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Conditions on complex partial-wave amplitudes necessary and sufBcient for the validity of the Mandelstam
representation have been derived for both nonrelativistic potential scattering and relativistic two-particle
scattering. These conditions have been used to obtain iterative solutions to the nonrelativistic scattering
problem with a given potential (restricted to superposition of Yukawa potentials), and to the relativistic
problem in the elastic unitarity approximation with a given discontinuity across the left-hand cut. In the
first case, the method used reduces to the well-known determinantal method for physical partial waves,
and in the second case, it is a natural generalization of the g/D method to complex values of l. The Regge
poles, given by the zeros of the denominator, can be studied in a perturbative expansion in terms of the
strength of the potential. Several applications are pointed out.

I. INTRODUCTION waves that are completely equivalent to the Mandelstam
representation and the unitarity equation for the origi-
nal amplitude, for both the relativistic and the non-
relativistic cases. %e will then be able to obtain an
iterative solution for the partial waves using the X/D
method, assuming that the potential in the nonrelativ-
istic case or the discontinuity across the left-hand cut in
the relativistic case is given. The poles in the complex
angular momentum plane correspond to the zeros of the
denominator, and they can be studied by means of a
perturbative treatment such as used by Lee and Sawyer
in their discussion of the Bethe-Salpeter equation. o

' 'N this paper, we develop a method for the determina-
~ ~ tion of both the nonrelativistic and relativistic
partial-wave amplitudes. For the nonrelativistic case,
this method has some similarity to the well-known
determinantal method, and for the relativistic case, it
can be considered as the natural generalization of the
X/D method. ' The approach we are going to use relies
heavily on the concept of complex angular momentum,
which, since its original introduction, has proved to be
a powerful tool in the study of the two-particle scat-
tering matrix. The connection between the poles in the
complex angular momentum plane and the high-energy
behavior of the scattering amplitude has been made
clear in several papers. 4' lt is also possible, however, to
use the notion of complex angular momentum as a
practical tool in determining the scattering amplitude
from the usual requirements in both the nonrelativistic
and relativistic cases. The requirements we have in mind
are the Mandelstam representation and the two-particle
unitarity relation. In the case of a potential scattering
problem with a superposition of Yukawa potentials,
these conditions are known to be completely equivalent
to the usual Schrodinger equation. ' As for the relativ-
istic problem, at our present stage of knowledge it seems
necessary to assume that the two-particle unitarity
condition is exact for all energies and also that the
discontinuity across the left-hand cut is a known quan-
tity in order to make the problem tractable. It may
still be possible to determine this discontinuity from the
crossing relations in a self-consistent fashion'; however,
we do not concern ourselves about this point in the
present paper. Following the approach of an earlier
paper, we will obtain conditions on the complex partial

II. PROPERTIES OF PARTIAL WAVE AMPLITUDES

In this section, we derive certain conditions for com-
plex partial waves which will ensure the existence of a
double-dispersion relation for the total amplitude. In
the case of potential scattering, these conditions were
6rst obtained by Bottino et ul. starting from the
Schrodinger equation. " In our case, we take the
Mandelstam representation as our starting point to
simplify matters. %e assume that we are dealing with
the scattering of a spinless particle from a potential
given by

r V(r) =g' dk Q(k) exp( —kr), where u) 0,

and we denote the scattering amplitude by f„(s~,t„),
where s„ is the square of the energy and t„ is the square
of the momentum transfer, and the cosine of the scat-
tering angle is given by z„=i—t~/(2s~). Throughout
this paper, the indices p and r will refer to corresponding
quantities in potential scattering and relativistic scat-
tering, respectively. Accordingly, f„s„and t„will
denote the scattering amplitude, center-of-mass energy,
and momentum transfer squared, respectively, in the
relativistic case, with z„=1+2t,/(s„—4m'), and for the
sake of simplicity, we only consider scattering of iden-
tical pseudoscalar particles of mass m. The double-

* Supported in part by the U. S. Atomic Energy Commission.' M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958}.
~ G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' T. Regge, Nuovo Cimento 14, 951 (1959).
4 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961).' M. Gell-Mann, Phys. Rev. Letters 6, 263 {1962).' R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.), 10, 62 (1960).' G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 147S (1961).' K. Bardakci, Phys. Rev. 127, 1832 (1962).
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when Im(s„) and Im(l) have opposite signs. (In the
above inequality, the increasing exponential has to be
chosen. ) In these inequalities, s„ is kept fixed and / is
let to vary. The constants C& and C2 may depend on s~.

(b') As
I
l

I
-+ ~ in its domain of analyticity,

where te is such that the function Qi achieves its maxi-

mum value at this point, and D is given by the integral
over A~. Now we use the following asymptotic esti-
mates,

C(5)
IQi(z) I & Cz+("—1)'"j'

Pt/2

when Im(s„) and Im(l) have the same sign, and,

C2
la. (s.,/) I

&
I s,—4rre'

I

when Im(s, ) and Im(l) have opposite signs. Remarks
similar to those in (b) also apply here.

(c) For s~& —a'/4, we have

e ' 'a (si,+i», l) e' 'a„(s—„i», l) =E—(s~,/),

where E(s,l) is an entire function of l and satisfies:

E(s,l) =E(s, —/ —1).

(c') For s,(0,

e ' 'a„(s„+i», l) e' 'a—,(s, i», l)—=I(s„,l)+P(s„,l),

where

H(s„,/) = tan(ir/)LI(s„/) —I(s„, —/ —1)]

is an entire function of / for fixed s„, and F(s„,l) goes to
zero as lll ~ »0 uniformly along any direction in its
domain of analyticity. Also, for —4m'(s, (0, F(s„,/)
vanishes and I(s„l) becomes an entire function of /,
satisfying I(s„l)=I(s„—/ —1).

At this point, it must be noted that the bounds (b)
and (b') are certainly not the best possible results. They
are, however, sufhcient for our purposes.

%'e now briefly sketch the derivation of these results
from (1) and (1'), and we refer the reader to reference 10
for a treatment of the nonrelativistic case starting from
Schrodinger's equation. Since (a) and (a') by now are
well known, "'""we restrict ourselves to the second
and third conditions. We erst assume that s~ is not on
the negative real axis and use the fact that the weight
function in (3) must be bounded by an expression of the
form t~I' uniformly in s„, and obtain,

j. "dt t
I a„(s,l) I ( —Q 1+ t~~'

2s„

X
I
A„(s„t)t-"~'I & Q, 1+—t,"~', (6)

2ls„l 2s,
"A. 0.Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962).» E. y. Squires (to be published).

as I/I ~ ~ if 8~+1.

IQi(z) I & III'(/)~' 'I

Now a direct calculation using (3) and the fact that
A ~(s„,t) has no left-hand cut in the s„plane immediately
gives:

e-"ia,(s„+i», l) e*'a (s—, i», l)—
-4.„

dt Pi —1— A„(s~,t).
2$p2$y a~

(s &—a'/4) (9)

From the well-known properties of the function
Pi (Pi(z) =P i i(z)), and from the fact that the range
of integration is finite, (c) easily follows. In the relativ-

"M. Froissart, Phys. Rev. 123, 1053 {1961).

Here the value of the square root is uniquely de-
termined from the condition that arg[z+(8' —1)'~'j
is never greater than m in absolute value and its sign
is the opposite of that of Im(z). It is then easily seen
that when Im(s„) and Im/ have the same sign,
Qi(1+te/(2s„))te~~+'I decreases exponentially as
ll -+»0, and the smallest rate of decrease comes from

the smallest possible value of tp, tp= a'. This gives us the
first bound in (b). On the other hand, when Im(s~) and
Im(l) have opposite signs, Qi(1+te/(2s~)) blows up
exponentially for Ill ~ ~, but it is still bounded by

I
exp(+iz l)

I
for all values of te. This gives us the second

bound. If s„ is real and negative, the expression
1+t/(2s~) assumes the value —1 for some t, and since

Qi(z) has a logarithmic singularity at 8= —1, the above
argument fails. One can, however, explicitly separate
this logarithmic singularity and still obtain the same
results even for the case of negative s~. The justihcation
of (b') is completely similar to that of (b) and we do not
repeat it here. A possible objection to the reasoning used
above is the fact that A(s, t) is not a function but a
distribution. We believe, however, that a more careful
treatment would yield the same Anal results. "

The conditions (c) and' (c') are easy to derive. The
properties of the function Qi that are needed are the
relations

Qi(z&i») = e~'"Q—i( zai»)—
e'~'Q i(8+i ») e "Q i(z —i»)—

i~P, ( 8) —(—1&—z&.1).
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Here H(s„,l)=tan(z-l)(I(s„, l) —I(s„l—1—)} is an en-
tire function in I by (c'). The last step in (13) follows by
a residue expansion, and the series in question converges
because of the bound on H(s„,l) at l= ~, given by (b').
Furthermore, since Q~(z) is a bounded function of z for
large z and Rel & —1/2, this series continues to converge
for complex t,. The integral involving f(s„,l) also con-
verges for all complex t„since F(s„l) is a bounded func-
tion of f as ~l~ ~ ~. Since (13) holds for unrestricted
values of t„, the singularities of the left-hand side are
given by the singularities of the functions P~(z ) and

Qg(z„), which is a cut on the real axis from z,=1 to
s,=—. It can be shown by a simple calculation using
the threshold behavior of a„(s„,l) that the cut actually
starts at z„=1+8ra2/(s, —4'') ~ (s,(—4/a'). It then
follows that the jump across the left-hand cut of the
function f,(s„,f,) is analytic in the variable t, except for
a cut from t„=4m' to t„=Qc .%e have mentioned before
that (5') implies that for physical values of s„f(s„t„)is
analytic in t„except for cuts from t,=4m' to I,= ~ and
from 3„=—s„ to t„=—00. It must also be mentioned
that as in reference 3, the various integral representa-
tions we have, imply that there are only a finite number
of subtractions at infinity in the variables of interest,
and they have the proper analyticity properties in the
remaining variable. Combining the results that follow
Eqs. (5'), (11), and (13), we have shown that for
0(t„(kn, f,(s„,t„) satisies a dispersion relation in the
energy variable, and the spectral functions in this
representation themselves satisfy dispersion relations in
E,. From standard results in complex variable theory,
this gives us the double-dispersion relation we were
looking for. Therefore, we have shown that conditions
(a') through (c') imply the relation (1'), forgetting
about crossing symmetry. A similar proof applies also to
the nonrelativistic case, where the left-hand cut of
fr(sr, t„) in the s~ plane is clearly seen to vanish as a
consequence of (c).

III. POTENTIAL SCATTERING

In this section, we present a method of obtaining the
solution of the nonrelativistic scattering problem with
superposition of Yukawa potentials, staying within the
partial-wave formalism. One can, of course, reduce this
problem to the solution of the Schrodinger equation,
which can be treated by a number of standard methods.
However, it is of some interest to formulate a dispersion-
theoretical treatment of potential scattering using only
on the mass shell quantities, mainly with the idea of
generalizing to the relativistic problem later. In such an
approach, the dynamical postulates are the double-
dispersion relation and the unitarity condition, and the
potential is taken into account as a subtraction in the
energy variable. Blankenbecler et ul. ' derived a nonlinear
integral equation for the double spectral function using
these conditions, and they also gave an iteration solution
to their equation. Chew and Frautschi later extended
this method to the relativistic two-particle scattering in
the strip approximation. An unpleasant feature of this

approach is the fact that one has to know the number of
subtractions at infinity in the momentum-transfer vari-
able right from the start. The alternative procedure we
are going to present does not run into this trouble, and
it also seems to be particularly well suited to locating
the Regge poles since it stays completely within the
partial-wave formalism. Our starting points are the
conditions (a) through (c) of Sec. II, which are equiva-
lent to the double-dispersion relation, and the unitarity
relation for the complex values of angular momentum:

a„(s~+ie, l) a„(s„—i c, I)—
=2i (sr)M'a~(s„+i&, l)a~(s~ iz,—l), (14)

where s~ 0. We now write the partial-wave amplitude
in the well-known form:

The function E„has only a left-hand cut in the s„
plane and D~ has only a right-hand. cut. Since A„ is
bounded in l for s+)0, it is clear that the denominator
is also bounded in /, and we can normalize it by the
condition D~ —+ 0 as l —+ ~. Then the numerator itself
satis6es (b).

The unitarity relation implies that

1 " ds'
D,(s„l)= —— (s')'"ill (s,',l). (16)

7I 0 S —Sy

The integral in (16), and also several integrals we are
going to write in what follows, may need one subtraction
in s~ to make them convergent. Since this would intro-
duce a trivial modj'L6cation in our formulas, we are going
to ignore it. From (16), one can readily derive the well-
known first-order determinantal approximation for the
denominator by taking the Born term for the numerator:

g' df
t

t ~S~o'(s, l) = — —
Q~~ 1+ ~qh(t"),4s„,~ t" k 2s„)

g2 co

D~&" (s„,l) =— dz Q((z)
2'

ao d~ y (tl/2)

~ t—2s„(z—1) L2(z—1)]'"

where the potential is given by

rV(r) =g' dk d (k) expL —
kryo.

To calculate X~ and D„ to higher orders, one has to
use the condition on the left-hand cut given by (c). At
this point, it simplifies our manipulations considerably
to assume that both D„and E~ can be continued up to
the line Rel= —1/2. One can then justify this assump-
tion by exhibiting the final answer or, alternatively, one
can use the results of reference 3. Condition (c) can now
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be written in a compact form

~„(sp,l)=N (s„l)t) Dp{s~,l)
—D, (s,l) tI)N (s„,l), (18)

where s~(—a'/4, Rel= —1/2, and

N„(s„,l)=exp( i2rl—)X„(s~+ie, 1)
e—xp(i2ri)X„(s~ i—e, 1),

~2,(s~,l) = 1/2r tan(2rl) [N„(s„,l) —N~(s~, 1 —1)—],

can have. It turns out that the fact that X„can be
written as in (19) is closely connected with the analyticity
properties of the kinematical factor that appears in the
unitarity relation (14). Since we explicitly show that
(19) is satisied, we will not go too deeply into this point
here. Substituting (19) into (16), we get

D,(s„,l) = dzQg(z)C„(s„z),
1

with a similar expression for AD~.
Equation (18) combined with (16) is already suKcient

for the derivation of many interesting results. %e,
however, first convert (18) to a nonlinear integral equa-
tion which is equivalent to the Schrodinger equation.
For this purpose, we make the following ansatz about
the form of rY„,

x f (t)+
P„(s,t)

ds
)4 s+t/2(z —1)

2 " dt I/2

C.(s.,z) =—
, 1—2s ( —1)(2(s—1))

(20)

where

t
dSQ (1+ 21,(s„s},

2$y

P, (s,t)
B,(s„,t) = ds +)l, (t)

a' t(4 S+Sy

Furthermore, comparing (19) with the Born approxi-
mation given in (17), we get the following simple con-
nection between P„(t) and the function (t) that appears
in the definition of the potential

(21)It can easily be checked that this ansatz satisfies con-
dition (b) and also has the required domain of ana-
lyticity. It is, however, not the most general form X„ We can now rewrite (18) using (19) and (20),

22ri —dz 8(—2s(z+1)—a')P~(z)P~( —s, —2s(z+1))
—1

d» 8(—2s(sr+1) —a')Cn(s, »)(LQ2(z}+«)&i(zs) —Q2(»)&i(z})3B~(s+«, —2s(1+z}))
—

LQ 1 (z2—i~)Et (zs) —Q2(zs)Pt (zr)]B„(s—«2 —2s(1+sr) )) . (s ( a'/4) (22)—

To convert (22) into an equation involving only the weight functions, the products of I.egendre functions on
the right-hand side of (22) should be combined by means of the spherical harmonic addition formula. For z})1,
one can use the following version of the spherical harmonic addition theorem:

Z, (z)
Q((z})&i(zz)—~i(z})Q2(z2) dz 6( zszl)8(zlz2 (z1 1) (z2 1) z) (23)

1 (z +zP+zs —2zz2zz —1)'~

For a discussion of this formula and other related formulas we are going to use, we refer the reader to Appendix B.
In the case —1 &z2& 1, the situation is a little bit complicated, and the fact that C~(s,zs) is analytic in z2 except for
a cut running from zs ——1 to z& ———~ for s &—a'/4 is needed. In fact, we can write

where

1 " a„(s,x)
C„(s,z) = dx

(z—1)'" 2 x+z
for s(—a'/4,

2 2 ds
(r~(s, x) = —-8(—2s(1+x)—a')L —s(1+x)]'"P„(—2s(1+x))—— (8(—2s(1+x)—a')

~~/4 s +s
XL—s(1+x)j'~'2)t„(s', —2s(1+x))—8(2s'(1+x)—a')(s'(1+x))' '}l~(s', 2s'(1+x))). (24)

For —1(z&&1, we can convert the right-hand side of (22) to the following form by the use of some simple
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)+pi( —zz+ )i

)p (s )pt( z1)3

p (s)+z(8~ +
25)( z +z~)jp &(z')x[p(-"-" "

;z e nation ar
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Pg(s) " dss
Pg(sg) +

sin( 1) f(1,+z,)'" s,—x+ '
s,—x—' )

P g(s) 8(s—1) (s—sg) e(z —z,)—x+ V (s, sg, x)
dz dp 1n

(y+x)(y —1)'" V(s,s,,x) (s—s,) (s—s,)—x—V(,s„x))

8(1—s)8(z—s,) U(s, sg)+ssg+x+ V(s, zg, x)
+2 g(x+zz + (sP—])g/g(zg —1)g/g)

V(s, sg, x) U(s, sg)+zsg+x —V(s,sg, x)

s—sg —x+ V(s, sg, x)- 8(s—1) (s—sg)~(s —sg)+y+ V(z, z, ,
—y) )

X
s—sg —x—V(s,zg, x) V(s, sg, —y) (s—z,)v(z —z,)+y—V(z, zg, —y))

where

8(1—s)8(s—sg) U(s,zg)+ssg —y+ V(z, zg, —y) z—zg+y+ V(z, s,, —y)-—2 ln
V(z, z„—y) U(s,s,)+ss,—y —V(z, s„—y) z—z,+y—V(s, s„

x& —1, zg& —1, U(s, zg) = (sp —1)'"(s'—1)'", V(z, sg,x) = (z'+sp+x'+2xs, s—1)'/'

and the principal branch of the logarithm is to be taken,
Using (28) and (29), one can now transform the right-hand side of (22) into the form

(29)

(h Pg(s)gg(s, s),

and since the left-hand side of (22) is already of this form and the equation is to hold for a range of values of 1,,
the corresponding weight functions in the integrals over Pg(s) must be equal. This is the required equation between
the weight functions, and to present it in a compact form, we define the following set of functions:

Eg(s,x,y) = $(v x)8(xv (xg 1)g/g(vg 1)g/2 s)Cv, (x&1).
(v+ y) (v' —1)'"(s'+v'+ x' —2vsx —1)'"

1
Eg)(s,x,y) = dI (—1&x &1).

(v+ y) (v—1)'"(s'+ v'+x' —2vsx —1)"'-

8(z—1) s—x—y+ V(s,x,y)
Eg(s,x,y) = dv ln

(s+y)(. 1)" V(s,x,s—) s—x—Z —V(z,x,y))
8(1—s)8(s —x) U(s,x)+zx+y+ V(s,x,y)+2 g(y+zx+ (zg —l)g/g(xg —1)g/g)

V(s,x,y) U(s, x)+sx+y —V(s,x,y)

s—x—y+ V(s,x,y) 8(s—1) s—x+v+ V(s, x, —v)
X ln

s —*—y —V(., x,y) V(s, *, —.) s—x+.—V(s, x, —.))
8(1—s)8(s—x) U(s, x)+sx—v+ V(z, x, —v) s—x+v+ V(s, x, —v)—2 ln (-1&x&1,y& -1).

V(s, x, —v) U(z, x)+sx—v —V(s, x, —v) s—x+v —V(s, x, —v)

1 8(x+y)8(z —1)+L1+8(1—s))8(—x—y)8(z+xy —(y' —1)'"(x'—1)'")
Eg(s,x,y) = (—1&x&1).

(y+ 1)g/g (z'+x'+y'+2xsy —1)'"

(30)

The first three functions listed can be evaluated in terms of elliptic functions, but we see no advantage in doing
so here. Equation (22) can now be written as follows

—2g~, (—s, —2s(s+1))

dsg 8(—2s(1+sg) —(g') dy(y, (s,y) H„-(s,sg) —E4(s,sg,y)+8(s—1)Eg(s,sg, y)
—1

—-',8(z—1)Ks(s,sg,y) ——E()(s,sg, y)H„+(s,sg) y (31)
2~



N/D METHOD FOR COMPLEX PARTIAL %AVES

where

H~ (s,s~) =B„(s+is,—2$(1+s~))—B„(s—iz, —2$(1+s~))= —2si8(—2$(1+s&)—a')f~( —s, —2$(1+s~)),

Hs+(s, si) =Bs,(s+zz, —2s(1+st))+B~(s—z~, —2$(1+st) )
ds' 4$+a2 )1/2

=2P(—2s(1+s,))+2 P, (s', —2s(1+s,))— i P„(—s, —2s(1+s,))
a'tt4 s+s- a' 4s'—J

Equation (31) is a nonlinear integral equation in f~
alone, since o~ is expressible in terms of ((t ~ through (24),
and $~ is given in terms of the potential in (21).We can
obtain a solution for P„ in the form of a power series in
g' if we start with P~"'=0 as the zeroth term and iterate
(31) successively. If this iteration converges, it must
yield the correct solution, since it is known that there
exists a unique solution to the potential scattering
problem. It can be shown that the formal power series
obtained in this manner converges by comparing the
i(//D decomposition with the Jost decomposition, and
then using the known results about the expandability of
the Jost functions in terms of the coupling constant. "
Since we are unable to prove this directly, we will not
dwell on this point further, and from now on we restrict
ourselves to a term-by-term discussion of the solution.
To illustrate the method, we exhibit the lowest order
contribution to P~, which is proportional to g:

4 "'(—s, —2$(s+1))

1
dsg 8(—2$(sg+1)—a')

IV. THE RELATIVISTIC PROBLEM

This section is devoted to a treatment of the rela-
tivistic problem in analogy with the nonrelativistic one.
The statement of the problem is as follows: Determine
the relativistic scattering amplitude f,(s„t,) whose ab-
sorptive part A, (s„t) has a known discontinuity across
the left-hand energy cut, which we denote by V(s„t)
=A,(s,+i e, t) —A,(s„—is, t) where s,(—4m' and
t) 4m', and f,(s„,t ) satis6es the Mandelstam represen-
tation and the elastic unitarity condition in the s chan-
nel:

a, (s,+iz, l) a„(s—„iz,—l)
s„—4~2~~~2

=2i
~

a, (s„+is, l)a, (s„—iz, l).
s, )

(s,)4m'). (33)

This problem clearly has no unique solution unless
one is also given the arbitrary subtractions in the s and t
variables. For the sake of simplicity, we assume that
there are no such subtractions; if they are present, it is
quite easy to take them into account. %e now carry out
the S/D decomposition in much the same way as we did
before.

dy 8(—2s(y+1) —a')L —s(1+y)]'"
—1

X,(s„l)
a„(s„l)=

1+D,(s„t)

s„—4m'

&&(t~(—2$(1+s~))P,(—2s(1+y))i(tz, is, ys). (32) X„s„tg

(34)
( 2t

dt B,(s„,t)Q(i 1+
s,—4m'/

It is of some interest to compare the method presented
here with that given in reference 6. Both methods are
dispersion theoretical and deal exclusively with quanti-
ties on the mass shell. The nonlinear integral equation
given in (31) looks more complicated than the corre-
sponding equation of 6, but the procedure given here
has the advantage of working directly with partial
waves and avoiding the problem of subtractions in the
momentum-transfer variable. It may also be noted that
the approximation procedure given here satisfies the
unitarity relation and has the correct domain of ana-
lyticity in momentum transfer at each step of the ap-
proximation. Of course, the domain of analyticity in the
energy variable at each step is not, in general, the cor-
rect domain.

D„(s„,l) = ds C„(s„s)Qi(s),

(I,(s,t)
B,(s„,t) = ds

P $+Ss

(35)

oo oo

C„(s„,s) = —— dt ds
2wF(s 1)+t)—

j. ((t, (s,t)
X (36)

2t+(s —1)(4m' —s,) s+4eP+2t/(z 1)—
For $,(0, C,(s„s) is analytic in the s plane cut from

1 to —~, and it can be written in the form

(r, (s,x)
C,(s,s) = dx
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4m' —s 4m' —s
es(s s)=O(s+s, 0+s ) +O,

I
s —i, /)+s ))

2

ds' 4m' —s s '"
/' 4m' —s

/&+s ) —
I
—, k.

~l

—s, -(&+s ))
o s'+s 2 s' I

'
2

Relation (40) can be iterated to yield a series solution

in powers of the jump across the left-hand cut. In
analogy to the nonrelativistic case, we may hope that
this iteration procedure yields convergent results in

general.
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APPENDIX A

P 1(z)=
sin (z l) " P, (x)

dx
'F I x+8

1 2

Pi(zl)P/(z2) =-
2% 0

XP1(ziz2 (z12 ] )1/2(z22 1)1/2 co~)

(sl&1, s2) 1). (82)

Substituting (81) into the right-hand side of (82),
and carrying out the integration over p, we easily get,

sin(orl)

P/(2:)
. (83)

(2.2+z12+z2 +22 zlz2 1)
X dx

1

la, originally valid for z~) 1 and z~&1, can
be analytically continued to other values of z& and z&

for which the denominator does not vanish. For real z~
and z2) —1, this imposes the restriction z2& —z~ and
we get the 6rst part of (28). For —1&s, & 1 and z2 &—zl,
we must erst suitably deform the contour of integration
in the x plane so as to continue z~ to values less than —z~
without meeting singularities, and fold back the contour
on the real axis, after the continuation is done. This
process yields us the extra term in the second formula
in (28). Finally, to obtain (23), we use the identity:

—
~
arg[z, + (z '—1)'/21 ~+arg[zo+ (zo' —1)"'])0, (A1)

where zo ——1+8m'/(s„—4m2). To derive this result, we
notice that for l ~ i ~, t—he second part of (b') implies
that exp( —iorl)a, (s„l) is bounded, and since the factor
P 1 (s„)/sin (orl) is always bounded, there is no divergence

difhculty for any z„or s,. For l —+ +i oo, the first part
(b') combined with (7) easily leads to (A1). For
Ims, ~0, arg[zo+(zo2 —1)'/2]~0, and it can easily be
verified by simple algebra or a geometrical construction
that

f argCs„+ (s' 1)' 'j
l
~

I arg[zo+ («' 1)' 'j
l

if
zo—1gz„—1~0. This implies that (11) converges for
0~&„~4m~.

Q 1(zl)P 1 (zo) —P 1(zi)Q 1 (zo)

1 7r

[P1 (z,)P 1( z, io)— —
2 sin(orl)

APPENDIX 3

Here we want to investigate the region of convergence
of (11).To this end, we use the asymptotic bound (7)
for Pl(z,) and (b') for /2, (s„l). I.et us take Im(s, ) ~0,
since the case of negative Im(s„) can also be treated
similarly. As usual, Csin(orl) j ' is the convergence factor,
and the integral converges for all s„and z„for which the

This formu
following inequality is satisfied:

In this section, we derive several versions of the
spherical harmonic addition theorem we have been
using. The fundamental relations we need are'4

—P 1 (zo)P1(—zi —22)j. (zi) 1, z2& 1). (84)

Evaluating the right-hand side of (84) using (83),
we get (23).


