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PREFACE

The present report contains, with minor additions, the material
presented in a lecture course at CERN in the Spring 1968 under the title
"Ups and Downs of Regge Poles", A few selected topics were treated in
order to illustrate the successes and complications encountered in the
description of high-energy scattering processes of hadrons in the frame-
work of Regge-pole theory. The report retains the subdivision of the
course in successive lectures.

The lecture notes were taken and drafted by G. Cohen-Tannoudji and
W. Drechsler, to whom I want to express my deep appreciation for their
excellent and diligent work.

L. Van Hove
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LECTURE I
1., INTRODUCTION

In this series of lectures we try to discuss the basic features of
the Regge-pole theory and the more recent problems occurring when experi-
mentzl data are analysed in terms of this model. Although the method of
analysis for high-energy processes provided by the Regge-pole model has
had continuous success in the last years, there are clear indications of
a number of complications. Before we list the points in support of the
theory as well as the difficulties, let us touch very briefly upon the
historical development.

The theoretical introduction of poles in the angular momentum plane
goes back to the fundamental work of Regge1). After this work, which was
done in connection with non-relativistic potential scattering, the use-
fulness of the Regge=-pole idea for relativistic processes was suggested
by Chew and Frautschiz), and by Gribov and Pomeranchuks). Some pedagogical
material for introductions into the subject can be found, among others, in

the following references: Chan4), Svenssonsz and Van Hove®’.

Let us now go through a short list of general features of the Regge-

pole model after five years of development.

1) Relation between two-body collisions and exchange of kmown particles:
if such exchange is possible, the collision has an appreciable cross-

section; otherwise the cross-section is experimentally much smaller.

2) Compatibility with the requirement of relativistic invariance and
analyticity properties of the S-matrix elements in momentum transfer

and energy.

3) Diffraction properties and absorption corrections, suggested by the

data but complicated when written down in Regge-pole formalism.

4) A large number of refinements of the model are needed when confronted
with experimental data.

5) The Regge-pole model shows a great many mathematical complications
resulting from non-vanishing spins and unequal masses of the external

particlese.
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Point (1) states that through the Regge-pole model one has a successful
means of studying two-body reactions at high energy and small momentum
transfer via an exchange mechanism. The exchanged object is described
in a reggeized fashion, which means that it is given a continuously vary-
ing spin. It corresponds to a family of known particles of definite
quantum numbers but with various spin values. Point- (2) states that the
mathematical features of the model are compatible with the gzeneral
principles of Lorentz invariance and analyticity. Points (3), (&), and
(5) mention the difficulties of the present model. The relation to the
unitarity requirements of the S-matrix remains a problem. Also the
representation of elastic diffraction-like processes in terms of the Regge
model is unclear. For inelastic processes it is known that absorptive
corrections play a role, which also is not easily incorporated into the
model. To point (5) one should add that at present it is unknown whether
all the complications coming from non-vanishing spins and unequal masses
are indeed rhysical or are merely a property of the mathematical form=-
alism used. One could sum up by saying that the Rezgge-pole model is not
a theory with a high predictive power, but it is a refined framework to

relate collisions -- especially of inelastic type -- to exchange processes.

KINEMATICAL FORMULAE

After this introduction we list a few formulae of kinematical
nature. We restrict ourselves to two-body collisions as the best test-

ing=-ground of the model:

1
1 +2->3+4 (1)
2
The notation will be as follows:
p; = (p{,p{ip;;p;) momentum of particle i = 1,2,3,4
with pf= ip;, p; being the energy

o) )5 6DF - 6D - 61 - 6D =

u=1
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where my is the mass of particle i. Analogously the scalar product of
two four-vectors is
a4
(-0 =-) G

=

Energy-momentum conservation means py + Pz = Ps + Pae I1n addition to the
momenta P4,o0ne needs a spin index 7\1 for each particle to describe

reaction (I). We define, as usual,

square of c.m. energy

s = (py + p2)®
(P1 - Pz)z
(p1 - pa)?

square of momentum transfer from particle 1 to 3

square of momentum transfer from particle 1 to 4 o

[=}
]

These three Lorentz invariant variables are restricted by the relation

S+t+u=zm§.o

i:‘l
A particular process is described through the covariant scattering

amplitude T(piAy,P2MA2; DP3A3sPsra)s which is related to the S-matrix
element by

< p3hs, padalS=1lpiny, pere > =

3
. a a @
i I—[ 5(pt + Pz - D3 = Da)

Q=0
Jp: P2 p3 Pe

Here the single-particle states are normalized in the following way:

T(pglq, P2Az; D3As, P47~4) . (1)

k k
e = LA
< PRMIRAy > =8y, ﬂ 8(py - 75 ) - (2)
iti
k=1
From Eq. (1) there follows for the differential cross-section for given
polarizations of all particles:

ic 3 : .
il Eﬂ'z |T(ps™, PePas PsP3y P414)| . (3)
dat sks



The last kinematical formula we would like to mention is the optical
theorem which expresses the fact that any kind of scattering results in
elastic shadow=-scattering:

aT(M JA2) = Im Tel(pqls, P2A2; PiM, Pahz) . ()

S
ky/S

Here and in Eq. (3), kg = (1725) [(s=(my + m2)?][s=(my = m2)%] is the
come. momentum of the incoming particles. Op is the total cross-section,
and Tel the amplitude for elastic forward scattering without change of
spin, both for fully polarized particles. A detailed derivation of
Eqs. (3) and (4) can be found elsewhere’).

Let us come now to a property which is crucial to high-energy
scattering and Regge-pole theory: the crossing property. . This property
which has first been discovered in quantum electrodynamics is assumed
to be valid in a&all forms of S-matrix theories. It corresponds to the
relation which exists between a phenomenon where a particle is absorbed
and the one where the corresponding antiparticle is created. In terms of
two~body processes, the crossing property is a relation between reaction

(I) and the following two reactions:
1 3

1 +3>24+4 (11)

NIt
F

(111)
2ol 5

(By"crossing" pairs of particles one can obtain further reactions, but
these are related to (I), (II),and (III) by C, T, or CT invariance.) Let
us call T(s), T(t), and T(u) the scattering amplitudes describing the
reactions (I), (II),and (III), respectively, where the superscripts are

chosen because, as we shall see, 3, t, or u is the respective c.m. energy
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of the process. The actual statement of the crossing property is that
e 2(8)) o(8) 2na 2(9) are analytic functions of the four-momenta, they
are related through analytic continuation. So it is one analytic

function T which determines all three reactions when continuation is per-

formed to the respective physical regions of the variables s, t,and u,

LECTURE II
CROSSING RELATIONS

Let us now try to be more explicit and to sketch how the crossing
property can be derived from relativistic quantum field theor'y*). The
field operator & j(x) (x stands for the space-time four-vector) which
describes particle j (J = 1, esey 4) is supposed to tend to asymptotic
field operators when the time goes to * w:

in %
‘bj(X) 2y (x) , éj(X) §3u (x) .
Xo ® = Xo “» 400

The asymptotic field operators @3“, @‘;‘“’

describe the incoming and
outgoing particles, respectively. They can be written in terms of

creation and annihilation operators:

in in + in
out out ikx out -ikx
3, = g A .
Jd (X) (aJ’E’Q\ uJ’R:K © * bj:Eﬂ\ ngkﬂ\. © ) ’ (5)

Kok

where ujﬁh is a spin wave function describing the spin orientation
state A of a particle j when it has three-momentum K and energy

x¥° = #/|k|? + m® (for a spin ¥, particle uspa would be a Dirac spinor,
for a spin 1 particle it would be a polarization four-vector, and for

a spin ¥, it would be a Rarita-Schwinger spinor). In the same way vjEi\

*) A simple mathematical description of the crossing property, in
which the required analyticity ij; not proved but is assumed, c
be found in a paper by Svensson®/, and also by Logunov et al.®/.
The proof from axiomatic field theory, of sufficiently large
analy’b%g}'.ty domains to perform the crossing, is given by Bros
et al., . ‘
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is a spin wave function describing the %1n orientation of particle

J, the antiparticle of particle j. 0;; is a creation operator which

creates an incoming or outgoing particle j in the state defined by
- in,
kK and A, whereas b ¢§

the antiparticle of j in the state defined by k and A.

is an amnnihilation operator which annihilates J,

In order to define a quantum field theory, one needs to postulate

commutation or anticommutation rules for the field operators; in

particular the rule
. ? =
(2560, 8,0 ],

if x=-x’ is a space-like four vector. The "+" subscript refers to the
anticommutator (to be used for fermion fields) and the "=" subscript to
the commutator (boson fields). About this important property, which
expresses the locality of the interactions, we shall say only that it
is at the origin of the derivations of the analyticity properties used
below for the scattering amplitudes.

Using now the so-called "reduction formulae" of Lehmann, Symanzik
and Zimmerman''/, one can express each scattering amplitude in terms of
the expectation value in the vacuum state k)} of a product of operators
8(x), one for each particle involved. For the s-channel reaction
142 > 344, one can write (we limit ourselves to spinless particles and
drop some irrelevant coefficients)

-i. - i s
T(s)(pa )P2sD3sDa) = eeee f Qay AaXodyxsdexy & 1% o7IP2X2 IP3Xs (IDaXs
« K KKK, < OIT[§ (= (= o (= )a_(x )]IO > (6)
1 1 2 2 3 3 4 4

where the Kj are the Klein-Gordon operators aa/ax; - mg, and where T
denotes an ordering operator for the product §1§2§3§2, putting it in

the order of decreasing times
Tz (= )2 (= )2_(x Je.(x )] = 25 (x)2; (xe)2; (x3)2; (xa)

when x.9 » x.2> x.2»>x.,° .,
Ji Ja Js Ja
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One can more or less understand Eq. (6) as follows. The Fourier

-ipix,

integral fds x4 € picks out of @1(1:,) the Fourier component

e1KE pith k = P1. Its contribution to Eq. (6) comes from the asymptotic
part of &, toward x -+ —w, which is &%, It picks out of Eq. (5) the
term with the creation operator aj{g T; it thus creates the incident
particle 1. Similarly, fdexs e'ipzx; picks out the a]%:of éjén and
createguZ. fdyx; e T1P3%X3 gets its contribution from the asymptotic
part @a; of fI>3 (x% » +w), picking out the term with the annihilation
operataor b‘:‘-ﬁ; which annihilates the outgoing particle 3, and similarly
for 4.

In the same way, the scattering amplitude for the t-channel reac-
tion 143 » 244 can be written [with the same irrelevant coefficients
as in T s) ]

4 - " .
ol )(P1 sP3sP2sPa) = eoes f A% QaXedyxsdex, o P1¥1 o7IP3¥2 oiP2Xe IDsXs |

- K+KzKsKs < O|T[& (x )8 (x )8 (x )o_(x )] 0> .
1. 1 2 2 ¥ 3 & a (7)

The changes with respect to Eq. (6) are that Sfdx2 e P3%2 now picks out
g

the bgut part of @2“", which annihilates the outgoing particle 2, and

fd‘xs e *P5*; takes the a;n'l’ part of ‘Iﬂz'-n which creates the incoming
particle 3.

Equations (6) and (7) suggest immediately that T(S) and T(t) are

given by a common function, namely
F(Q‘l Q2 ’qJ’q.4) = oooo[ d4!qd4x2d4x3d4x4 eiq1x1 eichxz eiq_:X3 eiq4x4 .
- K\KKsK, < O[T[3 (x )} (x )o_(x )2 _(x)]] 0> . (8)
1 1 2 2 3 3 4 4

Indeed, Egqs. (6) and (7) now read formally,

T(s)(P1 :Pz:Ps:P4) F("P1: = D2y P33, PA) (6')

T(t)(p sPoPp )=F(-p, p_, =pP_, P ) (7"
1 3 2 4 1 2 3 4
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These relations are only meaningful, however, if the domain of analy-
ticity of F in g4, eeoy 94 is sufficiently large to extend from the
values taken by these four-vectors in Eq. (6’) to those taken in Egq. (7/).
These values are always different, as is seen from the fact that particle
energies such as p: ’ p;, p:, p;_ are always positive. From the axioms of
local field theory, especially the commutation or anticommutation rules,
one knows that F has indeed the necessary analyticity domain; the general
case of this theorem has been proved by Bros, Epstein and Glaserw).

The traditional formulation of the crossing property is now read
from Eqs. (6’) and (7). It is the following:

t .
&), ,0,0) = LT( LR I )J continued
1 2 3 4 ] 3 F 4

when the analytic continuation is done in ps and p3 to (9)

= = d = - .
Pz = 7P, 800 Ps = "P,

Of course the analytic continuation must be done in a proper wajr; it

must avoid all the rossible cuts and preserve four-momentum conservation

p1 + Pz = Pz + P, Analyticity holds in the upper-half energy Izlz;.nes s the
t

cuts being on the real energy axes and the physical values of T being

obtained on the upper lips, i.e. for

p% =Re p® +1i0

2

Mo

p2=Re p’ +1i0 o,
3

Y o

This agrees with the fact that in Eq. (7) the Xz integral picks out the
outgoing contribution (x% - +w), so that elpz 2 is a converging factor.

Similarly the x3 integral picks out the incoming contribution (x » -w)e

The analytic continuation mentioned in Eg. (9) is most easily done

by keeping the imaginary parts of p; and p; positive. But it then leads
to values

2 2

p® = -Re p? - i0
3 3
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which are below the real p%, p3 axes. Now T(s) has similar analyticity
properties to T(t); it is analytic in the upper-~half energy planes of
P2, p% with cuts on the real axes, and the physical values of T(s) are

obtained on the upper lips, i.e. for
p°=Rep:+:|‘.0

p° = Re p; +i0 .

Equation (9), on the other hand, when the continuation is done in the

upper-half pf, p: planes, leads us to the lower lips.
2 3

One can, however, go from lower to upper lip by using the following

property (all pg are taken real except p2 and p3%):

2(8) (p,p2pspa) = [T5(0eps ¥ pe)l*

If the value of T(s) in the right-hand side is taken on the lower 1lip,
T(s) on the left is on the upper one because of the replacements

p%,; -+ p2,3¢ The proof of this relation uses PT invariance (P = space
inversion, T = time reversal). We sketch the argument in a simple form.

For any matrix element <¢|0|®D> of any operator O, the PT transformed
quantities

-t
l¢* > =Prlo>, l¢' >=Prlg>, 0 = ()0 (PT)
obey the relation
*
<ploo > =<yrforfer >
The complex conjugation stems from the fact that PT is antiunitary [for

details, see e.g. L. Van Hove, CERN Report 67-27 (1967), pe. 28] If O

is a function of operators Q with complex coefficients «:

0= F(Q,a) ’



then one obtains for the transformed 07:
0! = F(Q',a*) ’

a* occurring instead of a because of the antiunitarity of PT. The S-
matrix written in terms of a Hamiltonian operator H has such a form,

@ being a complex energy parameter related to p2,s. PT invariance means
H’ = H, so that the transformed S’ of S is obtained by the replacement

3 R * .
a-> a, i.e P2y3 > D2y3+ [ence

< yls(a)le > = < ¢/ |s(a™)]o? > *.

This proves our above relation for T(s).

We can now write a new form for the crossing relation (9), valid for

T(s)(m sD25P35Ps) = [T (o)

(t)(P

]*
3P =P _sP 4) continued
where the analytic continuation is done in p_, p_ with Im p;,__ > 0, up
2 3 3
to the values p_ = -p*, p_ = -p:; the complex conjugation [...]* is
] 22 °3

taken after the analytic continuation is carried out.

We remark briefly on the fact that under the substitution

pz + -p_, p - =p. involved in crossing (we now neglect small imaginary
2 3 3

parts), the variables s, t, u defined above become

wn
]

(py +p2)2~ (p‘ - 1:5)2

<t
]

(py = 25)% > (P' + Pg)z

(py = Ps)?® remains unchenged .

[ <]
L]

t becomes the (c.m. energy)? of the reaction 1+3 - 2+4; this is why one

usually calls it the "t-channel reaction", 142 - 3+, being the "s-channel

reaction",
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We now say a few words on the spin complications. In presence of
spins, Eq. (9) must be replaced by a matrix equation:

S
T( )(Pi sAq sP2s5M23P3 A 35Pas s ) =

Z : t

C(Piaxiﬂ\;_) [T( )(P1 91: aPs.ﬂ\; ’PE. 97\2' :P4 a7~: )]
7 |
(SR Py ETY

with [T(t)] analytically continued to p; = =p, and p3 = =p,e The "cross-
ing matrix" C(pi, Ai’ l’i) is a more or less complicated matrix depend-
ing on the way in which the spin orientations are defined. In most cases,
the amplitudes T(t) have a lot of singularities in the four-momenta, which
are known not to appear in T(s) [kinematical singularities of T(t)].

These singularities of the wvarious T t will then be forced to cancel out
against each other in the linear combination 2%, c T(t) generated by the
crossing matrix [kinematical constraints for T t)]. One of the troubles
of Regge-pole theory-is that, in order to describe T(s), it gives a theo-
retical model for T(t). This model is forced to embody the cumbersome
kinematical singularities and constraints of T(t) with the sole purpose
of cancelling them out when one goes over to the physically relevant
amplitude T s). We shall return to these problems later.

Similarly to the crossing relation between T(S) and T(t), there is
such a relation between T(s) and T(u), and one between T(t) and T(u),
where T(u) refers to the "u-channel reaction" 1+ - 3+2 with (c.m.
energy)2 = u., In the spinless case and in the form analogous to Eg. (9")
they read

*® ¥

T(s)(pa sD23sD3sPs) = [T(")(p sD_sP 5D )] cont. to p_ = =%, p_= =p

1 T 3 % z 2 4 4
(94)

u t %*
o(v)(p sP_sP sP_) = [z )(p »b_sp_sp )] comt. top_=-p*, p =-p .
1 4 3 2 L § 3 2 4 3 3 4 4

(99

It should also be remarked that, beyond certain coefficients which are
relativistically invariant combinations of four-momenta and spin wave
functions, the amplitudes T(s), T(t), and T(u) are functions of s and t
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only (remember that u = 23“ mg - s - t). Regarding analyticity, T(s)

is, at fixed t and also at fixed u, analytic in s in the upper-half
s-plane; its cuts are on the real s-axis and its physical values are
obtained on the upper lip. [Indeed, s = (py + p2)? = m¥ + m% + 2p3p%

- 2P1.p2 gets a positive imaginary part if p2 has one. ] ‘l‘(t) has
similar properties in t at fixed s and at fixed u, and so has T(u)

u at fixed s and at fixed t. The analytic continuations of T( )

Egs. (9') and (9“) are in the upper-half t-plane at fixed u and fixed s,
respectively; the continuation of T(u) in Eq. (97) 4is in the upper-half

u-plane at fixed t.

Although we will not need it for the present lectures, we make a
final remark on what happens when 211 four particles are crossed in the
reaction 1+2 » 3+#; (up to now only two particles were crossed, the others
remaining untouched). The reaction then becomes 3+4 - 1+2, which is the
CPT transform of 1+2 » 3+ (PT defined as before, C is the ;:harge conju-
gation). Its scattering amplitude T s) is obtained from the one T(s of
142 » 34 by analytic continuation in all p'J to the values

P =DP.sy P = =P_ » P "P:P:"P“-
1. 1 2 2 3 4 4

2 which is again the (c.m. energy)?,

Hence s = (p + p )2 becomes (p_ + pz)
and t = (p z P )% becomes (p_ - p,_) , again the (four-momentum transfer) 2.
Leaving out spin compllcat:.ons, T(s)and T are functions of s and t only.

Analytic continuation then gives (the argument does not require use of PT

invariance)
7(8) (s, 1) = o{8)(s,4)

which states CPT invariance of the scattering. This is a special case

of the well-known CPT theorem which states that any relativistic, local
field theory is CPT invariant.

LECTURE III
WATSON-SOMMERFELD TRANSFORMATION AND REGGE POLES

After the foregoing discussion of the crossing principle we now turn

to the main mechanism which will lead to the typical Regge behaviour of



an amplitude for large energies and small momentum transfers. The mathe-
matical trick which is used to transform the scattering amplitude and

obtain its asymptotic behaviour was first discussed in the mathematical
literature by Nicholson'?) in 1907 and by Poincard'®) in 1910. It was
re-discovered in 1918 by Watson'*), and used later by Sommerfeld'® to
treat the problem of propagation of radio waves on the surface of the
earth. [These historical remarks are taken from the book by Frautscii'®). ]

Wie shall now discuss this so-called Watson-Sommerfeld transformation
by taking the simplest case of relativistic scattering, namely for spinless
equal-mass particles. The amplitude for the s=channel reaction 1+2 - 344
is called T(s)(s,t), with

1]
]

(p1 + p2 )2 k(k; + m?)

and

ct
i

(ps +p5)? -2k:(1 - cos ®s) ,

kS denotes the c.m. momentum and 6 the c.m. scattering angle between
particle 1 and 3, both referring to the s-chamel. Anslogously, T ( )(s,t)
describes the t~channel reaction 1+3 - 2-&, with

7]
]

2 _ - 2 -
(p' -Pa) = 2k|(1 cos ©,)
and

ct
[}

(p +p_)% = 4(k% +n®) ,
1 5 t

where kt denotes the c.m. momentum, and Gt the scattering angle from
particle 1 to particle 2. As was discussed extensively above, the ampli-
tudes T(s)(s,t) and T(t)(s,t) are related by crossing. Using a path for
the analytic continuation to (i:> , pS) = -(® 2 p°)* and-(_'_, pﬂ) = -(_ﬁ s p°)

which lies wholly in the upper-half s-plane (wh:Lch means ‘that Im p2 =3 Im p__,

*

Im p?, and Im p$ are all positive), T ( )(s,t) is related to the complex
conjugate of T(t) (s,t)

(2)(s,0) = (20 1))
T(s,t) = (T (s, t) cont. anal. in p. and Py to
Pz = =P, andpz--p .
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We now consider the partial wave expansion in the t-channel:

% t - 2m®
, (10
t - 2m®

S

rM(s,0) = ) (220 gy (0)py(o0s 8,) 5 eos e -

Nl=f o+

€ =0

where the gt(t) are the partial wave amplitudes. The function (10) has to
be continued analytically into the region where it represents T(s) (syt)e

We are especially interested in an expression valid for large energies and
small momentum transfers in the s-channel. We therefore want to continue
analytically from the physical region of the t-channel (t > 4m?;

-14-k§<s <0) to large, positive values of s, and to finite, negative values of
t. For this domain of s and t the argument of the Legendre function in

Eq. (10) becomes large and negative:

005@ —_— = o .
t S @ o

t < 0, finite

Whereas the gz(t) in Eq. (10) change only a little in the analytic con-
tinuation involved in t, one has to consider a large continuation for
the Legendre functions; +this turns out to be manageable because the.

latter functions are well known. Because of the relation

I}
Pe(z) Z:GDZ ’

the convergence of the series (1 0) is spoilt during the analytic con-
tinuation. The mathematical trick now is to abandon the series expansion
(10) and to replace the sum by a complex contour integral in the £-plane.
The idea is then to move this contour in order to obtain a representation
of the original partial wave sum with much better convergence properties
and a wider domain of validity in cos Gt. This last step is known as the
Wiatson-Sommerfeld transformation. It appears, however, that the whole
procedure has to be done in two steps, treating even and odd partial waves
separately.
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We now express the sum (10) by the following integral taken along
the contour C in the complex l-plane shown in Fig. 1:

P,(- cos ©,)
T(t)(s,t) = é’-{/ (2z+1)§£ (t) ) toar . (11)
c
‘ | - plane
- L - o
10 1 2 3
el
C
FIG.1

It is assumed here that the gt(t) have no singularities in ! near the
positive real axise. .So one reobtains the original partial wave sum by
taking the residues of the function 1/sin #¢ at ¢ = 0, 1, 2, eeo, and
using the relation E}(-cos Gt) = (-1)5 Pz(cos Qt) valid at these points.

The crucial requirement in going from Eq. (10) to Eg. (11) is that
gl(t) is an gnalytic function in ¢ which interpolates the physical partial
wave amplitudes §£ for £ =0, 1, 2, oee » It was shown by Regge in the
framework of non-relativistic potential scattering that for a certain class
of potentizls the partial wave amplitudes can indeed be uniquely continued
to complex values of ¢, and that they have the property of allowing a
Watson-Sommerfeld transformation on the complete scattering amplitude.

It is not possible to establish a similar property of the partial wave
amplitudes in the relativistic case. But the analytic continuation away
from the physical {-values is again possible provided one considers two
interpolations, one for even {-values (the so-called "positive signature"
partial waves), and another for odd f{-values ("negative signature" partial
waves). A transparent example for the impossibility of obtaining one
interpolation for all physical partial wave amplitudes is given by the
following s~channel reaction

m +p>w+n .
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When analysed in the t-channel where the reaction is 7 + #° » p +n, it
follows from the requirements of Bose statistics for the initial 7w state s
and from isospin invariance of strong interaction (only I=1 states con-
tribute), that all even paertial wave amplitudes vanish and only the odd
waves contribute. The question now arises whether there exists one
analytic function {, (t) such that at the physical points one has:

oy 25 C4ese =0

$15 83, Cseee £0.

It follows from Carlson's theorem that such a function does not exist.

This theorem states the following:

if £(z) is holomorphic for Re z 2 0
and f(z)/e)"lzl-> 0 for z »w, A<T.
and further f£(n)

then £(z)

0 fOI‘ n = 0’1,2’ ece o
0.

7)

For this and other relevant mathematical facts, we refer to Squires1 .

It follows from this discussion that even and odd signature partial
waves are physically different, thus reflecting the parity dependence of

the interaction in the t-channel. One therefore has to determine the
interpolating function separately for even and odd orbital angular momen-
tum. Then the same theorem guarantees the uniqueness of the interpolation
in each case. Explicitly the procedure is as follows. The amplitude

T(t) (s,t) is separated in positive and negative signature parts:

T(t)(s,t) = Tit)(s,t) + TEt)(s,t) , (10)
with !
TEt)(S,t) = y (2[+1)§c(t)P£(°°3 @t) b
t:e_ven
and

%) (s, )

Z (2£+ 1), ()P, (cos &) -
2=0dd
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We now define for general ¢ the functions gf(t),where g:(t) is the
analytic interpolation of gt(t) for& =0,2, 4y eeey and §;(t) is the
analytic interpolation of ¢, (t) fort =1,3, 5, eoe, and obtain as in the
case of Eq. (11)

1

. [P,(- cos ©,) *+ P,(cos 0_)]
() (s,) = 5 /(2“1);2(1:) z._< Ll t
c

sin w¢

ar . (12)

In Eqs. (11) and (12) one has, of course, to insert an interpolating
expression for the Legendre functions. This is provided by expressing

the Pt in terms of hypergeometric functions. For complex ¢ one still
finds the relation

- ~ (- Re £ + i Im ¢
PC( cos at) (- cos et)
for Re ¢ 2 =Y, and large cos et. This follows from the equation (¢ real

r(: i %> (22)¢

2 £-1 1. 1
Pe(z) = F<--,--——-;-l+-—;—>
¢ Z_’“p(g+1) N~ 2 2 2’ =z

or complex):

1
r(-,__
2 -t =1
N (22) F(z +1 2 . . 1> )

3
+1; £ + &; —
I‘(—[) ﬁ 2 b 2 3 2’

2

153

when the hypergeometric function F in the right-hand side tends to 1

for z » ». To obtain a convergent expression for the amplitude continued
in s and t,one therefore wants to have Re ¢ small or negative (but Re ¢
not smaller than -%.).

We now assume that the asymptotic properties in ¢ of the functions
éi(t) are such that a Watson-Sommerfeld transformation of T§t)(s,t) is
possible, i.e. that one can open up the contour C of Fig. 1 toward the
left until it runs parallel to the imaginary axis, and that the infinite
half circles givé no contribution (because of the asymptotic behaviour

of P,, the contour can best be deformed onto Re ¢ = ~¥2) . Since the



function P /éln 7t has no complex singularities in ¢, one will then pick
up 51ngular1t1es of §'(t) Let us first assume that §'(t) has a pole

at L = q, (¢). 1If g‘t(t) has a number of such poles, each will contribute,
but the one which lies farthest to the right, i.e. the term with the
biggest real part of ¢, will give the leading behaviour of the amplitude
for large s. Such poles of §‘ are called Regge poles. The crucial point
is that Qt(t) does not have an accumulation of singularities with

Re a(t) » =, since then the Watson-Sommerfeld transformation would not
lead to a representation of the scattering amplitude with improved
asymptotic behaviour as compared to the original partial wave sum (10).
However, it follows from the Mandelstam representation that the Regge
poles cannot penetrate infinitely far into the right-half {-plane.

The contour C of Fig, 1 will be deformed in such a way that it co-
incides with the path C’ of Fig. 2

* {-plane

(]
[}
[
<
¢
[}
<
'

c! FI1G.2

+
Calling Bi(‘t) the residue of Q(t) at the pole ¢ = ai(t), one finally
obtains for the s-channel amplitude at large s when only the rightmost
Regge pole in the ¢-plane is considered:

(T(s)(s,t)>‘ = (?(t)(s,t)> continued

S »* w; t< 0, finite

| Pay (- w02 8) £ 7, (c0s 0,) |
~ - a(2a, + 1)F" () _ - . (13)

sin na,

If there are several Regge poles, each will contribute a term of the

above forme.
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If the d(t) has a branch-point at ¢ = ag(+) and a Regge cut extend-
ing from it towards the left, one arrives, after deforming the contour C,
at a path showmn in Fig. 3. Denoting with ﬂ‘i (t) the discontinuity across
the cut starting at af(t), its contribution to the s-channel amplitude is

written:

‘ |-plane

-______.’T___j._._.ag(t)

R

c' FIG.3

<T(s)(s,t)>‘ = (T(t)(s,t)>

continued
S w; t < 0, finite

da2a+1)p(t) — .

out (14)

Here and in Eq. (13) we have neglected the background integral which is
that part of the contour C’in Figs. 2 and 3 running parallel to the imag-

~
21

inary axis at Re ¢ = -7;. This is Jjustified because only the right-
most singularities matter for large s. Thus it is really the region of

the Regge cut nearest to the branch-point which contributes significantly.

We remark that a Regge cut can always be approximated by a sum over
many Regge poles: this is indeed seen by approximating the integral in
Eqe (14) by a sum over discrete a values. Such an approximation becomes
increasingly poorer for increasing s. In practice, however, one has at
small t for cos 9,0 an order of magnitude lcos th ~ 3 ¥ 2p1ab in GeV/c.
This allows one to estimate how sensitive the amplitude is to the precise
values of a, because a shift La of a contributes a factor Icos OtlAa. Ir

experiments cover a range z4 S ]cos etl £ z2, the uncertainty 4x on o will
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appear in the form (sz,)Aa. At present we have often z2/z4 ~ 2 or 3.
The uncertainty Aa therefore often remains at or above 0.1 (3°°' = 1.1),

Hence present experiments cannot distinguish between cuts and groups of
poles separated by Oa ~ 0.1,

We finally derive from Egs. (13) and (14) the following truly asymp-
totic behaviour when only the leading term for s - o is kept :

a.(t)
T(s)(s,t) ~ s * for a Regge pole , (15)
oC
+
T(s)(s,t) ~ st for a Regge cut . (16)
(10g s)Y

In the last relation y is a number depending on the nature of the branch-
. c
point a+(t).

LECTURE IV
ASYNPTOTIC BEHAVIOUR

For phenomenological purposes it is very important to know the
behaviour of expressions (13) and (14) when s is large [expressions (15)
and (16) are only incomplete approximations neglecting all coefficients ].
We are going to show that in the Regge theory one can say more than is
contained in these latter expressions; in particular, that the phases of
the amplitudes can be predicted. For that, one needs first to know the
behaviour of P, (z) when its argument z is large. P,(z) is the analytic
interpolation of the Legendre polynomials P ¢ (z) to complex ¢ = @3 it can
be written in terms of hypergeometric functions, which allows one to

find its asymptotic behaviour. As already mentioned, one finds that

for Reai-%:

and lzl””:
I‘a+l
o < 2> a
P(z) S =——12" .
a vo T(a +1)

[For Re a< =Y2, one has on the contrary Pa(z) «z %)



The main problem is to find the right determination of z%, This is
easy for z =-cos G‘h but more delicate for z = cos ©,. Remember indeed
that

t - 2m?

cos O, =

ct '\)'—‘

- 2m?

o
-] +

is a large negative number for s large positive and t negative; one has
thqn to choose between the two determinations [cos etla ej'm or Icos thax
e ™ of (cos Qt)a. In other words,one must know at which determination of
the multivalued functions (cos et)“ one arrives, once the analytic con-
tinuation implied in crossing is performed. To answer this question it

is sufficient to know the sign of the small imaginary part of cos ©€_.
Applying the crossing formula (9/) one finds that before one tekes the
complex conjusate of 2(t) one arrives at a point t = (p§ - p3)2 and

5 = (p’: +p3) 2. (We consider here that also p$ has a small positive

imaginary part which was neglected in the previous section.) For t, one

has Re t < 0 and Im ¥ can be taken as zero, since Im p$ and Im p3 can be
taken as equal. For s one has Re s » 0 and large, wherecas Im s < O.

Hence one obtzins that cos Gt has a sma.l:!. positive imaginary part: one
must then write (cos Gt)a = lcos Qtla e tTE, Taking the complex conjugate
of T(t), cos Gt gets a negative imaginary part as it should because now

Imn s > 0, One then finds the following contribution of a Regge pole to the

asymptotic behaviour for T(s):

ay 1 * *
(5) Vw2 1‘<at+ 2) 1 l-iat s + _123_ om?
T/ (s,t) = (22, + 1)B,(t) - = T .
P(a, +1) - sin ma, 3 - 2

(17)
(We have not written the equivalent formula far a Regge cut which is quite
similar apart from the fact that one has to perform an integral on the cut.)
Now it can be shown that a(t) and S(t) are real when t is smaller than the
t channel threshold, a fortiori for t negative. (We shall come back later
to this important property.) That is why in Eq. (17) one ecan drop all complex
conjugation symbols. Moreover, since the only term which can provide a non-’

vanishing phase is (1 * e—lm), one sees that in the Regge-pole model the
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asymototic behaviour of the modulus and of the phase of the scattering
amplitudes are rigidly correlated. It can be shown that very general
analyticity properties imply that such a correlation must be valid. It
is one of the most appealing features of the Regge-pole theory that it
provides it automatically (cf. point 2 of the introduction).

BXHAVIOUR OF REGGE AMPLITUDES FOR POSITIVE ¢

Up to now we have been interested only in the small-angle scattering
region of the s~channel (s large, t negative). However, in the Regge-pole
theory there exists another region of interest in connection with point 1
of the introduction: we had said that the Regge=pole model allows one to
correlate the high-energy behaviour of scattering amplitudes with the
occurrence in the crossed channel of particles or resonances having a
definite set of internal quantum numbers (baryon number, charge, isospin,
strangeness). In this respect it is interesting to see if a Regge-type
amplitude is suitable for describing the occurrence of such particles in the
t-channel.

Let us suppose that for t = to > O the real part of a, is equal to
some positive integer fo (£o even for a,, odd for a_), that is a, (to) = 0.
Near t = to, the physical partial wave amplitude in the t-channel can be

written, for £ = &4, as:
gco(t) T Teca ) (

Consider the two following cases:

i) tp is smaller than the t-channel threshold

gi(t) exhibits a pole which is interpreted as a bound state of the
1 +~§ é;stem(and also of 2 + h),the mass being egual to 4%3 and the spin ¢,.
It should also be noted this interpretation allows one to understand why the
Regge trajectory a,(t) and the residue B,(t) have to be real for t smaller
than the t—channel_threshold. Indeed, i; guantum mechanics of soinless
particles, a bound state has always a real energy and, if non-degenerate,

it has a real radial wave function (these properties hold if the Hamiltonian



Te

- 23 -

is hermitian). Hence the solution to of a,(to) = £o is real, and B, (to) is
also rezl because it is just the product og the wave function of th; 1 +3
system by the wave function of the 2 +4 system. One can extend this
reascning to real non=-integral values of ¢ by considering a radial wave
equation for such £, One concludes from such non-rigorous arguments that
at(t) and ﬁt(t) must be real for t below the t-channel threshold (more

N . . 18
rigorous proof's exist for these properties °

ii) 1 is greater than the t channel threshold

a, (to) may have an imaginary part,and one recognizes in expression (18)
a Brei;-Wigner type formula which one indeed interprets as the occurrence
of a resonance with a mass equal to 4@2, a spin equal to {0, and a width
related to Im ai(to).

THREE EXAMPLES

At this point it is instructive to look for examples of actual

scattering phenomena which illustrate the "ups and downs" of the Regge
pole theory just described. We shall refer to cases with spins and un-
equal masses although we have not worked out the theory for such cases.
As mentioned later, these cases lead to considerable formal complicetions
in the mathematics, but they retain the essential physical implications:
powers sai(t) in the amplitudes, reality of a,(t),and identification of
o = at(to) with bound state or resonance of ;ass ¢C€; and spin £, in

the t=channel.

7.1 @ p - #°n reaction

The mnucleon charge exchange reaction = p » 7°n (the particles
are labelled in the order 1 + 2 -» 3 + 4) is interesting because the
guantum numbers which are allowed to occur in the t-channel reaction
(1 +3>2 +4 or w 7° » pn) are restricted: I =1, G = 41, £ odd which
means odd signature. In fact, only one known particle is a candidate for bear-
ing these quantum numbers: it is the p-meson. One therefore hopes
that a single Regge pole must describe T(s) for large s. Applying
formula (17) one therefore expects the differential cross-section to

behave as
2a (t)=-2
do _ ()2 L~g"»
o= e T | = =S £(t) .
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One uses the experimental dataw) from 6 to 18 GeV/c in the following
way:

i) From the enerzy dependence of the forward cross-section (do/dt) o
one deduces ap(O). One finds ap(O) = 0.57 with an error of
perhaps 10% [accurate error statements have little meaning because
at least at the lower energies (and even higher, see the discussion
of polarization) the assumption of a single pole contributing can
only be approximately valid]e

ii) From (do/at)/(dd/dt) 4mo (Fige k) one estimates ap(t) for t < 0
by studying the s-dependence at fixed t. The data are fully
compatible with a power law szap(t)-z with real ap(t)o

np—nn
! p (Gevic)
o v 100 MIT - PISA
R o 40 SACLAY - ORSAY
& 59
- do .08 _Mb
v 98 d-—t(0)=l.62p°“mz
« 133
= 7
ol . 182 (xo(0)=057)
S
b|~
vio
=
85
‘OAI:_
0k
il
0 10

-t [(Gevicy)

[Taken from P. Sonderegger et al.,Physics Letters 20, 75 (1966).]
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The results are shown roughly in the so-called "Chew=Frautschi plot" of

Fige 5: one finds that the function ap(t) can be fitted by a straight

line (although the error bars become larger for larger lt]) with an intercept
equal to 0.57 and a slope of the order of 1 (GeV/c)™%, The interesting

point is that the extrapolation of this straight line (dots in Fig. 5)
crosses the line a, = 1 at a value of t which is fairly close to m3: this

is in full agreement with the considerations of the previous section.

For ¢t > Am;,the line of Fige. 5 is supposed to represent Re ap since then

ap can become imaginary. We have here the most striking success of Regge-
pole theory.

Unfortunately, this same reaction provides a severe limitation to this
success. It is related to polarization. To describe the reaction
7 p » 7°n one needs two independent amplitudes: the non-spin flip amplitude
f,and the spin flip amplitude g. One can show that formula (17) applies
for both of these(a?plitudes. In particular, they both contain the same
-iﬂup t .

factor 1 - e Since the residues and the trajectory are real for
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negative t, £ and g have the same phase if the p trajectory is the only
one to contribute. Thus the polarization of the recoil neutron, which is

proportional to Im fg*, is predicted to be identically equal to zero in a

pure Regge-pole model with p exchange. This polarization has been measured *

using a polarized proton target, and it turned out to be significantly dif-
ferent from zero and to decrease slowly when the energy inereases [its
average over 0,05 S -t .$ 0.3 (GeV/c)2 is 16 * 3% at 6 GeV/c and 12 * 2% at
11 GeV/c]. This is a "down"! The only way to account for the polarization
is to add to the Regge pole a 2 an extra singularity in the ¢-plane; it
should affect do/dt very little but should give the polarization. It is not

very attractive to postulate a second pole because one does not know any par-

)

ticle with the same quantum numbers as those of the p meson. In fact it seems

more natural to assume the existence of a non-negligible Regge cut term.
Indeed, as we shall see, any reasonable theory for high-energy scattering
easily generates cuts which are in gbout the same position-as the poles,

and which are not associated with particles.

7.2 Backward meson-nucleon scattering

The Regge-pole model seems to be also successful in reproducing the

data in the backward scattering region of elastic meson-nucleon collisionsSe

Consider the s-channel reaction

+ +
T p->pw .

0E 66

A small momentum transfer between particles 1 and 3 cofresponds to back-
ward 1r+p elastic scattering. The t-channel reaction is 1r+f$ - §ﬂ+, its
charge conjugate is TP - p1r-° These reactions carry baryon number -1 and
+1, respectively (i.e. the original s-channel reaction is characterized

by baryon exchange). Hence haryonic Regge poles can occure Although
there are some complications due to spins, a Regge theory for baryonic
states can be developed. Figure 6 is a Chew=Frautschi plot for two families
of nucleon resonances (A: isospin ¥2, N: isospin Y2) in which the spins

of the resonances are plotted versus the squared masses. An amazing



regularity, suggesting straight-line Regge trajectories, appears in this

plot:

_]P

Regge Trajectories
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As indicated by the question marks, the spins and parities of the heavier

resonances are not yet known (they seem very hard to determine;

widths are not yet known).

also some

However, the mass values are such that, in

each case, one reasonsble spin assignment is clearly suggested by the

linear trajectory.

Surprisingly one has found fewer resonances on the

trajectory of the nucleon itself (not shown in Fig. 6) but it has about

the same slope as the ones indicated and as the p trajectory (~1{GeV/c)2,

The other interesting point is that the continuations of these straight

lines to t =

¥% S0 are in good agreement with the power laws do/dt « s

+ +
found experimentelly for backward n p » pw scattering (the contributions

of the various possible Regge poles must be added using isospin rules).

This is again a good success of Regge-pole theory.

It is at present only

gqualitative because the scattering data are not good enough to determine

the t variation of a.

It should also be

said that the Regge formalism

for half integer spin particles such as baryons is much more complicated

than for mesons.

20

2
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LECTURE ¥
7.3 Elastic-like scattering

The third example we shall consider concernsan important class of
reactions: these are the reactions which proceed without any exchange
of internal quantum numbers (internal quantum numbers are baryon number,
isospin, strangeness, G-parity). In the usual terminology one says that

such reactions proceed via the exchange of the "vacuum quantum numbers".

The elastic scattering belongs to this class of reactions. It also
contains other reactions, which are inelastic, but for which the exchanged

guantum numbers can be those of the vacuum, e.g.
1r.p - A;p
T p->7N*
pp - pN'
PP - N#Nt

(where N* stands for a nucleon resonance with the same internal quantum
numbers as the nucleon itself). Such inelastic reactions are often called
"diffractive dissociation processes". Elastic scattering and diffractive
dissociation processes can be given the joint name of elastic-like or

diffractive-like reacticns.

For all elastic~like reactions it seems experimentally that do/dat
becomes energy-independent at high energy. Writing as usual do/dt «
szmp(t)-2 for large s suggests the existence of a single Regge trajectory
qP(t) bearing the quantum numbers of the vacuum. This trajectory, called
the. Pomeranchuk or vacuum trajectory qP(t), is rather different from the
other ones. The constant cross-section indeed gives qp(t) = 1 for the
t interval measured, 0 £ -t £ 0.5 (GeV/b)z. The precision is not very good,
however. The signature is supposed to be positive, the main reason being
thet Re T << Im T at t = O for elastic reactions (note also that a nega-
tive signature trajectory taking the value 1 for t = O would imply the
existence of a strongly interacting massless particle of spin 1). In
this picture, the fact that elastic-like reactions seem to be the only
ones which survive at very high energy is accounted for by noting that all
trajectories except the Pomeranchuk one have an intercept appreciably

smaller than ones The known intercepts are, indeed, < 0.5.
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qP(O) is experimentally one, with an error of perhaps 0.05 to the
lower side. Since no total cross-section increases with energy, the
error on the upper side is much smaller [qP(O) > 1 would also violate
the so-called Froissart bound deduced theoretically from general analy-
ticity assumptions ' ’*%/].

The slope of qp(t) near t = 0 is even less well known: the lack of
shrinkage of elastic diffraction peaks indicates that this slope is small.
Indeed one generally finds

qP(t) =1+ ¢t

with roughly

6:0'&0.3 .

The question whether for t > O the Pomeranchuk trajectory actually carries

a 2+ resonance with B =I = 8 = 0, G = +1 (the fo or fJ mesons for instance),

is still an open one.

The lack of precise information about the Pomeranchuk trajectory can
be understood from the two following reasons: on the one hand, the
conservation laws never forbid the exchange of other trajectories than
ap in diffraction-like reactions (e.g. the p trajectory can also be
exchanged in #N elastic scattering). So the interpretation of the data
is never as simple as, for example, for the 7m=nucleon charge exchange
reaction. On the other hand, as mentioned in the Introduction (cf.
point 3) one does not yet understand how the complicated shadow scatter—
ing mechanism, which certainly must operate, can be reproduced by the

exchange of a vacuum trajectory.

FURTHER INTERPRETATION OF THE SIGNATURE

When performing the analytic interpolation of partial wave ampli-
tudes in the t-channel we have found it useful to separate the t-channel
amplitude T(t)(s,t) into two parts:

T(t)(s’t) = Tf_t)<3:t) + T_(.t)(sst) ’
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where TSF)(s,t) for TEt)(s,t),respectively] is the sum over even (or odd,
respectively) partial wave amplitudes:

T_'(_t)(s,t) = Z (2!+1)§;P£(cos e,) »
£ even

%) (s,¢) = z (22+1)¢;P,(cos ©,) .
£ odd

After the analytic continuation involved in crossing, one is then led to
an analogous decomposition of the s-—channel amplitude [both Tgt) and Tﬁt)
can be analytically continued J:

&) (5,8) = 208 (5,1) + (%) (s,1) (19)
with T_(l_s) = analytic continuztion of frf“)
and TES) = analytic continuation of Tgtl

Our purpose now is to give an intervretation of this decomposition in
terms of the s- and u-channel rezctions. Ve are going to show that the
u-channel amplitude can be expressed simply in terms of T+§ and TES);
namely

(W (g, 1) = TES)(u,t) - TES)(u,t) . (20)

We recall that the t-chamnel reaction is 1 + 4 - 3 + E, whilst

1+2>3+ 4 and1+ 3> 2+ ) are the s- and t-channel ones.

In order to prove Eq. (20) we come back to the explicit formulation
of s< t and ue>t crossing properties. We write it as (p,, p,,and P
are treated as real)

L
T(s)(p PPP) = I:T(t)(p’pip'_p’) continued to:
1 2 3 4 1 3 2 4

’

» =p, p_=-p* p.=-p% P =P ,

1 1 2 2 3 3 4 4 (21)
—_— *
T(u)(p pP.p P.) = LT(t)(p’ p’plp’ )J continued to:
1 4 3 2 1 3 2 4

4 1

p’=p,p.=p_, pP. = -p* p' =-p* .
1 1 2 2 3 3 4 4 (22)



-3 -

Comparing these two equations one sees that in Eg. (21) p; can be kept
constant but pé must be continued, whereas in Eqg. (22) P! is continued
and pé kept constant. In this respect, the roles of particles 2 and 4 in
) ore interchanged. Let us interchange pi and p/ in Eq. (22); it now

reads

T( )(p p_p p ) = [%( )(p p_p p_):] continued to:

p’ =p, p. = =p* p. = -p% p’ =p_
1 1 2 4 3 3 4 2( '
(221)
i.€0 p’ can now be kept constant but ni is continued. In the t-channel
amplltﬁde the interchange of ps and p, corresaonds to the change of © t
into 7 - Gt, that is cos Gt into -cos ©,. Thus T( ) is symmetric under
this transformation, while TEt) is antisymmetric. Equations (21) and (227)
can then be written in the following way:
>

()(pppp)‘{:( )(pp.pp)+'l‘( )(pp_p-p) cont. in p’ and p_ ,

3 2 4
*
) (pppp) = [Tst)(p'pipip’) - TEt)(p’pipip’):l cont. in p! and p! .
1 4 3 2 1 3 2 4 1 3 2 4 2 3
The analytic continuations are to be done as indicated in Hgs.(21) and
(22§,respectively. They can be done separately for both signature t-channel
amplitudes, which leads to Egs. (19) and (20) [note that the difference

between the continuations in Eqs. (21) and (227) just meanc that s and u

are intercnanged betweecn the right-hand sides of Zas. (19) and of (20) .

One sees in Egs. (19) and (20) that the signature refers to a
symmetry property of the scattering amplitude for s<>u crossing, and not
to a kind of internal quantum number exchanged in tiue t-channel. In the
spinless case considered here, the signature which is equal to (-1)2 in
the t-cnannel is identical to the parity of the exchanged particle, but
this is not true in the generszl spin case. Although one can Gefine the
signature of a particle [it is usually defined as (-1)J_v where J is the
spin of the particle and v=0 for a boson and ¥, for a fermion] it is more

relevant to speak of the "signature of a reaction".

We nov show briefly how Egs. (19) and (20) allow one to prove that

the residue function B, (t) in Eq. (17) is indeed real for t < 0. Xguations
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(19) and (20) mean that Tfs) is even and TSS) 0odd under s<>u crossing.

In other words,
L 2
2(8)(s,8) =+ [%gs)(u,ti] .
= = cont.

The continuation is done as indicated in Bq. (9%). When done in u, it
goes to u = -s¥ - t + 4m? with Im u > 0, and t is kept fixed.

Substituting for T,Ss) the leading term given by Eq. (17), and

using reality of a« (t), one gets

as(t)
-ima, (t s + -3- - om?
[1te - ,B:(t) < . =
3" 2m
% as(t)
-ima, (t* s+ 3= 2n® — +ima, (t)*
=tl1z*e - B, (t)|————— e >

t t 2

z-2m

the last phase coming from the analytie continuation of u + &/2)- 2m? to
the value -s* = (t/2)+ 2m®. Hence,as stated previously,

B, () = BL(¢) -

CONPLICATIONS DUS TO MASS DIFFARENCES AND SPINS

For the sake of simplicity , we have restricted ourselves in the fore-
going to the academic case of the scattering of spinless equal mass particles.
In order to get a model suitable for realistic reactions, it is necessary to
examine carefully the complications arising from kinematies. We first study

the case of different masses.

9.1 Scattering of spinless particles with different msesses

In this case the simplicity of kinematical formulae in the t-channel
(1 +3 52 4+ A) is lost as soon as m, ,J- ms and/or m» ;( ms. The incoming

c.m. momentum Py is distinct from the outgoing one pé. From

1 2 1 2 1 1 1
2 2 (i) %« (Bhend)” = (ppFend) 4 (pfF +ud) 2
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one derives

_ Yt - (my +m3)* Yt - (my = m3)?
P = "= (23)

o =w/t-§&+-m4)z »/t-(mz-m._li
t 2Vt

0f course, p ¢ ad p_‘t vanish with square root branch-points at the thresh-
olds t =(my +m3)2 and t = (m2 + ms)2. But for my # ms, mp ¥ m, the
relativistic kinematics introduces other branch-point singularities: at
t = 0 and at the so-called "pseudo-thresholds" [t = (m,; -~ ms)2 and

t = (mz - m¢)2]. From

(7]
L]

(p1 -pé_)2 md +ms - 2w/§i+ m3 w/péz+m§ + 2p,py cos &, ,

u = (pr=pa)® =mi+nl - 2Vp} + mi vpI®+mi - 2p,p{ cos O, ,

one deduces

- 2 2 2 2
cos O, = — - s_u+@1-m3)ﬁnz-m4_l . (24)
t l"ptpt t

R -
In addition to involving the singularities of Pys> P 1’: > it has the t
term in the square bracket when m, ;! ms and mp # mg. All these

kinematical singularities grea‘lﬁly complicate the t-channel considerations

and formulae required in Regge-pole theory, but they must be cancelled in
some way at the end when crossing over to the s—channel, because T(s) is
certainly free of them. The cancellation mechanisms are unfortunately

complicated. We shall only indicate their general nature.

Wnen one follows the "Reggeization" procedure one starts from the

partial wave expansion of the t-channel amplitude:

Tﬁt) = Z (22 + 1)§:’P¢ (cos @t) . (25)

€

The first difficulty one meets deals with the singular denominator p t P ‘ll;

of cos ®t° This difficulty can be got rid of for spinless particles by
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a reasonable assumption about the "threshold behaviour" of partial wave
+
amplitudes: one has good theoretical reasons to believe that gz can be

written (see next lecture for the main argument):
* =t
¢ = pipiTs (26)

where the reduced partial wave amplitude ;% is free from the singularities
of Py an? p% and in particular remains finite when p, or pé -+ 0 (the
factor Py pée describes the centrifugal barrier effect). Inserting
Ege (26) in Eq. (25) and doing the analytic interpolation in ¢ implied
in the Regge procedure, one is led to make the exponent ¢ of Py and p%
comfiex as well, Picking out the asymptotic contribution of a Regge pole
in éc‘

s B(%)

A RONE

one gets the following combination

%y
;]

a, .«
r /st
“ee Fi(t)pt P, (cos ©,)
where B,(t), the so-called reduced residue, is finite and regular at
the zeros of P> pé. The denominator of cos & is then canceiled out,

and one finds

79'§t) [s_u . (m%-mg)t(mg -mi)] 3 o

which has no singularities of thresholds nor of pseudothresholds.

From expression (27) one sees that there remains a problem at t = O.

Expanding Eg. (27) in inverse powers of s-u one finds:

a, -2
a a, -1 2 2 2 2 0{(5-\1) ) }
~ + + - -
B0 | (s-w) o (s-w) © a, Hiomed mi) | = .o
(277)
with increasing singularities at t = 0. OSome comments are now in order:
i) Ve have only expanded the highest order terms of P (cos §.). In

order to get an expansion of the full amplitude one would also have to
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- . N . - L - - 2 3
consider the lower order terms, which begin with (cos ut)“: . Their

treatment is analogous.

ii) The expansion one needs goes to finite order only: let N be the
integer such that o, - N > -% and that @, = N-1 < Y>3 then the expan-
sion needed will contain N + 1 terms only, since the terms in (s-u)% ™ where
n >N are negligiblie as compared to the tackground integral (the integral
over Re ¢ = -}Q), which is already neglected. In practice a, <1, hence

N is at most 1. B

We do not want to give the explicit form of all the terus of the
expansion; we snall simply exhibit the analyticity properties of these

terms near t = 0. One gets essentially:

€ a, a -t a+-N (S:t)
cee pt(t) (s-u) " (3-11) - M—S-él + oo + (s-u) - -;AI—\I-—N——— s

t t
(28)
where A4(s,t), ooo’AN(S’t) are different from zero at t = 0. Expansion
(28) exnivits poles &t t = O which, from general analyticity regquirements,
are not zllowed to zppear in the full amplitude., There exist two possible

ways to get rid of thnis trouble:

a) One can suppose that the reduced residue E+(t) vanishes at t = 0 as
tN. This would imply that the leading term of the amplitude [i.e. the
term in (s-u)% ] vanishes at t = 0, giving a dip in the forward direction,
andé such dips are not observed in reactions for which t = 0 is inside or

near the s-channel physical region.

b) One postulates the existence of other Regge trajectories, which to-
gether with the original one, manage to restore the reguired analyticity
at t = 0. About thesse extra Regge trajectories, called the "daughter
trajectories"zsl one can say at once that their intercept at t = 0 must
diff'er by integers .from that of the original or "parent" trajectory a,
{simply because they have to cancel singularities in the terus which B
behave like (s—u)at-k k = 1,2]. Their residues should have singularities
at © = 0 to cancel those from the original trajectory. They should have
opposite signature to the original one for k odd, and the same signature
as the original one for k even, in order to produce the right phase fac-

tor at t = 0. We insist on the fact that such a complicated cancellation



mechanism is needed in order to satisfy the analyticity requirements, if
one wants to avoid extra zeros which are not experimentally observed. It
is still an open question whether these auxiliary trajectories, which are
introduced from purely mathematical considerations, have for t > 0 some-

thing to do with particles. The common philosophy in Regge phenomenology
is to say that there exist daughter trajectories which do not necessarily
give rise to observed particles, but which allow one to write the usual

Regge formulae without singularities or extra zeros.

L. . LECTURE VI
9.2 Complications arising from non-vanishing spins -_—

of the extermal particles

Having discussed in Section 9.1 the origin of the troubles
which arise at t = O for the scattering of unequal mass particles, which
has led to the introduction of "daughter trajectories" in order to get
rid of unwanted singularities at t = 0, we now indicate the source of the
kinematical singularities due to the spins of the colliding particles.

We again refer to the s-channel reaction1 + 2 - 3 + 4, and the t-
channel reaction 1 + 3 » 2 + 4. The initial and final momenta in the
t-channel defined in Eq. (23) will,for the purpose of the following dis-

cussion,be written

_ NP
Pt *2V%
and (237)
Imi
t o2k’

where we have introduced the normal threshold factors Iy = Jt = (my +m3)°
and Tf = vt = (m2 + m4)% as well as the pseudo-threshold factors

Tp = J - (my - m3)2 and TS = J& = (mz - ms) 2. Notice that for equal
masses in the initial and final statesin the t-chamnel (m; = m3; m2 = my),
the pseudo-thresholds coincide with t = 0, thus cancelling the ,/t factors
in the denominator of Eq. (23’); then the difficulties encountered in
Section 9.1 also disappear, see Eq. (24). The scattering angle 8, for

the scattering from particle 1 to particle 2 in the t-chanmnel is given
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by Eq. (24), which we repeat here in the form

1 2 _ 2 2_ 2
PtP't cos @t = Z[s-u + (m‘ mJ)t(mz mﬁ] . (24’)

It is indeed this combination ptpé cos et which appears in the formulae for
the spinless case and avoids here all the difficulties at thresholds and
pseudo=~thresholds, To see this, one has to consider the centrifugal
barrier effects inherent in the partial wave amplitudes ¢ (t). Let us

give here the argument leading to Eq. (26) in absence of spins.

It can be shown that the centrifugal barrier effect--as in the case
of non-relativistic quantum mechanics -~ is governed by the orbital angular
momentum of the state in which the scattering takes place. To determine
the threshold behaviour of the partial wave amplitudes we start from
Eq. (10) and project out the ¢ p (t) using the formula

+1
g, (t) =3 fT(t)(s,t)Pc(z) az . (29)
-1
To proceed further, we derive the so-called Froissart-Gribov formula
for the partial wave amplitudes (it is the formula which allows the
analytic continuation to complex ¢ as discussed in Section 4). We assume

that T(t) (syt) obeys the following fixed-t dispersion relation:

L]

A (Sl t) A (u’ t)
(t) - 1 S ’ I} |5 > ’
T (s,t) = = - ds’ + = e e du’ . (30)
So o

As and Au represent the absorptive parts of T(t)(s,t) in the s and u
channel, respectively, and S, and u, are the corresponding thresholds.

Inserting now the dispersion relation (30) into Eq. (29) and using the
formula
+1
1 Pe (z
WIS o1
-1
which for positive integer ¢ defines the Legendre function of the second
kind Q t(z), in terms of the Legendre function of the first kind Pt(z),
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we arrive [after using the relation Pz(-z) = (-1)‘ Pt(z)fbrthe contribution
originating from the second integral in Eq. (30)] at the Froissart-Gribov
formula for Qt(t):

4
N 2, (@f -od)(mf - m})
2s+t ) m
:_‘_:

w + %

ACKE M EXCOLP

So

ds
PPt 4Py Py

s (=102 / a,(u,)e,

Uo

Y
2u+t - > nﬁi - (mf'mg)t(m%-mi)
=N

du
7 7
bp,Py ] WP

(32)

As was mentioned in Section 4, it is necessary to consider even and

0dd ¢ values separately in order to allow a unique analytic extension to
complex £ values. This separation is easily seen in Eq. (32); it eliminates
the (-1)8 factor. The signatured partial wave amplitudes considered before

are given by

g:(t) =1 (%) £ I(%), (33)

where Is(t) and Iu(t) are defined by the s and u integrals in Eq. (32),
respectively.
+
Returning now to the behaviour of gz(t) at thresholds and pseudo-
thresholds we make use of the formula

-t -1

o0 1.0

For t near a threshold or a pseudo-threshold (where p, or pf vanishes) one
then obtains for the first integral in Eq. (33)

by 4 s 2vi 2 s ~£ =1
I,(4) > (bpgp})® = [ A (s,0) 1:23+t - > s (ms - w3 ) (md -m‘)] ds
K (34)

and a similar expression for Iu(t). The integral in this equation is
regular at threshold and pseudo-threshold, thus showing that Is(t) [and
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similarly Iu(t)] vanishes there like (pt'pé)t. From this discussion one
arrives at the threshold behaviour of the signatured partial wave ampli-
tudes for the scattering of spinless particles:

¢,(6) = ploiTE(e) (35)

Here the reduced partial wave amplitudes Zi(t) are regular at thresholds
and pseudo-thresholds. Notice that Eq. (35) is valid also for arbitrary
complex ¢,

Using this result the contribution of a partial wave to Eg. (10) far
large cos et (disregarding signature for the moment) can be written as

(2!+-1)§£(t)?£(cos Gt) > (2!4-1)Z¥(t)(ptp£ cos Gt)‘ . (36)

From Eq. (24’) it is clear that this is a perfectly regular expression at
thresholds and pseudo-thresholds. It has only the singularity at t = 0O

for m, £ ms and mp # ms, which was discussed above in Section 9.1,

We now go over to the case of general spins of the external particles.
The situation is changed because in this case one cannot combine the
factors p,, p{,and cos 8; as in Eq. (36) end avoid all factors which are
singular at thresholds and pseudo=-thresholds., This is due to the fact
that one now has to add the orbital angular momentum ¢ and the particle
spins in the initial and final statesto obtain the total angular momentum,
Je It turns out that the power of cos et is given by Jj, whereas the
centrifugal barrier effects are determined by the orbital angular momentum
which now is in general different in the initial and final states, and more-
over different from j. Hence there will appear square root singularities
due to threshold and pseudo-threshold factors TN’ TN" Tp, and TL. In-
stead of Eg. (35) one will have in the general spin case the behaviour
(disregarding signature)

‘ ’
J (t) = Ttl“szr'lnr'lPZij 2 (8) s (37)

EX Ao, Ah NP IN P A AL
1 3 2 4 1 3 2 4

where zj is regular at thresholds and pseudo~thresholds,and the exponents

tN’ ¢os ﬁ&,and té are in general different from each other and from j. The
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g)‘ Agr A, (t) appearing in Eq. (37) are the partial wave helicity ampli=-
tua.es wfu.ch occur in the Jacob and Wick expansion 24) of the helicity

t
amplitude T§ ;.-,)\-)‘ (s,t):

135 24

L (s08) = Z (241060 5 a s (D3, (c0s 0) . (38)
=A

. 13 24
J= ,

Here A = Ay = A3, 4 = A3 = A4, and d)~ u(et) are the Wigner rotation
ﬁmctionszs) o A convenient representation of the functions d.M(z), in

terms of hypergeometric functions, which can be extended also to complex
values of Jj,is given by the following formula:

&l (2) = sign (x,mw(s)[ﬁ]a [m" e -

x F(-j + -;- (a+b), j+1 + -12- (a+b); a+1; 1?) , (39)

where a = ]l-ul, b = I'A\-i-ul, )‘max= max (lll, l#l)a

B T
r<j+1+% (a+b)>r<j+1+-’2-,(a-b)> 72
Q)‘#(j) = I
< 1 4 1
I‘J+1--2-(a+b) I‘\j+1--2-(a-b)
L J
( : A=u 20 A-u 20
1 for A+p >0 and Aep <0
and sign (A, u) =X .
A=y A=-u <0 A-u 0
(=1) for Xty 2 0 and X+u <0
The factor sign (A,u) reflects the relations
j A=y J A-u g PP
= (-1 d = (=1 d = z
O R G el NO B CE N O EE N O

Notice that dJ,o(z) = Pj(z).



The formula (39) is valid for |1-z| < 2. In order to obtain a
representation valid for large z one has to continue the hypergeometric
function in the following way:

F(A, B; C; &) » F(A’, B’; C'; 1/¢€) .

This leads to a representation of the diu(z) similar to the one for the
Pt(z) given in Section 4 (notice that in the present case a transformation
leading to a hypergeometric function depending on z? is no longer possible).
With A = max(|A[, |ul) = Yz2(a + b) we write this formula

di“(z) = sign (\u)2y (3) [\F;—z]a[i\/jjz]b x

r(2j +1) ~ /z=1\9 Mmax
TG+ 1+r_ JPG+1-%__+a) |\ 2 .
max max

. R . 2
F( J+7\max, -J+ kmx-a, -23; 1—z> +
. r(-2j-1) (z- 1)‘3"‘%ax
P(-J+Xmax)I‘ -J-lmax+a) 2

. 2
. F<j+1+7\max, JHAer -2 25+ 2; -1—_—-z->} - (40)

This representation is valid for |[1-z| > 2, |arg (z-1)| < 7, and real or
complex j. For large z and Re j 2 = Yo only the first term survives (the
F-function tends to 1), and one obtains the asymptotic behaviour
J J
a¢ (z) ~ z
A IZI - o
Re j 2 - 1/2

Returning now to Eq. (38) we see that for large cos ©, the power in j

coming from the rotation function is no longer equal to th: powers CN’ eece,
etc. which determine the centrifugal barrier effect [Eq. (37)]. Hence one
retains some of the square root singularities of the t-channel amplitude.
One knows, however, that such singularities are not present in the s-channel

amplitude. The question now arises: how do they disappear? In order to
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answer this question one has to investigate all the possible constraints of
the t-channel amplitudes. It turns out that due to the crossing relation
which relates linearly the t-channel helicity amplitudes to those of the
s~channel, one arrives at an analytic behaviour in the s-channelzs).

Later when we discuss the conspiracy problem we will curcumvent this diffi-
culty by using invariant amplitudes free of kinematic singularities.

This concludes our discussion of the formal difficulties originating
from unequal masses and non-vanishing spins. We insist on their formal na-
ture: they have no observable implication for the s-channel reactions, and
it would be quite misleading to invoke them in order to "explain", for

example, some features of the observed t-dependence of T S « The formal
nature is also confirmed by the fact that these difficulties are completely
absent when an amplitude T(s) with Regge behaviour for s -+ « is constructed
in a field-theoretical way using Feynman diagrams with propagators and
vertex functions which satisfy the normal analyticity properties. The
simplest model of this type is a single-particle exchange model (see

Fig. 7) where the particle exchanged (particle 5) has an infinite spectrum
of mass ¥ and spin J carried by an infinitely rising Regge trajectory

a(M3) = J (for even signature mesons J = 0, 2, eeo; for odd ones, J =

1, 35 oee )27/. VWhen the external particles 1, 2, 3, 4 are given general
masses and spins, the Regge daughter compensation of singularities at

t = 0 and the compensation of all t-channel threshold and pseudo-threshold
singularities are antomatic in the sense that these singularities are

(s) z28)

simply absent in T

FIG.7

10, MULTIPLE SCATTERING EFFECTS AND REGGE CUTS

In the present section we study a scattering process which is

characterized by a number of successive interactions., Let us consider
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the simplest situation of two successive interactions as indicated in

Fig. 8. The two incoming particles 1 and 2 scatter at A either through

an elastic-like process or through the exchange of internal quantum numbers
in the t-channel (which,for example,could be described by a Pomeranchuk pole
or another Regge pole)

] ;

e U0
A U
-7 A B TN

FIG.8

The intermediate particles a and b are considered to be real, i.e. with
positive energy and on the mass shell, After a second interaction at B
they produce the final particles 3 and 4. This idea of multiple scattering,
which is of course fundamental in atomic physics, has been successfully
applied to the scattering of high-energy nucleons and pions by complex
nuclei. The same principle could also be applied to single hadron scattering
in the sense that hadron-hadron collisions could involve double or multiple
scattering effects; obvious examples are ocbtained in the quark model.
Another kind of subdivision which seems to be useful in explaining the
experimental results is the one where one has a first interaction at A

with exchange of definite quantum numbers (not necessarily those of the
vacuum) followed by a final-state interaction of diffractive type at B
which corresponds to an absorptive correction (or diffraction in A and

exchange in B).

Now the question arises: how do such rescattering effects look in the
framework of the Regge model? We again take for simplicity spinless

particles. The s-channel partial wave decomposition will be written as

(s) _ivs \w
T (s,t) = bk /
® =

(2£+ 1)n, B, (cos 85) , (#1)
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Ry

6S is the angle of scattering from particle 1 to particle 3. The n, in
Eq. (41) have the following relation to the S-matrix:

2ié
<(G+u)Is|(1+2),> =5, = £5% =1-n, 5 |s,| <

Imaginary phase shifts St correspond to real n, > 0 such that 1 - n, is
below 1.

If one has two successive scatterings one would describe this in the
following way for the S-matrix

(1) scattering A: Sg‘l)

» for the total _ 351) s2) (42)

scatteri
(2) scattering B: 822) e ¢

In other words, for real intermediate particles one has for each ¢ multipli-
cativityof S-matrix elements, i.e. additivity of the phase shiftse In
terms of the 7n,, Eq. (42) reads

s g L g Ll @)

¢ t e t
(43)
=12 cqo () () (1) (2
S, =1 7, =1 Ny "M, ©* 7, "c)’
Hence, equivalently to Eq. (42) one can write
(1), _(2)_ (1) (2)
Mg Mg "FMy "0 Ty - (42)

Equation (44) describes the total scattering as the sum of three terms:

two single scatterings [scattering in A without i e teraction in B,(ng1 )),
and scattering in B without interaction in A,(n )],and a double

scattering (nt 1) ( ))

How does all this look in the variable t suitable for studying the

asymptotic behaviour of T(s) when the individual scatterings are controlled

by Regge polesz)? Assume



of*)(s,00) = Y (2t )6y T Loon 0] % £ (1) ()

t=o0

o (45)
Tgs)(s,tz) = :&ﬁi 251(254-1)§§2)Pe[c03 @gz)] ~ fz(tz)saZ(tZ) ,

t=o0

where t; and tz are the individual momentum transfers in A and B. The
question is: what is the resulting s-dependence of the total amplitude

T s) which takes double scattering into account? We shall see below that
the double scattering term corresponds to a Regge cut, and we shall

determine its position in the angular momentum plane.

Before we do this in the framework of the double scattering formalism,
let us mention very briefly that there have been also other more
sophisticated approaches to the problem of cuts in the angular momentum
plane. The basic contribution is due to Handelstama7)o In his approach
a certain class of Feynman diagrams are investigated, thus allowing also
the intermediate particles to become virtual (remember that in the re-
scattering diagram of Fig. 8 the intermediate particles a and b were real).
The result of this more complicated analysis is that only those Feynman
graphs which have a third double spectral function with respect to the
t-channel reaction (psu # 0 in Mandelstam's notation) will lead to cuts
in the angular momentum plane. The simplest such graph contains two

"crosses"” and is of the type shown in Fig. 9. The wavy lines represent

1+*3

FIG.9
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Regge poles and would correspond to the A and B scatterings of Fig. 8.

The crosses should simulate approximately the fact that in Fig. 8 particles
a and b should propagate "forward in time" and, at least approximately, as
real particles. It turns out that the location of the branch points when
studied in this Mandelstam approach is exactly the same as the one we shall
obtain in the much simpler double scattering approach.

Let us now pursue our analysis and detemmine the singularities in
the angular momentum plane of an amplitude containing double scattering

terms.

For the initial and final momenta in the s-channel

~
1

1
s 5‘%'\/8‘(1111-!-1!12)2 '/s-(m‘-mz)z

s_;fr(m3+m)a Js-(ms m4)

~
I

we have for large s

_L m1+m2 ]
' ~w/_s m3 + mi
G TR R

and similarly for cos es for finite t and large s

cos © :‘1+g§-... o
s )

From the last expression it follows that cos Gt is close to 1 for large s

and finite te.

Using the formulae

() [

for 8 » w, { » o wWith (2¢ + 1) ,/~t/s finite, where Jo(x) is the zero-th
order Bessel function, we rewrite Eq. (41) and similarly Eqs. (45) in
terms of the impact parameter b = (2¢ +1)/,5 = t/ks:
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2(8)(s,t) = Ls [bn(b)Jo(bVTt:) ab

(46)

Tgs)(s.tj)= j—j.’[ o) (B)s (bv=T) @b ; G =1,2.

In the transitionto (46)we have made the replacement 2 e 1/0b j:odb

with &b = 2/,5 (remember that Al = 1), and we have set n, = ni(2¢ + )ABE]=
n(b) and similarly for r)('j) . The expression (46) can be further trans-
formed using a two-dimensional vector notation (4, 4.: two-dimensional
momentum transfer vectors of lengths J-t, Fg, icee Q]2 = -%, l-:;jlz = -t

j’
and B: two dimensional impact parameter vector)

1) (e,0) = g [[n)r Fan

- u7)
. . ibq.
T§s)(s,tj) = g:-;/'fn(a)(b)z quzb ;5 §=1,2.

-> > . -> -> -> -> -> -»
The vectors g, qj are best defined as q = py =~ p3 Comes.? 31 =Pt = P lo oo

and Ez = Ea - zzlc.m.s.’ and are easily proved to be perpendicular to the
incident direction for t, t4, t2 fixed and large s. By definition we take
% also in the plane orthogonal to the direction of motion. The equivalence
of Egs. (46) and (47) =~ after introducing polar coordinates in Eq. (47) —-

follows from the following integral representation of the Bessel function:

o
o (bv=%) :_12; / eJ.bwfﬁ(:OS ® i .

(o]

The advantage of the representation (47) is that it gives a direct wave
picture of the scattering process. We shall use this form to calculate the
double scattering term and determine to what kind of singularities in the
angular momentum plane it corresponds.



10.

- 48 -

LECTURE VII
MULTIPLE SCATTERING EFFECTS AND REGGE CUTS (continued) ————=

We shall now use the impact parameter formulation of scattering as
given by Eq. (47). For two successive scatterings, as depicted in
Fig. 10, we write according to Eq. (i)

2®) = nm)+n ) - En ) - (17)

Before studying this for Regge-pole scattering, we make a few remarks on
Eq. (44?).

—t e
‘A

71 B ) g,

FIG.10

For purely diffractive scattering the amplitude T( )(s ,t) becomes imaginary
which, according to Eq. (46), corresponds to real values of n('}) (b). This,
by the way, was the reason for having extracted a factor i in Eq. (l;.‘l)
above. If now one of the interactions,say (2),is elastic (a = 3 and b = 4)
and purely diffractive, while the other, say (1), describes an exchange
reaction (3 # 1 and/or 2 £ 4), then the complete exchange amplitude from
Eq. (447) is n(' (1-11(2)). Since n( 2)(‘b) > 0, the so-called absorptive
correction - n''/ 7'®/ has opposite sign as compared to the single scatter-
ing n('). This is a general feature of multiple scattering. It means a

decrease of the amplitude when rescattering corrections are included.

Another consideration based on Eq. (44’) and Fig. 10 concerns the
situation where one has a large number of successive scatterings (Fige. 11)
each of which is supposed to be small., The total S-matrix element corres=
ponding to n successive scatterings is given by

n

s(b) = H s,(b) .

i=



With Si(b) = 1~ 8n(b), assuming &5(b) small and the same for all individual

1 2 -3
% 5 ¢
A % 4
% 1 %
1 Y- 4
2 w1 -—
M (2 (n)
FIG.1
scatterings, one has
1=n(b) = [1-8n(0)]" . (48)

We now consider the case where n is large and &n(b) is small such that
n &p(b) = ns(b) is finite. Then Eq. (48) becomes

-ng(b)
1-n(b) =5(b) = e . »9)

Equation (49) expresses the well-kmown fact that the total S-matrix for an
unlimited number of very weak, successive scatterings is given by an expo-

nential function with the single scattering as exponent.

After these remarks let us now proceed with our analysis of the double
scattering diagram in Regge~pole theory. We write for the total amplitude
corresponding to the diagram of Fig. 10 using BEq. (44'):

2(3) (s,8) = 283 (s5,) + 7{3) (5, 1) + 1880 (5,0 (50)

where the single scattering terms Tss) and TQS) are given by Eqe (47), and
the double scattering term T,(i) is given by

T’(E)(s’t) - i%[["(‘)(b)n(z)(b)eigadzb . (51)

In order to write the right~hand side of Eq. (51) as a convolution integral
of TSS) and Tgs), we change the variable b in Eq. (51) and call it b, and
introduce together with the two-dimensional dé-function

Sz(bt -bz) =1::?»2-'/‘/ ei(g1’gz)a1 dz qs
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a further integration over b,. The result is

10,0 = - 2 [ g [n0d® e [1E) e G an e .
(52)

This expression is equivalent to

8)(s,t) = ;";/Tgs)(s, 1215 (s, 13- BlP)aea.  (53)

This last equation [Eq. (53)] enables us to study the Regge cut which is
produced by the successive exchange of two Regge poles.

To obtain the Regge singularity of the double scattering term (53) in
the full amplitude (50) we now insert the Regge=-pole behaviour
t.)
(s) ) a;(t;
TJ (s’tj) = fj(tj)s

into Eq. (53) and obtain an integral over a continuum of powers of s

-> i -> > - a -3 2Y+a -|3-g iZ)_.'

s, 1317 = & [ 1213019 rale GG e TR IRl M

(54)

Comparing this expression with the Regge-cut form of Egq. (14) which reads

for large s

a (t)

T(s) ~ ,//. £(a,t) s da , (147)
A(t)

we see that the double scattering term (54) corresponds to a Regge-cut
contribution to the total amplitude (50). The distinctive feature of such
a cut contribution is that it is not governed by a single power of s, but
by a continuous superposition of powersof s up to a maximum ac(t) which

determines the branch point at the right end of the cut. From Eq. (54)

ac(t) = max far (=@ l*)+aa(=lg-ql*)-1] . (55)
Q1

This expression gives the position of the branch point as a function of the

position of the poles a4 and az. The vectors E, 'ci,, and E—E, form a
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triangle. Let us assume that a4y and e are non-decreasing functions of
their arguments. Then it is clear that one has to minimize the momentum
transfers in a4 and az-- corresponding to a flat triangle, ie.e. E, and
Q=qs in the same direction-- in order to find the maximum in Eq. (55).
Introducing t; = -l'&jlz, one can rewrite Eq. (55) as

ac(t) = max {al (ti ) +az (ta )=13, (55')

subject to the condition ,-t; + J=t2 = J/~t, with all square roots positive.
The solution of this problem for linear trajectories
o [
) = t.
aj(ty) = a; + a3ty

is the following linear trajectory for the branch point:

a'aél t. (56)

a (t) =a® +a’t =af+af -1 + —
c c c ay + a2

~

We see from Eq. (56) that the intercept of the branch-point trajectory
is given by

o _ .0 o _
a, = @1 +0z 1 (57)
and its slope is given by
, _ _afal
% = af +af (58)

Let us rewrite the Egs. (57) and (58) to exhibit the additivity properties
of the intercepts and the slopes of the individual pole contributions in
the expression for the corresponding quantities of the cut

(€ =1) = (af=1)+ (a2 -1) , (577)
1 1
o %)

The Egs. (57’) and (58‘) are easily extended to the situation where more
than two Regge poles are exchanged.

If one of the poles is the Pomeranchuk pole (a‘; = 1) then the inter-
cept of the cut is equal to that of the other pole, but the slope of the



cut is mostly determined by the Pomeranchuk, since al', is small or even
zero and hence will dominate the right-hand side of Eq. (587). Let us
consider, for instance,the cobtribution of the pP cut due to exchange of
the p meson and Pomeranchuk trajectories in the case of the r.p charge~
exchange reaction. The s-dependence of the contribution from the pP cut
to do/dt will be the same in the forward direction as the usual p~-pole

contribution, namely (except for a logarithmic factor)

ao _ 82(a2-1) .

dt =0
It is different for all t < 0, and the resulting phase factor (1-e-i1w)
will also be different. Hence there will be an interference of the
p-pole and pP-cut contributions leading to a non=-vanishing polarization
of the final nucleon. As mentioned in Section 7, such a polarization has
been found experimentally. Away from t = O the pgP cut lies above the
p trajectory. It would thus dominate over the p pole at sufficiently
large s, but this would occur only at very high emergies if the cut is
coupled much more weakly than the p pole.

It is also interesting to consider multiple Pomeranchuk exchange in
diffraction-like scattering. Then the n-times iterated P-pole --~ correspond-
ing to the multiple scattering diagram of Fig. 11 -- dominates at large s
and t < 0 all graphs with a smaller number of P exchanges. This is due to
the fact that at t = O the P pole, the PP cut, the PPP cut, ete., are
all superimposed, and that if the slope of P is f.zl'D then the slope of the cut
due to nP exchange is a!; = al‘,/n‘. This is another aspect of the fact that
the P trajectory has good reasons for being quite a complicated object.

If one considers the exchange of two Regge poles carrying quantum
numbers different from those of the vacuum,then the intercept of the
corresponding cut lies below those of the pole trajectories. Thus at
t = 0 the asymptotically leading contributions are still given by the
single scattering terms. However, at some negative value of t,the double
scattering contribution may take over and dominate the large s behaviour
since the cut has a smaller slope. For processes like double charge or
strangeness exchange, or similar reactions which are not possible through
single Regge-pole exchange, one expects the whole reaction to be due to
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double exchange, i.e. to a Regge cut. This is one of the many reasons
why a systematic experimental study of these reactions is of the greatest
interest (also for other theories of high-energy scattering, like the one
based on the quark model, these reactions play an essential role).

The foregoing discussion is of course not a proaf that Regge cuts
really exist, but the theoretical and experimental evidence for their
existence is just as good as for the Regge poles themselves, so that their
study is equally important.

We end by a remark on the assumption which was made throughout our
discussion of double scattering, namely that the particles a and b in the
intermediate state between the interactions A and B (see Fig. 10) are real
and not virtual. This assumption is the simplest one possible and allows us
to describe the scatterings A and B by their respective S-matrix elements,
as we did when we represented them by Regge-pole expressions. The assumption
need not be true, however, and it can be replaced by others for which
various choices are possible, corresponding to various ways of treating
particles a and b when they are virtual (i.e. off their mass shell). A
well-known example of alternative assumption is the ome used in Sopkovich's
theory of absorptive corrections to exchange reactions, as extensively
studied by Gottfried, Jackson,and many others °’. Sopkovich's absorptive
model is closely related to the distorted wave Born approximation often
used in nuclear reaction theory. In absence of any real theory of strong
interactions, only experiment can decide which assumption is the best, a
fact that adds further interest to the study of reactions where double or
multiple scattering effects are expected to be important.

LECTURES VIII and IX
CONSPIRACY IN PION PHOTOPRODUCTION

One has called a "conspiracy" the possibility that at high energies
several Regge poles coincide at a particular value of the momentum
transfer and thereby produce a perfectly regular behaviour of the ampli-
tude at that point, although the various conspiring poles -- when taken
separately -- are singular. We will be especially concerned with the

forward direction, corresponding to t = 0 for elastic processes, and
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approaching the value t = 0 for large s in the case of a general reac-
tion involving particles with arbitrary masses. The most important and
interesting case of conspiracy in the forward direction comes up in
reactions where contributions corresponding to the exchange of opposite
parities occur with the same strength, although they belong to different
Regge trajectories.

The problem occurs indeperdently of the Regge-pole model, We
therefore discuss it first by analysing any exchange mechanism in terms
of spin j and parity P of the object exchanged.

In Fig. 12 we consider the exchange in the t-channel of a dynamical
system (it need not be a single particle) with spin j and parity P,
For P = (-1 )‘j we speak of an exchanged system with natural parity; for
P = -(--‘l)'j we speak of one with unnatural parity. The "naturalness"
of the parity is thus defined by P’ = P(-1)j, being +1 for natural parity
and -1 for unnatural parity

—

—tll)—-
~

w

¢
S — /‘P’J
%
1
2 4
FIG. 12

We shall, in this section,treat in detail the process ¥y + p - 7t +n
near the forward direction where conspiracy has been observed experi-
mentally, Our first aim will be to study carefully, in the photoproduc—
tion of positive pions, the effect of exchanging a definite P/ = *1 in
the techannel, We consider an amplitude corresponding to the diagram
shown in Fig. 13 belonging to either P/ = +1 or P’/ = =1

e,p’ pd .
Y —— — TC
/
iLP ] P'=t
¢
2 /pé
pU.P U.P” 4
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We shall see that for natural as well as unnatural parity exchange

the amplitude corresponding to Fige 13 has a dip in the forward direc-
tion at high energies. If, however, one gives up the idea that at high
energies the photoproduction of charged pions is governed by the exchange
of a definite P/ and instead assumesthat this process is described by
the exchange of both natural as well as unnatural parity contributions

of equal strength (in fact singular at t = O!), one can obtain a finite,
non-zero, forward cross=ssction at high energies, This co-operation
among the P/ = +1 and P! = =1 amplitudes in a photoproduction would

then explain the experimentally observed forward peak.

Before we study the amplitudes corresponding to the diagram of
Fige 13 with definite P/, let us assemble a number of staniard formulae

for the description of photoproduction which will be needed in the
following discussion.

The T-matrix element for the process ¥ +p - 77 +nis given by

the following relativistic invariant decomposition

T(s,t) = \;uiAi(s,t) s (59)

where the Mi are kinematical factors conteining the polarization vector
eu of the photon,and the initial and final Dirac spinors u and u’ of the

nucleons (see Fige 13). The general structure of the M, is
M, = 00 ue R
i Hoou

where the operators OZ are some set of 4 x 4 matrices constructed from
the Dirac matrices and the independent momenta. For later use let us
state also the 16 Dirac covariants which are needed at the lower vertex
in Fig, 13 involving the nucleons: u’u (scalar), u’y u (vector),
iu’ysy u (pseudovector), wysu (pseudoscalar), E'Gpvu = u’(1/21) x
[v,¥, - 1,y Ju (tensor).

The Mi are constructed in such a way that the invariant functions
Ai(s,t) which multiply them in Eg. (59) have only dynamicel singularities
and obey a Mandelstam representation. In particular,the Aj(s ,t) cannot
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be singular in the forward direction at high energies, i.e. at t = 0,

since there is no strongly interacting particle of zero mass,

It is easy to convince oneself that the number of independent
amplitudes in pion photoproduction is four. There are two (tramsverse)
polarization states for the incoming photon, one for the outgoing pion,
and two possible spin orientations for both the initial and the final
nucleon,thus a2llowing a total of eight different arrangements which
reduce to four due to parity inveriance (reflection with respect to the

plane of collisions). One possible choice of the four kinematical
factors Mi isz’)

- 1
u’c _ue

Yy = po po‘yveupv
_ o34 2 4 1 _ 1
Mz = 2iu YsUP P, (eppv evp#)
| (60)
— o 2 ' _ 1
> = u'vyy up) (e p, - ep)
_ ! 4 1 _ 1
Mo =u'yy upi(e p,-ep ),
Here ¢ is the fully antisymmetric tensor (€y234 = 1). The matrices (60)

popv
are pseudoscalars corresponding to the fact that the produced pion is

pseudoscalar. They are gauge invariant, which means that they all vanish
when the photon polarization vector e is replaced by the photon
momentum p ;1 . By going over from the Dirac spinors u,u’ to the non-rela-
tivistic Pauli spinors x,x’ in Eq. (60), it is easy to show that in the
forward direction for s - « (in which case the nucleon recoil becomes
zero in the laboratory system) the four M. reduce to a single one
proportional to x’ "g'x,mere o = (0, 502505 ) represent the well-known

2 x 2 non-relativistic spin matrices of Pauli. There is indeed only one
amplitude which describes pion photoproduction in the forward direction
(this is an obvious consequence of rotation and parity invariance).

The forward direction (c.m. scattering angle @s = 0) corresponds to

t = 0 at high energies as can be seen from the following two formulae
(the first one being relevant to y + p » @ + 1)
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m = g4

my £ ms _1 _ —_2 2_2_ 2 1 .2 2y 2 2
ms f me ‘t-2(00.~56s 1) | s-mf +md -md m4+s(m1+mz)(m3+m4)

- £ @hateubad) |+ (ai-sb)ui-n) < o). (@)
S

After these introductory remarks we now return to the discussion of
the conspiracy problem in pion photoproduction. As was mentioned above,
we are interested in the behaviour of the amplitude corresponding to the
diagram of Fig. 13 for natural as well as unnatural parity exchange.

From the preceding discussion we know that in the forward direction the
number of independent amplitudes reduces to one, The crucial point is
that this single amplitude mixes P/ = 1 and P! = -1, To skow this we
study the amplitude in more detail so as to determine its behaviour in the
forward direction under the assumption that the exchanged object has
natural parity (case a) or umnatural parity (case b).

Case a3 P/ = +1

We know from field theory that the propagator for the exchanged
system of integral spin j in Fig, 13 is a tensor constructed from
Suv and the four-momentum Q= p; - pz = p; - pz carried by the exchanged
system'. It has the shape pp,...p.,v,...v.' It is fully symmetric in
Hiseooliss also fully symmetric in v,...vj, and symmetric for exchange
of all p's with all v's.

A familiar example is the propagator for j = 1 given by

%,9,
LY = =
MR "
(remember that we use the metric with u = 1,2,3,4, and q¢ = igo)e In
the general case P can simply be constructed in terms of the Legendre
polynomial Pj(x) by the following identity

/2
a cee8 b "'b = [(a. a’) (b ¢ b) ]J/ x
Hy pj [J‘ooouj,v’ooovj v1 vj q q

(a- D)
x P, 1 3
"<[(a a) (b b)q]/2>



with the definition
. ‘ L%
(a b)q = a”<8‘w + 5 .

and similarly for (a° a)q and (b* b)q.

The propagator ?p hey ¥ v has to be contracted with a
qeve X ] qoee 3
vertex function V;lf u atythe uppei1 vertex, and a vertex function
V24 at the lower vdrtex. Both vertex functions have to be relati-

VieeoV.:
vistic gensors which are fully symmetric with respect to permutation of

their indices.

To construct V'? ° we have at our disposal the photon polariza—
qooeld:
tion vector e, and the mohenta p:: and P, to construct Vf,: y W
have p: and p;, and the Dirac spinors u and u’. Moreovern, V:f 3 has
’yeeeV

to vanish for the substitution e, pL (gauge invariance) and ha8 %o
behave like a relativistic pseudotensor. The last=-mentioned property
is due to the fact that we are concerned here with the exchange of an
object having P/ = +1, Since P&, = +] and P;r =<1, the vertex function
couples two natural parity states to an unnatural parity state, and thus
has to be a pseudotensor. On the comtrary, sz:...v- has to be a relati-
vistic tensor since it couples a boson with P/ = +1 to two fermions

with relative P’/ = +1,

To obtain a pseudotensor for V:f u one has to combine e, pt, and
1000l
p3 using the e-tensor,in this way giving a',Ju'tomatica.lly a gauge

invariant expression:

13

v ={c e p'pi(p! + 7 )---<P1 +p >} © (63)
”1.ooﬂj #1VpO"DPCT H2 H2 uj uj sym. inll1 e oo uj (

The curly brackets on the right-hand side should indicate that the
expression has to be symmetrized with respect to the indices HiceoHse
The reason why the sum of the momenta p' and p® appears, and not any
other linear combination,will be explained below.

To construct the tensor Vi‘ , . corresponding to the coupling of
1... >

the spin j object with natural pa.ritj; to the nucleons, we observe that
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among the 16 Dirac covariants the u’ys;u cannot appear (otherwise there

would be a em’ o0 to be contracted with three momenta, which gives 0 be-

cause only two independent momenta p® and p* are available). The

! 2.4 pet'}
pseudovector, appearing as €, o criu Y, Y, PGP, s and the tensor u O ot

appearing contracted with p: or p;, can be transformed by using the
Dirac equations (p}Y, = im)u = 0 and u’(p}y, - im)= O, and they will
reduce to scalar and vector expressions. From this discussion it fol-

lows that V>* , . Will be given by any linear combination of the follow-
qoeeeV
ing two expressioﬂa
4
o 2 4 2 4
wu(p, *+ P, ) .. (p,,j + p,j}
4
Vi =7 =4 (61)

wy, u(p® +p* ) ... (pz + D >}
{ V1 Ve v vj vj sSym. in V4 ooovj .

\

Let us now explain why we have written (p' + p3) and (p? + p*) in
Eq. (63) and Bqe (64), respectively., Let us discuss this choice for the
case of spin j exchange in a reaction involving only spinless particles
(see Fig. 14)

~g—
~

o m _7m3 p®
A
1
S —= 7
A
2 4
p2 m’: ’r-n— p4
FIG.14

The amplitude for the diagram shown in Fig. 14 is given by

V'3 (2 V24 .
u1-.-ij“1..ouj’v'oonvj v‘ooov.j
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This expression must lead to a Legendre polynomial PJ.(cos Gt) because
it corresponds to an orbital angular momentum j in the t channel. If it
is now claimed that V'® and V®4 have to be constructed with the sum of
the respective momenta, i.e.

13

V = 1 + 3 .o 1 3
Hyoooll (pua pm) <pu-+p

i M
(65)
4 - 2 4 2 4
Vi eoel . -(pv1+pv‘)‘.‘<Pv.+Pv.>
1 Jd J Jd
then, for j = 1, this would lead to the following amplitude
13 q qv 4 _ 1 3 %qv 2 4
v <8uv L)t = (piv ) (8, + =) (P, + B))
(66)

- (s-u +% (m} -mg)(mg-m§)> .

According to Eqe (247) the last expression is exactly proportional to
cos @, that is P, (cos @_t). Using another combination of momenta in
Eq. (65) would introduce other Legendre polynomials of order lower
than j (for example, an additional constant for j = 1),and hence would
not correspond to pure spin j exchange.

We now show that the expression (63) will force the amplitude to
venish for t = 0,thus leading to a dip in the forward direction at high
energies, Let us first notice that we can write in Eq. (63)

1.3 1
€ e = = € e .
Usvpo vpppo’ Uavpo vppqcr

(67)
Remembering Eq. (61) we know that t = =q® behaves for large s and in the
forward direction as 1/s2. Thus qo_becomes small in the forward direc-

tion for large s. Let us study the forward direction kinematics in the
laboratory system (Fige 15)
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FIG.15

The full hyperbola represents the mass shell of the nucleon, the dashed

one the mass shell of the pion. It is seen from this figure that the

pion is slowed down somewhat as compared to the photon (which is evident
since the pion is a massive particle). On the other hand, the final nucleon &
gets a recoil of the same order. It is clear from Fig. 15 that qs

vanishes with increasing s like 1/s,whereas q and g, are finite., From

this discussion it follows that a vertex function of the type (63) will
necessarily lead to a dip in the forwerd direction.

Case bs P! = -1

Considering now the exchange of an object with umnatural parity

we can, after the foregoing discussion, write down the vertex functions im-

mediately, taking into account that now Vl‘f p has to be a relativistic
qecell-
tensor, whereas V24 v has to be a relativistif pseudotensor.
geceV -

. J
The expressions are

13 - 'e ) op' (e p®)I (P +P )".<p1 +p° )}
V“1“.“. {[em(p p’) pm( et P, wy* P sym.

J Jd
in Hy oo “j
(68)
(1.1' u( 2 + 4 ) 2 +P‘
YsU\P, * P, Jee Py v
J J
vz‘ = < 6
s (69)
i’y y, u(p® +p )---<p2 +p! )}
{ T v be i Y3 sym. in v ... v,

& J
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In Eq., (68) we can now again replace p? by =g

1 3 1 3 1 1 o
0 - . . = - i - e .
e, (P p )-p,, (e p") [e,( 2)-p,,( q)] (70)
The equivalence expressed in Eq. (70) is due to the vanishing mass of the
photon p'*p' = 0, and to the Lorentz condition e*p' = 0. The same

argument as sbove now zgain leads to the conclusion that the amplitude

corresponding to unnatural parity exchange produces a dip in the forward

direction.

This now leads us to the result--regardless of whether we treat
the Reggeized version of the exchange,or any other model specifying the
exchanged P’-—that if the exchange is dominantly P’/ = 1 or P/ = =1 then
there must be a dip in the forward direction of the differential cross-
section at high energies. If, however, one wants to reproduce a pesk
in the forward direction as found experimentallyu), one must consider an
interplay of both P’/ = 1 and P/ = =1 contributions, each of which turn out
to be singular at t = 0., The total contribution

p - p(P/=1), o(Pf==1)

is, of course, regular at t = O. Such a situation was cealled above a

! conspiracy’.

The question now arises: how can one construct an amplitude which
is finite at t = 0 for s -» o and which gives both P/ = 1 and P’ = -1
contributions? Until now we have used for the nucleon vertex function

L]

in Case a (P’
in Case b (P’ -1) only the pseudoscalar and pseudovector Dirac
covariants., The antisymmetric tensor a’ o‘uvu for the nucleon vertex has

1) only the scalar and vector Dirac covariants, and

never been used until now. The reason is simple: it contains both

P’ = 41 and P’ = -1 parts and hence is the candidate to be used for con-
structing the amplitude we are looking for, Using this Dirac covariant
for the nucleon vertex,a gauge invariant and pseudoscalar expression for
an amplitude giving both P/ = 1 and P/ = -1 contributions is given by

-, .
u O'uvue“vpo_eppo_.ﬂ.(s,t) . (71)
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This can be decomposed into P’ = 1 and P’/ = =1 contributions of the type
derived above:

(P'=+1) _ (= -, '3

T = [ulu(pZ+p;)A1(s,t)+u qu&(s,t)]cﬂppdevpppo, . (72)

(P ="1) | Gy, u(s + p*)As (s,) + iy, v uka(s,t)][e (o' * p°) - (¢ )] .
=LY TP Y By ? s'u ! u u

(73)
We shell show that in separating expression (71) into the contribu-
tions (72) and (73), & singularity at t = O will appear in the coefficients
Ay, eeey As.

LECTURE X
CONSPIRACY IN PION PHOTOPRODUCTION (continued) -

The separation of the tensor term (71) into P/ = +1 and P’ = -1 con-

1 3
tributions can be done, using the four-momentum transfer q, =P, P, =
Py = Ps (@ = -t)e Let

u
-, )
u'c ug, =V (vectar)
o (pseudovector)

uvueyva’qO' = ap ’

v and a are orthogonal to g:

From these quantities it is easy to reconstruct the antisymmetric tensor

term; one finds

30 u=+- vg =-vgq P a . (74)
uv qz uv Vv 2 uvpo pqc

Inserting now Eq. (74) in Eq. (71), one finds the splitting of the tenmsar

term into natural and unnatural parity ecntributions. To carry out the

splitting after this substitution, one must use the following relations
which allow one to reduce the number of y matrices and € tensors:

= the Dirae equation: .
1imzu

p’yu
u’/p*y = imcu’
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= the identity: -

u'y y u

= - a’ .

The net result is

(1 -
;z— [2mu’yuu+ i(PZ + p; )]t'“vpc_p:p; eo_A(s,t) +

] 1 - ’
u G#vueuvpo_eppcA(s,t) = < (P* = +1)

2i =, 2 4 1 3 1 3
= u'y_u + . - . A(s,t
\ + ¢ Ys (P“ Pu)[Pu(e p’) e“(P p’)]A(s,t)

(P! = -1) .
(75)
It shows clearly that & compensation mechanism (i.e. a conspiracy)
operates between the P! = +1 and P/ = =1 terms. It cancels the 1/q°

singularity which appears in each term and is absent in the tensor
coupling on the left-hand side.

Before discussing this conspiracy mechanism in the Regge framework,
a comment is in order about the absence of YSYIJ terms in the P/ = -1
contribution [see Eq. (69)]. It can be understood as a consequence of

G-parity conservation. Defining a quantity, analogous to P/,
¢ = g(-1)H

(where G is the G-parity of the exchanged object, I its isospin, and

j its spin), one can show, from the charge conjugation properties of
Dirac covariants, that uw’u, {i‘"{pu, u’'ysu, and W/o ,u all have G/ = 1,
whilst E'Ys'{uu corresponds to G/ = -1, (For instance, G’ = +1 for a pion
which, as is well known, couples to u’/ysu.)

We now assume that Regge poles of definite G/ and P describe the
¥ +p -7 +n amplitude and that they build up the temsor coupling (71).
We classifyy their contributions according to P/ and G/,

a) P’ =G/ = +1 (Regge trajectories of p, A, mesons, for instance)

a+(t)-1 1+ §+,e.iﬂa*(t)

sin ma (t)

(5, 96T () + 130007 + 50T Je 8, Byl < o
7
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D) P/ = <G/ = =1 (7, B mesons, for instance)

-ima_(t)
a_(t)—1 1+ é_e

sin ma_(t)

{iﬁ'Y'su(P; + ) )le, (p'- p’)-p,(e ~P’)]}ﬁ-(t) X 8

c) P’ =G = =1 3 no contribution to o’w terms,

In these expressions the ﬁ's denote the Regge residues, the a's

the trajectories, and the &'s the signatures; the power of s is a - 1
-2

because the kinematic factors behave as s at high energy. The *t:."1 -q

singularity in Eq. (75) must now appear in the residues in such a way
that

a -1

s *(t) ﬁt(t) « - -2-1-?-1-2- + Q(to)
sa+(t)-1ﬁ:(t) < % + 0(t°)
s.a:_(t)-‘t ﬂ_(t) ) % . 0(t°)

where b = b(s) = A(s, t = 0). The cancellation mechanism is provided by
the fact that near t = 0 the three contributions depend on the same
coefficient b(s). Since this cancellation must hold independently of the
energy, the energy dependences of the three terms must be the same at
t = 0, which implies

a+(0) = a_(0) .

One can thus write the residues in the following way:

Bi(t) = 21m2 + regular terms

+ regular terms

Bz (t)

d.lg) lad o]

+ régular terms

B (t)

where ¢ now is a constant independent of s and t. One sees, then,that
in order to give a total amplitude which is regular the two trajectories
have to conspire, firstly through their intercepts «(0) and seconily
through singular residues at t = O,



- 66 =

We conclude these considerations about the conspiracy in at photo=

production by reviewing the actual experimental situation. In Fig, 16

{SLAC
§Joseph et al.
§¢Elings et al.

$Buschhorn et al.

-t ( GoV/c)2

i 4 A 1 A —l 1
2 4 6 £ 1.0 12 16 16 1.8 20

Fig. 16

the experimental points for do/dt show clearly the existence of a narrow
forward peak in the differential cross-section, which certainly rules out
a simple-minded, non-conspiratorial Regge-pole model. Figure 17, which
is a plot of s?(do/dt) versus V=t, indicates that the cross-section
behaves roughly like s -, and that the width of the forward geak is one
pion mass. The data in both figures are from Colley et al.*? s and the
fits from Amati et al.u) . Both s- and t-dependences of do/dt strongly
suggest that the conspiracy has something to do with the pion exchange.
Indeed,«zﬂ(t) is = 0 for small values of t,since aw(m;) =0 and

m; = 0,02 (GeV/c2)2, According to the s % 2 energy dependence of the
differential cross-section, one then expects s?(do/dt) to be almost
energy independent. On the other hand, since

1 . 1
: - T4 o2
sin naﬂ(t) vaﬂ(t mﬂ)

for t small ,

one also expects a width for the forward peak of the order of m; .
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Despite these indications for 7 exchange, the situstion is very
curious: when one tries a pion conspiracy in Eq, (75) it appears that the
pion term which comes from u’ysu has only a 1//=t singularity because
U’ysu o Y=t. The conspirator, on the contrary [P’ = +1 term in (75)],
has the full 1/t singularity in each of its two terms (in G’Yuu and in
wu) but they cancel with each other in 1/t leaving only 1/V=t to cancel
with the 7 tetm. No particle is known which would belong naturally to
the conspirator trajectory.

In order to clarify further this rather puzzling situation, a
careful experimental study of the energy dependence of the forward pesk
will be very important. Suppose, for instance, that the peak shows
a tendency to disappear at very high energy; this would imply that
the conspiracy mechanism is imperfect. Absorptive corrections to 7
exchange would give an imperfect conspiracy of this type because a +

runs over a cut, whilst ao_ has for each t a single value corresponding
to a pole,
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We end our discussion of photoproduction by mentioning that the
behaviour of ¥ + p = 7° + p, i.e. 7° photoproduction, is found experi-
mentally to be very different from y + p - 77 +n. For Yy+p->7°+n,
experiment reveals a dip in do/dt in the forward direction, and the
data are easily explained by assuming that Reggeized w exchange dominates
(v exchange has natural parity, P! = +1). The corresponding vector meson
exchange for 4 + p = 1r+ + n, which is p exchange, is apparently very
strongly suppressed, a fact that can be understood from the circumstance
that the p » 7 + y coupling is much weaker than the w -+ 7 + ¥ one.

VECTOR MESON PRODUCTION

We continue our investigation of the comspiracy mechanism by
considering a process which shows strong analogy with pion photoproduc-
tion, namely vector meson production. Consider, for example, the

reaction

7 +p->p°+n,

the time reversed of which is very similar to ¥ + p » 1r+ + n, For

7 + p - p° + n the number of independent amplitudes is % times the

one for photoproduction since the p meson has three spin states (instead
of two for the photons). Under P inveriance there are six independent
amplitudes, of which two survive in the forward direction. The analysis
in terms of invariant amplitudes can be performed as for photoproduction.
We study separately P/ = +1 and -1 exchanges. The notation is defined

in Pig., 18, The polarization vector of p, verifies e*p> = 0

p! p3e

FI1G.18



Case a: exchange of P! = +1

The vertex functions V'3 and V** take exactly the same forms as
before, see Egs. (63) and (64). There are again two amplitudes of this
type, both giving at high energy a dip in do/dt in the forward direction.
Both have 6/ = +1, I and G conservation now imply &/ = @(-1 )I+'3

= (-1 )I"':"'M = (<1)Y because G = -1, I = 1. Hence we have j even,

Case b: exchange of P/ = -1

There are two possible values of V'? instead of the single one in
Eq. (68). They are

r 1 3 1 3
{eua (puz +puz) (Pu-+ pu.)} .
J J//sym. 1in K, ""“j

V. = (7

Hyooold:
. 3 1 3 1 3
(e p)(p“,+p“,)---<puj+puj> .

\

V24 takes again the two values given in Eq. (69). Combining the two
choices (77) with the two choices (69) one gets four amplitudes. The two
amplitudes containing u’ysu have G’ = +1; since G/ is here (-1 )‘j , this
gives j even. The two amplitudes containing G'Ysypu have G’ = =1, i.ce
odd j. The first vertex function of Eq. (77) combined with the V24
containing E'«;sypu gives an amplitude which does not have a dip in the
forward direction. The three other com‘b:‘lnat:‘.ons develop such a dip at
high energy, either because u’ysu « (-‘h)/2 or because e* p’' = e* g with

q = p! = p3,

The two non-vanishing forward amplitudes are

-, 5
u crwuewpo_eppo,& (s,t) , (78)

iu’ys'r“uequ(s,t) . (79)
The latter one is the P/ = -1 amplitude without the forward dip already

mentioned before. Amplitude (78) is essentially the same as in photoproduction;
it mixes P/ = #1 in the way discussed in detail for y +p - 7* +n,
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It is interesting to interpret formulae (78) and (79) for s -+ « by
taking u’ Oy and iﬁ'YsYpu in the lgb. system, where both nucleons are
at rest (the proton exactly and the neutron approximately). One then

has

u10‘1z,23,31u = x'*oy 9243 Xo u’o‘14,24’;4u =0 (80)
iu'ysyr,2,3u = x'*01,2,3 X, iu'ysyau = 0 (81)

where y, x’, and & are Pauli spinors and spin matrices in the lab, system.
As to the polarization e and momentum p® of the p meson, we write them:
e =L ,ef, =il m 82)
b~ e’ o’ py >’ (
where er is the polarization vector of the p in the latter's rest

system (el = 0), and va the Lorentz transformation between the p rest

system and the lab, system. The crucial point is that
Liy = Lzz =1, L3z = Lag T iles T = ilse = s/2mem3 , (83)

where direction 3 is the incident, i.es longitudinal direction, ard 1, 2

are the transverse directions,

We first consider the amplitude (78). Insert Egs. (80), (82), and
(83) into (78), and keep the leading terms which are of order sAs; one
sees that these terms turn out to be

r r isA
X"(0-181 + O0z2e2 )X !

They involve only transversally polarized p mesons.

The amplitude (79), through the same substitutions and to order
sA,, reduces to

s
2m; m3

x' *o3xes

and involves only longitudinally polarized p mesons. Clearly, separation
of the various polarization states of the p will allow one to study the
two couplings (78) and (79) near the forward direction.

Experimentally, the do/dt of # + p » p° + n decreases roughly
as s-z, which is compatible with dominance of 7w exchange. No evidence
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for a forward dip exists, The p° is polarized mostly in the longitudinal
direction near t = 0 >*/, This suggests dominance of coupling (79).

It is clear, however, that availaeble data are not yet sufficient to draw
definite conclusions, and much higher statistics experiments are called
for, Also production of other vector meson states is of the greatest

interest.

13+ NUCLEON=-NUCLEON SCATTERING

We conclude our discussion about conspiracy by considering the
nucleon-nucleon elastic scattering problem. For this process, parity
conservation, time reversal invariance, and the fact that the final

particles are the same as the initial ones reduce the number of indepen=-
dent amplitudes to five, The decomposition into kinematically regular,

invariant amplitudes is the followingzs) (the notations are indicated
in Fig. 19):

T = u'uv’/vAs(s,t) + G’Yuu;'y“vAz(s,t) + % ﬁ’a“vu;’cuva;(s,t) +

+ iﬁ’ys'fpui;’ysyuvA4 (s,t) + u'ysuv/ys vAs (s,t) . (8%)

F1G.19

In the forward direction where p' = p® and p? = p*, three of the
five amplitudes give non-vanishing contributions. They are As, A4, and
a combination A; of A, and A,

Using the Lorentz transformation (83) from the rest system of one
nucleon to the rest system of the other, we write them in terms of
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rest-system spinors of each nucleon (x corresponding to u and ¢ to v).
One finds to leading order in s (Ag reduces to A, in this order) :

X' xE'€sha(s5t), X'o xE'c Esha(s,t), x’g_l_xg'}_l_fsh(s,t) .
o, refers to the longitudinal spin component, -51 to the transverse
components, As discussed in connection with Egs. (64) and (69), the
amplitudes A, and A, of Eq. (84) corresponi to pure P’ = +1 exchange,
whereas A, and As correspond to pure P/ = =1 exchange. The As amplitude
corresponds to mixed P/ = +1 and P! = -1 exchange, so that 43 # O at
t = 0 (forward direction) leads to the same conspiracy situation as in
the 7¥ photoproduction case,

Experimentally, it appears that the forward charge exchange process
np » pn has a differential cross-section do/dt which shows a narrow
peak®®) in striking analogy with the yp » 7'n one. The width of the peak
suggests w exchange, and so does the energy variation of do/dt,

(In nucleon-nucleon elestic scattering the neutron-proton charge exchange
is the only small=-angle collision in which one can expect pion exchange
to dominate, since all others are diffractive-like.)

REMARK ON FERMION TRAJECTORIES

Amongst the many aspects of Regge-pole theory not treated in
these lectures, there is one that concerns a parity-mixing pheno-
menon somewhat similar to the conspiracy discussed above, but more
natural because it is theoretically bourd to occur. It concerns the
Regge trajectories for baryons (nucleons, hyperons, and their resonances),
Because of their fermion character, such trajectories carry both relative

parities. Indeed, the partial wave amplitudes for scattering of a spin ¢
with a spin Y, particle obey the following equation (MacDowell symmetry)

£I(0) = £2(-¥) ,

W = c.m. energy or its analytic continuation, * = parity, J = angular
momentum, Taking this property in the t-channel, one finds that baryon
Regge trajectories are analytic functions a(v%) of vt rather than of t.
For t = M > 0, a(M) = J and «(-M)= J correspond to baryon states of



-73 -

mass M, spin J, and opposite parities., For t < O, the baryon trajectory
contributes twice, once through «(iv=%t) and once through a(=-iv=t), with
‘degeneracy between the two contributions at t = 0, This form of

"conspiracy" was first recognized by Gribovn).
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