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Chew’s strip-approximation N/D equations have been solved numerically with a generalized potential
of the form corresponding to elementary-particle p exchange plus the contribution from Pomeranchon ex-
change required by the fact that the phase shift at the strip boundary is generally nonzero. Trajectories and
reduced residue functions are found. The trajectories have reasonable shapes, slopes in agreement with
experiment [o'~0.3/(BeV/c)?] for reasonably chosen strip widths, and end points in the region of />0. In-
creasing the phase shift at the strip boundary displaces trajectories upward, while increasing the strip width
tends to flatten trajectories. The behavior of the reduced residues is found to be representable by a simple
approximate formula in terms of the input potential. The potential investigated, with neglect of inelastic
scattering, is incapable of generating a J=2, I=0 resonance and yields a p width several times too large.
Increasing the phase shift at the strip boundary tends to improve the situation.

I. INTRODUCTION

ECENTLY, Chew!? and Chew and Jones® have
proposed a new method of solving the pion-pion
problem, based on the strip approximation. The
starting point in the calculation they propose consists
of trajectories and reduced residue functions in the
crossed channel, and the width of the strip inside which
the double-spectral functions are non-negligible. Chew
and Jones have shown how to obtain from these quanti-
ties a Born term which includes the effects of resonance
exchange, continuum exchange, and inelastic processes
in the direct channel.? Chew has given the solution of
the resulting (non-Fredholm) modified integral equa-
tion for V;(s)2. An iterative procedure is envisioned in
which self-consistent solutions are found such that the
output trajectories and residues are identical to the
input ones. The purpose of this paper is to give nu-
merical results for the solution of the modified integral
equation when the Born term is approximated by the
exchange of a zero-width p. We feel these results are of
interest both as a starting point with which to compare
the more inclusive calculation in progress and as an
indication of the size of the role played by p exchange
in the pion-pion problem. No attempt is made in the
present work to find self-consistent solutions. We rather
study the output trajectories and residues as functions
of the width of the exchanged p, the strip boundary,
and the phase shift at the strip boundary. Our results,
briefly, with strip widths around 5 GeV? are leading
trajectories a of reasonable o (0) [around 0.3/ (BeV/c)?]
and reasonable a(« )[0<a(®)<0.5], and reduced resi-
due functions v, in agreement with the approximation
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of Chew and Teplitz,5
v(8)/ (s)= (8—5)Batn¥(3), for s<s,

where 5 is in the strip and BY is the potential. The
Pomeranchuk trajectory cannot be made to reach J=2
with the potential in question, and the residue at s=m,?
for a(m,*) =11s several times as large as the value corre-
sponding to the observed p width. In Sec. IT we review
the equations to be solved and discuss the machine
program which solves them. In Sec. III we give the
Born term. In Sec. IV we present our results; and
finally, in Sec. V we briefly discuss corrections to the
Born term.

II. N/D EQUATIONS

Chew’s equations are?

p— / N =5, (1)

Ni(s)= / ) Ou(s,s")NL(sT), (2)
NP(s)=BiV (s)+ / ) ds'"K{ (5,5 )N (s),  (3)

81
K/ (s,s")= / Ky(s,5")0(s",s")ds" 4)
4
and
Ki(s,8) = [ (s"=s) THIB:" (s")— Bi" () Jpu(s")
+Ay/m)n(s1—s") —In(s:—9)T}, (5)
where \;=sin’*ra;, ma;=8;(s1). Here O, is given by
Oi(s,s") =8(s"—s)+tanwa; O4(s,s")
—tan’ra; Op(s,s’), (6)
8 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).
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with

04(s,s") = 2m) L (s1—5")/ (s1—9) ]
=L1=9)/ (1= 1}/[s'—=s]. (7)

The Op has been written down explicitly®; it is a double
summation and positive, and less than O4 for a¢;<%.

As Chew has pointed out,> we may see from Eq. (7)
that N;(s) and D;(s) are both singular at the strip
boundary s;, behaving like (s;—s)~%; the singularity is
not, however, present in the amplitude B;(s). We also
recall that /is the end point of a trajectory if Eq. (3) has
a homogeneous solution.?

The solution of Egs. (1) through (5) has been pro-
grammed for the IBM-7094 computer. The input to the
program consists of si, , a;, and B, (s) ; the output [in
addition to N,;(s) and D;(s)] consists of the resonance
energies sg(/) and the quantity v(s)/e’(s) [which is
equal to Ni(s)/(dD.(s)/ds)]. Integrations are done by
Gaussian quadratures applied to the variable (s;—s)'/2
because of the singular behavior at s;. The Fredholm
Eq. (3) is solved by matrix inversion, again using
Gaussian quadratures in approximating the integral
operator by a matrix operator. As we shall see below,
B;¥ for p exchange is rather smoothly varying. As a
result the matrix in Eq. (3) yields results (resonance
energies and widths) when it is 15 by 15 that are
within 19 of the results for 40 by 40. About 509, of the
running time for the program is used in computing the
operator O,(s,s") for Egs. (2) and (4); 100 to 400 terms
in the double sums for Op are used, depending on the
sizes of s and s’. Finding sg and v/«’ from the input
takes about 25 sec.

III. THE GENERALIZED POTENTIAL
In this work we have used for the generalized potential

BV T0(s)
B,V T=1(s)
BV:T=2(s)

=B/F(s)+Br(s), )

where for the p contribution we take

1
Bir(s)= [ 1] (3Tt,112/q212)

- X (14+5/242)0u(141,/242), ()

with T, the full width in the energy at half-maximum,
while for the Pomeranchon trajectory contribution
we take

[NERN]

1

sinra;

BzP (S)= — |1 (
1

)) In[ (s1—s)/s1]. (10)

mPI(S1
Equation (10) represents only the portion of the
Pomeranchon contribution to the potential which is

( °V.) L. Teplitz, first preceding paper, Phys. Rev. 137, B136
1965).
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singular at s;. We include this part in order to study
numerically the dependence of the sclution to Egs. (1)
through (5) on the condition at the strip boundary. The
interpretation of this term is that it gives the contribu-
tion to the potential from inelastic processes in the
direct channel above s;. Except for s very near s; we
have Bi"<<By, and the subtraction of the logarithmic
terms in (5) makes the kernel K;(s,s’) almost inde-
pendent of the Pomeranchon potential.

The p contribution [Eq. (9)] has several interesting
features: (a) In studying the output trajectories as a
function of the input width I',, the T=0 trajectories
with input I', are identical to the T'=1 trajectories
with 2T, as input. (b) For I=1, By (s) rises slightly
from s=4 to s=2¢, and then falls very gently; it is
constant to about 209, up to s values around 300m.,2.
From Eq. (5) we see that the constancy of B;* and the
smallness of B;F, except very near s;, imply that the
kernel of the Fredholm equation (3) is small. Thus the
Born term is a good approximation to the solution for
N° and hence for N. (c) As [ increases from 1, B (s)
becomes a more strongly decreasing function of s and
the integral term in Eq. (3) yields consequently a larger
repulsive contribution. (d) As ! decreases from 1 the
opposite obtains; By (s) becomes an increasing function
and the integral term an attraction. Property (c) tends
to limit the maximum value of / that may be attained
by a trajectory. For reasonable input widths, the output
trajectories tend to turn over in the neighborhood of
I=1 or below. For very large input widths the output
trajectories may be forced to somewhat higher maxima,
but then a(e) rises correspondingly by property (d).

IV. RESULTS AND DISCUSSION

In Figs. 1 through 9 we show a series of trajectories
for different values of a;, I', and si, found from setting
ReDy(s)=0. In the figures the values of I are appro-
priate to the 7’=1 direct channel; a T=0 trajectory for
given I' may be read from the figure of the T'=1
trajectory for 2I'. In plotting the trajectories, @; has
been assumed constant in /. Clearly an increasing a;
yields a trajectory with greater slope, and a decreasing

1.4 . :

ay=03
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ap=0.t
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F1c. 1. a(s) for I'=1, 5;,=200, ;=0.1, 0.3,



inadequate for an understanding of the f,. A second,
possibly difficult, feature of the results is that secondary
trajectories (S) were found to lie completely under the
primary trajectories (7)), i.e., ag™*<ar(w).

We may also see, from Figs. 1-5 and 6-7, that in-
creasing ¢; and I' tends to raise trajectories in an
approximately parallel manner. A more detailed picture
of the dependence of sz(?) on a; is shown in Fig. 10 for
a case of /, near the trajectory maxima, for which the
resonance energy is particularly sensitive to a;. It should
be noted that sz(/) behaves smoothly in the limit
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F16. 2. a(s) for T'=2, s,=100, 2;=0.1, 0.3.

a; lesser slope. We recall that the strip boundary s;
is expected to be large enough so that a; [which is
=6(s1)/m ] is less than %. The values chosen for the
strip boundary s; are reasonable in that they are above
the highest 77 resonance (the fo at s=80m,*) but not
high enough to be in the region in which Regge behavior
seems to become valid for 7V and NN (s=500m.%).
Only the parts of the trajectories for which a(s) is
rising from a(— ) are shown, since for s above this
range, Ima is presumably too large for the interpreta-
tion of 7 as Rea from ReD;(s)=0. For the same reason
the maximum value reached by a trajectory is indicated,
but the detailed shape near this value is not given. The
maximum slopes of the trajectories shown lie in the

1.4 T T T T T T T

ap=0.1

a;— 3.° With respect to the strip width, we see from
Figs. 8 and 9 that increasing s; tends to raise and flatten
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trajectories. A measure of the flattening can be found
from the approximation, for s <0,

a(s)=a(=)+[a(0) —a(=)]/(1—2s/s1),

which seems to fit the trajectories fairly well.

Three other calculations of a(s) may be compared
with the above results. Bransden ef al.8 have computed
leading trajectories from the original form of the Chew-
Frautschi* strip approximation, in which unitarity is
applied to the full amplitude rather than to partial
waves. They find also that the exchange force cannot
yield a trajectory rising to /=2. For strip widths in the

1
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range 0.1/(50m,?)—0.6/(50m,?), which brackets the
values obtained for the slopes of boson trajectories from
fitting high-energy data’ [o’=~0.3/(50m,%) ]. The values
of a(®) are all above 0 for the cases shown. If this
feature persists with better Born terms it will provide
a dynamical resolution of the problem of the s-wave
Pomeranchon ghost. The most striking drawback in the
trajectories shown is that they all turn over well under
1=2, as discussed in Sec. III. Thus, while p exchange
accounts qualitatively for the existence of the p, it is

7 A. Ahamadzadeh and I. Sakmar, Phys. Letters 5, 145 (1963) ;
Phys. Rev. Letters 9, 459 (1963); B. Desai, Phys. Rev. Letters
11,59 (1963); W. Rarita and V. Teplitz, dbid. 12, 206 (1964).
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range 100<s;<200m.% they find trajectory slopes of
about 0.3/(BeV/c)?, in agreement with the results
presented above. Bander and Shaw?® have calculated tra-
jectories, using the N/D method and a generalized po-
tential suggested by Wong.?® Although their work is not
within the strip approximation, their result for trajec-
tory slopes was roughly very small slopes, o’'<0.05/
(BeV/c)?, for very large strip widths, s;>1000m.,2.
Finally, Igi! has computed ¢/ (0) in the strip-approxima-
tion N/D formulation of Baldzs,'? and has seen the
flattening of trajectories as the strip boundary varies
from 80 to 160m,2. Igi’s values for o/ (0) are somewhat
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larger than those obtained above, but this is a result of
the inclusion of some inelasticity below the strip
boundary.

Our results for the reduced residue functions v (s) are
in agreement with the approximation of Ref. 5,

Y(5)/a ()= — / (5= )t B /

/l (s'—$)20,Ni=~ (8—5)BanV (8), (11)

9 M. Bander and G. L. Shaw, Phys. Rev. 134, B267 (1964).
1 D. Wong, Phys. Rev126, 1220 (1962).

U K. Igi, Phys. Rev. 136, B773 (1964).

27, A.P. Balzs, Phys. Rev. 132, 867 (1963).
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for a(s) sufficiently far from its maximum [max—a(s)
>0.17. For larger a(s), v/a' (which equals N/D’) falls
below this approximation, but as s approaches sz (Cmax),
it becomes infinite. In Fig. 11 we show, as an example,
v(s) for a trajectory of Fig. 4 with §=s1/2. This case
(I'=2) corresponds, in the T=0 channel, to an ex-
changed p of the experimental width (140 MeV) and
has ¢(0)~1. If we compute the pion-pion total cross
section from the formula

0 e =812y (0)

using v/o’~3 from Fig. 11 and o/ ~1/100 u? from Fig.
8, we find o,,=50 mb. This result is three to five times
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<

Fi1c. 8. a(s) for a;=0.1, I'=2, s;=100, 200, 300.

as large as the values deduced from the factorization
principle® and the 7V and NN cross sections. The fact
that v is too large seems to be connected with the fact
that amax is too small through the observation that both
difficulties would be eased if the integral term in Eq. (3)
gave a sizable attractive contribution for /=1. In such a
case the trajectory would rise higher, since amax is de-
termined by the point at which the integral term
becomes repulsive; v (0) would be smaller since by Eq.
(11) it is proportional to BY, which is IV less the integral
term. A similar situation obtains for an output p which
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is always too broad.* Thus the principal deficiencies of
elementary p exchange seem to stem from the lack of
attraction from the integral term in Eq. (3) which, in
turn, may be attributed to the constant, for /=1,
behavior of the potential discussed in Sec. ITI. Since this
behavior results from the fixed spin (=1) of the ex-
changed p we may expect some improvement in a calcu-
lation in which the Regge behavior of the exchanged
p is included.

V. CORRECTIONS TO THE GENERALIZED
POTENTIAL

We review here the changes, within the strip approxi-
mation, expected in a calculation of the generalized
potential B;"(s) more accurate than the §-function p
approximation used above.

(1) Regge behavior of the p:1'3 the contribution to
A (s5,¢) from an elementary ¢ channel p,

Ae(s,t) <T'Py(2)/ (t—1),

140 T T T T

100

Y(s)/a'(s)

50

! !
-150 -100 -50 0 10
s

Se0

Fic. 11. Numerical results for v (s)/e (s) solid curve; the approxi-
mation of Ref. 5 dotted curve, for I'=2, 51=300, ¢;=0.3.

4 This is a well-known feature of pion-pion calculation. See,
for example, Ref. 9.
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is only an approximation to the contribution from a p
trajectory,

4*(s,)~ (2a41) (= g2)* Oy () Pay (2:)/sinma(t)+- - - .

The first form is recaptured from the second in the limit
a— 1+e(t—1tg), v—¢ e¢— 0. The modifications in-
troduced by the Regge form are currently being studied
numerically.

(ii) The contribution of the Pomeranchon trajectory
(P):inaddition to the logarithmically (at s=s;) singular
part considered above, there is another contribution to
the amplitude due to the P and secondary 7=0 tra-
jectories that come to the right of /= —%, which can
be written!s

AT=°(s,t)~Zl: 21+ 1)/dt'aT=°(t’)/(t’—t)+ e

In view of the nonresonant behavior of the s wave and
the high mass of the f, in the d wave, this term is very
likely unimportant.

(i) The double-spectral functions with support in
the region of low s and large ¢: these give a contribution
to the left-hand cut of 4 (s,f) which must be included
in finding B;" [in addition to their contribution to the
right-hand cut of 4 (s,£) which is being solved for and is
not to be included in B;"].3 The left-hand cut from this
term begins, however, at s= —s;, so that this term is
presumably small for the same reasons as those which
justify the strip approximation.

(iv) Inelastic chanmels below the strip boundary
such as 7w, pp, and KK: two possible methods for
finding their effects are: (a) a multichannel calcula-
tion and (b) introduction of the inelasticity parameter
R;(s)=0c"(s)/aE(s) into the equations of Sec. IT. It
has been pointed out that (b) is easily accomplished
by replacing p;(s) by pi(s)Ri(s) ; but reliably calculating,
or even estimating, R;(s) does not, at present, appear
feasible.® The absence of any four-pion decay of the fo,
however, lends support to the neglect of inelastic effects
below the strip boundary.

The qualitative success of the simple é-function ex-
change contribution in yielding Regge trajectories of
reasonable shape and reduced residue functions of
reasonable magnitude gives some encouragement that
the inclusion of (i), and possibly others, above will make
it possible to find a solution to the pion-pion bootstrap
equations.
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