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Moving branch points in the j plane are investigated on the basis of analysis of multiparticle terms of the
unitarity condition in the # channel. A definite assumption about the form of an analytic continuation of
these terms into complex j is used. It is shown that in this case in the j plane there arise branch points of the
partial amplitude f;(#) corresponding to the production thresholds of two or more Regge poles with relative
orbital momentum equal to —1. In the case of two zero-spin particles in the intermediate state, the partial
wave has a singularity at negative integral values of the orbital momentum. Azimov has found that such
singularities shift to the right if the particles in the intermediate state have nonzero spin. The branch points
in the j plane result from the extension of this shift throughout the Regge trajectory. This mechanism of
emergence of branch points has been indicated by Mandelstam for the case of Feynman diagrams of a cer-
tain class. The presence of these branch points at j= jn(f) where j,(f) =na(t/n*) —n+1 changes essentially
the analytic properties of f;(#) in the ¢ plane, leading to the emergence in the ¢ plane of branch points at
t=1a(4), where #,(4) is the solution of the equation j= j,(f). The discontinuity &, f;(#) of the amplitude
fi(® on the singularity ¢=1,(5) corresponding to the n-Regge-pole production threshold (Regge-pole uni-
tarity conditions) is calculated. It is shown that this discontinuity has a form similar to the conventional
unitarity condition. ;™ f;(¢) = (1/2)[ f; (¢+4ie) — f; ((—ie)] being given by the product of the amplitudes
Nj,n of production of # Regge poles determined above and under a cut made in the ¢ plane from the point
t=1.(4). The discontinuity 8§, f;(#) of the amplitude f;(¢) across the cut connected with the branch point
t=1,(7) is calculated at ¢ — ¢, (). The discontinuity is shown to have the form 8, f; () =x B[t — . (§) ]* 2.
This means that the singularity of f;(f) has a logarithmic character, i.e., near it we have f;(f)=A4.
+Ba[j—jn(@® 1" 2In[j— j» ()], where 4, and B, have no singularities at j= jn(#). The results obtained will
be used elsewhere for analysis of the asymptotic behavior of the diffraction scattering amplitude in the region
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of not-large values of the momentum transfer.

I. INTRODUCTION

EVERAL years ago it was found that the asymptotic
behavior of the elastic scattering amplitude A4(s,z)
as s—o can be determined by singularities'™ of
partial-wave amplitudes f;(¥) as a function of angular
momentum j. Analysis of the asymptotic behavior was
based on the hypothesis about a vacuum pole*® whose
trajectory j=a(f) passes at {=0 through the point j=1.
The assumption about the presence of moving poles in
fi(®) and in particular of a vacuum pole was natural
since at integral physical j, the amplitude f;(¥) has
resonance poles on the unphysical sheets of the ¢ plane,
whose location depends on j. It is these resonance states
that give rise to the poles of f;(¥) in the j plane.

Until recently there were no reasons in evidence for
the emergence in the j plane of any moving singularities
except poles. Recently, however, Mandelstam? gave his
arguments in favor of a possible emergence in relativis-

1T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960).

2V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962 (1961)
[English transl.: Soviet Phys.—JETP 14, 1395 (1962)].

3 M. Froissart, 1961 (unpublished).

4V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 667 (1961)
[English transl.: Soviet Phys.—JETP 14, 478 (1962)].

8 G. F. Chew and S. Frautschi, Phys. Rev. Letters 7, 394 (1961).

6S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962).

7S. Mandelstam, Nuovo Cimento 30, 1113, 1127, 1148 (1963);
also J. C. Polkinghorn (to be published).

tic theory of moving branch points resulting from singu-
larities at integral negative j8 and their shift® for non-
zero spin particles. These singularities correspond to the
thresholds of production of several resonance states
(Regge poles) with integral negative orbital momenta
L=—1, —2,---. They can be regarded as continuation
to complex j of the branch points which are located at
integral physical j on the unphysical sheets of the ¢
plane and which correspond to the thresholds of several
resonances'® with physical values of j.

The presence of moving branch points considered by
Mandelstam cannot be regarded as rigorously proved.
However, the arguments in favor of this point? are so
serious that it seems necessary to us to investigate in
detail these branch points and their effect on the asymp-
totic behavior of the amplitude.

This paper is the first part of this investigation. The
branch points were obtained by Mandelstam from an
asymptotic analysis of a class of perturbation diagrams.
From Ref. 7 it is clear that these branch points are con-
nected with multiparticle intermediate states. Therefore,
the investigation of these singularities requires analysis

8V. N. Gribov and I. Ya. Pomeranchuk, Zh. Eksperim. i Teor.
Fiz. 43, 1556 (1962) [English transl.: Soviet Phys.—JETP 16,
1098 (1962)7; Phys. Rev. Letters 2, 232 (1962).

9Va. Azimov, Zh. Eksperim. i Teor. Fiz. 43, 2321 (1962)
[English transl.: Soviet Phys.—JETP 16, 1640 (1963)].

10 G. F. Chew (private communication).
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MOVING BRANCH POINTS IN j PLANE

of multiparticle unitarity conditions analytically con-
tinued into complex j.

This analytic continuation involves considerable dif-
ficulties and the problem has not yet been solved. An
assumption is used in this paper about the form of this
continuation near those values of j which are singular
for the amplitude f;(¢).

To understand the structure of this continuation, let
us consider the terms of the unitarity condition [for
Imf;(t)] corresponding to the production in the inter-
mediate state of two particles one of which has nonzero
spin ¢ (and mass M). These terms can be written as

hd Zp(lyM2)“2) I‘(.7+1_m)
#2 T(j+1+m)

where fjn(t) is the helical partial-wave amplitude of the
production of the two particles and p=p(t,M*u?) is
their relative momentum. As was noted by Azimov® this
expression has a pole at m=j+1 and in particular at
j=o—1 (due to a pole of the I'-function). Near the pole
j=0o—1 the expression has the form

1 2p(t, M%) fin() fi* (D)
T'(20) jt1—o

On the other hand, the contribution from Mandelstam’s
branch point to the unitarity condition for Imf;(f) has
(as is clear from his paper”) this form:

/-(tllz—u)2 2p(tt,u2)  Cltt)dh
fr o jtl—a(t)’

where p(t¢1,u%) is the intermediate state relative mo-
mentum of a particle and a pair of particles having a
Regge pole at /=a(¢1) and C(4,1) is a certain function
of ¢ and ¢, [having at p— 0 the form const/ (p?(¢,t1,u2)/1),
see below, Eq. (45)].

Comparing the last two expressions we can see that
the branch-point results from integration over the mass
t1=M? of the particle pair state with a variable spin
l=0=a(t:). This circumstance can be interpreted as
the fact that the Azimov singularity extends all along
the Regge trajectory.

From the above comparison it is clear what is essen-
tial for investigating branch points in the multiparticle
unitarity terms: We must know those of these terms
which contain three-particle production amplitudes at
m close to 741 and an orbital momentum of the pair
equal to 7 and close to its pole value I=m=a(t1). The
situation is similar when more than three particles are
produced.

Accordingly, a method of analytic continuation of the
unitarity conditions to complex j, corresponding to
form (1) of the result is proposed in this paper and used
for investigating the singularities in the j plane. We do
not contend that this method is accurate in the general

Fim(®) fim* (1) 5

m=—aq

t1/2

)
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case. However, it reflects correctly the mechanism of
generation of Mandelstam’s branch points of the ampli-
tude f;(#) and therefore seems to reproduce accurately
the part of f;(¢) singular in the j plane.

The location of the branch points and their character
can be found with the aid of the analytic continuation
method proposed. For simplicity let us consider only
those branch points which result from a vacuum pole.
A straightforward analysis made below shows that at
£2>16u? in the j plane there are many singularities and
the location of some of them depends on the masses u
of particles. However, at ¢<16u? on the physical sheet
of the j plane there remain only singularities j= j.(¢),
where

In(t) =na(t/n*) —n+1 2)

[or displaced with respect to j.(¢) by an even number]]
whose location depends only on the a(f)-pole trajectory.
These singularities have been noticed by Amati,
Fubini, and Stanghellini'! (see also Ref. 12).

The moving branch points in the j plane lead to the
partial-wave amplitude f;(¢) at a fixed j as a function of
¢ having on the physical sheet, apart from the normal
threshold singularities, the branch points ¢=¢,(j) whose
location depends on j. Each of them is the threshold of
production of a certain number # of Regge poles. The
unitarity conditions determining the discontinuities of
fi() across these singularities are found in the paper.
These Regge-pole unitarity terms are analogs of the
conventional ones in the sense that they are given by
the integrals of the product of the production amplitudes
of several Regge poles above the cut by the value of the
same amplitude under the cut (associated with the
corresponding singularity).

II. MULTIPARTICLE UNITARITY TERMS

To obtain the Regge singularities of partial-wave
amplitudes we have to make an analysis of the multi-
particle terms of the unitarity condition. Let us con-
sider the partial-wave four-point amplitude divided by
ko¥=[(t/4)—u?] so that it would, if continued into
complex j, be real below the threshold /=4u2. Let us
denote it by f;(?).

The threshold singularities of the amplitude f;(?)
at t=t,=(nu)? where n=2,3,4,--- are indicated in

( u D) Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29

1962).

21, A. Verdiyev, O. V. Kancheli, S. G. Matinyan, A. M.

Popova, and K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz.

‘26, 17)%0 (1964) [English transl.: Soviet Phys.—JETP 19, 1148
1964)].



B 186

Fig. 1. Let f;”(¢) denote the value of this amplitude
after enclosure in the plane of Fig. 1 of the singularity
tn and A, f;(0) = (1/24)[ f;(0)— £, ()], its discontinuity
across the corresponding cut. Unitarity gives this dis-
continuity in the form

&w@=§/fm%mﬂ

X fj.)\n(n) (ty"'n_)l’j,hn(tﬁn)drn ) (3)

where f;,(¢,7.1) is the amplitude of the transition of
two particles into » particles, A, are the angular mo-
menta, 7, are the energies characterizing (besides j
and £) the state of % particles, and p;»,(¢,7) is the statis-
tical weight of this state. By fi\,™(f,7,~) we denote
the value f;»,(¢,7,) after enclosure in the ¢ plane of the
singularity at ¢=(nu)? and change of the sign of the
infinitesimal imaginary additions to the energies 7.

The state of a system of % particles can be determined
by dividing the particles arbitrarily into groups and
determining the energies, angular momenta, and helici-
ties of these groups.:*-18

For example, the state of four particles can be deter-
mined by dividing them arbitrarily into two pairs and
determining the quantities: (1) /3, 71, and {1, the orbital
angular momentum, its projection, and total energy
squared #; of the first pair in its c.m. system—the pro-
jection m; (usually called helicity) can be conveniently
determined on the direction of the total momentum of
both particles of this pair (in the over-all c.m. system);
(2) ls, ms, and ¢, which are the same quantities for the
second pair—here m. is the projection on the direction
of the same momentum and the helicity in this case is
not ms but —ms; (3) j and ¢ are the total angular
momentum and total energy squared of all the four
particles.

Therefore, when n=4, \, in Eq. (3) denotes the set
of numbers Iy, m1, Iz, ms, and 7, that of energies ¢; and
Iy, i.e.,

Findt70)= fistnma;to,ma(t; L1,te) -

Let us consider in detail the state with =4 and the
corresponding term of the unitarity condition. For n=4
the quantity p;,», has the form

1
pj,X4(t,T4) = zcj(llyml; lZ)mﬁ)
' 25(1; 111s) 202+ 22ttt

12112

G

12 t11,2

18 M, I. Shirokov, Zh. Eksperim. i Teor. Fiz. 39, 633 (1960)
[English transl.: Soviet Phys.—JETP 12, 445 (196 )

A, J. Macfarlane, Rev. Mod.fPhys. 34 41 (1962).

15 G, C. Wick, Ann. Phys. (N. Y.) 18, 63 (1962).

K. A. Ter-Martlrosyan (unpubhshed)

17 K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 44, 341
(1963) [English transl.: Soviet Phys.—JETP 17, 233 (1963)]

18 A. M. Popova and K. A. Ter-Martirosyan, Nucl Phys. 56,

107 (1964).
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where!?
P15 tayte) = (o) +(li—12)2 T2 (5)

is the relative momentum of the centers of inertial of
both pairs of particles, k1= p(t1,u%,u?) and ko= p(ts,u?u?)
are the momenta of particles in the first and second
pairs, and

%t—llz[ﬁ_

T(j+1—mi—ms)

Ci(\g) = Ci(lyms,lgms) = ——————
L(j+14-my+ms)
% LA DT+ 1—my) Qla+1)T(la+1—ms)
T'(l+14-my) T'(lo+14-m2)

This form of the statistical weight p;,», and, in particular,
the factor C;(\s) results from the choice of normaliza-
tion® of the amplitudes f;, viz., the quantities f;,
are connected with the production amplitude of three
particles 4 with given momenta via the integrals of the
form?13:18;

ﬁm%mm=/Amhbm0

XPllml(nl)Plzmz(nZ)Pj,m1+m2(n0)dll1dn2dn0 ,

where no=po/po, Na=Kko/ks, a=1,2. These inte-
grals contain associated Legendre polynomials Py, (%)
= Pin(2)e?™¢ instead of the normalized spherical func-
tions Vin(n) differing from them by the factor
LI+ 1)T(+1—m)/T(I+14m) /2. If the amplitudes
fin, were determined through spherical functions, they
would, if continued into complex 7, /1, and I; (which
would be used below), have purely kinematic root singu-
larities in these variables due to the poles of the I'
functions.

From the form (4) of p;,, it can also be noticed that
the factors kole=[(ts/4)—u2]/2 where a=1,2 have
been isolated from the amplitudes.

The sum over A4 and the integral /'dr, in Eq. (3) at
n=4 denote

2 [ drs
M
© © 1y (51/2_2”)2 (g1/2_¢21/2)2
- 2 £ % | .
U1=0 mi=—11 l2=0 ma=—1l2./ 4,2 4u?

7

The amplitude fi\(;{1,t2) satisfies unitarity not
only in the ¢ but in the #; and the ¢, channels; the latter
channels correspond to the interaction of the produced
pairs of particles with angular momenta /; or l,. In the

¥ In the following we consider the intermediate states with
generation of identical pions with neglect of isotopic variables.
Hence the introduction of the factor 1/4!in Eq. (4). The problems
involved in the identity of particles and symmetry in- their
permutations are discussed below in detail.
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i1 channel the (two-particle) unitarity condition has the
form

1
;[fj.m(l; tyt2) = fing(t; 1) ]
1

k12l1+1
= .y Sinalt; 1P te) fr(t),  (8)
1

where fia(¢; 81?,ts) is the amplitude f;a,(¢; t1,t0) after
enclosure in the #; plane of the singularity at f;=4u?
and f;,(#1) the partial-wave scattering amplitude of the
two particles produced. It satisfies the unitarity condi-
tion of the form

1 1 220+t

Asfuy(t1) =—Lfu(t)— fu® (t) J== ———fu, @ (1) fu(t2)
21 2 2

which can be written as
1 1 2k 20t
_[Dll(tl)—Dl2<2)(t2)]=— 5 (9)
21 2 2

if this notation is introduced,

Ju(t)=—1/Dy(t1). (10)

The factor § in Eq. (9) arises because of the identity of
the particles.

Taking into account Eq. (8) and the same unitarity
condition in the f; channel we notice that f;, can be
written as

fina=Ging(t; tiyts)/ Diy(t1) Diy(ts) (11)

where Gj, has no singularities at #1=4u? and f2=4u2.
Quite similarly we have

Find®(t; i yts) = Gip B (85 t,t2) / Diy @ (8) Dy, D (1) . (12)

Substituting Egs. (11), (12), and (4) into integral (3),
(7) and noticing that by virtue of Eq. (9) we have

1 1 2k1211+1 2k2212+l
Dy, (1) Diy(t2) Diy® (1) D1, P (82) 112

t21/2
. 1 1 1
D) Dh‘”-(h)> (Diz(tz) .Dz;”(zz))’ .

we can write the right-hand side of Eq. (3) at z=41ina
form similar to that used by Mandelstam?:

22 1
A4fj(t) =L )\24, Cj()\.;)@; /cz dtzﬁ‘ dh

Gina(t; 1,t2)Gin P (85 tayta) 2p(8; L,te)
Dy, (t1) Dyy(t2) 0

, (14)
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where C; and Cj are the contours indicated® in Figs. 2
and 3.

Let us clarify the general principle of introduction of
quantum numbers and form (3) of unitarity using as
examples the cases where #=6 and #=8 (odd numbers
except =23 are of no interest to us in the following).
The state of six particles can be determined by assign-
ing, apart from j and ¢, the angular momenta and ener-
gies of some four-particle and two-particle group. Let
them denote lyg, 719, t19, and I3, ms, f5. To determine the
state of four particles it is necessary to divide them as
was done above (for #=4) into pairs and determine the
quantum numbers /1, m1, t; and lg, me, {3 of each pair.
Hence, in the case =6 we have o= {l1,m1; ls,ms;
liamaz; ls;ms} and 6= {t1,00,t19,3} .

The state of eight particles can be determined by
dividing them into two four-particle groups and de-
termining, apart from j and #, the quantum numbers
l12, s, b1z, and lg, ma, 34 of both groups. Besides, we
must assign the quantum numbers l,, m,, {, where
a=1,2,3,4 of those pairs out of which the first and
second four-particle groups are made.

Another method of describing the state of eight par-
ticles can be obtained by dividing them into groups of
six and two particles and determining j,¢ and the quan-
tum numbers l193, #0123, f123 Of the six-particle group and
ls, ma, 14 of the two-particle group. Besides, to describe
the state of six particles (in their c.m. system) one has
also to introduce the same quantum numbers as in the
case #=0, i.e., A\¢ and 7.

The amplitudes f;, and fj, can be written similarly
to (11)

Ginelt; tinytaytasts)

- Dzl(ﬁ)Dlz(tZ)Dla(té’);

Gj,ks
i< : ’

fI Dla(ta)

a=1

(12a)

Jihe

G and Gj,, having no singularities at {,=4u?, where
a=1,2,30rae=1,2, 3,4. ‘

Using the same normalization of these amplitudes as
in the case n=4 we obtain for p;,\, the value

pine= (1/61)C;(l12,m12; lsms)Cry,(l1,my; Lams)
Zp(t,tn,ts) 2?(1512,51,152) 2k12l1+1 2k22lz+1 2k32la+1

tl/z t12”2 t11/2

(15)

2 As Ya. Azimov pointed out to these authors, the integrand
function in a separate term of the sum over A4 in Eq. (14) cannot
be represented as a single analytic function throughout the region
of variation of #; and ;. However, this is not essential in our case
since sum (14) will be understood in the sense that first the
summation over all the values of the angular momenta (over
Ne=l1,m1; lo,ms) is performed whereupon the function obtained
which is now analytic in ¢ and ¢, is integrated over the complex
contours C; and C. ) )

t21/2 t31I2
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Therefore, for n=6 the unitarity condition (3) is

Aefi(t)= Zs 6!c] o / / / dta / dta

C3C2C1
2p(t; tigyts) 2p(te; tu,te)

11/2 t12112

< Gj.)\sGJ‘.)\e(e)
Dy, (1) Dy,(t2) Dyy(t3)

where
7\e=lezm12 2um lemz 2 tgmg-
The integration over /12 in Eq. (16) is performed within
(124121122 < t1a < ($H12—15112)2 (17a)

and over f1, ts, t3 over contours similar to C; and C;
(Figs. 2 and 3) around the point #,=4pu? to these points
(located as in Figs. 2 and 3 on both sides of the cut):

over t3 to t3=({112—4u)2,
over #; to tp= (12— {3112—2u)2,
over /y to ty= ({112 — 1512 —1,1/2)2,
In the general case of an arbitrary even number of
particles, the unitarity condition (3) can be written
quite similarly to Egs. (14) and (16):

n

, (16)

(17b)

A fi(l)= Z Cy/( n)

M (2n)! (29)"

J’)‘”(2n)

X | Kju (,.n)_i)‘”_____
f H D la(ta)

a=1

(18)

drn,

where K ;,,/ is the product of n—1 factors of the form
Zﬁ(tab; ta7tb)/tabll2 )

one factors for each combination of two groups of par-
ticles with energies ¢, and £, into a group with energy
“t43. Similarly, C; is the product of #—1 factors (6), one
factor for each such combination. The integration
J¢, dr. over all the variables 24, ts, tas, €tc., is performed
over a region corresponding to energy conservation, of
type (17a,b), and the integrals over #, (over particle pair
energies) are taken not over lengths of the real axis but
over contours similar to Figs. 2 and 3 around these
lengths and the points £,=4u?.

III. DIFFICULTIES OF ANALYTIC CONTINUATION
INTO THE j PLANE

The unitarity condition (14), (16), or (18) has been
written for integral j. Its continuation into complex j

GRIBOV, POMERANCHUK,
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is an intricate problem the solution of which requires a
knowledge of the analytic properties of the inelastic
amplitudes f;»,.

For the sake of definiteness let us consider the
four-particle term (14) of the unitarity condition.
Even when the analytic properties of the amplitudes
Sine= fi;t1,mu; 12,me are such that their analytic continua-
tion into the j plane is unambiguous for integral 4, m1
and ls, ms the following difficulty is encountered.?!
Since the quantity |mi+ms| in the sum (14)-(16)
varies from 0 to c running through all integers, the
function T'(j+1— (m1+ms)) which enters as a factor
into the coefficient C;(\s), Eq. (6), in the right-hand side
of Eq. (14) has poles at all integral positive j. These
poles would not be in evidence if the amplitudes f;,
(or G;,,) had direct physical meaning for all integral j
since in this case Gj,», would have to be zero for all in-
tegral j for which |mi+ms| > j+1.

However, the analytic continuation in the j plane
[of the amplitudes f;(#) and f;, alike] requires in any
case the introduction of signature. In other words, the
analytic continuation of fj;z,my;1me has the meaning of
a physical amplitude only for even or only for odd j.
Therefore, for integral j of “wrong” signature (odd for
positive signature and even for negative signature), the
function fj,z1m,1,m, Deed not vanish.

A more detailed analysis of some perturbation dia-
grams shows that the partial-wave amplitude f;, cor-
responding to these diagrams at the ‘“wrong” signature
points does not indeed vanish. For example, it is not
zero for the case of those Feynman diagrams which,
considered as the amplitudes of production of two par-
ticles with spins /y, /» (with masses £1'/2 and £,!/?), have a
nonzero spectral function p(s,%). One of these diagrams
is indicated in Fig. 4(a). [On the other hand, in the case
of the diagrams of Fig. 4(b) for which only the spectral
function p(s,f) is nonzero, the amplitude fj11mi,1ms
vanishes not only at all integer j for which j+1< m1+-m.
but also®® if j and m=m14m, are not integers but the
difference (mi+m2)— (j+1) is an integer. ]

Thus, in the form (14) [with sum (7) over m; and m.
extended from — o to -+ ] the unitarity condition
cannot be continued into complex j since the right-hand
side of Eq. (14) would have an infinite number of poles
at all integral positive j=# of “wrong” signature.??

AN 3 oy 3 A Fic. 4. Examples of
(AA 44 diagrams of production
of two particles with
t t nonzero spin (J; and Jy)
Lt Lt having (a) p(s,2) #0 an(;l

2, -
a) 3] Y L (b) p(s,2) =0, P(&D# .

21 The authors are indebted to Ya. I. Azimov, G. S. Danilov,
and I. T. Dyatlov who have directed their attention to this
circumstance.

22 This would contradict that well-known fact that the partial-
wave amplitude has no singularities in the right-hand part of
the j plane.
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To obviate this difficulty let us determine the analytic
continuation into complex j of the right-hand side of
Eq. (14) not as a sum over integral Iy, my, ls, mq, as in
Eq. (7), but as contour integrals over these variables.

IV: ANALYTIC CONTINUATION OF THREE-PARTICLE
UNITARITY CONDITION

To avoid cumbersome operations let us first describe
the transition to the contour integrals over / and m as
exemplified by the unitarity condition term correspond-
ing to the production of three spinless particles in the
intermediate state. We assume that two of these par-
ticles are produced in a state with angular momentum
! and helicity m. The corresponding term in the uni-
tarity condition for f;(#) has a form analogous to
Eq. (14):

0 0 2
Asfi)=2 2" 2 ;C,»(l,m; 0,0)

m=0 l=m

1 Gi;lm(t;tl)GJ’: lm(g)(tatl)

2iJ ¢y D, (t,
(t) (19)
Zp(t; t11ﬂ2)
X——dt,
tll2
(j—m+1) QI+1D)T(—m+1)
Ci(lym; 0,0)=—
I'(j+m+1)  T(+m+1)

the contour C; being exactly the same as in Fig. 3, but
ending at the point #= (#'/2—pu)?. Equation (19) takes
into account the fact that the product C;Gj;imGj;im®
does not change?® if m is replaced by —m, i,
the sum Y.;—¢° Y. m—i' can be written in the form
2> meo® 2 1—m™ where the prime means that the term
with m=0 contains a factor of 3. For the three-particle
production amplitude fir= fim(tt) (Fig. 7) in Eq.
(19) a value analogous to Eq. (11)

Siim(t,11) = Gjim(t,t1)/ Da(tr)

was substituted and Eq. (9) was used for D;(ty).

To continue analytically the right-hand side of Eq.
(19) to complex j we can write the sum over /, m as
contour integrals

(20)

s % 5o / o o
= 2 - .
m m=01=m (24)%.J 5 tanmm /;, tanw(l—m)

The contours L and M are indicated in Figs. 5 and 6;
the contour L encloses the point =, m+-1, ---, and

Aft)-2
x|x x xdﬂ}) m+2
F1c. 5. The contour m
of integration over / in . e

@1), (19), A4).

T

{-plone

% M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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F1c. 6. The contour
of integration over m
in (21), (19).

ol-1
\ Alt)
x x \X x M
i 2 3 4

the contour M encloses not only the poles of 1/tanmrm
[at m=0,1,2,- - -; the term with m=0 is reproduced by
the right-hand side of Eq. (21) without the factor %,
yet it is not essential for the following], but also the
poles of the function T'(j—m-+1)/T'(j+m-+1) entering
into C;(I,m;0,0). The latter condition is necessary for
integral (21) to have no singularities at arbitrarily
large positive integral j for which the poles of the func-
tion T'(j4+1—m) indicated by circles in Fig. 6 (at the
points m=j+14», »=0,1,2,---) coincide with the
poles of 1/tanmm.

The continuation of Eq. (19) directly as the sum over
integral I, m corresponds to the form of Eq. (21) with
such a contour M’ which would not enclose the poles
T'(j+1—m) (see Fig. 6). In this case integral (21) has
the singularities indicated above: poles at integral j
since as j — # the singularities I'(j+1—m) and 1/tanrm
will pinch the contour M’.

It is worth noting that since the contour of integra-
tion M over m in Eq. (21) encloses the poles I'(j+1—m)
the expression of the unitarity condition (19) in the
form (21) is ambiguous. Indeed, if 1/tanmm in Eq. (21)
is replaced by (1/tanwm)+x(j,l,m) where x is any
function of j, /, m without singularities inside the con-
tours L and M in Figs. 5 and 6, then integral (21) will
change?* due to the contribution of the poles of the func-
tion 1/tanzm. The function x(4,/,m) must actually be
taken into account in the right-hand side of Eq. (21), its
form being given unambiguously by the limiting condi-
tion for integral (21) to be smaller than exp(irj/2) at
Imj— = oo. To obtain an explicit form of x(7,/,m) we
must know the analytical properties of the functions in
the right-hand side of Eq. (19) in the planes of the vari-
ables 7, /, and m. However, we shall only be interested
in the singular part of integral (21) as a function of j.
Therefore the possibility (or necessity) of adding
x (J,4,m) to 1/tanmm is ignored in the following under
the assumption that the factor [1+4x(4,/,m) tanmm /2
is included in Eq. (19) in the definition of the func-
tions Gy, im-

Let us show how the singularity which has been dis-
covered by Mandelstam? follows from Egs. (19) and
(21). Let us assume that when /=a(t;)) the function
Dq(ty) vanishes, i.e.,

Dy(t)=—[1/g*(t) J(—e(tx) ] (22)

when ! — «(#1). This corresponds to the Regge pole of
the five-point amplitude of Fig. 7 in the channel #;

24 Addition of an analogous term to 1/tanz(!—m) in Eq. (21)
does not change integral (19), (21).
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¢,mti
j t Tic. 7. The five-point amplitude.

(Fig. 9) and corresponds to the conventional form of the
elastic scattering amplitude (10)

filt)=g(t)/[—a(t)], 1—alt),

i.e., the contribution from the Regge pole, Fig. 8.

It is clear from Fig. 5 that integral (21) over / has
poles in m at the points m=a(t1), a(t) —1, a(ty)—2,- -
(indicated by crosses in Fig. 6) because of coincidence
in Egs. (19) and (21) of the zeros of tanw(l—m) with
those of D;(¢1). These poles must be taken into account
in subsequent integration over m. In particular, the
poles of the function I'(j+1—m) may coincide with
these poles, as j is varied in the complex plane. As a re-
sult the double integral (21) over [ and # will have poles
in the j plane at the points j=a({y)—1—%, where
k=0,1,2,---.

Let us consider the extreme right singularity of in-
tegral (19), (20) in the j plane corresponding to 2=0.
Substituting Eq. (22) into Egs. (19) and (21), we can
readily calculate the singular part of the integrals over
1, m resulting from the poles (crosses in Figs. 5 and 6) of
the integrand functions at m=a(t) and I=a(f):

GRIBOV, POMERANCHUK,

(23)

1 di Gj;lmGj;lm(s) (2l+ l)I‘(l—m—I— 1)
Z—i rtanw(l—m)  Di(4) r{{+m—+1)
2 GianGian®(2a+1)T(@—m+1)
a(t)—m T(atm+1)
) dm/2i g2Gj;amGiiam® (2a+1)T(a—m+1)
/M tantm  a(t)—m Tla+m-+1)
F(j—m+1) . ngj;aan;aa(g)
X—————=Aj)——
I'(j+m+1) JH1—a(t)
where
2a+1) 1 2
pe(j) = (24)

[(20-+1) T(j4at1) tanma(s)

is a function having no singularities in the region a0,
J+1>a(t;) essential in the following.

Using this result, we can write the singular part
Ay’ fi(t) of interest to us in this form

0 21 A(5,0)(gGia)(8Gia™®) 2p(t; t1?)
A fi(t)=—— ,
=% o jtl—al(ty) e
where Gj. is written instead of Gj o for the sake of
brevity.

It is worth noting that the quantity gG;. has the
meaning of the amplitude for the transition of two par-
ticles into a Regge-pole and particle. If, indeed, the pro-

AND TER-MARTIROSYAN

duction of three particles is regarded as occurring
through a virtual Regge state, it is natural to confront
this process with the diagram of Fig. 9 and the quantity

1
Ny
I—a(ty)

where ;. is the Regge-pole and particle-production
amplitude.

On the other hand, when !— a(f;) the amplitude
fing Just has, according to Eqgs. (20) and (22), the form
(25) with N;o' = — gG;a. Therefore, if the amplitude

ZVJ'U! :A(j7a)gGil¥ ) (26)

differing from N’(j,«) only by the standard factor
—A(j,a) is introduced in the right-hand side of Eq.
(24), the constant g, of the decay of a Regge pole into
two particles in the intermediate state drops alto-
gether out of the right-hand side of the expression for

A fi(0):

g<t1) ’ (25)

' fi(®) 21
A () =—
B S ami

Nia(t i) N o ® (tt1) 2p(; t1,u?)
x/ e o K. 1)
C1

j—i—l——a(h)

It can readily be noticed that after integration over
t1 the right-hand side of Eq. (27) proves a singular func-
tion of the variable j. The branch point in j of integral
(27) results from the coincidence of the zero of the
denominator with the singularity of p(¢;#4,u%) at
f1=(#"2—u)? (with the upper limit of the integral
over fy), 1.e., at

t1/2

j=al(@ =)~ 1.

This branch point has been discovered by Mandelstam
(this singularity was considered in detail by Simonov.25)

In conclusion of this section let us discuss this prob-
lem. We have found only one branch point resulting
from a Regge pole in the amplitude of interaction of
only one pair of particles (let us denote them by 1
and 2). Obviously, identical branch points must result
because of Regge poles in the interaction amplitude for
particles 1 and 3 or 2 and 3. However, no such singu-
larities are in evidence in our expression of unitarity in
the form (19) and (21) in which the state of three par-
ticles is described in particular by the angular momen-
tum / and helicity m of the pair of particles 1 and 2.

It might be helpful to recall that a similar problem
arises for integer j if we want to find the contribution

it A p Fic. 8. Regge-pole diagram for f;(¢).

% Yu. A. Simonov, Zh. Eksperim. i Teor. Fiz. 48, 242 (1965)
[English transl.: Soviet Phys.—JETP (to be published)].
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to the three-particle unitarity condition from the real
physical resonance interactions of not only particles 1
and 2 but also 1, 3 and 2, 3 as well.

Obviously, if we choose as the variables, the angular
momentum and the helicity of one pair, e.g., /13, 712 of
particles 1 and 2, a resonance in the state of this pair
with spin sy2 will appear only in those terms of the sum
over l12 and mie fOI' Wthh l122512, S12<’WL12<812. The
other resonance interactions will show in that the sum
over 1o will prove divergent, if the energy of particles
1 and 3 (or 2 and 3) is made to tend to its resonance
value. This is clear from the fact that the expression of
the unitarity conditions as the sum over /12 corresponds
to the expansion of the three-particle production ampli-
tude in the variables #13 and #93 at fixed £ and #40. In this
case the singularities in #;3 and s (resonances) must
show in divergence of the sum.

Instead of the investigation of the divergence of the
sums, it is more convenient to find the contribution from
all the resonances, rewriting the unitarity condition in
all possible (three, in our case) ways and adding up the
results.

These considerations are also fully applicable to the
case where we are interested in the contribution from
Regge poles due to the interaction of a certain pair of
particles in the intermediate state, to the singular part
of the quantity Asfj,.

Thus in the case of identical particles the right-hand
side of Eq. (27) should be multiplied by 3 in order to
take into account the contribution from all the three
interactions of 1 and 2, 1 and 3, and 2 and 3. In this
case the factor 2/3! in the right-hand side of Eq. (27)
changes to unity.

V. ANALYTIC CONTINUATION OF FOUR-PARTICLE
UNITARITY TERMS

We continue analytically the four-particle terms (14)
of the unitarity condition similarly to Eq. (21), replac-
ing by integration the summation over A; (i.e., over
ll, mi, 12, '}'ﬂz) in Eq (14:)

To this end let us write the sum (7) over A4 in the
form

o« e 0 0
=23 X XA X X ,(28
Limileme mume >0 li=m1 la=m2 mlzg li=m1 la= —ma
me

which, just as Eq. (21), takes into account the fact that
the expression in Eq. (14) under the sign of summation
over A4 does not change as w3 and m; are replaced simul-
taneously by —m; and —ms. The formulas obtained in
the following for the four-particle case will have a real
and not illustrative (as in the three-particle case) mean-
ing. Therefore, it should be borne in mind that in any
case the amplitudes f; = fj;umi,12my cannot be con-
tinued as functions on /; and /; from all integral values
Iy and /; and it is necessary to introduce a signature with
respect to these variables. In the following, with respect
to both I; and I, we are interested exclusively in a

F16. 9. The five-point amplitude with a '
Regge pole corresponding to the inter- 9
action of a pair of particles produced
(with c.m. system energy #1/2). 8

vacuum pole which occurs only in a state with positive
signature. Therefore, we consider merely that part of
the sums (28) in which /; and /; are even numbers.

In this case the sum over /; and m;,, for example, in
the first term of Eq. (28) can be represented as

0 0 N o ©0 0
2 2= X Z+ X 2
m1>0 lieven m1=0,2,4,--- h=m1 mi1=135,-+ Li=mi41

l/m

or, passing to contour integrals as in Eq. (21), we can
write

1 / dmq dly
(41:)2 M tan(wml/Z) I tan[w(ll—ml)/Zj
1 dms dly
+ - / (29)
(44)? J ar, cot(mma/2) J 1, cot[w(li—mi)/2]

where M and L; are the contours such as indicated in
Figs. 5 and 6.

In the previous section it was shown that the singu-
larity of the total integral results from values of / close
to m. In the second term of (29) the quantity /; is always
larger than m; at least by unity. Taking this into account
we can note (if we perform on this term all those opera-
tions that are performed below for the first term) that
this term has a singularity in j removed in the j plane
to the left by unity as compared with the singularity of
the first term. We shall not be interested in such singu-
larities and hence we omit altogether the second term in
Eq. (29). Similarly we can ignore the entire second
term in Eq. (28) since it does not lead to singularities
essential in the following (as is shown in detail in Ap-
pendix A).

Thus we can write the unitarity condition (14) as

22 1 dm1 dll
Adfy=——v /
4! (41)4 My tan(rml/Z) Ly tanl}r(ll—ml)/Z:]
dM’L2 dlz
J/
My tan(rmz/Z) Lg tanl:ﬂ'(lz—"}’}m)/ZJ

dly
2
GinGin® 2p(1; t,t2)
Dy, (t1) Di(t2)

where the factor C;(ly,m1; l2,m2) was determined above
[see Eq. (6)], the contours L; and L, coincide with the
contour of Fig. 5, and the contour M, includes the

dis
X2C;(liym; layms) / —
C2 2 1

,» (30)

t1/2
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of integration over m.
in the four-particle
unitarity-condition term
(30).

Jed-my

mel-my

singularities of the function I'(j41—m;—ms) con-
tained in C;(ly,m1; lams) (Fig. 10).

Repeating the treatment of the previous section we
can come to the conclusion that after integration over
by, Iy, and me which must take into account the Regge
poles in /; and I, [i.e., the zeros of Dy (¢1) and Dy(ts)
at li=a(t1), le=a(tz)] the integrand function in the
integral over m; has poles at the points: (1) m1=0, 2,
4,. - - because of the zeros of tan(w/2)m1, (2) mi=a(ti),
a(t)—2, etc., resulting from integration over /; and
) mi=j+1—a(ts)+k, k=0,1,2,--- resulting from
integration over /; and ms. The mechanism of emergence
of these poles is perfectly similar to that considered in
detail in the previous section. These poles result as the
poles of the function I'(j+1—m1+ms), contained as a
factor in the coefficient of Eq. (6), are taken into account.

All these singularities are indicated in Fig. 11. The
contour of integration My must be chosen so that the
poles of the third type lie inside, as indicated in Fig. 11.
Otherwise, the right-hand side of Eq. (30) has singu-
larities (poles) at an arbitrarily large j because of co-
incidence of the third-type poles with the singularities
of cot(r/2)mi. Note that the possibility of adding the
function x to cotmm discussed in the previous section
holds here for both cot(wm1/2) and cot(wms/2).

The final integration in Eq. (30) over the contour
M, of Fig. 11 leads to a singularity because of coinci-
dence of the poles of the second and third types at the

dm1

Fic. 11. The contour
of integration over my
in (30).

Alfi)-1
(lo L3 4 6

o o o o

3’*'““"‘)’ 3#3‘0‘ t4)

R

following values of j
J=alt)+alt)—1—Fk, k=0,1,2,---.

If the trajectory a(?) at a certain /=m? passes through a
physical value (e.g., a=0), this formula corresponds to
the Azimov displacement of the singularity at j=—1.
However, when the particle production amplitude satis-
fies the Mandelstam representation it is known that %
is to be even (k=0, 2, 4,- - -) because of the symmetry
properties of p(s,%) with respect to replacement of s by
u. If a symmetry of this kind holds for Regge-pole pro-
duction amplitudes as well, the coefficients of the singu-
larity are zero for odd k. If it is assumed that this is the
case in reality we can, using another choice of function x
(see Sec. IV), write the latter so that only even % figure
explicitly. This can be done, for example, replacing in
(30) cot(wmy/2) cot(wms/2) by the expression

sin[w(j—mi—mz)/2]
sin(mma/2) sin(rms/2) sin(rj/2)

which is no worse than the initial one. This procedure
is used in the following.

We are only interested in the extreme right-hand
singularity corresponding to £=0. The singular part of
the integrals over m1, ms, Iy, s is calculated just as was
done in the previous section, using for Dy (¢;) and
Dy,(ts) near the pole the value (22)

dl2 2b(l1,m1; lz,’l%z)

1 dms /’ dl
(41)4 /M1 sin(ﬂ-m1/2) M SiIl(ﬂ'WLz/Z) Ly tan[r(ll—ml)/Zj Lg tan[r(lg—mg)/Z:] [ll—a(h)][lz—a(tz)]

o L= mmm) snlrGmmmm)/2] | ANGme)
— , g ! ’
T(j+14+mitms) sin(mj/2) JH1—a(ty)—a(ts) ! e
— 27 200+l 2o+l 1
Az(j’ab(m) =

which is a function having no singularities in the region
of values of j close to aytas—1 (@1=a(ts), ca=a(ts)).
The expression b(ly,m1; ls,me) in the integral denotes all
the factors in Eq. (6) except
27+DT(G+1—=m1—ms)/T(j+1+mi+me)

and
b(al,al,az,ag) = (2a1+ 1)(2&2']" 1)/I‘(2a1—|- 1) F(2a2+ 1) .

sin(rj/2) sin(ra/2) sin(ras/2) T(2a14-1) T'(2as+1) T(2j+2)

Hence for the singular part of Eq. (30) we obtain

Adfi(t)=—

1 1
- /dt2/ dhy
21 (24)2 J g, el

Niaras(t; tt2) Nj D (15 t1,00) 2p(2; tayt)
JH1—a(t)—a(ts)

tll2
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while

Njayas(t; t1,t2) = A(J,01,02) g1(01) 82(82) Gianas(t; tasta)  (32)

has the meaning of the two-Regge-pole production
amplitude. The latter can be noticed by considering the
production of four particles (just as in the case of three
particles in the previous section) as occurring through
two virtual Regge states (Fig. 12). In the region
l1— a1, ls— as, its amplitude has the form

1
T T 8182,
(h—a)o—as)
where Njqa, is the amplitude of the transition of two
particles into two Regge poles. According to Egs. (11)
and (22) we have Njaia, = £189Giara 1.€.; Njae, differs
from the amplitude N;qq, by only a factor A(j,cies)
(with standard dependence on #, #3, and j).

Consequently, just as in the three-particle case the
constants g; and g of the decay of both Regge poles into
particles drop out of the result (31) altogether. This
circumstance is a general property of relativistic theory
in which Regge poles act as real particles.

Equation (31) takes into account the fact that four
particles can be grouped in three different ways into
two pairs with definite i1 and lyms. Since all the par-
ticles are identical all these ways yield (just as in the
three-particle case) the same contribution and hence the
factor 3 was introduced in Eq. (31). Instead of the
coefficient 22/4!in Eq. (30), the factor 1/2!=(22/41)X3
appears in Eq. (31). The factor 1/2! in Eq. (31) corre-
sponds to the identity of both Regge poles.

Integral (31) has singularities of several types. The
integral over ¢; over the contour C; of Fig. 3 [denoted by
¢i(t1t2) ] at a fixed ¢, may have singularities if the zero
of the denominator in Eq. (31) coincides with the in-
tegration edges #1=4u? and 1= ({1/2—{,1/2)2, In other
words, the conditions for the emergence of a singularity
of this integral are

JH1=a(4u?)+a(t)
JH1=a((12— 121122 F-a(ts) . (34)

In the second integration over #; the singularities of
the integral ¢;(,t2) may coincide either with the inte-
gration edges fo=(t/2—2u)? and fy=4u? or they may
pinch the integration contour C; from two sides. There-
fore, the singularities of the first and second types of
integral (31) are given?® by the conditions

J=2a(4p?)—1, (35)
J=a((2—2p))+a(4u?)—1. (36)

The singularities of the third type are the most inter-
esting since it is only these singularities that remain in
the j plane as ¢ is decreased and the region of negative ¢

- ’
fj)ul_ Njalaz

(33)
and

26 Besides these points, quantity (31) has singularities at
complex-conjugate points.
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reached. The location of these singularities is given by
that value of j for which the two solutions f3=# and
ty=1,"" of Eq. (34) with respect to ¢ coincide. The con-
dition for this coincidence is the vanishing of the deriva-
tive in {5 of the right-hand side of Eq. (34).

o () =/ (12— (112111 —1).  (37)
This equation has in any case the solution
pl2=112/2 (38)

the substitution of which into Eq. (34) gives the loca-
tion of the corresponding singularity

J=Ja(t)=2a(t/4)—1. (39)

The problem of the possibility of other solutions re-
quires a special study of the properties of the trajectory
a(t).

It can be shown that there is a certain way of move-
ment in the j plane (from region of large values of j
where A,f; has no singularities) such that the two solu-
tions #2 and £, actually pinch the contour C, in the
{2 plane as j tends to the value (39).

When ¢=16u2, all the three singularities (35), (36),
and (39) of the function A4f;(f) coincide. As ¢ is de-
creased and the point /=162 is crossed, singularities
(36) and (39) go around each other as they move in the
J plane. In Appendix B we show that the function f;(¥)
has no singularities (35) and (36) at £<16u? if the cut
from singularity (39) in the j plane is made to the left
along the real axis [singularities (35) and (36) come onto
another sheet connected with this cut]. The movement
of the singularities (35), (36), and (2) as 7 is varied was
considered by Simonov.2®

Let us calculate the discontinuity §;f;(¢) of the func-
tion f;() across the cut of interest to us at singularity
(39) in the j plane. Since the singularities of f;®(¢) do
not coincide with those of f;(#) we have

8 A4 fi(1)=08,(1/20)[f;() — f;® () I= (1/2)8; f;(t) .

Therefore it is sufficient to determine the discontinuity
of integral (31)

1
Adfi()= % @it t2)dta.

1J 2

(40)
The latter results, since the two singularities fz=¢#)
and f2=12 of the function

1 / Njaszialaz“)

2p(t; ti,te)
@i(tte) =— ;
a JH1—a(t)—a(te)

lll2

(4
4 v ()

approaching in the plane ¢, the contour C; of Fig. 2 de-
form it in a different way depending on the method of
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j-ptane Fic. 13. The path of

. enclosure in j plane for

Jie the singular  point

{ . Jj=7j2(#), for which the

‘ point j proves to be on

the upper edge of the
cut.

enclosure of the point j= j5(¢) in the j plane of Fig. 13
[for the time being we neglect the terms in §;f;(¢) re-
sulting from dependence on j of the amplitudes Njq,q,
and N4 ., themselves; see the following section].

Calculating the discontinuity of the integral (40) we
obtain for §;f;(?):

to(=)
5.55(0) = f Aushi(t2)dia, 2)

where £, is that one of the two singularities of the func-
tion (41) which has a positive imaginary part at j<ja
(and at j close to j2). Here Ay,g;(t,ts) is a discontinuity
of integral (41) on the contour drawn between the points
12 and £, (i.e., the difference of its values on both
sides of the contour divided by 27).

This discontinuity equals, accurately to the factor
24, the integral (41) taken over the contour Cy enclosing
in the negative direction (as indicated in Fig. 3) the
point ;=171 in which the nominator in Eq. (41) vanishes:

2iAypi(t,t2)
1 jvjalazNja1a2(4)
et JH1—a(t)—alts)

™ 2? (i,tz,llo)
=_—-Nia1<12°NJ'¢!1a2°(4)«—“—'— .
20/(1‘10) a2

2p(t; ta,l2)
dt
l1/2

(43)

This value can conveniently be written symbolically

1=
Appi=- - NiarasV jayas®
22

2 Lla
XM 3(j+1—a(t)—a(tz))dh,

assuming that the contour of integration in the complex
{1 plane is chosen so that the argument of the § function
runs through zero taking real values. This form of Eq.
(43) is convenient (though not necessary) for the
following.

Thus the discontinuity f;(f) at a two-Regge-pole
singularity can be represented as

T O dt,
6,-fj(t)=5/;

o(+)

/dllNJalazNJaxaz

Zp( ’ 17 2)

(- 1—a(t)—a(t)), (44)
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where ¢, and ¢, are, as indicated above, the roots of
Eq. (34) which can be regarded as a consequence of the
two conditions

JH1—alt)—a(tz)=0
P(tytlyt2) =0 )

or more accurately the equation {1/2=;1/2-4£,1/2,

Let us determine the behavior of §;f;(¢) at j close to
Ja(t), when values of #; and ¢, close to #/4 are required in
Eq. (44).

Under these conditions the amplitude N}, «,,q4, cannot
be considered as constant (in spite of the fact that at
J— j2 the regions of integration over #; and /; tend to
zero) because at p=p(l,t1,t2) — 0, N; ayap has a thresh-
old singularity of the type Njaa=C;j(2p)*. Here
L= j—ai—as is the minimal value of the orbital angu-
lar momentum of relative motion of two Regge poles.
In the integral (45) L= —1 and, consequently,

=Ci()/p,

i.e., it tends to infinity at p — 0.

It should be noted that owing to the unitarity
condition the production amplitude of two particles
N 1,(tmi2mse?) (but not of two Regge poles) cannot
tend to infinity as 1/p. Its true threshold behavior is
determined?® by the formula

,I:k2L+l
;“71,1112(?5,%12,%22)=kL/(A+ - e’“),
JinmL

(45)

J ajeg ™

where k= p(t,m12;ms?), m1 and ms being the masses of
two real particles. At L=j—Il;—Il;=—1 and at £ — 0
the amplitude N; 1,;2,({,m1%,ms?) tends to a constant but
not to 1/k. The compensating factor k2L+1=1/k (at
L=—1) in the denominator results from summing up
the diagrams with two particles (with the masses m
and ms) in the intermediate state. Each of these dia-
grams has a singularity at k=0, i.e., at {/2=m4m..

In the case of the amplitude of two-Regge-pole pro-
duction the factor pZ(4,t1,ts) could be correspondingly
compensated only by the contribution of the multi-
particle intermediate states. However, this contribu-
tion has the form of the integral over the energies ¢/,
to of the groups of particles produced in the intermediate
state and, consequently, has a singularity at the real
thresholds (¢=16m2, 36m?, etc.). Therefore they cannot
compensate the singularity at £1/2=¢;'/2-}-1,1/2, where &
and #; are arbitrary energies of particles in the final state.

Let us calculate the integral (44) over {; and {; at
j— 72 using the form (45) of Nj aa,.- To this end,
assuming t;=t/4+x1, ta=1/4+x,, we expand a(l1) and
a(tz) into series

a(t)=a(t/V)+d xi+3a" %2,
and substitute the value x; from the condition

J— o) =0/ (w1a2)+ 30 (124 2?)

i=1,2
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into
P(l,ll,lz) == 1/215] /2[(x1—x2)2— 2t(x1+x2)]‘/2 .
We obtain from (44)

8;fi(()=mCiC;®- By, (46)
where Bo= —3w[ a0 (e’ +3a0”’t) 11/2 does not depend on
Jat j— ja(t).

If C; at j— js had no singularities (as was the case
we supposed so far) then it would follow from (46) that
fi(®) at j— 72(t) has a logarithmic singularity of the
form

fi)2A~+ BoCiC;® In[j— ja(1) ].

Because of the fact that at j= js(¢), Eq. (47) tends to
infinity, the singularity of C; changes essentially the
character of the singularity of f;(). In the following
this question will be considered in detail.

The presence of this (and other similar singularities)
changes radically the analytical properties of f;(¢) in
the ¢ plane. Besides the cuts indicated in Fig. 1 and con-
nected with the thresholds of production of usual par-
ticles, in the ¢ plane there must appear, obviously, a
logarithmic branch point at {=#s(7) where #2(j) is the
solution of the equation

(47)

J=700).

Therefore, to determine f;(£) unambiguously in the ¢
plane it is necessary, besides the cuts indicated in Fig. 1,
to make a cut indicated in Fig. 14 from the point
t=t5(7). It can readily be noticed that the discontinuity
8, f;(¢) across this cut differs from §;f;(¢) only in sign:

8, fi()=—8;fi(t). (48)

Therefore, if we know the magnitude of §;f; we can re-
restore the amplitude f;({) with the aid of the disper-
sion integral

1 /w 80 ® fi(t)dl
t

fil)y=~

T J 6205) r'—t

1/00 Azfj(lf/)dt/ 1/‘°° A4fj(t,)dtl
+ . (49)

mJae U—i T Jee —t
To take into account in the ¢ plane not only two-Regge-
pole singularities but all multi-Regge-pole (three-, four-,

etc., Regge-pole) singularities, the additional terms??
1 / 8, f()dl
T J tn(s) t,—-t

should be included into Eq. (49).

2 From Eq. (2) it follows that at real j the singularity ¢=£,(5)
emerges on the physical sheet of Fig. 1 in the ¢ plane only for such
n for which 7,9>j where j7,®=n[a(@u?)—1]+1, while
ISa(@) 2.
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Fic. 14. The cut in
t plane corresponding
to the branch point
t=15(j); broken lines
indicate the trajectories
of the branch point
t=2(j) and the move-
ments of the pole ¢=¢;
with the decreasing of
Jj— jtie

) ‘\\\

VI. UNITARITY CONDITION FOR TWO-REGGE-
POLE SINGULARITY

While investigating the singularities of f;(¢) we have
so far neglected the fact that the amplitudes N, and

Njaa, entering into Asf; or Asf; may themselves have
singularities at the same points as f;(£). Actually, by

unitarity, these singularities must be present in all the
amplitudes.

Let us show that taking this into account changes the
value §;f;(£) = — 8, f;(t) obtained earlier and results in
the fact that the accurate unitarity condition, giving
the magnitude of the discontinuity 6,f;(¢) of the ampli-
tude f;(#) at the two-Regge-pole singularity ¢=4,(j) in
the ¢ plane, has the form

x e dy
5D fi(t)y=— ——/dtN-+,aa
J fJ() 21’/;(_) % LVi7 arag

2p(t; tiyta)
X Nf".asza(]“}‘ 1—a(t)—a(t), (50)

where
Nj*,aloq: j;{:ie,alazzNj(t:Fie, i1, tz)

are the amplitudes of the production of two Regge poles

‘on both banks-of the cut t=1¢; in Fig. 15 at £>1,(7). It

should be emphasized that both quantities N;+* a;a, and
N ;= a1a, €ntering into this formula are determined on the
same physical sheet of the ¢ plane (with respect to the
thresholds of production of usual particles) in contrast
to Eq. (44) containing the amplitude Njae,® on an
unphysical sheet.

Equation (50) can be interpreted as a two-Regge-pole
unitarity condition in this sense. The branch point
t=15(j) comes onto the physical sheet of the ¢ plane of
Fig. 14 from under the cut running from {=16u?, and
moves as indicated by a broken line in Fig. 14 as j is
decreased [along the real axis from large values for
which f;(#) has no singularity ¢=¢(j) on a physical
sheet]. Since the singularity at t=fy(j) can be re-
garded as a threshold singularity corresponding to
the production of two Regge poles, Eq. (50), the
right-hand side of which contains the amplitudes
Nj#, 010=Nja,a,(F e, b1, 82) of the production of two
Regge poles on both banks of the cut connected with
the same singularity, is perfectly similar to the con-
ventional unitarity condition.
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t te
FiG. 15. The amplitude of the transition of
t, J two Regge poles with masses #1/2 and #,!/2
into two Regge poles with masses #,"1/2
s , and 12
s iy

To avoid a tiresome number of subscripts, we derive
Eg. (50) in the symbolic-operator form. The state of four
particles will be characterized by the quantum number
# including the angular momenta and helicities 7y, m4
and /5, me of two pairs of particles and their energies
4!/ and #,1/2. We shall need the unitarity conditions for
the amplitudes of the transition of two particles into
two and into four: f;({) and fa'= flimuem,(t; t,ta),
and for the amplitudes of the transition of four particles
into four fnn-?. The amplitudes fn? and fa.-7 are written
in a form similar to Egs. (10) and (11)

Gim
Dy (1) Duy(ts)’
Hjinn
" Dy(t)Dst2) Duy (') Dug (1)

Here Hj; nnr (just as Gy, ») has no singularities at the two-
particle thresholds in the variables #;, #» and #/, ¢,
while the quantity

Ja?
&Y

fM.L’j

M, ngng = 81828182 Hjs nonyAiA{ ,  Aj=A(j,o1,00) ,
A/ =A(jat2); gi=glts), g/=g@)

[where 1, is the state with l;=m;=a(t,), I/ =m{ =a(t/)]
has the meaning of the amplitude of the transition of
two Regge poles with masses #'/2 and #!/? into two
Regge poles with masses £11/2 and #,'1/2 (Fig. 15).

In these notations the four-particle unitarity condi-
tions for the amplitudes f;, f»%, and fa.% can be
written as

(52)

(V/2)[fi+— £ 1= (GsTiG;®), (53a)
(1/20)[G—G;® J=(GyT;+H;®)

=(G;T;*H;*), (53b)

(1/2)[H—H;® ]=(HpT+H;®). (53¢)

Here (G;T;G;®) = (Gjn Tjn'Gjn®) symbolizes the right-
hand side of Egs. (31) and (32). Similarly, (G;T;H;¥)
= (GjnTinHjnn®) and (H;T;H;®). The quantity Ty,
contains all the singular factors entering into Eq. (31).

Calculating the discontinuity from both parts of
Eq. (53) in j at the singularity j= js, we obtain

(1/29)8;fi=(G;-0T,G; @)+ (8G;TG;P),  (54a)
(1/24)8,G;= (G;-0T;H; W)+ (8G,T;+H; ), (54b)
(1/24)8;H ;= (H;-0T;H;®)+ (8H;T+H;®) ,  (54c)

where j*¥=j4-ir means that the quantities on the
right-hand side are taken on the upper or lower bank

AND TER-MARTIROSYAN

of the cut of Fig. 12 corresponding to the singularity
Jj=Ja(t). The first terms in the right-hand sides of these
equations are precisely those discontinuities of integrals
like (31), one of which [the first in the right-hand side
of Eq. (54a) was calculated above in Eq. (44)]. Com-
paring the first term in the right-hand side of Eq. (54a)
with Egs. (44) and (32), we notice that?8

22p(57t1:t2)

12

A2
i)

0T~ 1282 8(j+1—a(t) —a(ts))

X 6(l1—a1)6(m1—a1)6(l2—a2)6(mz—a2) .

Equation (54c) is an equation with respect to 6Hj;
comparing it with Eq. (53c) regarded as an equation
with respect to H;+

(1/20)Hy+=(1/2)H; P+ (HpT+H; ), (35)
we notice that the solution of Eq. (54c) is
(1/24)8;H ;= (H;-6T;H ;) (56)

[since on the application of the operator H;-0T'; to both
sides of Eq. (55) the equation obtained identically
coincides with Eq. (54c) under the condition (56)].

Equation (56) is the unitarity condition for the ampli-
tude (52) of the transition of two Regge poles into two
Regge poles. Similarly, comparing Egs. (55) and (54b),
we notice that

(1/24)8,G;= (G;-8T;H ) - (87)

Substituting this value into Eq. (54a) and taking into
account the second equation (53b), we obtain

(1/24)6;f;(t) = (G;+0T,Gy-) . (58)

This equation is, according to Eq. (44), that unitarity
condition (50) which has to be demonstrated.

Multiplying both sides of Eq. (57) by the quantity
A(j,e1,00)g(t)g(#s) and both sides of Eq. (56) by
(Ag1g2)(A’g/gs’) and using our notations, we notice that
these equations are the unitarity conditions for the
amplitudes (32) and (52) of the transition of two par-
ticles into two Regge poles and of two Regge poles into
two Regge poles. Quite similarly to Eq. (50) they can
be represented as

t2()

X m
6J'Na1a2]:_/ dt2,
21 J 4,0

’ i+ j—
X/dtl ]\Tal'az’] Mal'az',alazj

2p(1,ty 12)
xp—(ia(jﬂwl'—ag) . (59)

lIIZ

28 Here the & functions denote symbolically that instead of the
sum over /ym; and lym, of the form (14) we must only consider one
term with Li=mi=a(t) and ly=ms=a(l), and instead of the
factor C;(A\4) entering into Eq. (14) substitute unity.
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ta(+)

™
j ’
BJ‘Mal’az’,alaz]:”":/ dt2
28 J 4

, -+ .
X/dfl Mal’az’.al"az”’ ]Mau"azz".cuatzJ

Zﬁ(t,tz’,,tgu)

3(jH+1—ar"—as”). (60)
tl/z
Formulas (50), (59), and (60) make it possible to de-
termine the character of singularities of the amplitudes
Fi®), Naas?s and M g100,017ay? at §— ja(t). Substituting
into the right-hand parts of these formulas at ¢, — #/4
and #2 — t/4 the amplitude N 44,7 in the form

Noqazj: C]'/p(t:thh)

[see (45)] and similarly (at j—ai—as=—1 and
j—a’—a’=—1)

Mal’az’.alazj= di/P(t)tll:t2l) 'P(tJl,t?) )

we obtain
5j(2)dj= WBzd_,df" )
5j(2)Cj= 1ngC,-d,~+ )
5j(2)fj= WBijCj+.

It follows from the first equality that

8;®(1/d;)=—=Bs.
Hence
dj=1/[A— By In(j—j2)].

From the second and third equalities we obtain

Ci=v/[A—B:In(j—j2)],
fi=v¥/[A— By In(j— j2) 1+ fo,

where A4, » and f, have no singularities at j— ja(Z).

VII. THREE- AND MULTI-REGGE-POLE STATES

The Regge poles of the amplitude f;(\s) of Fig. 11 of
the transition of two particles into four, in the angular
momenta /; and /; of the pairs of the particles produced,
result from the interaction of the particles within these
pairs. As shown in the previous section, the same in-
teraction results in the angular-momentum plane j in
branch points of the type (47). It can readily be noticed
that taking into account the new singularities of the
amplitude fjn,= fi;tymy,13my in the variables /3 and /»
in integrals of the type (30) leads to a series of branch
points at j= 7.(f), where j.(f) is given in Eq. (2). From
this formula it follows that the #th branch point becomes
complex at ¢=(2un)?. Therefore, it should be expected
that the #th point of this series is connected by the
2pn-particle unitarity condition, or more accurately,
that it is to come into the /th plane (as j decreases from
large values along the real axis) from the unphysical
sheet of Fig. 1 resulting from the production of 2z
particles.
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Therefore, when studying the #th singularity (2), it is
natural to consider the 2u-particle unitarity condition
(18). However, before proceeding to the general case we
shall have to deal briefly with the six-particle (three-
Regge-pole) unitarity condition (15)-(16). Let us con-
sider its analytical continuation to complex j. If this
continuation is written in the form of contour integrals
of the type (30) over lymi, loms, ligmis, lsms and the
Regge poles in /y, l5, and /5 are taken into account, in the
calculation of the singular part of the integral there will
arise only the following difference from the two-Regge-
pole case considered in Sec. V.

Two T functions entering into C;(lis,m12,l5m3) and
Clu,(llml,lgmg) in Eq (15)

F(]+ 1 —mm—ms) . I‘(lm—l" 1 —m;—mz)

are essential for the emergence of a singularity. The
singularity of Asf;(¢) results from the following points
in the contour integrals over J;, m;, l1s, m12 of type (30)

l1=m1=a(tl), l2=7n2=a(t2), l3=m3=a(t3)
and

he=mi=a(ty)+all)—1.

For the singular part of the integral we obtain an
expression analogous to Eq. (31):

1 Nj;lz,aaN:i;lz-aa
a0 [ -
2! J+2—a(t) —alts)—a(ts)

2p(i; l12,t3) 2[)@12,)51,152) di1dtadts
X dt12 . P
(24)°
where Nj;12,0,=Nj:12,01,a1,25 15 the amplitude of produc-
tion of three Regge poles in a state with angular momen-
tum /y5 of one pair of them equal to a(t1)+a(f2) —1. The
amplitude Nj12,o, is connected with the quantity
Giitigo11,1015(¢; br2,01,k2,03), given according to Eq. (12a), by

Nj12,0,=A(J,12,05) - Alaz,01,00)
'gl'g2'g3Gi,112'al,a2aa- (613')

With the normalization chosen in Eq. (16) there actually
appears a factor 23/6! in front of the integral in (61).
However, it should be borne in mind that in this case
besides 6!/233!=15 ways of distribution of six par-
ticles in three pairs with definite values of angular mo-
menta there are three ways to group two of the three
Regge poles in a pair with definite /15. Therefore the
factor 23/6! should be multiplied by (6!/2331)X3,
which is what gives in Eq. (61) the factor 3 correspond-
ing to the identity of the two Regge poles forming a state
with a given /;2.

The singularities of integral (61) result from the zeros
of the denominator in Eq. (61) which is independent of
t15. Therefore we assume that integration over #;5 has
been performed [within (#11/2-42212)2<t12< ($112—2151/2)7]
and integration over 4,, =1, 2, 3, is made over the con-
tours C, indicated in Eq. (16). A singularity of the in-
tegral arises on coincidence of a zero of the denominator

{12 {12
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with the boundaries of integration. The coincidence of a
denominator zero with the lower limit 4u? of one of the
variables f, gives rise to singularities of type (35) and
(36) whose location depends on the particle masses.
These singularities are of no interest to us since just as
in the two-Regge-pole case they can be shown to occur,
at a small #, on the unphysical sheets of the j plane.

A singularity independent of particle masses results
from coincidence of denominator zeros with the upper
limit of integration over ¢; given by the condition

x(nytayts; ) =11 21 2151 2—112=0.  (62)

For integral (61) to really have a singularity in the j
plane it is necessary that in each consecutive integration
the singularities of the previous integral pinch the con-
tour of integration.

Consideration of the integrals over #, #;, and f3 one
after another suggests that for the above purpose it is
necessary [ just as in the case of a simpler integral (31)]
that the denominator in Eq. (61),

Ottats; 1) = j+2—a(t)—alts) —a(ls),

have an extremum under condition (62).

Therefore the location of the singularity can be de-
termined from the absolute extremum condition for the
function

O'=j+2—a(tr) —a(ts) —alts) = N-x(1l2,ls1) ,

the condition

(63)

(64)

D(t17t2)t3; .7)=07 (65)
and the condition (62). The extremum condition leads to
o (t)=N 212, a=1,2,3.

Let ¢, denote the solution of this equation; then from
the requirement x=0 we get #=1/9, whence we ob-
tain from the condition (65) for the location of the
singularity j= j(¢) the value (2) with z=3.

Let us determine the discontinuity 8;®Asf;=(1/27)
X8;® f;(¢) at this singularity [at >0, j<7s(t)] ne-
glecting the singularities V;,12,q, for the time being.

Quite similarly to Eq. (42) we obtain

3@ f(t)= / ti() A @ (b 1) dts, (66)
3¢t
where Ayp;® is the discontinuity of the integral
(3)(,5 ts)—l 1
2 (22)2
// Ab2diiN 319,06V j12,00 O L3 (E1,00,835 1) 67)
JH1—a(t)—a(tz) —alts)

C2C1

across the contour in the #3 plane drawn between its two
singularities #3™ and ¢3¢ (the singularity £ is to the
right when 7> js; it goes into the upper half-plane if j
goes round, as it decreases, the point j= j; from above).
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In Eq. (67), Is(f1,tst3; ) denotes the total phase space of
a system of three particles with masses #11/2, ,1/2, £31/2
and energy /2,
(£1/2—131/2)2
I3(t1,t2,t3; i)= dtu

(0112177

2p(t; tiyts) 2p(tas; tayte)

1/2

2 l12

whose nonrelativistic value (at x — 0) is proportional
to x2.

The location of the singularities #™ and £ of
integral (67) is given as the solution of Eq. (65) at those
values ¢ and ¢, for which the quantity [ (¢1,l2,f,5) has
an extremum at the upper limit of integration, i.e., at
x(ty,te,ts;8)=0. In other words, the values #;=1(tts)
and fo=f5(¢,t3) which must be substituted into Eq. (65),
can be found from the equations

ad ax

=A—, —=\—,

0t dtL [J2) dta

(68)

the Lagrange parameter A being determined from the
condition

x(t1,t2,t3,0)=0.

The discontinuity of integral (67) across the contour
between £3) and 3¢ can be calculated just as (Sec. V)
the discontinuity of integral (51) was calculated earlier.
Substituting its value into Eq. (67) we obtain for

8D fi(t)= —8;® f;(1):

T t3(+) 1 to(+) 1
8P fi()=— / —dts / —dls / dt
21 ) 24 0 21

(21/2—331/3)2
X / @112V 512,00V 512,00 P
(

tl!/2+t21/2)2

2p(t,t12,t5) 2?(1512,151,152)5
t1/2

0), (69)

b191/2

where £, and £, are determined at a given #3 [when
t>0 and j< js(f)] as two solutions of the equations

a (h,h,lg; .7) =0;
X(tlat%t&t) =0.
These equations also determine the value # essential in
Eq. (69).

After a treatment similar to that of the previous sec-
tion we obtain, taking into account the singularity
Nj;12,4,, the three-Regge-pole unitarity condition in this
form

1) dt]_ tol+) dt
e e L
t

(81/2—¢51/2)2
X / dt112N 12,0,V 5,12, 00
(

tlllﬂ_'_tzl/z)z
2p(t; tigyts) 2p(tas; tyte)
tllz

8(d). (70)
t12112
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To calculate the character of the singularity at
J— 73(2) let us take into account that in the region
t1—1/9, ta— 1/9, t3— t/9, and {12 — 4¢/9 that is essen-
tial in the integral (70), we have p(f1s,t1,l2) — 0 and
p(ttats) — 0. The threshold behavior of the ampli-
tudes Nj;12,4; has a form analogous to (45):

Nji12,0C 3/ pllagytata) - ptytan,ts) -

Substituting Nj12,4; in this form into (70) and cal-
culating the integral at j — 73(¢) we obtain

8;® fi(t)=7C;,sCi,s™ B3 (j— Ja)
where Bj is a definite constant. Hence at j — 73(¢)
fil)=A5+Bs'(7—js) In(j—73),

where Bj'= B3C; 3C; st. In this case the singularity C;
at 7= 73 should not be taken into account since the con-
tribution from this singularity at j— j; tends to zero
[being proportional to j— 7;, as in the case of f;(£)].

Let us now turn to the general #z-Regge-pole case.

If there are more than three Regge poles, it is neces-
sary to bear in mind the following. As indicated above,
in order to obtain the contribution from a singularity it
is necessary to consider all possible ways of grouping
the particles (and groups of particles) into states with
definite angular momenta and then add up the results
obtained. So far, concerned with identical particles, we
have been obtaining identical contributions from all
such configurations and therefore the procedure has re-
duced to the multiplication by a certain number of the
right-hand sides of the unitarity conditions.

From the four-Regge-pole case upward there appear
groups of Regge poles of different types making differ-
ent contributions.

In the four-Regge poles case there may be two differ-
ent groups of Regge poles (see Sec. II) leading to two
different terms in the Regge-pole unitarity condition. One-
of them contains the amplitude N (jl1ols4; liacas; lsacesors)
of the production of four Regge poles in a state with
definite momenta of two pairs made of them lio=a(#1)
+a(ts)—1, laz=a(ts)+a(ts)—1, and the other contains
the amplitude N (jligso,l123b1203,l1200005) Of the produc-
tion of four Regge poles in a state with a definite angular
momentum of a pair la=a(f1)+a(f:)—1 and that of a
trio of Regge poles lios=a(t1)+a(ts)+a(ts)—1. The
number of different configurations increases with in-
creasing number of Regge poles.

The unitarity condition for the discontinuity f;(?)
at the n-Regge-pole singularity ¢=2,(j) has the form

B F() =5 647 )= 5 — / Nyt s ON im0
% P

Pas(ta,larts)

1/2

1
» diod , (7
X&(O )g ¢ tﬁ(%)n_l (71)

tap
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where N, () denotes the kth type of the #z-Regge-pole
production amplitude corresponding to a certain group-
ing of them into a state with given angular momenta
la, Ig (1'% and 1g'/2 are the energies of these states). The
total discontinuity equals the sum &,*" f;(f) over all
types k& of such groups. The factor 1/27% results from the
multiplication of the initial factor 27/(2r)! in Eq. (18)
by the number of ways of distribution of particles and
Regge poles, ((2n)!/27-nl)-(n!/2¢), which can bring
about a given configuration. Here 2%!/27z! is the num-
ber of ways of distribution of 27 particles in # pairs and
n!/2" the number of ways of grouping of # Regge poles
into a given configuration.

The quantity v, depends on the form of a configura-
tion and can readily be found (2# is the number of
permutations of Regge poles as a result of which the
form of the configuration does not change). For ex-
ample, in the four-Regge-pole case we have for the first
of the above configurations »1=3 and for the second
Vo= 1

By [0, we denote a quantity analogous to (63)

On=Jj+n—1-2" a(t).
k=1

The location of the #-Regge-pole singularity in the
plane is determined similarly to the two- and three-
Regge-pole cases from the extremum condition for the
function

Dn’z Dn"‘)\'xn,
where

n
X, = Z tallz_tllz

a=1
under the condition
x=0 and [O,=0.

The solution of these equations can readily be shown
to be ‘
la=t/n?, a=1,2,3,---n,

and for the location of the nth singularity there follows
the value (2)

Jn(®)=na(t/n*)—n+1.

The function §([0,) in Eq. (71) has a symbolic mean-
ing just as in the three- and two-Regge-pole cases [like
in Eq. (70) or in Eq. (50)] since the integration in Eq.
(71) is performed over complex contours. The first in-
tegration in Eq. (71) over ¢, at fixed energies #o, 3, * +, tn
of all the other Regge poles leads to substitution of the
value of the integrand function at the point at which

(72)

The limits £ and £, of the second integration
(over tat fixed tg, t4, - -, £) are the two solutions of Eq.

Dn(ilii%' * sl .7)=0
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(72) into which we have substituted the value #; from
Xn(tlat% e lag .7) =0. (73)

The limits of subsequent integrations in Eq. (71) over
B3y bay* -+, b, €.8., OVer I; at fixed fip1, loye,- - -, In are de-
termlned as a pair of solutions #;(*= f(i’(t,H, 2y
K, Jot) of Eq. (72) in ¢; into which we substitute the

values fy, fg,- -+, t;—1 from
0, 0Xa
py = ot k=1,2,---,1—1 (74)
k k

and determine the parameter A from (73). It can readily
be checked that in the region j— j. Eq. (72) actually
has a pair of complex-conjugate roots ;.

Using these rules we can readily determine the de-
pendence of §;( f;({) on j in the region j<ja, 7= Ja
(i.e., to determine the character of the singularity j,).

Near the singularity the limits of integration over all
Lay Lap, Lapy, * - energies of Regge poles and Regge-pole
groups contract (coinciding at j= j,) and all the mo-
menta of relative motion p(fas,ta,ts) tend to zero. The
threshold behavior of the amplitudes N, in these
conditions has the form

Nj;n.kzc',n,k/Ha,B P(tuﬂ:la»tﬁ) .

Taking Cj.,,x out of the integral we obtain

1
(25)»1

2dt dlﬁ
f s(O.)I1

B (taﬁ) llzp(taﬂ;ia;tﬁ)

The integral over the energies fag, fagy, - - of the pairs
and groups of Regge poles at fixed values of Regge-pole
masses #1, ts," * +, s can be easily calculated. It contains
n—2 integrations over these energies (e.g., one integra-
tion in the three-Regge-pole case, two integrations
in the four-Regge-pole case, etc.) and n—1 factors
1/p(tap,tarts). The regions of integration over all energies
tay Lapy,” * +, tend to zero at $1/2— 3, 1" f!/? and each
of them is of the order of ({/2—3_ 4—1" £.!/2). Each mo-
mentum is of the order of ({1/2—3_ 41" t4!/2)1/2, There-
fore, the integration over the relative energies gives

™
88 £,(£) =—Cjin iCiin ™
2%

n
Z taIIZ) (n—3)/2 ,

a=1

Gn(t”?"'

where @, has no singularities at {,=1{/#2. In this case
Eq. (71) can be written as
n (n—3) /2
> xa)
a=1

X5(]n—J+a Z xa+ Z Ta )(dxa)",

a=1 a=1

nt n

2 Xa—

4f a=1

oM fi=2 5f<"”°)ff=A",/(
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where account is taken of the fact that the energies of all
Regge poles vary at j— j, in a small region near
t"=1/n* and therefore the quantities

ta—1/n?

are small as compared with #,. By 4, we denote a cer-
tain constant whose value is inessential for the follow-
ing. It can readily be seen from the latter value of
8; f;(t) that in the region near the singularity the
quantities x,2 and ) q—1" #, are of the same order of
smallness: of the order j,— 7 [the discontinuity §;‘® f;(¢)
is not zero only in the region j,> j . Taking this into
account, neglecting at j — j, terms of a higher order in
%, and calculating the integral over x;, we obtain

7l
o (n—3)/2

v n =312 sdx,
X/[_ 2. xa2+(.7'n"j)i| H('—“) ’
2 a=1 a=2 1

y= (/' )(o/+ (2o /n)t).

Taking the above into account and substituting
B — D qus® Ko WE Write 241" &,? in the form

Xa=

8 fi(t)=

where

i xa2= (i xa)2+ Zn: xa2= 2 Zn 2

a=1 a=2 a=2 a>a’ 22

Carrying out a linear transformation of the variables

n
Pa= Z >\aa’xa’,
al=2
we can readily select the coefficients Aaor 50 as to make
the form >_, Sa' 32" Yok’ diagonal:
2

n 2 n
Xa¥a! == Z Pazz—“ Z EQZ,
Y a=2 Y a=2

DS

a;a’?l

where i£,=p,. Bearing in mind that

dxg dpa
1(=)-p. T =“~p. T .,
a=2 'L a=2 1, a=2

where D, is the determinant of the above linear trans-
formation and writing accurately the limits of integra-
tion over £, we obtain

(Jn—g)112

ag(n)fj(t)=7an,/ dén

—(Jn =72

(Jn—F —EaD)112
x / oy f
—(jn—Jj—EaD12

.
—Un=j=2 sl
a-3

n
(Jn—3— 2 £
ag

dé,

XLjn—i— X &2 2=xBu(ja— )",

a=2
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where B, and B, are certain coefficients.?®
Since 8;™ f;(t)= —8;™ f;(t), we have at j— ja(?)

8™ fi(t)=mBu(j— ju)"*
and at #>3

fi(®) =AntBa(J— Ja)"? In(j— jn) ’

where A, has no singularity at j— ja.

Thus, near the #-Regge-pole singularity, the smaller
the singular part of f;(f), the larger is ». However, in
the region of small ¢ (at ay't~ j— j»— 0) the situation
may be essentially different.
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APPENDIX A

We show that the second term in the sum (28), in
which m; and m, have opposite signs, does not lead to
singularities in f;(¢) influencing the asymptotic be-
havior of the amplitude.

Let us write the second term as integrals (29) and
(30) over contours Ly, Ly and M1, M, of the type indi-
cated in Figs. 5, 10, and 11.

Its contribution differs from Eq. (30) by only the
sign of ma, i.e., it is given, after integration over /; and
I3, by the integral

dm1 dms

/ ay tan[ (w/2)my] J ary tan[ (r/2)ms]

Dm (tl)DM2 (t2)

where m, denotes the value |m2|. The contour M3 in
Fig. 10 encloses the poles of the I' function so that their
coincidence with the zeros of tan[ (r/2)m.] (at arbi-
trarily large 7) does not lead to singularities of integral
(30) in m.. In the case of (A1) the poles of the T func-
tion are located at the points

, (A1)

%=0, 1) 2" " (AZ)

which shift, as 7 increases, not to the right as in Eq. (30)
but to the left. Therefore, at a sufficiently large j they
cannot coincide with the zeros of tan[(w/2)ms] (at
me=0,2,4, ---) and the contour My’ must be drawn
so that these poles (indicated by circles in Fig. 10) lie
outside. It will be recalled that the singularity of inte-
gral (30) arises from coincidence in the plane of m, of

mo=my—j—1—mn,

2 They only differ by the numerical factor I,:

I j‘ p / G Gttt
S dl unﬂ)‘” It [ eyt
(—yn?—yp—12—- - -—ya?)1/2
dys(1—y2— g+ - - — 3, D) (=DP2,

—(1—yn?ee o —yst)! /2
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a pole of the T function with a zero of Dy,(¢;) in Eq. (30)
(at Jy=ms>). If both poles of the I' function and zeros of
D, (t,) lie outside the contour M, (integration over 72
as in Fig. 10) this coincidence gives no rise to the
singularity of integral (Al).

Therefore, unlike (30), integral (A1) may have singu-
larities of another type, resulting from coincidence of
poles of the T' function and zeros of tan[ (r/ 2)m2] On

a subsequent integration over #; and f; there arise, in
thlS case, singularities of the form j=a{(fV2—2u)%}
—1—n, where n=0,2, -+, which do not affect the
asymptotic behavior of the amplitude.

These singularities depend on the masses of particles,
and at t<16u? go through the cut associated with the
singularity j= j2(f) onto the unphysical sheet [similar
to the singularities of form (35) and (36) considered in
the main text of the paper].

The authors are indebted to Ya. Azimov who has
drawn their attention to the problem discussed above.

APPENDIX B

We show that at small ¢ the contribution from the
four-particle term of the unitarity condition in f;(£)

1 2 A;(¢)dV
o= LA

ouz V' —1

(B1)

has no singularities (35), (36).

Substituting Eq. (31) into this integral and omitting
for simplicity the factors Njue,V;% in Eq. (31) (near
the singularity this factor can be taken outside the
integral at £,=4#,=1/4) we obtain, changing the order of
integration

F(t;tl,tz)
2
21 (21)2.[ / ]+1—a(f1)—a(t2)’ ®D

fiO==—
Zp(t' t tz)
F(t; tl,tg)—~/ =,
@tz P —1)

where the last relation must be understood in the sense
that the required number of subtractions has been made

(B3)

t.- plane

FiG. 16. The con-
tour of integration

in (B2) over #1. ‘T.Mh_»—'
joltte) a

P

G
' ta-plane
Vo Refy=RelT
Fi1c. 17. The con- !//__4,___-
tour of integration L
in (B2) over #;. Ty )
] E ===
E Jretlts) a



B 202 GRIBOV, POMERANCHUK,
in Eq. (B3). The contours Cy and Cy’ (Figs. 16 and 17)
differ from those represented in Figs. 2 and 3 in that
they are continued to .

The function F(f¢1,t2) has singularities at $/2=¢2
+15'2) $=0, t,=0. If Ret,!>>Ret'?, the singularity
}12= 12— .12 of the function F (¢,t1,ts) is absent on the
physical sheet of the plane #; represented in Fig. 16
since the point #; for which Re#;!2<0 lies below the cut
made in Fig. 16 left of the singular point £,=0.

Therefore at Ref'2<Ref,!'? the singularity of the
integral over #;:

11 F(t;t1,ts)
¢j(i7t2)=~ "“‘/ X dtl
2 2 cy ]+1—a(11)—a(t2)

arises only for such 7, ¢, and ¢, for which the zero of the
denominator appearing across the cut #;>4u? and de-
forming the contour Cy’ of integration coincides with the
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points £;=0. This singularity, given by the condition
JjHi=alt)+a(0),

i.e., 7=a(?2), appears on the cut of the plane ¢, deforms
the contour (as is indicated in Fig. 17) and reaching
the line Refy!?2=Ref”? does not lead to the singularity
of integral (B2)

1
fi®)= p» &;(t,t2)dts. (B4)

21 J ¢y

This means that the singularity of this integral arises
only from the region of small (or complex) ¢, £,S¢. Since
¢ is small the quantity #;/2=#/2—{,1" is also small (or
if it is not, it is complex). In either case the particle
masses cannot enter into the expression giving the loca-
tion of the singularity. Actually the singularity of inte-
gral (B2), (B4) arises from the point ¢;={¢,=1¢/4.
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The characteristic functional is calculated for a system of bosons obeying linear field equations. The
system is assumed to be in equilibrium, and the density matrix is taken to be of the form ({n}|o|{m})
=TI, 8ngm (1 —2)2s™, where « labels the individual modes. From the characteristic functional, the moments
and distribution functions of an arbitrary number of field components are derived. In addition, it is shown how
to obtain the density matrix from the characteristic functional, and, for the system in question, the original
density matrix is recovered. Explicit calculations are performed for the electromagnetic field in an unbounded
domain and in a semi-infinite domain bounded by a perfectly conducting plane.

I. INTRODUCTION

SING the methods of quantum field theory, we
shall compute the characteristic functional for an
electromagnetic field in thermal equilibrium within an
enclosure of arbitrary size and shape. From this func-
tional, we shall compute the moments or correlation
functions and the probability distributions for any
number of field components at the same or different
points in space-time.! We shall see that the probability
distribution is a multivariate Gaussian function. There-
fore, all correlation functions are expressible in terms of
the two point correlation function. To exemplify the
result, we shall explicitly calculate this correlation
function for an unbounded domain and for a semi-
infinite domain bounded by a perfectly conducting
plane. For the unbounded domain our results agree with
* This research was supported by the U. S. Office of Naval Re-
search, under Contract No. NONR 285-(48).
1 Of course, the distribution functions are physically meaningful
only when they refer to points at which the field components

commute. For the electric and magnetic field components, this
means that no two points lie on the same light cone.

those of Sarfatt? Bourret? and Mehta and Wolf.*
The correlation functions for a semi-infinite domain
do not seem to have been calculated previously.

The deduction of the Gaussian distribution functions
for black-body radiation in an unbounded domain has
already been given by Glauber? ¢ and Holliday.” These
distribution functions were used implicitly by Purcell®
and explicitly by Mandel and Wolf® in order to analyze
the intensity interferometry experiments of Hanbury-
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