeaKIHH.

Pesiome (*). -—— @opmynupyercs IIOAXOH INA BBHMUCIEHMS BKJIAJOB pa3pe3oB Pemke
B HEKOTOpBIe ABYX-YACTHUYHBIE HEYNPYIH¢ DEaKUHH, U TOKA3BIBAETCH, YTO 3TOT HOIXOL
OPUBOAMT K aMIUIMTYJaM CO BCEMH CBOMCTBAMH, YCTAHOBJICHHBIMH B OUHAMHYECKHX
MOJENAX Pa3pe30B B INIOCKOCTH KOMIUIEKCHOTO MOMeHTA. TIpH 3TOM, MOAeIb, OCHOBaHHAA
HAa HEKOHCOUPATHBHOM IHOHE, XOPOIIO OOBSCHAECT yp — 7 +n BONM3M HamnpaBjeHHs BIEpes,
C TIOMOIIBIO OIHOTO CBOOOOHOTO mHapamMeTpa, KOTOPBIA NPUOIM3UTENLHO MONyYaeTcs
n3 HeszapucnMol mHpopmanuu. Takas ke Mogens (OCHOBaHHas HA Pepke-o6Mene o)
XOpOILIO ONHCHIBAET YD — np U IlepefaBaeMbix uUMIyNbcoB (— i)t <1 I'3B; f-3aBuCH-
MocTh do/di B 1IEpOKOk obnacTa 3HEPrHil, U IONY4aeTCs OTHOLICHHE ITOMEPEYHBIX CeUeHUH
MONSAPH30BAHHBIX GOTOHOB O3 cBOGOHBIX MapaMeTpoB. HakoHel, 5Ta MOZeNh XOPOLIO
00BsicHseT abGCOMIOTHYIO BEIMYHHY UM M3MEHEHHe T p — ®A*++ mpu Mambix [£].

(*) Iepesedeno pedaryueii.



