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Mandelstam’s program for constructing the scattering amplitude from its 
analytic properties and unitarity is analysed in the case of nonrelativistic 
scattering by a cutoff potential or by a hard sphere. The asymptotic behavior 
of the scattering amplitude in the momentum transfer plane is obtained, lead- 
ing to a double dispersion representation for the amplitude. The usefulness of 
this representation is limited by an essential singularity at infinity in the 
momentum transfer plane. An infinite system of dispersion relations, connect- 
ing each partial wave with all succeeding ones, is derived from the dispersion 
relation for fixed momentum transfer. The partial-wave amplitudes must be 
constructed from this system together with the unitarity condition. Possible 
ambiguities in the solution of this problem are investigated. It is shown that 
ambiguities in the exact solution affecting only a finite number of partial waves 
(Castillejo, Dalitz and Dyson ambiguities) do not exist. They would arise, 

however, in approximate solutions and it would be very hard, in practice, 
to eliminate them from the exact solution. The ambiguities can be formuIated 
in terms of the positions of the poles of the S-matrix. A series of sum rules which 
must be fulfilled by the poles is derived. The solution of t,he system is investi- 
gated in the particular case of scattering by a hard sphere. In this case, if one 
assumes that the exact solution is known for angular momenta larger than some 
(arbitrarily given) valee, each partial-wave dispersion relation for smaller 
values of the angular momentum can be exactly solved, and it follows from 
the Sum rules that the solution is unique. 

I. INTRODUCTION 

Since the beginning of the work on dispersion relations, two essentially different 
standpoints have been taken concerning their applications. The first one is to 
regard them as consistency relations, which can be applied to test whether the 
general principles from which they have been shown or are expected to follow 
are compatible with the experimental data. They could then be considered as 
broad restrictions, which might be fulfilled by a large class of physical theories, 
rather than leading to a unique theory. The other and much more ambitious 
standpoint is to regard dispersion relations, combined with unitarity, as the 
basis for a complete theory of strong interactions. They are then treated as 
integral equations which can be solved, in principle, in terms of a small number 
of fundamental constants. This program has been proposed by Mandelstam 
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(I), together with a conjecture on the validity of the double dispersion relations 
upon which the program is based. 

Assuming the correctness of this conjecture, it is still very difficult to test the 
program in elementary-particle physics, on account of the complexity of possible 
intermediate states. In practice, the approximation of neglecting multiparticle 
intermediate states is always applied. It is far from clear to what extent the 
results derived by means of this approximation are to be trusted and regarded 
as an effective test of the validity of the program. 

In view of this difficulty, several investigations have been made in connection 
with simpler models, specially for nonrelativistic potential scattering. The only 
case which has been considered so far is that of a superposition of Yukawa 
potentials : 

s 

m 
rV(r) = o(p) exp( -or) dr. (1.1) m 

The validity of Mandelstam’s representation in this case has been proved by 
several authors (2-4). According to Blankenbecler et al. (3), the scattering 
amplitude can be uniquely constructed, in principle, given the Mandelstam 
representation (including Born’s approximation and the energies of the bound 
states) and the unitarity condition. However, there remained the problem of 
determining the number of subtractions, which is related with the behavior of 
the scattering amplitude at infinity in the momentum transfer plane. 

This behavior was investigated by Regge and collaborators (2, 5, B), who have 
shown, with some further restrictions on the potential, that it is given by a 
(generally complex) power of the momentum transfer. The power depends on 
the energy, but upper bounds for it were determined and related with the 
number of bound states and resonances. 

The actual construction of the scattering amplitude has not been carried out. 
The weight function of the representation is to be determined as the limit of a 
sequence of polynomials in the coupling constant, but the rate of convergence 
of this sequence is unknown. Moreover, it would be very hard to test the result, 
because the behavior of the solution is not well known for this class of potentials. 

The analytic properties of scatt’ering amplitudes are simplest and most fully 
known in the case of a cutoff potential, i.e., a potential which vanishes identically 
beyond a certain radius. There are several examples, belonging to this class, in 
which the exact partial wave amplitudes are known and have a simple analytic 
form. A cutoff potential, however, cannot be represented as a superposition of 
Yukawa potentials. The analytic behavior of the amplitudes is entirely different 
in the two cases. It may appear strange that such a radical difference should 
exist, for one would expect that the effect of introducing a cutoff in the potential 
at arbitrarily large distances should be very small. However, arguments of this 
kind cannot be applied to analytic continuation. 
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The purpose of the present work is to investigate Mandelstam’s program in 
the case of a cutoff potential. We shall also consider a singular limiting case of 
such a potential, namely, a hard sphere. 

The analytic properties of the scattering amplitude which are required for 
deriving double dispersion relations are almost completely known for cutoff 
potentials. The only exception is the behavior at infinity in the momentum 
transfer plane, which will be derived in Section II. It is given by an energy- 
dependent essential singularity, such that a double dispersion representation is 
not valid in the usual sense, but only as a limit, in which interchange of the 
order of the integrals is not allowed. 

However, in the case of a cutoff potential, the double dispersion representa- 
tion is not required: one can apply directly the partial wave expansion together 
with the dispersion relation for fixed momentum transfer. This relation will be 
employed in Section III, where we shall project the partial waves out of the 
total scattering amplitude. The result is an infinite system of dispersion rela- 
tions, coupling each partial wave to all succeeding ones. 

In Section IV, we shall investigate to what extent this system, together with 
the unitarity condition, suffices to determine the solution. It will be shown that 
there are no solutions differing from the physical solution by a finite number of 
partial waves only. Ambiguities involving an infinite number of partial waves 
cannot be excluded, but they would be much harder to construct, in view of the 
complicated form taken by the unitarity condition. 

The possible ambiguities arising in each partial wave dispersion relation can 
be expressed in terms of the positions of the poles of the corresponding S-func- 
tion. However, these positions are not completely arbitrary: they must fulfill 
a series of sum rules, which will be derived in Section V. 

In Section VI, we shall consider in more detail the case of a hard sphere. It 
will be shown that, in this case, if the exact partial wave amplitudes are given 
beyond a certain value of the angular momentum (no matter how large), all 
lower-order partial waves can be uniquely determined from the system of disper- 
sion relations, with the help of the sum rules. 

II. THE DOUBLE DISPERSION REPRESENTATION 

A. SUMMARY OF KNOWN RESULTS 

Let V(r) be a potential which vanishes for r > a and satisfies the condition 

J =rlv(r)ldr < a. (2.1) 
0 

Let f(k,~) be the scattering amplitude, expressed as a function of the wave 
number k and the momentum transfer 7. The following properties off are known 
in this case: 

(a) S&,7) is an analytic function of both variables, regular in the topological 
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product of the 7 plane and the upper half of the k plane, except for a finite num- 
ber of simple poles on the imaginary axis, k = iK, , which are associated with the 
bound states. 

(b) For fixed 7, and / k / + m in the upper half-plane, 

fkT) + fB (7), (2.2) 
where 

~B(T) = -G2 /” exp( -iz.r)V(r) dr (2.3) 

is Born’s approximation (T = ( t I). 
Properties (a) and (b), not including the analyticity in T, have been proved 

by Khuri (7) and Klein and Zemach (8). The analyticity in 7 follows, as a 
limiting case, from the results of (3) and from the work of Hunziker (9). 

Property (a) has also been proved under more general assumptions about the 
scatterer (10)) which apply, in particular, to the case of a hard sphere. In this 
case, however, property (b) must be replaced by 

(b’)f(W = O(k) (2.4) 

for 1 Ic 1 + 00 in the upper half-plane. 
It follows from (a) and (b) that, in the case of a cutoff potential, f(k,~) 

satisfies the following dispersion relation for fixed momentum transfer (7) : 

f(k,r) = fib) + c $$$ + ; lrn H k’dk’ (Im k > 01, (2.5) 
71 

where r, (T) is a polynomial in T of degree I, , the angular momentum of the 
nth bound state, and 

g(W = & Mk’,T) - f(--k’,T)l. (2.6) 

The relation (2.5) is valid for real or complex values of 7. For real 7, the 
symmetry relation f( -lc’,~) = f* (k’,~) implies 

g(k’,7) = Imf(k’,7) (real 7). (2.7) 

In the hard sphere case, the following dispersion relation follows from (a) 
and (b’) : 

(Im k > 0). (2.8) 

It was shown in (lo), by direct summation of the partial wave expansion, 
that 

f(O,T) = --a cos(m), (2.9) 

where a is the radius of the sphere. 
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In order to derive a double dispersion representation for j(l~,~), we must still 
determine the behavior of g (?c,T) for fixed, real k and / 7 ( ---f 00. Unfortunately, 
this is a completely unphysical limit, so that it is hard to foretell the result from 
physical arguments. 

For a cutoff potential, one might expect that (2.2) would remain valid. This 
would imply 

j’(k,T) = O[exp(-iTa)] 

for / 7 ( --$ 00 in the upper half-plane. 

(2.10) 

For the hard sphere, the behavior of f(k$) , the scattering amplitude expressed 
as a function of k and the scattering angle 0, is known for fixed, physical 0 and 
) k / --$ cc in the upper half-plane. According to classical causality arguments, 
which can be applied in this case, we have, under these conditions (11) , 

f(k,O) = 0 [exp( -2ika sin 31. 

Since 7 = 2k sin 8/2, this leads again to (2.10), for 1 7 1 ---f w and j k 1 -+ cc 
simultaneously, in such a way that the above relation between 7 and k is pre- 
served. One might expect this result to remain valid for fixed k and ( 7 / -+ m ; 
this seems to be confirmed by (2.9). 

However, we shall see that (2.10) is not the right answer for real 7, although 
it will turn out to be correct when 1 7 / ---f CC in the upper half-plane, in direc- 
tions away from the real axis. 

In order to determine the behavior of g (k,~) for / 7 ( ---f CC, we shall employ 
the partial wave expansion 

f(k,T) = 5 (2zA ‘) 
1-O 

(2.12) 

where X1 (k) is the S-function for the lth partial wave and Pl is the lth Legendre 
polynomial. It follows from (2.6), (2.12) and the unitarity condition that 

(2.13) 

The behavior of Pl for / 7 I + 00 follows from (12, I, p. 189) 

Pz(z) = (21 - 1) !! zZ/Z! (I x ( -+ ~0; 2 = 0,1,2;. .), (2.14) 

where (22 - 1) !! = 1.3.5. . . (2Z - 1). According to (2.14), (2.13) behaves 
like a power series in T for I T ( -+ 03. It then follows from the theory of entire 
functions (IS) that the behavior of g(k,T) for ) T / --, m is determined by the 
behavior of the terms of the partial wave expansion for 1 + cc. 

We shall consider first the case of a hard sphere, and then we shall extend the 
results to cutoff potentials. 
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B. THE HARD SPHERE 

In this case, we have 

&(A”) - 1 = -2jj,(ka)/hl”(CQa), (2.15) 

where j, and hj”’ are the spherical Bessel function and the spherical Hankel 
function of the first kind, respectively, of order 1. 

The behavior of g(X.,T) for 1 r / ---f m, derived from (2.13) and (2.15), is 
given by Eq. (A.13) of Appendix A. It corresponds to an energy-dependent 
essential singularity which is quite different from (2.10), although (2.10) is 
correct away from the real axis, as will be shown in Appendix A. 

Let us now apply these results to derive a dispersion relation for g. It is con- 
venient, for this purpose, to consider it as a function of the variables s = k2, 
t= 7’. For fixed s > 0, the function 

G(s,t) = exp[-2eCi”‘4a (st)“4]g (s,t) (2.16) 

is analytic in the t plane cut from 0 to 00 (0 5 arg t < 2a) and, according to 
(A.13)) 

G(s,t) = O(t-“‘) (I t) + m). (2.17) 

Taking into account (2.7), this leads to the dispersion relation 

G(Q) = i lm exp[-u(bt’)“4] sin[a(4at’)r’*] Im f(s,t’) dl’ 1’ - t (2.18) 

(Im t # 0). 

Since we already know that both sides of (2.8) are analytic in the topological 
product of the cut s and t planes, we can now substitute (2.18) in the right-hand 
side of (2.8) to get a double dispersion representation for f(s,t) . 

It must be remembered, however, that the asymptotic behavior (A.13), 
which led to (2.18), is valid for fixed s and 1 t 1 -+ =c, whereas the values of 
s’ = k-” in the integral (2.8) range from 0 to 00. The limit for s -+ 00, 1 t 1 --f 0~) 
‘depends on the manner in which both variables approach their limiting values. 
Thus, in order to substitute (2.18) in (2.8)) we must interpret the integral in 
(2.8) as the limit of an integral with finite upper limit of integration. Taking 
into account (2.9), we finally get 

f(d) = --a c~s(ut~‘~) + slim s u ds’ exp[2e- in’4a(s’t)1’4] 
- 

v+m 0 ?r s’(s’ - s) 

dt’ exp[-u(4s’01’*] sin[u(4s’t’)1’4] Im f(S, t,) (2.19) (t’ - t> 7 

(Im s Z 0, Im t # 0). 
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This is the double dispersion representation for j’(s,t) in the hard sphere case. 
It differs from the usual kind of double dispersion relations by the exponential 
factors which are required to remove the essential singularity at / t / --+ 00 and 
by the fact that the integral in s’ must be understood as a limit. Interchange of 
the order of integration after proceeding to the limit u + m is not allowed. This 
is due to the nonuniformity of the asymptotic behavior in t for s -+ m . 

C. EXTENSION TO A CUTOFF POTENTIAL 

In order to extend the above results to the case of a cutoff potential, it suffices 
to determine the behavior of Si(lc) - 1 for I-+ 00. If the potential is sufficiently 
regular, the centrifugal term in the radial equation must predominate in this 
limit, so that Sl(k) - 1 should tend to Born’s approximation: 

s 

a 
Sl(k) - 1 z -2ilc ?j12( kr) U(r) dr, (2.20) 

0 

where U(r) = 2mV(r)/ii”. It has been shown by Carter (14) that the absolute 
value of the right-hand side of (2.20) is always an upper bound to the left-hand 
side for large enough 1. We shall restrict ourselves to potentials for which (2.20) 
is valid for large 1. 

If we take also 1 >> (ka)‘, (2.20) becomes 
. 21fl 

Xl(k) - 1 x - 22k 1’ rzL+V7(1,) dr. 
[(2Z + 1)!!]2 0 

(2.21) 

Let Ucrn) (a - 0) be the first nonvanishing derivative of U(r) at r = a - 0, 
with U(O) (a - 0) = U(a - 0). Then, by repeated partial integration, (2.21) 
becomes 

&(k) - 1 z ( -lY+’ 
2icFU’“‘(a - o)(kuy+’ 

[(2Z + l)!!12(2Z + 3)(2Z + 4) . . . (2Z + 3 + m,) . 
(2.22) 

This result can easily be checked in the case of a rectangular potential. 
Comparing (2.22) with (A.3) and (A.4), we see that the only difference in 

1 SI - 1 I2 is a slowly-varying factor 

a2m+4 1 Ucm) (a - 0) I” 
(2x + 1)2(2X + 3)2(2X + 4)2 . . . (2X + 3 + m)2 

which must be incorporated to the integrand of (A.6). Taking this factor at 
the saddle points (A.12)) we find, in the place of (A.13)) 

1 U’“‘(u - 0) ,2{exg$y($2’ + exp[2u( -ik~)~‘~] 
(- &)m+(5/2) (2.23) 
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Taking into account (2.5), we get from (2.23), in complete analogy with 
(2.19)) the double dispersion representation 

s 
OD dt’ exp[-u(4s’t’)“4] sin[c~(4s’t’)“~] Im f(s’ t’) . _ 

(t’ - t) 7 cl n- 

(2.24) 

(Im s # 0, Im t # 0). 

The remark made in comlection with (2.19) on the noninterchangeability of 
the order of integration also applies to (2.24). 

The radius of the potential does not appear in the dispersion relation for 
fixed momentum transfer (2.5). This relation holds also for potentials of the 
type (1.1). For these potentials, however, the function g(k, T), has branch cuts 
in the 7 plane running from 2im to i m and from - 2im to -i ~0. The effect of 
cutting off the potential is to remove these branch cuts to infinity, so that one 
gets an entire function. The radius of the potential reappears in the behavior 
at infinity, where there is an essential singularity, given by (2.23). This be- 
havior also depends on how smoothly the potential approaches zero at r = a 
(this gives the value of wz in (2.23)). 

In contrast with the case of a superposition of Yukawa potentials, there is 
no subtraction problem for a cutoff potential: (2.24) is valid irrespective of the 
strength of the potential. However, on account of the exponential factors and 
the corresponding lack of freedom in the order of integration, it is not so useful 
as Mandelstam’s representation. 

The unitarity condition takes the form (3) 

Imf(k,T) = 2 [j*(k, 1 k’ - k” l)f(k, 1 k” - kl) dQ”, (2.25) 

where 7 = / k’ - k ( and k’* = k”’ = h?. According to (2.7), this condition 
can be rewritten as follows: 

g( k, cos 0) = & lzu dp’ lzr f( -k, cos e cos 0’ + sin 0 sin 8’ cos v’) 
(2.26) 

. f (k, cos 6’) sin e’ de’, 

where cos 0 = 1 - (7*/2k2). The unitarity condition has physical significance 
only for real values of k and for -1 5 cos 0 6 1. However, for real k, both 
sides of (2.26) are analytic functions of cos 0, so that (2.26) remains valid for 
arbitrary values of cos 0 or 7 by analytic continuation. 

If we replace f by (2.19) or (2.24)) taken for real values of 7, in the right-hand 
side of (2.26)) we get, according to (2.7), an integral equation for Im f(k,T) 
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However, the iterative solution proposed by Mandelstam and applied to the 
case of a superposition of Tukawa potentials (3) camrot be employed here, be- 
cause the weight function differs from zero in the entire first quadrant of the 
(s,t) plane. 

III. THE INFINITE SYSTEM OF PARTIAL WAVE DISPERSION RELATIONS 

The unitarity condition takes its simplest form for the individual partial 
waves. For this reason, the procedure usually followed in the applications of 
Mandelstam’s program is to project the partial waves out of the dispersion 
relation for the total amplitude. 

For this purpose, we shall apply the dispersion relation for fixed momentum 
transfer (2.5) or (2.8), together with (2.13). For potentials of the type (l.l), 
the partial wave expansion (2.13) converges only for r2 4 4m2. For a cutoff po- 
tential or hard sphere, however, we can apply it for all values of 7. 

The partial wave amplitude f~ (k) is given by 

h T = 2k sin i) Pdcos 0) sin 0 d0. (3.1) 

Substituting j’ by (2.5) or (2.8) and taking into account (2.13), we encounter, 
in both cases, the integral 

Cl,l(X) = *(al’ + 1) LX PLf(l - x + 5 cos f3)P1(cos 0) sin 0 de. (3.2) 

This integral is evaluated in Appendix B. The results are given by Eqs. (B.3), 
(B.5) and (B.8). 

According to (2.9) and (3.1)) we also encounter the integral 

cos %a sm 2 ( . “) P2(cos 0) sin B de = & Dcj,2(ka)l, (3.3) 

which has been evaluated by differentiating the Clebsch-Heine expansion 
(12, II, p. 316). 

Taking into account (3.3) and the results of Appendix B, we get from (2.8), 
(2.9)) (2.13) and (3.1)) in the hard sphere case, 

Refdk) = - $ hj?(ka)l + 7 P LI k,~~~,(f)kj dk’ 
(3.4) 

dk’ (1 = 0,1,2, . . .), 

where P denotes Cauchy’s principal value and the numerical coefficients (2;m;s) 
are defined in (B.9). 

Similarly, in the case of a cutoff potential, let ipl, be the residue of St(k) at 



ON MANDELSTAM’S PROGRAM 353 

the pole i61n , corresponding to the nth bound state of angular momentum 
I (pan is real). Then, according to (2.5) and (2.12)) 

I’ln(7) = residue f(lc, T)/~+~ = w+ l)P,A(l+&). (3.5) 

Taking into account (3.5), we get from (2.5), in complete analogy with (3.4), 

where the sums over m and n in the fourth term are both finite sums (the total 
number of bound states is finite), and 

f&k) = - g s a V(r)j,2(kr)r2 dr 
0 

(3.7) 

is Born’s approximation. 
Let us write explicitly the first few terms in the first few equations of (3.6) 

(assuming for simplicity that there are no bound states) : 

This infinite system of partial wave dispersion relations was first considered 
in the relativistic case by MacDowell (15). It was also mentioned by Goldberger 
(16) in the nonrelativistic case. 

The relations (3.4) or (3.6) couple the real part of each partial wave amplitude 
with the imaginary part of the same amplitude and the amplitudes of all sub- 
sequent partial waves, so that we have a “triangular” system of equations. The 
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coupling to higher-order partial waves appears in each equation through a series 
of polynomials in k2. 

In addition to the system of equations (3.4) or (3.6)) the partial wave am- 
plitudes must satisfy the unitarity condition, 

Imfi(k) = k Ifl(k) 1’. (3.8) 

Notice that both (3.4) and (3.6) automatically give the correct low-energy 
behavior of the amplitudes: Re fl = 0 (lc”), Im jl = 0 (k*l+l) for k -+ 0 (the 
latter follows from the former and (3.8) ) . 

The dispersion relation (3.6) can be rewritten in a more transparent way 
by introducing the function 

gz (k) = fL (k) /kZ1 = [As1 (k) - l]/ (2ik21+1) ) (3.9) 

which is regular at the origin. According to well-known properties of the S-matrix 
for a cutoff potential, g1 is a meromorphic function of k. It follows from the work 
of Humblet (17’) that, for 1 lc 1 -+ 00 on the real axis, 

&(k) - 1 = 0 (K’) (3.10) 

and, for / k 1 -+ m in the lower half-plane, 

&@I = (- 1) ’ (2k/i) m+2 exp ( - 2ika) / li’“’ (a - 0)) (3.11) 

where UCm) (a - 0) is the quantity that appears in (2.22). 
Let kl, be the poles of St(k) in the lower half-plane, which are symmetrically 

placed with respect to the imaginary axis. It was shown by Humblet (17, pp. 
45, 71) that Re kl, = 0 (n) and Im kin = O(log n) for large n. Let 

RI, = residue gl(lc) lL=kl,. 

The following dispersion relation is then verified by gl(k) : 

O” Irn g’(k’) dk’ = - Re gl(k) + 2 Re c k*, 
In 

(3.12) 

where the sum is extended over all the poles in the lower half-plane, taken in the 
order of increasing modulus. This relation, which generalizes a result due to 
Lee (18), is obtained by considering the integral on the left-hand side taken 
over a sequence of contours closed by half-circles passing halfway between the 
poles in the lower half-plane. It follows from (3.9)) (3.10)) and (3.11) that the 
integrals over half-circles tend to zero when their radii tend to infinity, leading 
to (3.12). 

According to (3.9) and (3.12)) (3.6) can be rewritten as follows: 
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(3.13) 

where 

+ & gl z ( - I)“( l;m;s)k2” 11 l~‘~“-~~-~ Im s~+~( k’) dk’, 

r1n = residue gl (k) Ik=ixln = (- 1) ‘pin/ (2G:?). 

The expression within square brackets in the left-hand side of (3.13) is the 
entire part of the meromorphic function gl(lc), and gZB(k) = SIB(k)/ICzl is, 
according to (3.7), an entire function of k. Thus, the right-hand side of (3.13) 
is the expansion of an entire function, which explains why it is valid for all h-, 
in contrast with the case of a superposition of Yukawa potentials. 

According to Humblet (I?‘, p. 53)) the entire part of jl (ic) is associated with 
potential scattering, whereas the pole terms are associated with resonance scatter- 
ing. Thus, we see from (3.13) that the coupling of each partial wave to the 
higher-order ones is related with potential scattering of that partial wave. 

IV. AMBIGUITIES IN THE SOLUTION 

A dispersion relation involving a single partial wave is usually verified by a 
large class of functions, rather than having a unique solution. This was first shown 
by Castillejo, Dalitz, and Dyson (19), in connection with Low’s equation for 
meson-nucleon scattering. The resulting ambiguities are known as CDD am- 
biguities. 

In the present problem, the partial wave amplitudes must verify the infinite 
system (3.4) or (3.6), in which each partial wave is coupled to all the others, 
together with the unitarity condition (3.8). The total amplitude, given by 
(2.12)) must fulfill conditions (a) and (b) (or (b’) ) of Section I&A and have 
the correct behavior at infinity in the r plane. 

The question which will now be investigated is: are these properties sufficient 
to determine f(k,~) or do additional solutions exist, besides the physical one? If 
they do, Mandelstam’s program cannot be carried out in this form unless supple- 
mentary conditions are given to select the physical solution. 

We shall restrict ourselves, for simplicity, to the hard sphere case and to the 
case of potentials without bound states. The extension of the results to include 
bound states is straightforward. With this restriction, it follows from condition 
(a) and (3.1) that 
(i) X1 (Ic) is a regular analytic function in the upper half-plane. 
According to (3.1), the behavior of Xl(k) for 1 lc 1 -+ 00 in the upper half-plane 

depends on the behavior of f(k,~ = 2k sin e/2) for / lc 1 + ~0. In the hard sphere 
case, this behavior is given by (2.11)) so that we get 

S1 (lc) exp (2&a) = 0 (1~) 
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for / li 1 ---f 00 in the upper half-plane. Since / St(k) exp(2ika) / = 1 on the real 
axis, it then follows from the Phragmen-Lindeliif theorem (20) that 

(ii) / S2(k) exp(2ika) / 5 1 in the upper half-plane. This result is also known 
to be true for a cutoff potential without bound states (17, 21). 

The unitarity condition 
(iii) Sl(lc) s,*(k) = 1 (real k) 

enables us to extend the definition of S1 (Ic) to the lower half-plane, with the help 
of the Schwarz reflection principle, by (22) 

x1 (k*) = [A%* (k) 1-l. (4.1) 

According to (4.1), the only possible singularities of XI in the lower half-plane 
are poles, corresponding to the zeros in the upper half-plane, so that 

(iv) S1 (h;) is a meromorphic function. 
The symmetry relation f’(-k, -T) = f*(k,~) (real k), together with (3.1), 

implies 
(VI Sz(-k) = S,*(k) (real k). 
Conditions (i) to (v) are well-known properties of the S-function in the pres- 

ent problem. Let us now introduce Wigner’s R-function (23) 

(4.2) 

where 

Sz,(k) = (- 1) ’ exp (2&a) Xl(k). (4.3) 

It was shown by Van Kampen (22, 24) that (i) to (v) imply the following 
properties of the R-function: 

(i’) Rl is a meromorphic function of k2; 
(ii’) RI is real for real values of k2; 
(iii’) all the poles of RI lie on the real axis; 
(iv’) Im R, has the same sign as Im Ic2 ; 
(v’) the Mittag-Leffler expansion of RI is 

RL(k2) = c Yn 
nIln’ 

where yn and pL, are real and the poles p,, cannot have an accumulation point at 
finite distance. 

It follows from (v’) that any ambiguities in the solution can be expressed in 
terms of changes in the parameters 7n , plx , j ust like the CDD ambiguities (19). 

Let f(lC,~) be the physical solution, and let us assume that there exists another 
solution f’ (k,~) differing from J in a single partial wave, S1 being replaced by 8, 
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and RZ by RL’. Then, according to (2.12)) (4.2)) and (4.3)) 

f’k 7) - f(k, 7) = ; (-1)721 + 1) 
(&a + l)‘(Rz’ - Rd 

P - W’i, + l)tR,’ - Rdl 
(4.5) 

It follows from (ii), (4.2)) (4.3), and (4.4) that the right-hand side of (4.5) 
has an essential singularity of the type exp (-2&a) for ) k 1 + m in the upper 
half-plane. Thus, f’(k, ) 7 violates condition (b) or (b’) of Section II,A, so that 
it is not an acceptable solution. The same is obviously true for any function 
differing from f only by a finite number of partial waves. 

Thus, it is not possible to construct an. extra solution by modijying any finite 
number of partial waves: there are no CDD ambiguities. This contradicts a result 
due to Barut and Ruei (25). Their argument, however, is incorrect.’ 

The unitarity condition played an important role in the derivation of this 
result, by allowing us to extend the definition of Sl(k) to the lower half-plane. 
The analytic properties of f(k,r) as a function of both variables were also re- 
quired in the derivation of (i) . However, the behavior for 1 7 ) + 00 entered only 
in the form (2.11), i.e., when 1 k 1 4 00 simultaneously. 

At least in the hard sphere case, the physical reason for the absence of CDD 
ambiguities can be explained by causality considerations. In fact, in this case, 
the amplitude is identical to that for scattering of a classical massless scalar Eeld 
by a totally reflecting sphere, so that signals with sharp fronts can be built. 

The exponential factor exp (-2&a), which dominates the behavior of X1(k) 
in the upper half-plane, represents the phase advancement of a spherical multi- 
pole wave upon reflection at the surface of the scatterer. This factor cannot ap- 
pear in the forward scattering amplitude because it would lead to instantaneous 
transmission of signals across the sphere. It can be shown that the same condi- 
tion also prevents the appearance of this factor for fixed nonzero momentum 
transfer (10). 

Thus, although each term of the partial wave expansion (2.12) blows up ex- 
ponentially for / k 1 -+ ~0 in the upper half-plane, the phases of the partial waves 
are coupled by causality in such a way that the full amplitude has at most a 
linear divergence. This result remains true for nonrelativistic particles, although 
the classical causality condition can no longer be applied in this case. 

1 The argument is based on the assertion that the expression y~(k)j~~(k)[l + yl(k)f~(k)]-1 
(25, Eq. (19)) tends to zero for / k 1 --+ m in the upper half-plane if jr behaves 
like exp(-2X%) (C > 0) and ye behaves like h+ exp(P) for 1 k / 4 m. However, this is 
not true below the first or second bisector, where the above expression behaves 
like exp(--2iCk), so that it has an essential singularity at infinity. 
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It is not possible to modify a finite number of partial waves without destroying 
the phase relationships that are responsible for the elimination of the exponential 
factor. This explains why CDD ambiguities camlot exist. 

Possible ambiguities, if any, must therefore involve modification of an infinite 
number of partial waves. Partial wave analysis is then no longer of any use: one 
can work directly with the total amplitude. However, any extra solutions must 
satisfy the unitarity condition in the form (2.26)) and it is very hard to see how 
they could be constructed. 

The above arguments allow us to eliminate CDD ambiguities in principle, but 
not in practice. In fact, one would have to sum the whole series of partial waves 
in order to make sure of the cancellation of the exponential factor in the asymp- 
totic behavior in the upper half-plane, and this would be extremely difficult by 
analytical means. The same applies, a j&iori, to approximate solutions. 

V. SUM RULES FOR THE POLES OF THE S-MATRIX 

It has been shown by Van Kampen (29) that a function Xl (k) satisfying con- 
ditions (i) to (v) of Section IV can be represented by a canonical product 
expansion 

(L + k) 
&(k) = fexp(-22ika) v (Ic 

7% 
_ k) , 

where 12, are the poles of Si(k) taken in order of increasing modulus, and a! 5 a. 
In the present case, according to (3.4) and (3.6), we must take the + sign, 
because X1(O) = 1. Moreover, it has been shown by Regge (96) that a! = a for 
a cutoff potential. The same is true for the hard sphere (b?‘). Thus, 

Xl(k) = exp( -2ika) v i: _+ i)). 
n 

This expansion is a counterpart of (4.4)) and the CDD ambiguities can also 
be expressed in terms of the positions of the poles k, , instead of the parameters 
(7% , wLn). However, in addition to conditions (i) to (v), the infinite system of 
partial wave dispersion relations also imposes a condition on the low-energy 
behavior of S2 (cf. (3.1), (3.4) and (3.6)) : 

X2(k) - 1 = ic2 (kc&) 22+1 + w~2z+2) 

where Cl is a real constant. According to (3.4)) 

(k -+ 01, (5.2) 

cz = - (21 - l)!T(22 + l)!! 

in the hard sphere case. 
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It will now be shown that (5.2) gives rise to additional restrictions on the po- 
sitions of the poles k, . In the first place, by taking the logarithmic derivative of 
(5.1) at L = 0, we get 

F & = if-J + f St’(O) = ia (1 + ; cz ko) , (5.4) 

where 6L,0 is Kronecker’s delta and the last equality follows from (5.2). The 
“sum rule” (5.4) was derived by Van Kampen (2.9). 

Now let us take 1 2 1 and let us consider the integral 

(5.5) 

where C is a contour consisting of the real axis, from -R to - c and from c to 
R, a half-circle y of radius e (E -+ 0) and another one p of radius R(R + a), 
centered at the origin (Fig. 1). 

We have 

S,’ + L’ = L” 10gLsx --k)&(k)1 & = 0, (5.6) 

because A’,(-k)Sl(k) = 1. It follows from property (ii) of Section IV that 

J = O(R-2p) + 0 forR--+ co. 
r 

Finally, according to (5.2) and (5.5)) 

lim 
s 

= 7rCl azz+l &,2 . 
t4 Y 

(5.7) 

(5.8) 

FIG. 1. Contour of integration in the k plane. X X X, poles of Sz(k); 0 0 0, zero8 of 
Sz(k). 
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It follows from (5.6)) (5.7)) and (5.8) that 

lim 1 = 7rC~a2’+‘6,,~ . 
C+O 
R-cc 

On the other hand, by partial integration, 

(5.9) 

I = -A, log Sdk) &‘(k) dk ____ 
(2p + l),W+’ 1 + (2p : 1) c S&G) Pp+l s (5.10) 

where A& denotes the variation of f round the contour C. 
According to a well-known formula (28)) we have 

A, [log S,(k)/,+‘*‘] = 27ri(N - n)/Rzpfl, 

s S,‘(k) dk __ = 
c f&(k) k2p+l 1 ’ 

where N and n are, respectively, the number of zeros and the number of poles of 
St(k) contained within the contour C, k,’ are the zeros and iK,,, are the poles in 
the upper half-plane (bound states). According to Humblet (17, pp. 45, 7l), 
N = O(R) and, according to (2.1)) n = O(1) for R + 00, so that the first term 
of (5.10) vanishes in this limit. On the other hand, to each zero ki’ in the upper 
half-plane corresponds a pole ki = - kj’ in the lower half-plane, so that we 
finally get 

(5.11) 

where the summation is extended over all the poles of Si (k) , both in the upper 
and in the lower half-plane. 

Equating (5.9) to (5.11), we get 

CL= 
n JGy+’ 

i (2~ + l)iu2z+1C~6p,1 = f 1:~ Ik-2LS~‘(k)]6,,l 
(5.12) 

(p = 1,2, . . * , 1). 

According to (5.4) and (5.12), we have, for 1 = 0, 

F $ = ia + f S,‘(O) = ia (1 + G) 

and, for I >= 1, 

(5.13) 

(p = 1,2, * *. 1 - l), (5.15) 
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(5.16) 

These relations, which give the sums of the inverses of odd powers of the poles 
of the S-matrix, will be called sum rules. For the lth partial wave, 1 + 1 sum 
rules must be fulfilled. Any modifications in the positions of the poles (CDD 
ambiguities) must be compatible with these rules. 

VI. THE HARD SPHERE CASE 

We have seen in Section III that the infinite system of partial wave dispersion 
relations is a “triangular” system. This suggests trying to solve it backwards, 
starting at some very high value of 1 to find the asymptotic form of the solution 
for large 1, and then going back step by step to lower values of t. For each t, one 
then has to solve a partial wave dispersion relation with known inhomogeneous 
term. Since fi should tend to Born’s approximation j”lB for I + ~0, one could 
take as first approximation, for sufficiently large 1, 

Re.h =fZB, Imfi N” 0, 

which would effectively reduce (3.6) to a finite system. However, one would en- 
counter CDD ambiguities at each step of the solution. 

In order to investigate further this “backwards” method of solution, let us 
now consider the hard sphere case, assuming that the exact solution of (3.4) is 
known for 1 > lo . Substituting the solution in the right-hand side of (3.4) for 
1 = lo, one gets an equation of the form 

where Fl(k) must be computed by summing the series of polynomials in the 
right-hand side of (3.4). We shall assume that this summation has also been 
carried out. In order to compute the result, let us consider the exact solution 
(2.15). We shall denote the corresponding partial wave amplitude by 

f(k) = $2(k) - 1 = ij&ka) 2 22x khj”(ka) ’ 
(6.2) 

By the same method which led to (3.12), we find 

= Refi(k) - 2ReF k 0 
21+2 (6.3) 

(Ic p” kn) - 5 
1 Cl k21a21+l, 

n 
where C1 is given by (5.3)) &, are the poles of Jil in the lower half-plane, and 

Pn = residue J2 (k) ) k&, . (6.4) 
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The poles are the roots of: h?’ (ka) = 0. There are exactly 1 poles (97). It follows 
from (6.1) and (6.3) that 

Let us consider the function 

gl(k) = If,(k) - Fl(k)]/k21+2 = [fl(k) - ~rm/~z”+” + ijl(kU> 

kzLf3hf’ (ka) 

In terms of this function, (6.1) can be rewritten as follows: 

(6.7) 

According to Titchmarsh’s theorem (d9), (6.7) implies that gl(k) has an ana- 
lytic continuation which is regular in the upper half-plane and tends to zero for 
1 k \ -+ CO. It is readily seen that the expression within curly brackets in (6.6) 
also has these properties. Thus, the same must be true for the remaining term 
[Sl (k) - S,(k)]/ (2iF). 

The function 

z (Ln + h-) 
A,(k) = Xl(k) - f&(k) = f&(k) - eXP(-2ika)ng (& _ k) (6.8) 

n 

is therefore regular in the upper half-plane and o(IC”+~) for ( k 1 + 00. Since 
\ Al(k) \ s 2 on the real axis, it follows from the PhragmBn-Lindelof theorem 
(20) that 

( Al(k) ( I 2 in the upper half-plane. (6.9) 

Thus, according to (6.8), 

Sl(k) = (-1)1exp(-22ika)[1 + O(Ic?)] + O(1) (6.10) 

for 1 k 1 + 00 in the upper half-plane. 
It follows from the above results that St(k) satisfies conditions (i) to (v) of 

Section IV. Furthermore, its behavior for k -+ 0 is given by (5.2) and (5.3). 
According to Section V, this implies 

St(k) = exp( -2&a) F ii: t ki, (6.11) 

where the poles k, in the lower half-plane must verify the sum rules (5.13) to 
(5.16). 
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It follows from (6.10) and from the unitarity condition on the real axis, 
1 Sl(k) 1 = 1, that there cannot be an accumulation point of zeros of S2(k) at 
infinity in the upper half-plane. Since the poles in the lower half-plane cannot 
have an accumulation point at finite distance (!A$?), the total number of poles k, 
must be finite: we shall call it ~1. 

This implies that kl , k2 , . . . , k, are roots of an algebraic equation of degree 
HI. Let us write this equation in the form 

a,km + am-lkm-l + . . . + a,k + 1 = 0. (6.12) 

Then, the inverses of the poles, xl = l/k1 , . . . , 2% = l/k, , are roots of 

xm + ulxm--l + . . . + am-lx + a, = 0, (6.13) 

and (5.13) to (5.16) give the sums of the first I + 1 odd powers of the roots of 
(6.13). 

It is well known that the coefficients of an algebraic equation of degree m can 
be expressed in terms of the sums of the first m powers of the roots. It was shown 
by Vahlen (30) that they can also be expressed in terms of the sums of the 
first m odd powers. 

Let 

(6.14) 
n=l 

Then, according to Vahlen, 

a12 + c&z3 + *. * 
1 + a*22 + f.. 

= - tanh 2 tanh-’ (x, 2) 
[ ?L=l 1 

= -tanh S1 Z + SB $ + Ss s + . + . 
> 

(6.15) 

. 

The first member of (6.15) is the ratio of the odd-power terms of (6.12) to 
the even-power ones, i.e., it is a rational fraction of order m. This implies that 
the continued fraction expansion of the last member, 

terminates with the term C,-1Z2. 
By identifying the coefficients of the power-series expansions of the first and 
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second members of (6.16)) one can express Ck as a rational function of 
X1 , S’s, . * . , L&+1 . For instance, 

co = -s1, 

On the other hand, by identifying the first member of (6.15) with the second 
member of (6.16)) one can express al , a2 , . a . , a, in terms of CO , Cl , . 0 * , C,-l . 
In this way one gets expressions for al , a2 , . . * , una as rational functions 
of xi, sa, ..*, S&&--1. 

Any symmetric function of the roots, in particular S&+1 , is therefore a 
rational function of X1 , X3 , f . . , SZ,-~ : 

S 
Q,(& , A!!&, . . . , &-I) 

2m+1 = P,(Sl, SB, . * * ) s2m-I> ' 
(6.17) 

where P, and Qm are rational entire functions without a common factor. The 
function 

Rm+1(&, Sa, .a- , S2m+d 

= &m+lPm(& , Ss , . . . , &,-I> - Qm (81, Sa , s . . , &m-d 
(6.18) 

is therefore an irreducible entire function of S1 , Sa , . + . , S2m+l , which vanishes 
if Sl ) x3 ) * . * ) S2m+l are sums of odd powers of the roots of an algebraic equa- 
tion of degree m. To each value of m there corresponds a (uniquely defined) 
function Rmfl . 

It was shown by Vahlen (SO) that 

(6.19) 

Now let us apply these results to the sum rules (5.13) to (5.16). These rela- 
tions are fulfilled by the poles A, , f, , . . . , fi of (6.2)) which are roots of an 
algebraic equation of degree 1. According to the above, the first 1 sum rules 
suffice to determine the coefficients of this equation, and therefore its roots 
Ll , L2 , * . . , fl . The last sum rule, which gives the value of LSZ~+~ , must therefore 
be a consequence of the first 1 rules, so that, according to (6.18)) we must have 

R 0. 1+1 = 

It follows from (6.19) and (6.20) that 

Cl = 0 

(6.20) 

(6.21) 
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in (6.16). Therefore, the equation 

GZ 
1 + CIZ” 

= -1 

If (6.22) 

is an algebraic equation of degree 2 which, according to (6.15) and (6.16), 
must follow from the original equation of degree m (6.12) : 

UlZ + aaz3 + . * + 
1 + u*z2+ . . . = -l* (6.23) 

This leads to the following alternative possibilities : 
(A) WL = 1, so that k, = k, . 
(B) m > 1. In this case, the numerator and denominator of (6.23) must have 

a common factor, which is a polynomial in Z2, and can be factored out in the 
left-hand side of (6.12). Then, in addition to the poles & , . . . , k, , there would 
exist pairs of equal and opposite poles (k, , - k,). Clearly, such pairs would 
not alter the value of X1 , 83 , . 1 . , Xsl+l . 

Alternative (B), however, is excluded by the fact that Sl(lc) cannot have 
any poles in the upper half-plane. Thus, (A) must be valid and, according to 
(6.8) and (6.11), this implies 

Sl(k) = i%(k). (6.24) 

The solution of (6.1) is therefore unique and it is given by (6.2). Substituting 
the result in (3.4) for I = lo - 1, we get another equation of the type (6.1); 
the same procedure can therefore be applied to all remaining equations of the 
system. 

Thus, if we know the exact solution of (3.4) for 1 > lo , the solution for 1 s Ze 
is uniquely determined and follows from the sum rules. 

VII. CONCLUSION 

Although a double dispersion relation in the usual sense does not exist for a 
cutoff potential, we have seen that one can obtain an infinite system of coupled 
partial wave dispersion relations by projecting the partial waves out of the 
dispersion relation for fixed momentum transfer. 

It is generally meaningless to speak of the solution of a dispersion relation 
involving a single partial wave, because there is a wide class of possible solu- 
tions. However, in the case of the infinite system, the analyticity requirements 
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in both variables for the full amplitude (including the behavior at infinity), 
together with the unitarity condition, imply the nonexistence of alternative 
solutions differing from the physical one only by a finite number of partial waves. 
On the other hand, it seems very hard to modify an infinite number of partial 
waves in a way compatible with the unitarity condition. 

If one considers an isolated dispersion relation taken from the infinite system, 
its solution still involves CDD ambiguities, which can be expressed as ambiguities 
in the position of the poles of the S-matrix in the lower half of the k-plane. How- 
ever, the low-energy behavior of the amplitude, which follows from the disper- 
sion relation, leads to a series of sum rules which must be fulfilled by the poles. 

In the particular case of a hard sphere, if one assumes that the exact solution 
is known for angular momenta larger than some (arbitrarily given) value, the 
remaining finite system of partial wave dispersion relations can be explicitly 
solved with the help of the sum rules, and the solution is unique. This is probably 
due to the specially simple structure of the S-matrix in this case: there is a finite 
number of poles for each value of the angular momentum, whereas the number 
of poles is infinite in the general case of a cutoff potential. 

The above results suggest that Mandelstam’s program can lead, in principle, 
to a unique solution in the present case. In practice, however, the elimination of 
ambiguities is an extremely difficult problem, and it seems to be practically 
impossible when approximation methods are employed. 

APPENDIX A. ASYMPTOTIC BEHAVIOR OF g(lc,T) FOR 17 ( + m 

In order to determine the behavior of the scattering amplitude for ( 7 / -+ 00, 
Regge (2) applied Watson’s transformation (31) to the partial wave expansion 
(2.12j, reducing it to the integral 

f(b) = lc (2k; I) L%(k) - 11Px (& - 1) &), (A.11 

where C is the contour shown in Fig. 2. The contour is then deformed onto the 
imaginary axis. In this process, it sweeps across the poles of S,(k), which are 
located in the first quadrant. For a suitably restricted class of potentials of the 
type (1 .l) , Regge showed that the number of poles is finite. The behavior of 
(A.l) for ( T ( -+ 00 is then determined by the residue of the integrand at the 
pole having the largest real part. 

In the case of a hard sphere (2.15)) this method cannot be employed, because 
Sk(k) has an infinite set of poles, which are the zeros of @’ (ka) (31). We shall 
therefore follow a different procedure, which combines Watson’s transformation 
with the saddle-point method. 

It follows from (2.15) that 

(A.2) 
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FIG. 2. Contour of integration in the X plane 

where nz is the spherical Neumann function of order 1. For 1 >> (k-~)~, we can 
apply the expansions (39) 

[ jdku) 1 2 ( ka)41+2 .__ = nkku) [(2Z - 1)!!]2[(21 + 1)!!]2 

. i (l- 41 
(A.3) 

+ 2 
(22 - 1)(21 + 3) 

and 
I&(k) - 1 1’ = 4[j,(ka)/n&~)]~ - 45&ka)/nt(lc~)]~ + .e+ (A.4) 

Although the expansions (A.3) and (A.4) are valid only for sufficiently large 
I, we can replace them in (2.13) for all I, because the difference affects only a 
finite number of terms, which contribute at most a polynomial in T. Restricting 
ourselves to the main terms of these expansions and employing also (2.14)) 
we find that, up to a polynomial in T, the behavior of g(k,T) for / T [ + 00 is 
the same as that of the function 

Y(b) = hZ z (4 & (21 + l)!’ [ .I 2 (2a2kT)2z 
(AZ) 

Just as in (A.l) , this series can be rewritten as a contour integral, 

r(k,T) = ; ika2 j” [ I;(, + 1) ]? (2a”W” dX 

c r 2X + 1) l?(2x + 2) sin(7rX) ’ (A.61 

where C is the contour shown in Fig. 2, I’(Z) is the gamma function, and the 
integrand is rendered single-valued by restricting ourselves to k I 0 and to the 
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first quadrant of the r plane: 

0 6 arg(Ta) $ i. (A.7) 

The behavior of g in other quadrants follows from the symmetry relations 
g&,7) = g*(k, -T*) = g(k, -T) = g*(k,T*), (A.8) 

which are an immediate consequence of (2.13). 
To determine the asymptotic behavior of (A.6) for 1 7 ) -+ ~0, we shall apply 

the saddle-point method. For this purpose, let us deform the upper half of the 
contour C into the upper half-plane and the lower half into the lower half-plane, 
away from the real axis. The main contributions to the integral arise from large 
values of 1 X I, for which the gamma functions can be replaced by Stirling’s 
approximation. Moreover, if ] Im X 1 is sufficiently large, 

[sin (TX) I-’ c23 F 2i exp (f&r), (A.91 

where the upper signs correspond to Im X > 0 and the lower ones to Im X < 0. 
Thus, we find expP’+(X,b)l dk - Ice exptF-(X,b)l dhj , (A. 10) 

where C+ and C- , shown in dashed line in Fig. 2, are the upper and the lower 
half of the deformed contour, and 

F&(X, k, T) = -4X log X + [2 log(2&) - 2(3 log 2 - 2) f i?r]X 

- g log h + O(P). 
(A.11) 

The saddle points of F* are located at 

A* = ; ( fikT)1’2, (A.12) 

respectively. According to (A.7)) X+ belongs to the first quadrant and X-. to the 
fourth quadrant, as it ought to be. 

Evaluating the contribution from the saddle points, we find that the asymptotic 
behavior of y, and therefore also of g, is given by 

+ exp[2a( --ik~)~“] 
( - ik7)1’2 

(1~1 -+ m). (A.13) 

Although this expression has been derived only for values of r belonging to the 
first quadrant, it is readily seen, with the help of (A.8)) that it remains valid in 
the other quadrants as well, provided that we take : - ?r < arg (Ta) s ?r. 

The first term within curly brackets dominates the asymptotic behavior in 
the lower half of the 7 plane, whereas the second term dominates in the upper 
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half-plane. On the real axis, both terms are of the same order, and we find 

g(k,r) 25 2-3’2ka(k7)-1’2 exp[(2kT)l”u] cos 
[ 

(2k7)“‘a - f 1 . (A. 14) 

Thus, we have an oscillation with exponentially increasing amplitude. 
The contribution from the second term within brackets in (A.3), which was 

neglected above, is of the order (?xz)~‘~(~u)-~‘~ relative to the first term. Thus, 
the conditions for the validity of (A.13) are: j k7 1”‘~ >> 1, ( xz 1 >> (/~a)~. Simi- 
larly, the second term of the expansion (A.4) gives rise to contributions of the 
order of exp[4u(fik37)1’4], which are negligible in comparison with (A.13) for 
jr)+ *. 

This method can also be applied directly to f(k, 7), by writing (2.12) in the 
form 

f(k,r) w c (21 + 1) ciz(ka> I i j~“k-4 j,3(kd I . . . 

2 k C ndka) n?(ku) n13(ku) 1 
(AX) 

The sum of terms containing even powers of j,/n, in the above expansion is 
equal to ig (k, 7). The first term within square brackets gives rise to a contribu- 
tion behaving asymptotically like --a cos(~u) (cf. (2.9)). The contribution 
from the third term is of the order of exp[3a(fik27)1’3], and so on: the nth 
term gives contributions in exp[nu(fikn-lT)l’n]. Thus, while (2.10) is indeed 
correct for 1 7 ) + CQ along any direction in the upper half-plane, it is not valid 
on the real axis, where the imaginary part off, given by (A.14)) dominates the 
asymptotic behavior. 

Notice that, although the first term within square brackets in (A.15) is much 
larger than the second one for 1 >> (k~)~, it is the latter which determines the 
asymptotic behavior on the real axis. This is due to the alternating character 
of the series (A.5). Since this might give rise to some doubts concerning the 
validity of the approximations which were employed in the derivation of (A.13)) 
it is worthwhile to establish some inequalities which confirm this result. 

It was shown in ref. 10 that, if 1 2 2ku 1 0, (log Z)1’2 >> 1, 

On the other hand, according to Picone’s inequality (12, II, p. 276)) 

I PdZ) 1 5 m 7, l)!! (1 + IZJ)“. (A.17) 

(A.16) 



370 NUSSENZVEIG 

Substituting these results in (2.13) and (2.15), and employing Stirling’s ap- 
proximation for the factorials, we get, for 1 7 / >> k, 

3/z 1 
’ ;~k~;z zi: [2*(4Z + l)]“” 

41+1 

(2a ( rk (1’2)4z+1 (A.18) 

< 23/2eka exp(2a [ rk (l”) 
Irk/l/2 . 

An inequality in the opposite sense can be obtained on the imaginary axis, 
T = z!G\ 7 1, because (2.13) then becomes a series of positive terms, the sum 
of which is certainly larger than any one of its terms. For sufficiently large 
1 f 1, the largest term of the series corresponds to 1 z al kr ]“‘/2, leading to 

(A. 19) 

The inequalities (A.18) and (A.19) confirm the result (A.13). 

APPENDIX B. EVALUATION OF THE INTEGRAL Cz’l(z) 

To compute the integral (3.2), let us employ the result (12, I, p. 15) : 

&(l - X + 5 cos 6) = P$O (-IY &(~“‘b,, xP (’ -y “r. (B.l) 

We have (12, II, p. 219) 

;s:(qp P,(P) 4.4 = 0 if p < 1, 

@!I” . 03.2) 
= (--1Y 

(p - Z)!(p + 1 + l)! If p >= z* 

Substituting (B.1) and (B.2) in (3.2), we get 

cyl(Z) = 0 if 1’ < 1, (B.3) 

(B.4) 

In particular, 

ClZ(X) = x1, (B.5) 
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It is readily seen that, for m 2 1, 

c l+,,l(x) = (-lYW + 2m + 111 x~+mF 
m!(2Z + m + l)! 

-2l - m - 1, -m; 

(B.6) 

where F (a, 6; c; 2) is the confluent hypergeometric function. We have (SS) 

F (a, b; c; 2) = (1 - Z)c-“-bF (c - a, c - b; c; 2). 03.7) 

It follows that 
m-l 

Cl+m,l(x) = ~‘(1 - 2) szo (-l>“G; m; 8)~’ (m = 1,2, ..s), (B.8) 

where 

(l;m.s) = (21 + 2m + 1) (21 + m + s + l)! 
9 m(2Z + m + 1) s!(m - s - 1)!(21 + s + l)! * 03.9) 
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