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Abstract: The absence of the rho resonance in the 7*7- subsystem of the 777~ final
state produced by pn annihilation has prompted the investigation of resonance ex-
tinction in final state interactions. Resonance extinction is shown to be a general
feature of a simple dispersion theoretic model. The qualities of the two-particle
amplitude necessary for the corresponding decay amplitude not to have resonance
extinction are discussed. An important factor throughout is the structure of the
vertex function, i.e. the decay amplitude with no final state interaction. We re-
examine, using explicit models of the two-particle amplitude and vertex functions
with structure, the widespread conjecture due originally to Watson. that attrac-
tive forces enhance a decay amplitude.

1. INTRODUCTION

In weak decays, typified by a point production vertex in configuration
space (the equivalent of a constant matrix element in momentum space), it
has been suggested that resonances expected in final states may in some
circumstances be extinguished. This means that the theory implies that
two-particle resonances expected in a multiparticle final state would be
absent. This has been shown analytically and numerically in an on mass
shell theory [1] which describes the decay process 1 particle — 3 particles;
but it is important to notice that the same cancellation would occur if only
two of the particles in the final state interacted. This result, though,
seems to depend on the particular model of final state interactions (f.s.i.)
considered which is a K-matrix model. In particular, the literature does
not answer the question whether the phenomenon can occur in ordinary two-
particle f.s.i. using dispersion methods. This question is especially inter-
esting in view of the long-known and unexplained absence of the p resonance
in the reaction pn — 77~ 7~ (ref. [2]). While not providing a complete dy-
namical explanation, we will show that such cancellations are possible in
the two-particle f.s.i. case, within a dispersion theoretic approach.
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When such cancellations are taking place, we find that the details of the
weak production vertex, or source, become important. A similar sensitiv-
ity to the details of the source has recently been reported by Amado and
Noble [3]: they calculated the effect of strong attractive pairwise f.s.i.
among three particles on the total rate for the decay of one particle into
three, using separable potential theory. Among other interesting results,
they find that strong enhancements or de-enhancements can only be pro-
duced in this case when the weak vertex is strongly localised in configura-
tion space. This result pertains to the 3-particle f.s.i. case, but one im-
mediately asks, especially in view of our results about cancellations, if a
similar statement can be made in the simpler two-particle f.s.i. case,
where the third particle does not interact. The role of the vertex function
in f.s.i. is the second main topic of this paper.

Most of the remarks made in this paper apply, with slight modifications
of the conditions, to multiparticle final states. The remarks also apply
very directly to the three-point function, if the bare vertex in the absence
of f.s.i. is expected to be non-zero. We also examine the current conjec-
ture, due to some remarks by Watson [4], that attractive final state inter-
actions enhance a decay amplitude and that repulsive {.s.i. reduce it. This
certainly seems to be justified with a scattering length approximation and
an effective range approximation model of the two-particle interaction.

2. EXTINCTION

To begin with, consider the decay of one particle into three. There are
two sets of graphs which are thought to describe the f.s.i. problem. They
are drawn schematically in fig. 1 for the case of two simultaneous f.s.i..
One either uses the set proportional to the ones in fig. 1b, or the entire set
of fig. 1. Both appear in the literature, but we prefer the latter for reasons
to be stated.

Numerous authors have found two features of f.s.i. to be most striking.
The first is that f.s.i. can in some circumstances and in some theories be

Fig. 1. Graphs thought to describe the f.s.i. problem.
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Fig. 2. Additional graphs needed to describe the f.s.i. problem.

gigantic effects of three orders of magnitude; the second is that rescatter-
ing singularities (due to processes like the third graph of fig. 2b) have not
appeared conspicuously in elementary particles processes (although an in-
teresting example is known in nuclear physics [5]). Everyone knows that
two-particle resonances usually turn up in final states with roughly the ex-
pected masses and widths, so empirically one knows that multiple f.s.i.
(i.e. rescattering effects) are not very significant, except possibly if the
rescattering effects are so strong as to produce three-body resonances [6].
So the dominant graphs determining the important structure of the f.s.i. of
particles 1 and 2 are shown in figs. 2a and 2b. In these figures, we are
dropping the term present in fig. 1b involving 2-3 scattering, since we want
to examine the questions raised in the introduction in the simplest case
possible - that in which only two particles in fact interact strongly in the
final state. Even in this simple and supposedly well understood case some
interesting results appear.

With all these simplifications the decay amplitude F(k2) is given by

O k(2 2
Pt =00 + 1 [ ST a2, %)
o

where g(qz) is the two-particle s-wave amplitude, normalised so that
2(q2) = exp (i6) sin (8) and b(k2) is the production vertex, the projection of
fig. 2a. The quantity 2 is the c.m. momentum of one of the two equal-mass
particles in the interacting two-particle subsystem.

A convenient resonant form with the correct analytic properties in the
physical region is

Tk

glkE) = 5—5——.
kR- k- ~1iTk

(2)

The solution of eq. (1) was shown by Omneés [7] to be

2 _ b2 1 [ Dledelg®be?) 4 2
F"""”(k“w(kz)of 2 9 (3)

when the integral converges.
The amplitude D(¥2) is given by

- o 2
D) = exp (T [ 20 da2) < expae?) @
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where D(kz) needs only to be determined up to a constant multiplicative
factor, and so subtractions in the dispersion integral for A(s) are per-
mitted.

With one subtraction, Bronzan [8] showed that

D(#?) = k?{ ¥ - irk (5)

for the resonance form of eq. (2). If this is substituted directly into eq. (3),
the integral does not converge for constant 4, so proceed by subtracting eq.
(1) at k2 = 0.

F(k%) _ 1)  b(EH)-b(0) 1 f°° (g2 F(g%) | o
2 B2 p2 LS q2(q2 - k- i€) )

This is also an equation of Omnés type, whose solution, using egs. (3) and
(5) is

K2 ° Tq(F(0) +b(q2) - b(0))
F(k2) = F(0) +b(k2) - b(0) + dq2 .
(k) = F(0) +b(k4) - b(0) wD(kz)({ 22 12 - o) q
If b(kz) is constant, this converges and
ki— 22
F(k2) = F(0) 53 . (6)
kg - k" - iTk

This is the solution and it equals F(0) at %2 = 0 and #2 = ». One can evalu-
ate F(0) by backsubstitution of eq. (6) in eq. (1) to find that

, 2 2
iTqk_-q
F(kz) - b +£@) ( R ) dqz
T 2 22 22 2 ,2°
o (kR_-¢)Y"+T7q¢ q -k

R

where the integral is convergent. One obtains the fundamental form (6)
again with

k;-kz
F(k2) = b 5 5 (M
kR—k -iTk

showing that F(0) = F(«) = b.

An alternative way to reach eq. (7) is to note from eq. (6) that F(») =
F(0), so that the integral in eq. (1), together with 2(%k2) as given by eq. (2),
converges, proving that F(») = b for a constant vertex part.

Before considering the implications of eq. (7), let us first find the solu-
tion for the case when b(%2) is not constant. A convenient choice is

b2
,82 +k2 )

b(k2) = (8)
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Now the integral in eq. (3) converges, and we might be tempted to think that
the correct solution was, using eq. (3),

2 .2
kR k™ 4+ T8

2

2
F(e2) = 2P e
- -iTk

- /32 +I32 b

2 (9)
R
However, this cannot be the correct solution, since eq. (8) reduces to
b(k2) = b = constant in the limit 3 — «, but eq. (9) does not reduce to eq. (7).
The reason in that the procedure leading to eq. (9) is invalid in this limit;
since above all we require continuity of solution, we must find the solution
which does tend to eq. (7) as 3 — .

Let us use the subtracted form of the equations, given above. We then
obtain

2

[FO)(B2 + #%) - 0R2|(2 - k%) - Tk

oo

F(F2) =

(10)

DN

(32 +k2)(k;— B - iTR)

We see that F(k2) — F(0)- b as k2 — =, so that the integral in eq. (1) con-
verges and F(o) = b(«) = 0 for finite 3. Hence F(0) = b, and eq. (10) re-
duces to

kz - kzl"ﬂ_ 1

2 P2 -

B2 + k2 k;-kz— iTh

, (11)

which indeed reduces to eq. (7) as 3 — «. From eq. (11), it follows that
F(0) = b, while for finite 8, F(«) = 0; on the other hand, for b(k2) = con-
stant, F(0) = b = F(«). It is now clear why eq. (9) was incorrect in the limit
p— . As — o from finite values, the equation with inhomogeneous term
b(k2) = bB2/(82 + £2) tends to the equation with inhomogeneous term b(k2)=b;
but the latter has the solution (7) with F(0) = F(») = b. Hence we must en-
sure that for the case g finite we also have F(0) = b. The solution of eq. (9)
does not satisfy this condition, so we have to add to it a constant multiple
of D~1(%2), the solution of the homogeneous equation. If the arbitrary con-
stant is determined by F(0) = b, we recover precisely eq. (11), which is
then, by Omnes work, the unique solution of the problem which — 0 at o,
for finite 8, and has the value b at k2 = 0.

Let us now examine the physical consequences of eq. (11). The most
striking feature is the existence of a zero of the numerator at B2 =
k%{(1+1"/[3)'1. Now 3”1 measures the spatial extension of the source, 3 its
extension in momentum space. If 3 > I', the numerator of eq. (11) vanishes
close to the resonance energy; the resonance is extinguished in this model
for a very localised source. On the other hand, if 3 < I' which corresponds
to a diffuse source, the resonance will survive, though it will be distorted
and damped. Some typical cases are shown in fig. 3a for I = 1 and in fig.
3b for T = 0.5. These show | F(2)|2 plotted versus #2, and |g(%2)|2 is
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Fig. 3. (a) Decay amplitudes with 62 =00, 10, 3 and 1, I'" = 1; (b) decay amplitudes
with B2 =, 10, 3and 1, I" = 0.8.

shown for comparison. The resonance energy is fixed at k%{ =3, and 82 is
given values 1, 3, 10 and «.

It is clear that a spatially localized source leads, in this model, to dis-
tortion of a resonance. This is rather similar to the conclusion of Amado
and Noble in the three-body case [3]. If B2 is reduced, so that the form
factor is stronger, the resonance is damped. We investigate, in sect. 4, to
what extent these are model-dependent effects.
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3. AN ALTERNATIVE MODEL OF TWO-PARTICLE F.S.IL
THE HOMOGENEOUS SOLUTION

Before continuing further with the question of resonance extinction, we
consider the alternative model mentioned earlier, in which the graphs of
fig. 1b alone are considered, so that figs. 2a and 2b are replaced by fig. 2b
alone. This model requires the solution of the homogeneous equation asso-
ciated with eq. (1),

1 ¢ g*(q?)F(g?)dq?
; f 2 kz_ze (12)

For g(kz) given by eq. (2), Omnés showed that [7]

T

2_.2 .
kR B -il'k

F(k2) = X regular function of k2 .
gu

In this formulation, any resonance extinction has to be put in by hand,
taking the regular function to have a zero at k2 , say. Dispersion theory
need have nothing to say about the zeros of the amplitude, and in this model
such a zero is certainly quite unrelated to the form of the decay vertex.

It is expected that a realistic two-particle amplitude g(%#2) will tend to
zero as k2 — o, If the vertex b(k2) = b = constant, one expects the solution
of eq. (1) to tend to b as k2 — «, and the solution of the homogeneous eq. (12)
to tend to zero as k2 — « (ref. [9]

Consider the case When the two-particle amplitude is generated by a po-
tential which represents the exchange of some arbitrary particles. The
diagram of fig. 2a represents the bare vertex, the decay Hamiltonian in
Feynman theory. The diagram of fig. 2b is the sum of all Feynman graphs
in which the two final state particles exchange particles. These graphs are
the only ones with the two-particle normal threshold and which have an im-
aginary part associated with them. So the dispersion integral in eq. (12)
gives the graphs contributing to fig. 2b. The problem is whether we should
use eq. (1) or eq. (12) to describe decay amplitudes. If either equation is
subtracted, one gets the same vertex function when the vertex function b(s)
is constant. This procedure simply evades the difficulty.

It seems to us that the first model (figs. 2a and 2b) based on the solution
(3) is to be preferred because (a) the solution is manifestly proportional to
the decay vertex if it is constant (b) when the decay vertex has structure,
the amplitude does not have an additive part independent of this structure
and (c) when the f.s.i. vanish, and the two-particle phase shift is zero, the
decay amplitude is precisely the decay vertex.

4. SOLUTIONS WITH VARIOUS RESONANT
TWO-PARTICLE AMPLITUDES

We return now to the question of extinction, using figs. 2a and 2b as a
model. The resonant amplitude of eq. (2) has correct analytic properties on
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the right-hand cut, but has no left-hand cut at all. One might wonder if the
cancellation was somehow due to this fact. In this section, it will be shown
that the decay amplitude F(%2) does depend strongly on the precise form of
the two-particle amplitude: resonance forms with resonance mass and
widths equal simply do not produce similar forms for F(k2). A K-matrix
model will exhibit the extinction phenomenon, and will show how the extinc-
tion zero moves when the left-hand cut is represented by a pole. On the
other hand, one particular but fairly realistic N/D model of the two-parti-
cle amplitude gives little or no possibility of an extinction at all. The only
possible conclusion of such an analysis is that until the forces responsible
for actual physical two-particle resonances are understood, one can make
no categorical statements about the necessary presence or absence of ze~
ros in decay amplitudes. One can easily construct a unitary model of a
two-particle amplitude by choosing a meromorphic K-matrix and checking
that the resultant amplitude has no physical sheet poles except on the nega-
tive real axis. Use a K-matrix

I{(kZ) = F?EE = a2 + L

PR R

with @, » > 0 and @ and ¢ small. Then the resulting 7-matrix is

) 2,2
70 sind _ ab+ckR+Ie (a-c)

3 T2

2, €
T(%%) = 2,,2 . 2 2 2,
ROY(R +b)—zk(ab+ckR+ak -ck™)

which has two complex conjugate poles on the unphysical k2 sheet near
k2 = kZR representing resonances. It has two poles near k2 = -b on both
sheets, and the one on the physical sheet represents a weak left-hand cut.
If ¢ is positive, it represents attractive forces, and if ¢ is negative, repul-
sive forces. If the pole in this latter case was itself generated by forces,
then the pole might be interpreted as a bound state, but in this context the
pole itself is representing the forces and the fact that this pole looks like a
bound state should not be taken literally.

Suppose that the physical sheet pole of ’1‘(/22) occurs at k2 = Ie% Then the
Omnés D function is found to be

2 .2

D) = [(42, - R2)(% 1 1) - ie(ak® + ab + k2 - k) - 2) 7!

B
and the solution for F(k2) with a constant vertex part b(kz) = by is

%2 - k22 40) + 22k | Yak? v ab + ck? - i)

5 R B B r ‘"B
PO =0y = F 0, R(ak? s ab + ck? - o2
(eR_‘ WR©+b) - ik(ak™ +ab +c R°€ B)

The decay amplitude F(kz) has the phase of the two-particle amplitude and
the extinction zero is seen to be shifted by a small amount to higher or
lower energies according as to whether (asz +ab +ck12{- k%c) is positive or
negative.
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The decay probability |F(k2) [2 is shown plotted against #2 in fig. 4, and
the distortion caused by the zero is very clear; |T(#2)|2 is also shown for
comparison. The resonance position was fixed at k2 = 3, and representa-
tive parameters a = 0.3, b = 3 were chosen. Fig. 4a shows the case of ¢ =
0.3 and fig. 4b the case of ¢ = -0.3.

Although this K-matrix model describes an amplitude in which a left-
hand cut as well as resonance poles are present, the resonance poles are
not generated by the forces represented by the left-hand cut: they are poles
of the CDD non-dynamical type.

1 2 3 4 5

Figure 4a

Figure 4b
Fig. 4. (a) Decay amplitude with K-matrix model and a = 0.3, b = 3.0, ¢ = 0.3 and
k% = 3.0, (b) decay amplitude with K—maztrix model andae = 0.3, b =3.0, ¢ = -0.3 and

kR:3.
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In contrast, consider the P-wave N/D two-particle amplitude, in which
a pole approximation for N represents driving forces. With sufficiently
strong forces, this leads to an amplitude with a moving zero of D which can
produce a resonance.

Take

N=xa" 1(k2+a2)"1

ImD = -}SN ,
D(O) =1 )
then the P-wave amplitude is
T(kz) _ e?® sind _ iz _ Ak2q~1
% D (a+ik)(a-ik- 2 k2a"1)’
which has moving poles at
Ty = —a(i+V(4r-1))/2x . (13)

These poles are plotted in the complex k-plane in fig. 5. For A > 0.25, the

poles move round the circle and may be interpreted as resonances for

A > 0.5. There is the slightly curious feature of this 'one-pole’ model that

complex conjugate poles of 7 occur with Re (qz) <0, when A is in the range
0.25 <X < 0.5.

N

K, () 3 k_()\)

4

Figure 5
Fig. 5. The complex % plane: locus of zeros of D. 1. A =0, ky =0, 2. A=0, k_=-ia,
3. A=0.25, ky = -2ia, 4. A =0, by = -icw,
The Omnés D function is
D(R2) = (a- ik~ Ak2a~ V) (a+ik)~ 1,

and if we take a constant vertex 5, the decay amplitude (ignoring the angu-
lar dependence for the P-wave in the final state) is
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Figure 6b

Fig. 6. (a) Decay amplitudes in N/D medel with A =3.0, a=2.45; (b} Decay ampli-
tudes in N/D model with A = 5.0, a = 3.46, 32 =10, .
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[T(k2))2

B2=30

1 2 3 4 5
Figure 6¢
Fig. 6. (c) Decay amplitudes in N/D model with X = 10.0, a = 5.2, 82 =, 100, 30.

bla-ik)
a-ik-Mk2q™1
There is no extinction in this case. For the case when the vertex has struc-
ture, we follow the procedure described in sect. 2, namely we choose that
solution which reproduces eq. (14) as 8 — «. This can be done by adding to
solution (13) a constant multiple of D~1 50 that the resultant expression
tends to the same limit as # — 0 as eq. (14) does, which is F(0) = b. This
solution is

F(k2) = (14)

-9 . 2

b3 a-ik r e
sz = 1- - s
(%) ,32+k2a-ik—?\kza'1< a(a+;3))

which indeed reduces to eq. (14) as 3 — «. Extinction occurs when B2 =
a2/(x - 1)2: the zero is at 2 = a(e +B)A~1 and the phase shift increases
through 37 at 22 = a2/(x - 1).

The results of a calculation are shown in fig. 6. We used A = 3 in fig. 6a,
A =5 in fig. 6b and A = 10 in fig. 6c. The values of a are chosen so that
resonance occurs at k2 = a2/(A- 1) = 3. The decay probability |F(k2) l 2 ig
peaked at energies a little less than the resonance energy when the vertex
is constant (3 = «); |T(k2) ] 2 is plotted for comparison. We note the strong
damping caused by the form factor when 32 = 10. It would seem, tentative-
ly, that 'dynamically generated' resonances can be strongly damped by in-
terference, while the necessary cancellations for complete extinction might
easily occur for the non-dynamical or CDD type of resonance.
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5. SOLUTIONS WITH NON-RESONANT TWO-PARTICLE AMPLITUDES
SOURCE EFFECTS

Motivated by the foregoing results about possible extinction of two-body
resonances by f.s.i. and the significance of the production vertex, it seems
worthwhile to re-examine the general question of to what extent, if at all,
the traditional statement that attractive two-body forces enhance decay am-
plitudes while repulsive ones suppress them is affected by introducing
structure into the production vertex. It is interesting to recall that the
above statement was first made by Watson [4], but with the proviso that the
spatial extension of the secondary (final state) interactions be large com-
pared with that of the primary (production) interaction. The notion that pri-
mary and secondary interactions are sequential is, of course, implicit.
The dispersion technique is well suited to dealing with this question.

The two most popular parametrisations of low-energy amplitudes are
used, namely the scattering length approximation (s.l.a.) and the effective
range form. In the s.l.a., the s-wave two-particle amplitude is

where tan b = ka.

The s.l.a. is the amplitude deduced by taking N = a = constant in the N/D
method, and using one subtraction at threshold for D. So the case a > 0 im-
plies attractive forces, a positive phase shift and a virtual bound state is
present. If ¢ <0, one can say that there are repulsive forces and a nega-
tive phase shift. But how do we interpret the physical sheet pole? For the
purposes of application, we can say eifher that the amplitude has a bound
state o7 that the pole represents a left-hand cut. The s.l.a., being a crude
one-parameter model, serves for both these cases. If a bound state exists
as a physical particle, its pole should be present on the physical sheet of a
decay amplitude. I the pole of the s.l.a. merely represents forces, then
the f.s.i. model should not have such a pole on the physical sheet. A dis-
persion integral of the Omnés type gives a decay amplitude with a right-
hand cut only: this is correct if the pole represents forces. If the pole rep-
resents a genuine bound state, we obtain the correct D function for this ap-
plication by analytic continuation from positive to negative a. The case
where the s.l.a. is a bound state model is denoted by BSM, and where the
s.l.a. is a repulsive force model it is denoted by RFM.

The Omnés D functions are

D(R2) = (1+ ka)~1 a <0 RFM
D(¥2) = 1- ika 1220 ggy
a<0 :

The decay amplitudes are calculated with a vertex function

b(k2) = bp32/(32 + k2) |
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and are
2 ;
9, b3 1+ika
FEE) T 32,02 1-3a @ <0, RFM
22 .
9, b8 1+8a a>0
=@ i-ika  ‘ta<or BSM:

So one sees that (a) Watson's theorem is obeyed, (b) attractive forces en-
hance the decay amplitude and repulsive forces reduce it, (c) the BSM has
the physical sheet pole in the decay amplitude. We proceed with a more so-
phisticated model which removes the ambiguity in interpretation of the pole

The effective range approximation is a two-parameter amplitude and in
the S-wave N/D formulation has a well-known analytic form [10]. The two-
particle amplitude is

=ei5ﬂ:(k_ia>-l<l\’+i(l_ k'i([)'l

3

A +2a
and

k cotd = a2 <—i—-21—a>+k2 <%+2—1é>.

The amplitude has two poles representing left-hand cuts, at
E=ia and k=ia(A-2a)(A+2a)" 1.

The second pole is on the second k2 sheet when -2a < A < 2a, and we con-
sider attractive forces with A > 0 and also repulsive forces with x < 0.
The Omneés D-function in these cases is

D(kz) = <——k J;\m + _/ez—aza> (b +ia)” L

The decay amplitude with a constant vertex is
(B +ia)(2a + 1)

2y _
F%) =0 (R+ia)2a +\(k-ia)’
and with a momentum-dependent vertex
2
2 bB
b k = ,
02 =37
it is

2 . /
2 _ bﬁ k+la - 2)&}3
F(e) = 32 4 p2 (k+ia)2a + (k- ia) (Za A+ a+p

One sees again that repulsive forces reduce the decay amplitude and at-
tractive forces enhance it.
We note that for all these cases, we have the simple general result [11]
_n2
F(k2) = b(k2) D_(BZ_) .
D(k4)
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6. CONCLUSION

The purpose of this paper was to consider certain simple models which
have been thought to describe f.s.i. and to observe that good simple models
of resonant two-particle amplitudes are not necessarily satisfactory for
use in decay theory. This is upsetting because it was conjectured that a
phenomenological parametrisation of two-particle amplitudes in the physi-
cal region might suffice to determine decay amplitudes. In particular, if
model-dependent effects are important, then one must be suspicious of
separable potential models which have bad analytic properties on the left-
hand cut.

We find that with non-resonant two-particle amplitudes, the decay am-
plitude of one particle (to a multiparticle state with two strongly interacting
particles in it) is enhanced by attractive forces and reduced by repulsive
ones, whether the source has extension or not. In the case of resonant two-
particle amplitudes, we saw that there is the possibility of resonance ex-
tinction, or of gross distortion of resonances when the zero is shifted a
little from resonance, caused by destructive interference between figs. 2a
and 2b. This may be a model-dependent effect, but it is a plausible model,
and there is a significant piece of experimental evidence for the extinction
of the rho resonance in the 37 mode of pn annihilation at rest.

All the remarks made in this paper, except sect. 3, refer to the graphs
of fig. 2, which ignore graphs of the interactions of particle pairs 1, 3 and
2, 3. More generally, the remarks apply to a multiparticle final state with
one pair of particles having a significant interaction. It may be a good ap-
proximation to ignore these other interactions for some pairs of physical
particles. In the on-shell model [1], equal and simultaneous resonant in-
teractions in all channels do not prevent the extinction of the resonance. In
any case enhancements in the 1, 3 and 2, 3 subsystems appear averaged
(over an angle variable) when events are plotted against the 1, 2 subenergy
variable, so that their effect on the 1, 2 channel is likely to be smoothed.
The projection ensures that reflected singularities are no worse than loga-
rithmie.
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NOTE ADDED IN PROOF

(i) After completion of this paper, we received a preprint entitled 'Re-
scattering, Omnes equation, and zeros in a resonance peak' by L. Resnick
(Physics Department, Carleton University, Ottawa, Canada; May 27th
1969). This paper obtains a result similar to ours; namely, a zero at or
near the elastic resonance maximum may occur in the f.s.i. problem when
the elastic phase shift rises smoothly from 0 to 7 (tending to 7 at «). This
is the behaviour of the phase shift given by our eq. (2). We are grateful to
Dr. Resnick for correspondence about the problem.

(ii) We wish to add some further comments about CDD poles. Were Bas-
devant's [11] result, F(k2) = b(k2)D(-p2)/D(k2), true in general, there
could never be extinction. The reason it is not true in our case is that the
amplitude given in eq. (2) corresponds to one CDD pole present. This may
be seen from the well-known fact that 6(0)—0(«) = (number of bound states —
number of CDD poles) X 7. In this situation the D dynamically generated by
N, call it Dy, will nof be the same as that which must be used in the f.s.i.
problem, call it Dy, which is calculated from the phase shift § via eq. (4).
We have

Dy=1-f diqz/ﬂ'
N qz-kz—ie’
which, with a CDD pole present, is modified to
CDD Npdq2/n Y
D =1- g ey
N fqz—kz-i€+kz+k%’

where v, k% are the CDD parameters. Now it is known that Dg o

o (k2+kg)D]E,:DD (see E. J.Squires and P. B. Collins, Regge Poles in Par-
ticle Physics, Springer-Verlag, 1968, Ch. 6). So the f.s.i. problem, eq. (1),
has the solution (as in eq. (3))

Ny(q2 + k2)

6 _ 1 p 2
be {COSG+7rI|DO‘Pf 22 dg4},

1 bgD, dq2
F=b+-—— |~y —5 =
Do~ g2 - 12 - e
where P stands for the principal value. The integral involving N is no
longer simply related to Dy, which is the basis of Basdevant's result.
Since cos 6 = 0 when 6 = 37, it appears that it depends on the choice of the
CDD parameters whether the extinction zero is at or near the resonance
position, or not; in our example of sect. 2, and in Resnick's case, reso-
nance extinction occurs. We are grateful to Professors Blankenbecler and
Amado for emphasizing to us the importance of CDD poles in this problem.



