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Abstract: Properties of the three-Reggeon coupling function are examined. The ex-
pected form is given of its dependence on variables related to generalisations of
the Toller angle. It is found that the Veneziano-type models for multiparticle am-
plitudes contain three-Reggeon vertices, with the correct structure; this provides
a non-trivial check on these models. This structure is also checked in a model
based on Gribov's hybrid perturbation theory approach.

1. INTRODUCTION

In a previous paper [1], here referred to as I, we have examined the
function f that couples a pair of Reggeons to a spin-zero particle. This
function is defined through the high-energy behaviour of a two-particle —
three-particle production process. Apart from complications introduced by
the effects of signature (which were studied in a second paper [2]), it was
shown that foz1 a9 takes the general form

Fayag = J @ f9)@(ay, a5 5/m), (1.1)

where
T'(-aq) I‘(-az)fb(al, a9;2)

o0

=f dxldxzxial_lxéaz_l ez[x1x22+x1+x2]. (1.2)
(o]

The variable 7 is linearly related to the cosine of the Toller angle [3] and is
defined in eq. (2.17) below.

In this paper we study the function Fgqg9aq that couples together three
Reggeons. This function is defined through the high-energy behaviour of a
three-particle — three-particle amplitude, which is not at present of great
practical interest. But the properties of Fgqo9ag are of some theoretical
interest, for several reasons.

First, by putting a3 equal to a positive integer p in F01101203’ we may ob-
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tain information about the structure of the coupling of two Reggeons to a
physical particle of spin p. Secondly, it is our hope that at some stage it
will be useful to consider generalised field operators associated with Reg-
geons and an advance knowledge of the properties of functions such as
Fgyagag will be an important test of the correctness of the formalism. (An
attempt to introduce such operators was made originally by Cabibbo, Horwitz
and Ne'eman [4], but their operators did not have the correct Lorentz tensor
properties for them obviously to be associated with Reggeons of general
spin.) Thirdly, Fayyagasg does appear when unphysical limits are taken in
production amplitudes that are of present experimental interest, for exam-
ple in the two-~particle — four-particle amplitude obtained by crossing from
the three-particle — three-particle one. Thus a knowledge of the properties
of Fgyanag is necessary if we are ultimately to have a complete understand-
ing of the properties of such amplitudes. In particular, our work provides a
non-trivial check on the generalisation of the Veneziano model to multipar-
ticle amplitudes [5, 6]. The generalisation was designed to give the ampli-
tudes a structure in which pairs of Reggeons are coupled to particles and in
I we pointed out that the coupling function takes a form that agrees with the
general expression (1.1). Here we find that it happens that the model also
includes three-Reggeon couplings, with a coupling function in agreement
with the expected general form.

This general form is determined in sect. 2, which begins with a descrip-
tion of the particular asymptotic limit that must be applied to the six-point
function in order to reveal the three-Reggeon coupling. Here, and through-
out this paper, we omit complications resulting from signature; these may
be deduced from a straight generalisation of our work in ref. [2]. In sect. 3
we consider the three-Reggeon coupling function in a particular model,
based on Gribov's hybrid perturbation theory technique [7], and in sect. 4
we examine the generalised Veneziano model.

It is perhaps worth pointing out that Gribov's original paper also dis-
cussed a three-Reggeon coupling function 7y a3- However, Ygia903
differs from Fawzas in that it involves an integral of Falagag with respect
to the momentum transfer between a pair of the Reggeons; thus the remain-
ing Reggeon plays a distinguished role. We believe that our representation
for Fa1a2a3 given in sect. 2 and extended to incorporate signature effects,
can be used to obtain information about the structure of 7gja9a3. But the
simple models of sects. 3 and 4 given zero contribution to 7 g a9ag When the
appropriate integration is performed.

2. GENERAL THEORY

Consider a six-point function describing the process
Dy + by + Dy = by + Dy + B (2.1)

The particles are all taken to be spinless and have equal mass. Write
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sz=l>i+qi, i=1,2,3 (2.2
and

_ 2
si = (P]"'Pk) 1

2 2 2

u1=(l>'1+q2) , u2=(i>é+q3) , u3=(P§3+q1) . (2.3)

The amplitude will be regarded as a function of the nine variables q?, u; and
n;= “j“k/si' (2.4)

In fact only eight of these are independent; there is a single non-linear rela-
tion among them [8] arising from the fact that space-time has four dimen-
sions. This relation will be ignored in our analysis; the variables are re-
garded as independent and the constraint on them can be thought of as being
imposed afterwards. In the asymptotic limit that we consider in this paper,
this constraint involves only the variables n; and q% (see the remark after
eq. (3.2) below).

We shall discuss the asymptotic limit

uz—y DO’

q%, 7, finite. 2.5)

For suitable values of the finite variables this is actually a physical limit
for the process (2.1). In this limit we find that

t
si/sz.—> 1,

2
sy = (' +p3)°, (2.6)
(though the difference s} - s; diverges) and

2 2 e 2o
(by+ag)"~ -y,  y+a))"~ -uy, (D3+4,)"~ -uq,

(Pz +P§3)2~ (p'2+1>3)2~ -s, etc. 2.7

In order to get an idea of the structure of Fg;g9q3, We shall suppose that
the part of the amplitude that survives in the asymptotic limit (2.5) is ex-
pressible as a triple Fourier transform

o0 0

fZN;S;+ DU u;
f dkldhzd)\s f dulduzdu3 l,U(?xz-, ui)e[ SiF 4hq 1’]. (2.8)
-00 0
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This is closely analogous to an assumption made in I; it must be modified
if the effects of signature are to be incorporated [2]. We use eq. (2.4) to
eliminate the s; and make the changes of variable

up = %5/l

Aj=Vikibp- (2.9)

Then the triple Mellin transform of eq. (2.8), obtained by applying the oper-
ation

0

“ly-1 -lp-1 -Ig-1
(o}

to it, becomes

% e 1142 lp+2 lg+2
J dyydypdys [ dugdpgdug ug™uf " ug
) 0o

WA kil py )

X T(-1;) T(-1g)T (-13)(1y, I, I3; 51 /11,2 /N2, ¥3/13) s (2.11)
with
I(-1y) T(-1) T(-13) 1y, Iy, I35 21, 29, 23)

~ly-1

(-]
= [ dxjdxgdrg xill-lxz ;i1
o

X3 exp i {Ezix]-xk+ zx}]. (2.12)

A triple Regge pole at Iy = a1, Iy = ag, I3 = a3 is obtained by choosing Y to
have the behaviour, near u; =0,

-a{-3 -ap-3 -a3-3
Yijip i) ~ Fy1,92,93) 811" "2 " ug™e. (2.13)

From this we obtain the three-Reggeon coupling function
F“1“2a3

00
= [ dyjdygdys F(y1,92,53)Q(ey, ag, ag; ¥1 /11,92 /12,93 /13) - (2.14)

~00

The triple-Regge-pole contribution is shown diagrammatically in fig. 1.
If we make an analytic continuation in q2 up to the point where @ =0, we
obtain a bound-state pole (this comes from the factor I'(-/;) in eq. (2.11)).
Then fig. 1 reduces to a coupling constant times the two-Reggeon contribu-
tion to the production amplitude

by + Dy by + 4y *+ D (2.15)
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Fig. 1. The three-Reggeon contribution to the six-point function.

From eq. (2.12) we see, by integrating by parts once with respect to x1,
that

(0, 12,13;21,22,23) = <I>(l2,l3;21), (2.16)

where & is defined in eq. (1.2). So then eq. (2.14) reduces to the form (1.1),
with

f(y) = f dyzdy3 F(y’y2’y3)r

and

nt =]t = () l0y+ )P0y + 07, 2.17)

which as shown in I, is linearly related to the cosine of the Toller angle
for the process (2.15). That is, Foagag takes the general form of fa2013$
in particular, it is independent of ng and n3. If p is a positive integer, ac-
cording to eqs. (2.12) and (2.14) Fponag is a homogeneous polynomial of
degree p in nél and 1751.

3. THE GRIBOV METHOD

In this section we take, as a model for the amplitude that describes the
process (2.1), the Feynman graph of fig. 2. Here the bubbles represent
complete scattering amplitudes and will be supposed to have Regge-pole
asymptotic behaviour.

In what follows, #jk will be used to denote any cyclic permutation of 123.
In the asymptotic limit (2.5) we find that
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Fig. 2. Feynman graph that yields a three-Reggeon contribution. The bubbles
represent complete scattering amplitudes.

Mp=1; I

gni(nkmj) t; . 3ni(nk+nj)i
ML i R RACLARC A

+ —
The momenta g;are finite and orthogonal to all three of the p;. They satis-
fy

2q;.=0,

2_ 2 2
7 =q;+ ni(nj+ nk) /(4njnk)- (3.2)

Because the q;- are essentially one-dimensional the two relations (3.2) to-
gether yield a non-linear constraint on the variables qzz- and N4 this was
mentioned in sect. 2.

The internal momenta in the Feynman graph will be labelled as in fig. 2.
We write

k= (zlpl /ul) + (Zzpz /uz) + (331)3 /u3) + k', (3.3)

where %' is parallel to the q;- and so is effectively a one-dimensional vector.
Then, in the asymptotic limit (2.5),

1
e~ 2(nyngng) 2dzydzodzgdk'. (3.4)

Following the usual spirit of the Gribov approach [7], we make this change
of variables and assume that it is in order to take the limit (2.5) under the
integral.

The squares of the masses on the internal lines in fig. 2 take the form
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2
o= [!li(q]' -qp) + K]
= [%(Q}‘Q}e) + k']z + (2924 /1q) + (232 /n9) + (2125 /73) - %zi + %zj + %zk

+§[2m; - ;=N = (@n;n; /mp) - (nymp /n;) - Gmgny, /77]-)] , (3.5)
and the Reggeon energy variables are

2
r%(q,.qu) sk p]” ~uf(z/mp) + (=2, /np) + 4] (3.6)
Thus the asymptotic behaviour of the graph is
. - . -1
Falazag ufl ugz ug3 [sin(ma;)sin (mag) sin (rag)] ~ B1B583, (3.7

where a; = a(q;?‘), Bi = B(q,z), @ and B being respectively the Regge trajectory
and the ordinary Regge residue function, Apart from some constant factors

1
Foagaq = Jd21dzpdzgdk (nymgng) >
X H {Iz; /nk+zk/n]+s] g(q,, )0, - mzz-)'l}. (3.8)

where £ is the off-shell continuation of 8.

In order to show that eq. (3.8) is of the general form (2.14), we follow a
procedure that begins in a way similar to that in I. First, write a triple
dispersion relation (which, as discussed in I, will have no subtractions but
is likely to be over a complex integration hypercontour H)

3
]—[1 &(qzzicj,(’k)((’i—m,g)-l} = fdvldvzdv3 P(ng,v ) H (o; v) . (3.9)

Now introduce Feynman parameters A;:
1 . iri(0; - v4)
(O'i -‘Uz')- = - f dll e e ? )
o
so that the %' integration may be performed. This gives

-] 1 o
-2 2
Fayagag © J axgargarga {1 dvydugdog plag,v;) [ dzqdzpdzy
o - 00

x Zﬁl [(zj /np) + (&3, /7)) + 1% e'D/A (nqmgn3) 2

x exp[i Z {15 + +nk) SCYER) (3.10)
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Here Ei is equal to o; in eq. (3.5), but with the first term absent;
A=)71+Ag+ A3,
and D is the D-function [9] for the triangle graph:

- 2
D= ? Prgds - (3.11)

We now make the replacement

J dzydzgdzg ﬂ[(zj /) + (2 /1)) + %

-0

=1 [ dzydzydz3dz; dZyd Zgdry dxgdxg 231 252 253
(27)* -
X exp {i§xi[(zj/nk) + (2 /) + § - Z, (3.12)

and perform the 2; and Z; integrations. The result is

-1 2
Foyapag = [T(-a)) T(-a5)T(-a3)] of drydrgdrg fdojdogdugp

> .
x [ dxq dxg dxg xi"‘l'l xéaz-l x§a3'1 ezD/)\ -2
[0}

X exp [i)x'1 {x1x1+7t2x2 +Xg%g - (¥g%3 /11) - (%3%q /ng) - (% %9 /mg)}].  (3.13)

A final simple change of integration variable brings this into the form
(2.14). In particular, it can readily be checked that when a1 =0, Fajagas
becomes equal to the two-Reggeon/particle coupling extracted from a
similar model in L

4. THE GENERALISED VENEZIANO MODEL

In this section we investigate the three-Reggeon coupling in the general-
ized Veneziano model for the six-point function [5, 6], which is the simplest
amplitude that can give the required coupling.

It will be convenient in this section to label the external momenta in the
same way as in refs. [5,6]. Thus fig. 1 is now replaced by fig. 3. The limit
(2.5) still applies, with the scalar variables (2.3) now defined by [see also
eq, (2.7)]
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sy =-(p +P5)2 y Sg = -@4+P5)2 » Sz =-(by +.1>3)2 )
uy = -(p1+pg +1>3)2 s Ug = ~(pg +P3+P4)2 , ug= -(P3+P4+l’5)2 , (4.1)

and
2 2 2 2 2 2
g1 =(b3+pg)" s g3 =01+b9)", 4g3=05+pg) . (4.2)
We use the representation for the amplitude that is given in ref. [10]:
1
(2ni)3

fdkl dk2 dk3 B(-a56+ k2+k3, -(145)
X Blkg+ a1 - Q345 - G934+ @34, ~ky) B(kg + 0345 - 245 - @34, -k3)

X B(ky + kg - @19, -0g34) Bky + kg + kg + ag3 - dy3y4 - @193, -Fy)

Bi+ko+k
XB(kl—034,—a123+k2+k3)(—1) 1+7R2+ 3. (4.3)

Here B is the beta function:
B(a, B) = T'(a) T'(B)/T(a+ B)

+00
= f dxxa-1(1+x)-a-3. (4.4)
o

The integrations over %y, k9, k3 in eq. (4.4) are over contours parallel to
the imaginary axis; details are given in ref. [10]. All the trajectories a are
supposed to be linear and to have the same slope a. Thus in the limit (2.5)
we keep finite the variables

Ny = -aggq a345/(acyg), Mg = -ages 193 /(agys),

ng = -a123 0234 /(aay3). 4.5)

We insert the representation (4.4) for each of the beta functions in eq.
(4.3) with integration variables u, v, w, ¥, y, 2. We use the upper limit +«
for x, 2z, u and -« for y, v, w, in order to give good convergence at ]k,] = oo,
Then the k1, k9, 23 integrations give us the 5-functions

. -xXy2
2nid [log m—)hil ’

; —uvxy
2mid [log L +u)(1+2)1+y)1 +z)} ’

. -uwy
2mi [log 1+u)(1+9)(1 +Z)} ’
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Fig. 3. The diagram of fig. 1, with the momenta relabelled as in sect. 4.

These enable us to perform the y, v, w integrations:

y = -(1+x)(1+2)/(x2),
v=-1+u)(1+x+2)/(xu),
w=-(1+u)(1+x+2)/[u(l+x)]. (4.6)

Apart from a multiplying constant what remains is
o0
[ dudwdz w671 (14056 % %45 [ /(1 4 ) %16 ~ 9345 - %234
X [w/(1+ w)]a345 -e45-0a34 12 -1 (1+x)%12+ 4234

x [y /(1+ y)]a23 " @234 - 123 ;7934 - 1 (1+2)%84F79123 (4.7

We now change to the variables
55=i01234x, Z-=i(21233, ﬁ=ia345u, (4.8)

and assume that it is in order to take the limit (2.5) inside the integration.
Thus

-1 _- 1
(o]

o e .
[ az 2798 1 (14 2984+ M23 - (Lig)pg)?®84 [ dz #0471 %,
0 o

f du %5671 (14.)56+ 2345, (_ agq5) 798 f dz 7671 ™, (4.9)
(o]
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For the remaining factors in eq. (4.7) we make the substitutions (4.6), to-
gether with eq. (4.5)

[0/(1+0v)] 716 ~ 93459234 o EF/any ,
[/(1+)]23 " %234 - @123 _, ,~%2/amg

[w/(1+w)] 45" 9345 ~ 934 (14.4)%45 ~ 9345 o HE/amy (4.10)

When we insert eqs. (4.10) and (4.9) into eq. (4.7), we obtain an expres-
sion of the form (3.7) and (2.14), with
(ia)al+a2+a3 o3 e3+ ia(y1 +y2+y3)
T(1+ 0T (1+a9)T(1+ a3) (1+ dayq)(1+ iayp)(1+ iayg)”

F(y1,59,93) 4.11)
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