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We present a generalization of Veneziano's model to the five particle (production) amplitude. The amplitude
consists of multiple resonance exchanges and shows multi - Regge behaviour in all channels. The residues
at the poles have the correct polynomial dependence on the momentum transfer variables. The model also
has partial crossing symmetry. Some conclusions and possible applications are pointed out.

The five-point amplitude is schematically represented in fig. 1, where the momentum entering the
i'th line is denoted by Pz The five independent scalars are chosen to be

2 2 _
S;d+1 =P+ p1),  i=12,...,5, pi =1, pg=p; (1)

and the amplitude is denoted by F(s19,523,534,545,551)-

For simplicity, the particles are taken to be identical and of spin zero and the Regge trajectories on
which the resonances lie are assumed to be identical in all channels.

Just as in the Veneziano model [1], the trajectory ! = a(s) must be a linear increasing function of s.
We now list the requirements we want the model to satisfy:

a) F has simple poles in the five variables S3,3+1, which correspond to resonances in a given channel
or to the crossed poles giving rise to the Regge behaviour in the same channel. Two variables s;j and
Spm can simultaneously develop a pole if there exists a Feynman diagram of the form given in fig. 2.
This is only possible if ¢,7,m, n, are all different. This is graphically represented by fig. 3, where the
vertices of the pentagon label the indices of the sub-energies $i,i+1, and the dotted diagonals corres-
pond to the allowed double poles;

b) for definiteness, consider the double pole in the variables sy and S45 corresponding to fig. 2. Let
the spin of the leading pole in the 12 channel be j and in the 45 channel j', with masses a~1(j) and a'l(]")
respectively. The amplitude near s12 = a'l(j) and syg = a'l(j') must have the form

1 K=min(},j"

(812-a'1(j))(s45-a'1(j')) K=0

e ek
F~ GO

K
Ch(sy5) (s23) (2)

where ¢'s are constants. This condition, easily derivable from Feynman rules, guarantees that there
are no "ancestors" to the leading Regge trajectory. Of course, it allows parallel daughters. The same
condition also applies to other pairs of variables by a cyclic interchange of variables or by rotating the
pentagon of fig. 3;

¢) the model must reggeize both in the single and the double Regge limits in all channels. That means,
choosing the particular graphs of fig. 4,
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F-{1 +exp(-i‘ﬂa(s15))}(845)a(815)f'(h,323,334; S15); 812 — s S45 — oy B = s45/s12 =fixed (3a)

F —{1+exp(-ina(sgg)} {1+ exp(-ina(s 50} s39)° 2 (s45) ¥ 15)(x, 595, 5,.5),
(3b)
< S34 545 . ,
34 - o, S45 - oo, 12 = K = fixed, s15,593 fixed

where K is simply related to the Toller variable [2]. These relations must also the true under any

cyclic permutation.
The formula we propose is an extension of the integral representation for the Euler function which

appears in the Veneziano model,

B(-a(s),-a(t)) = f du 0 S)- (1-u)'°‘(’)'1. (4)
[o]

We generalize the above formula to the following:

duyduj -oz -1 -a23-1 -034-1 -a45-1  -agy-1
F= f f T-uju; 1277 uy “3 ug 4970 u 551 (5a)
where a5 = =o(s19) = asyg + b etc., and indices ¢ and j are any two non-successive integers, counting 6

and 1 equivalent. In the following we use the same F for the functions of sjj and a;;. u; andu; corres-
pond to the dotted diagonal lines in the pentagon of fig. 3. The variables u; satisfy the following con-

straints:

uj =1 -u i=1,...,5, ug=u;. (5b)

i-1%41

Although these are five equations, only three are linearly independent and hence all the u's can be ex-
Uy
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pressed in terms of two of them. By a change of variable, it is easily seen that the right-hand side of
(5a) is independent of the choice of 7 and j, and that it is symmetric under the cyclic interchange of the
indices from 1 to 5. Therefore, it is sufficient to prove properties b) and c¢) in one channel only; be-
cause of the cyclic symmetry, the proof is the same in other channels. Having established the symmetry
of formula (5a), we now write it in an unsymmetrical looking form, after elimination of some varia-
bles by (5b),

1 1

~ -ay9-1  -a45-1 7 1-Ul \-agq-1 1-uy4 \-aga-1 -015 -2
F=/ du10f duy uy 1277 ug (Tfuﬁz) 23 (m{i{) (Layug) 7155 (6)
o

This formula is convergent when all the exponents have a negative real part and, therefore, it is analy-
tic in all the variables. in this region. When Re(aq9) and Re(ay5) become positive, the integral diverges
at the lower limits of integration, and gives rise to poles in the variables sj9 and s45. From (5b) it is
clear that #; and #;;1 cannot vanish simultaneously, so that s;jand sgj cannot simultaneously develop
poles if they share an index. On the other hand, any two non-adjacent variables like #; and u4 can ap-
proach the lower limits of integration simultaneously, so that s13 and s45 can develop poles at the
same time. This verifies condition a).

To study the simultaneous poles in variables s19 and s 45, we write

€ 1 1 11

F=(0f f+ff)f+({ef +f f)duldu4{integrand}, 0<e<1.

0 €

€ € (7)

Only the first term leads to poles in both s;, and S455 the other terms are either analytic in s19, s45
or both. We now expand the last three factors in the integrand in a double Taylor series, keeping a45
and a19 negative, integrate term by term and obtain:

Fl D @F T2 (o mads

X (-a93-1)...(-ag3-k) X (-a34-1).. .(-a34-1) ¥
L= o (-aa3 (-ap3-k) x (-a34-1). . .(-a34-1)

0 l+m-a
12 45 (8)

X (agg+agq -ayp). . (@23 + @34 -a15-m +1) + terms without multiple poles in s13 and s45 .
This formula, continued to positive values of ayg and ay9, displays the poles at non-negative integers
in these variables.
To check condition b), we identify j =% + m, j' =1 + m and observe that the leading term of the poly-
nomial that multiplies this pole is of the form (s;5)% (s93)/-% (334)-7" @ and hence condition b) holds.
An alternative and perhaps better way of deriving the above results proceeds through functional re-

cursion relations. They can easily be derived by partial integrations with respect to %, and %, and also by
the rearrangement of the variables in the integral:

F(alz,a23,a34,a45,a51) = F(0112:0123 + 1,a34,a45,a51 +1) - Flayg -1,a23+1,a34,a45,a51+1) ’
Flo12,223,234,045,051) = Fla1g,a23,234,045,a51+1) -F(a13 -1, @23, a34, 245 -1, a5y +1) ,

1 \
Fayq, ag3, @34, 245, a51) Ty {(agg+1)F (a3 -1, ag3+1, @34 -1, ay5, a51+1) +

+(a15-ag4+1) Fla1g - 1,093,034, 045-1,a51+1)} ,
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as1-ag3+l
Fayg,a33, 34,245,951 ST ags Flajg-1,a93,a34,245-1,a51+1) + ©)
ag4+1
+—-‘Ev F(alz,a23-l,a34+1,a45-1,a51+1) .

Other functional equations can be obtained by all cyclic permutation of the arguments in the above
equations. By repeated use of these equations, one can continue F from its original domain of analyti-
city Reaj; < 0 to the whole complex plane. One then encounters simple poles coming from the denomina-
tors in the last two formulas, and these clearly have polynomial residues. Conditon b) can be established
using induction on (9).

As for reggeization, note that (6) does not have the signature factors, since there is no crossing
symmetry between say lines 1 and 5 and 2 and 3 in fig. 4. In any given channel, this can easily be fixed
by making the model crossing symmetric between the appropriate lines "by hand". For example, for
the channel chosen in fig. 4, we define a new function:

F(s19, 593, 34, 545, 551) = F(512,523, 534,545, 551) + F(s45 ~ 532 - S12+ 3, 593, S15 - 523 - $34 + 3, 545, s51) +

+ F(s34 - s12 - 815 + 3, $23, 534, 523 - S15 - S45 + 3, S51) +

(10)
+ F(s12 - 534 - 545+3, 523, S15- 23 -534+ 3,523 - 515 - S45+ 3, $51)

where S45- 532 - S12 + 3 = $13, S15-523-534+3 =824, etc. If F reggeizes so does f, and with correct
signature factors. The model can of course be made completely crossing symmetric, but then the proof
of reggeization is much more difficult and will not be attempted here.

We now give the sketch of a proof of double reggeization, the same argument can also be used to
establish single reggeization. In eq. (6) take all a's real and negative, and make the following change of
variables:

_xy

34045

y

45

Uy =exp

ut = expg

which gives
F= (—a34)a23 (-a45)a15 1
where
© 0@ -0ge-1,  -ay5-1 -ag3-1 -a15-2

1= [ ax [ dyexp{-y+’—g}(x> 4237103715 [K(x1,3)] 9237 L(x, 5, aga)[ Mix" )] 15 (11)

o] [o]
with

x'=-%/a34, ¥ =-3/a45, FE=0a3g045/a12 =fixed <0

1-e X'y 1 . 1-e [—x' t_apt
K(x',y') = _exxg _x'yv%y X'’ M(x )y )= xpyv =4 y} ’

1-exp{-y' f -a34-1

Al A =
L(x',y',a34) 3 ~exp{ %7}

The range of both ¥ and ¥ and ' and 3’ is between 0 and + . In this range, the following statements
can explicitly be verified:

k| <c, |L|<cC, IM| <C
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where C is a fixed constant independent of all variables (0 < P w0, 0 <y <o, agy < 0)

lim K@,y =1, lim M(x',y') =1 (12)
x',9'—0 x',y'—0
lim L{x',y',ag4) = exp{-x} .
X'= 0,y'-0

x,y=fixed, agq—-
The above limits are all uniform in both variables in the neighbourhood of x',y' = 0. We can now write

f f f f f f f f dxdy x {integrand} = I,(P) + I (P) + Io(P) + I3(P) (13)

where P is a constant independent of all s's. Now, given an €, we choose P so large that

Il <e 3l <e |I3] <e, independent of s34 and s45 (14)

which follow from the fact that L, M, N are bounded.
At the same time, keeping P fixed and taking s34 and s45 sufficiently large, we can satisfy the

following:
P P

IoP) - [ [ dxdyexp{w-y+ }(x “e23-10)1571 o (15)
o o0

which follows from the existence of uniform limits for K, L, M. Finally we can clearly have

3f S f dx dy exp{-x-y+’§}(x>'“23'1(y)""15'1 <e . (16)
o O (o]

Combining egs. (13), (14), (15) and (16), the following limit is derived

lim I=g (17)
S34— -0
S457-0

% fixed

which proves reggeization for the first term in (10) and also gives
a9 3+0 oo -09a-1, .-015-1 xy
glK, 533, 515) = (@235 [ [ (%)79287(y) exp{-%-y + 23} dxdy (18)
0o o0

where a is the slope of the trajectory and g is the residue function defined by (3b).

The above argument goes through even when agy4 and a45 are complex as long as Reagq < 0 and
Rea4s < 0. To reach the right half plane in these variables, one has to rotate the line of integration of
x and y in eq. (11) from the positive axis to a complex direction. In this manner, one can establish (17)
for any complex direction with the exception of positive real axis. As a check, one may introduce the
expected Regge behaviour (3b) into (9). One then gets functional equations for g and verifies that they
are the same as those derived from (18).

The model we have presented satisfies the duality conditions of Dolen et al. [3] for the five-point
production amplitude. The amplitude consists of only multiple resonance exchanges and yet it reggeizes.

As a result, it resolves the paradox of Deck effect versus direct resonance model in the manner
conjectured by Chew and Pignotti [4]. Finally, it predicts the form of the residue function in case of
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multiple reggeization. The dependence on the variable K given by eq. (18) is an interesting consequence.

The authors thank Dr. Chan H. M. for bringing this problem to their attention and for useful discus-

sions. We also thank Professor W. Thirring and Professor J. Prentki for the hospitality in the Theore-
tical Study Division at CERN.
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