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Abstract: We discuss the photon fragmentation region of inclusive pion photo- and electropro- 
duction in terms of a helicity dependent Mueller-Regge model, in which cut contributions 
are taken into accout. It is shown that the inadequacies of a pure Regge pole expansion can 
be corrected if certain types of Regge cut contributions are included. The transition from 
electro-production to the photo-production limit is shown to be non-smooth in the case of 
charged pions and we point out that normal triple-Regge mechanisms are unlikely to be im- 
portant in the deep inelastic region. 

1. Introduction 

In a previous work [1] we carried out  a Mueller-Regge analysis of  the pho ton  
fragmentat ion region of  the inclusive photo- and electroproduct ion reactions 

")' + p ~ n ± + x ,  (1) 

7 + p ~ zr ° + x ,  (2 )  

in which spin and normal i ty  (sometimes referred to as natural i ty)  properties were 
taken into account ,  in  ref. [1] (hereafter referred to as I) we showed that  certain fea- 
tures of  the data cannot  be explained by Regge poles alone. The s i tuat ion looks some 
what similar to exclusive pho toproduc t ion  processes like 

3' + P ~ n+ + n ,  (3) 

for which a purely (evasive) Regge pole model  [2] would predict, that  the cross sec- 
t ion vanishes as t ~ 0. This property is closely related to the correspondence between 
the linear polarization of  the photon  and the normal i ty  of  the Reggeon exchanged 
sometimes referred to as the Stichel relations [3]. These state that the positive and 

negative normali t ies  cont r ibute  respectively only to a~ and oil ( the cross section for 
perpendicular  and parallel polarized photons) .  Thus  for a purely evasive Regge pole, 
either a z or atl vanishes and since air a± c~ t (as t ~ 0) for kinematic  reasons, we 
have a dip in the forward direction (here after referred to as a normal i ty  dip). How- 
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ever experimentally the cross section for (3) is peaked in the forward direction [4] 
and this has been subsequently understood in terms of  Regge cut contributions [5, 6] 
In (I) we showed at a heuristic level, that for the inclusive distributions (1) and (2), 
the same normality arguments lead to the prediction that, if Regge poles are ex- 
changed in the 77r channels, then the positive normality poles contribute only to o±, 
while the negative normality poles contribute only to o~ll , gg and a I. Further since 
all -- e l  vanishes like k 2 for kinematic reasons, where k I is the transverse momentum 
of  the pion, it follows that the inclusive photoproduction distributions (1) and (2) 
will vanish as k I -+ 0 in a Mueller Regge model, in which only Regge pole contribu- 
tions are taken into account. Experimentally [7] there is clear evidence against such 
normality dips in (1) and (2). Infact for (1) the data shows a marked peaking as 
k 2 ~ 0, completely analogous to the peak in the exclusive cross section (3). On the 
other hand, unlike the inclusive case (reaction (2)), there is evidence [41 for such a 
dip in the case of  the exclusive neutral pion photo production reaction 

7 + p - + =  0 + p ,  (4) 

which in a Regge pole model would be dominated by co-exchange. 
In deriving a Regge representation for an inclusive distribution, one encounters a 

number of  formal problems, which makes it apparent that there are some essential 
differences between the Reggization of higher point functions as compared with the 
usual G ribov-Froissart continuation and Regge limit of  the four point function. These 
differences have been elaborated on in the case of  spinless particles in a number of  
papers [8]. The firm basis of  the above normality relations for the inclusive distribu- 
tions has yet to be established. We shall consider the problem elsewhere [9], where 
we make an attempt at establishing such relations at a somewhat more formal level, 
namely by deriving a generalized Sommerfeld-Watson type representation of  the six- 
point function from a simplified model of  its analyticity, analogous to fixed t-disper- 
sion relations. 

It was also shown in (I), that when (_q2)  >> rn 2 the electroproduction of  charged 
pions, which is dominated by pion exchange, is predominantly longitudinal and that 
a non-dip structure was expected. The Regge pole model for moderate q2 (i.e. 0.1 < 
tq2[ <0 .5  GeV 2) was infact seen to be compatible with the data. However for larger 
(_q2),  due to the dependence on q2 and x entering through the pion propagator, the 
triple-Regge pole contribution becomes more and more compressed in the region 
near x ~ 1. lnfact for Lq 2 ] ~ 1 GeV 2, the pion exchange contributes only to the region 
0.85 < x < 1, leaving much of  the photon fragmentation region unaccounted for. 

Bearing in mind the above points, we attempt in the present work to carry out a 
Mueller-Regge analysis of  the inclusive processes (1) and (2), in which we include the 
Regge-cut contributions in a helicity dependent framework. The latter is set up in 
sect. 2 and the specific Regge-cut contributions relevant to processes (1) and (2) are 
calculated in sect. 3. Although the results in these sections are on heuristic footing, 
they are adequate from the phenomenological point of  view. This is demonstrated in 
sect. 4, where we compare the resulting model with the data. The kind of  Regge-cut 
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c 

Fig. l. Rescatting expansion for the Mueller discontinuity formula. 

contributions we consider are similar to these considered by Cardy [10] in connec- 
tion with the renormalization of  the triple-Reggeon vertex from the point of  view ot 
Gribov's Reggeon calculus. Some details are elaborated on in the appendix. 

2. Calculation of  Regge-cut contributions 

In order to incorporate the helicity dependence correctly, it turns out to be con- 
venient to calculate the Regge cut contributions in terms of  rescattering effects in 
the s-channel fig. 1. For this purpose we work with the s-channel helicity inclusive 
structure functions defined by 

t t  tp ,q;p ,q~ = ~ ~ f inal  (2rr)4~ 4 k i + k - p - q  
Xp ×(n,~) = (2~r)32k~ 1 

× qc, k 1 . . . .  k n l T I p ,  ) k p ; q , ~ ( k , k  1 . . . .  , k  n fTIp', Xp;q', X')*, (2.1) 

where in the summation over x(n, ~), ~ denotes all the unobserved descrete labels in- 
volved in the missing mass state X. In (2.1) q, k and p are respectively the momenta 
of  the incoming virtual photon, the outgoing pion and the target proton; q '  and p '  
refer to the complex conjugate matrix element and in order that we can write seper- 
ate partial wave expansions for both the above matrix elements, we allow (q,p)  and 
(6 ' , p ' )  to be different, but keep the constraint p +q = p '  +q ' .  

We shall use p + q = p '  + q '  = 0 as the reference system and define 

q = (q0'  q sin0 cos 4, q sin 0 Sin ~, ,7 cos 0),  

q '  = (q0'  q sin 0' cos ¢)', q sin 0' sin ~', q cos 0 ' ) ,  

k = (k O, O, O, kz),  k l = xq = k z cos 0 . (2.2) 

The variables 

r = 2 q s i n ½ 0 ,  

r '  = 2q sin ~ 0', 

correspond approximately to the transverse momentum of the observed pion in a 
system, in which q is choosen along the z-axis. 7 and ~" are related to the squared 
four momentum transfer variables t and t '  by: 
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t = (k -- q)2 = train __ r2x, 

_ , 2  
t '  = ( k - q ' ) z = t m i n  r x, 

with 
m 2 \  

tmin = - - . ( 1 - x )  ( _ q 2 + ~ ) .  (2.3) 

As we are interested in the behaviour of  (2.1) in the limit k±/x/~ --* O, we can 
make use of  the usual small angle high energy approximation.  Namely we can con- 
vert the partial wave expansions in ~'p and 7'p' channels into impact parameter inte- 
grals over b = J/q and b'  = J'/q',  where J and J '  are respectively the angular momenta 
in the above two channels. The result is given by (see appendix A) 

HX'a(r ', 0'; r, ¢) = E f db 'b ' f  dbb hX'qb',b;m)e i(m+x)° e - iv '+x ' )~ '  
rn=--~ O 0 

X J~,+m(br)JK+m (b 'r ' ) .  (2.4) 

m - kp is the helicity of  the intermediate state with missing massM 2. The summa- 
tion over rn includes the average over the proton helicty. The b-space amplitude 
hX'X(b ', b; m) is obtained from the inverse of  (2.4), which is given by 

2n 2 7 r  , o .  

h a ' a ( b ' , b ; m ) = j  ~ a  ~ a  d r r  dr'r 'Ha'a(r' ,O';r,(p) f 
0 0 0 0 

X Jx,+m(b'r')Jx+m(br) e i(x'+m )¢' e -i(x+m)~5 . (2.5) 

It is convenient to introduce the m-projection of  the inclusive amplitude through 

? k'k ' ' ' 
HX'X(T ', r; m) = dt't' dt t h (b , b; m)Jx,+.t(b r )Jx+m(br), 

o o 

so that 

HX'X(r ', ~5'; r, qS) = 
?Yl = - - ~  

H a'~(r ' ,  r, m) e -i@'+m)O' e i(x+m)O 

L°- ' ' P-° v 

(2.7) 

Fig. 2. Rescattering corrections to the Mueller Regge expansion of 7 + P ~¢r + x. 
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/ \ \  

Fig. 3. Reggeon diagram expansion for the triple Regge limit of~,p ~ 7rx (The double dotted line 
represents the po). 

(2.4) to (2.7) define the appropriate impact parameter expansion of  the six-point 
function 3,pTr ~ T 'p 'C.  The Regge cuts can be thought of as absorption corrections 
to a pure Regge pole expansion of 7p~r -~ T'p'Tr'. The detailed structure of  such an ex  
pansion for the forward direction was discussed in (I). The generalizations to the non 
forward case are left to the next section. Here we assume h~'X(b', b; m) has been cal- 
culated from (2.5) and H~X(r ', qS; r, 4)- Then, following the prescription of  ref. [5] 
for the exclusive case, the rescattering correction to H~'X(b ', b; m) arising through 
the intermediate pop state shown in fig. 2, is given by 

hx'~(b', b; m) : ~ *(b') h~(b' ,  b;m)~ (b), (2.6)  

.1 .  

where we write S(b) in the form'  

S(b) = [1 - ½c e - 'b2/a] . (2.7) 

The second term in ,~(b) can represent the b-space projection of  the Pomeron 
pole contr ibut ion,  in which case we are lead to the Reggeron diagram shown in fig. 3 
However for file purpose of  numerical estimates it is convenient also to relate the 
constants c and a directly to tile helicity independent PoP scattering amplitude 
F(s,  t) using 

e at hn F(s, t) = atots , 

with 

°tot 
c = 87ra-  (2 . s )  

Using the integrals 

~- An alternative prescription would be t~aat of Gottfried and Jackson in which the factor ,~ (b) 
• . 2 . . ' .  b /4,7 In (2.7) is replaced by [1 c e ] 3. However this has obvious disadvantages. 



514 N.S. Craigie, G. Kramer, Photo- and electroproduction 

f db bJn(br)Jn(b r') = 16 (r' - r), 
0 

oo 

f 2ae-a(rZ + r ) In (2art ) ,  dbbJn(br)Jn(br , )  e b2/4a= ,2 , 

0 

(2.9) 

(2.1 o) 

it is simple to show that 

H?"~(r',r;rn) = f db'b'f dbbS*(b')h~X(b';b • ~ ' '  , m) S (b)Jx,+m(b r )Jx+rn(br) 
0 0 

~ o  o o  

= f d r l r i j  drlrlH~Ra'(rl, r l ;m ) 
0 0 

× 5 ( r - r l ) - c a e - a ( r  +rl)Ix+m(2arrl)  . (2.11) 

If  we insert (2.11) in (2.7), then we can carry out the summation over m by mak- 
ing repeated use of the addition formula 

+ o o  

e Zc°s4~ = ~ e im ~Im(Z), (2.12) 

writing d2r = dr  dG where r = (r  cos ~, r sin ¢~) the final result can be written in the 
form 

rd2"r] pd2'r l  * , , h'h , 
HX'X(r, r ' )  = )  " - f ~ - ~ J ' ~ - S  (T - ~ I ) H R  (~1 ' r l )  S(f  - ~1 ) '  

where 

S ( r - ' r l )  = 6(2)(T-~1) - ca e -a(r2-rt)z" (2.13) 

The result (2.13) as far as the r-integration structure is concerned, can be derived 
directly from the Reggeon diagrams in fig. 3 using the method of  Rothe [ 12a] ~ (see 
appendix B). However the method developed above shows how one can write down 
the correpsonding formula for arbitrary external helicities. 

If one uses exponential approximations for Regge residues and linear forms for 
the Regge trajectory functions, the integrals in (2.13) can be explicitly evaluated. It 
turns out for our purposes that such approximations are sufficient to show the gen- 
eral effect of  the Regge-cut corrections and we shall consider the specific cases we 

• For an application in the present context see [ 12b]. 
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are interested in, in the next section. 
In the small transverse momentum region one can use (2.11), since only a few 

terms in the m-summation will be important. In particular the term m = -X = -X '  is 
the only non-vanishing contribution in the limit r = ~-' -+ 0, in which, for general m, 
we have the property 

Hx'x(7, T, m) ~ T Ix+ml+lx'+ml as ~-+ 0. (2.14) 

(2.1 1) involves only a two dimensional integral instead of  the four dimensional in- 
tegral involved in (2.13), so it could in fact be useflfl for numerical purposes, when 
the simplifying assumptions in the next section are not made. 

3. Evaluation of rescattering formula for rt- and co-exchange 

3.1. n-exchange 

Pion exchange presents a problem, since it is not explicitly gauge invariant. There- 
fore we must make a gauge invariant extension. We do this by specifying an explicitly 
gauge invariant covariant which is equal to 1`4 defined in I, for q = q '  and p = p' .  

4 This covariant, which we denote also by !ec~, ~ is 

I ̀4 , = ( p ' , k q ' - k , p ' q ' ) ( p  k q - k p q ) .  (3.1) 

With (3.1) we obtain for the 7r-Regge exchange contribution in the non-forward di- 
rection (k z = k tg0, k z = k tg 0 ') '  

i ~ +  , e - i (4 ; -  O) * , = k i k  I ~%(t)  ~%(t  ) (s /M 2) ~Tr(t')+%r(t) 

× l m T N ( M 2 ;  t 0, t ' , t )  ( F ( q 2 ) )  2, 

H +- = e -i((~'+c~) e i(e/-$) H +~ (3.2) 
I f  71 

[t+0 - '  - i~%* . . . . . . .  [ S ~ c~n(t')+%r(t) 

X (Fn(q2))2 ~ 2X/~  
pq ' 

• , .[  S \c~.(t')+c~.(t) 

b 2 
X (F  ( q 2 ) ) 2 ( - 4 q 2  pqp ,q ,  ) (3.2) 

In (3.2) we used the following definitions: 

~ '~(t)  = c~;rr(-c~ (t)) 1(1 + e - i ~ ( t ) ) ,  (3.3) 
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b =koIq[ + k p  O, 

t0 = (q_q , )2 ,  t = (q - k) 2, t = ( q ' -  k)2. 

(3.4) 

(3.s) 

The off-shell rrN amplitude will be approximated by its on-shell expression 

lm TN(M2;  to, t', t) = (M2) aPtt°) _tot ~,,2, uTr N U v~ ). (3 6) 

We can accommodate off-shell effects by modifying (3.6) with multiplicative expo- 
nentiN functions of  t and t'. The variables k± and k~ can be expressed by r and r '  de 
fined in ( 2 . 4 ) :  

k I -- k tg 0 ~ x7, k'± = k tg 0' ~ x r ' ,  (3.7) 

t o = - r  2 - r '2 + 2rr '  cos (4~- ¢ ' ) ,  (3.8) 

whereas the relation between 7, 7' and t ,  t '  respectively, was written down in (2.5). 
We shall neglect the t-dependence of  the signature factor but retain the t-depen- 

dence of  the pion pole, so that ~'aTr(t) is approximated by 

1 
fa~T(t) ~- m 2 (3.9) I - -  

~T 

For the pion pole term we use the following integral representation 

1 _ 1 f dz e - z  e - T 2 x z / ( m ~ - t m i n )  

m 2 - t m 2 - t 
~ rain 0 

(3.1o) 

By using (3.10) we can perform the integrations in (2.18) analytically since only 
Gaussian integrals occur. The cut-corrected cross sections are obtained as integrals 
over z or/and z'. To be able to give the result in a concise form we write the k± fac- 

t 
tors in the pion Regge amplitudes separately. From (3.2) we have for k I = k I and 
¢ = ~ ' = 0 :  

<+(7, T)-- 7>, 

< -  (r, r) = k2/~ + - z  , (r, 7), (3.11) 

<°(7 ,  9 = 7), 
<0( 7, 7>:  00(7, 7> 

The result of the integrations in (2.18) appears in the following form: 
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Ha~'XV (r, r) = H~V'XU (r, r) 

{ + fix~'X~(o~ , o) - ( ~ )  f d .~ ' f  dze (z'+z)(I~Y'x'Y(z',z) + c.c.) 
0 0 

+ ( c a ) 2 / d z ' f  dze (:'+~)l~'XV(z',z) , 
0 0 

(3.]2) 

with integrands I}V'XT(z', z) and I2~ '~ ( z ' ,  z) as follows: 

( z , z )  I 1 ( z , z ) -  2 7r(a+B) + ' = +- ' - k ±  e &r2 (a+B*(z')+Bv)2 , 

2 ~(a +B v) 
~°(z ' ,  z) = k I e - a  T _ _ 

(a+B (z )+By)" 

0 , 7r 

with 

~ l  = B ( z )  + - -  . . . . .  
a+B*(z')+B v ' 

++ , rr2 12 (z , z) = 
(D(z ', z ))2 

2 2 .2  
7( a K2 + ! 

12 (z, z) 
, 3 (O(z , z)) 

7r2ak± 
I °(z ', z) = 

(D(z', z)) 2 

/./.2 2 
e-fl2 r 0 , 

( z , z ) -  O(z' z) 

with 

e -fi2r2 {X2Bv a2k2(a+B*(z')+2Bv)(a+/~(z)+2Bv) ] 
+ -  - D 0 ' , z )  . . . .  j 

(a+B * (z')+ 2Bv) (a+B(z)+ 2B v) e- #F2,  

(a+B(z) + 2By) e ~2 r 2, 

(3.13) 

(3.14) 

(3.1s) 

ak ¢ 

D(z' ,  z) = (a+B (z ) + B v) (a+B(z)+Bv) - B 2 (3.16) 
V ~ 

a 

fi2 D(z' ,  z) (2B*(z ' )B(z )  + (B*(z')  + B(z)) (a+2Bv)). (3.17) 

(In (3.12) one of  the z-integration in the interference terms can be trivially performed) 
In (3.13) to (3.17) the quantity a is the exponential slope of the absorptive am- 
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plitude defined in (2.11) whereas B(z)  is the exponential slope in the t-channel (see 
(3.2)) together with the slope of  the pion pole term through the integral representa- 
tion (3.10) 

B(z) = z + a '  n - ½ i  x. (3.18) 

m -tmin 

The B v is the exponential slope in the t O channel (see (3.6)) which for the Pomeran- 
chuk exchange is, given by 

Bp =ap + ~'p lnM 2. (3.19) 

In (3.19) we have introduced a constant term ap to have the freedom to intro- 
duce a t dependent residue in the Regge exchanges in the t o channel. It is well known 
that for the Pomeranchuk such a term is necessary to describe the data for ~N scat- 
tering. 

We see that/aO-+ does not vanish for k 2 = 0 as expected. The non vanishing term 
comes from the double-cut contribution. The pole-cut interference term vanishes for 
k 2 = 0 similar to the pure pole term. For small k I the pole-cut interference term is 
negative. Thus for an appropriate value for c we can expect that the terms propor- 
tional to k 2 (the pure pole term, I and the term in 12) can be minimized The com- k 1 " 
bination ½(H ++ +H + - )  which is proportional to the transversely polarized cross sec- 
tion cri, is particularly simple and is completely given by the double-cut term, namely 

rr2X2Ov o o  o o  

½ ( ~ + , / 4  + - )  =(ca)ef dz'f dz e -(z+z') e-~2kzi/x2 H++(0 0). (3.20) 
o o (D(z', z ) )  2 " " ' 

We see that the cross section o± vanishes for x ~ 0 like x 2 ilk± = 0, and in a more 
complicated form for k± 4: 0. Furthermore we remark that the longitudinal cross 
section is affected by cut terms much less than the other cross sections. 

3.2. co-exChange 

We study co exchange in order to calculate the cross section for 7r 0 inclusive pro- 
duction. It is clear that the results can also be used for p exchange and A 2 exchange 
with appropriate changes of  notation. 

For co exchange we have no problem with gauge invariance since it is explicitly 
gauge invariant. As input we need the imaginary part of  the off-shell coN scattering 
amplitude for non-forward angles. Even the nucleon spin averaged part consists of  
many terms." For small scattering angles they produce comparable contributions. It 
would be a too lengthy calculation to incorporate all possible terms. Furthermore 
we have no information about their relative size. Therefore we take for Im T~, vwN , 
the simple form 

t 

Im T~u ? = Vlpup  v . (3.21) 

Terms proportional to guy do not contribute in the high energy limit as was found 
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in I. With (3.21) we have calculated explicitly ~ and//+to- for different k I and k'~. 
The result is: 

~F2  ,¢(q2) . . . . .  * . . I s  \c~CO(t)+aco(t')~ 2 1t++ w = g~co(g);~co{t)~,~) M~VI (M ,tO, t;t)k'lk±e-i((Y-4~) 

~ , j -  = I f +  e -2;~  (3.22) 

¢ 
This agrees with (3.18) in I i f k  I = ki ,  ¢ = q~'= 0. Of course the other amplitudes 
H+w 0 and HOco 0 vanish in the high energy limit. For estimates of  cross sections we shall 
approximate M 4 V 1 by the imaginary part of the off-shell pion-nucleon scattering 
amplitude. 

M4 V1 (M 2, to; t', t) = lm 2 ~rN (342, to; t', t). (3.23) 

Except from t and t '  independent factors the structure o f / / ~  and/-/+w- is the 
same as that o f / /~  + and H~-  except that the 7r and co trajectories are different. For 
the co trajectory the signature factor can be taken as constant except for the t de- 
pendent phase factor: 

t 
l .  7/'0~ 

~ c~co( t ) = e -~ l~r c~cO (t ) i CO 
F(c~w(t ) + 1) sin rr c~co(t) 

, (3.24) 
1 • /rO~ c o  

e -~tn~cO(t) i 
F(c~CO(0)+ I) sin ~r c~co(0) 

Thus for the co signature factor we do not need the integral representation (3.10). 
Then the cut contributions are obtained explicitly without further integrations. The 
results can he read off  from (3.12) to (3.17) by removing the z integration and re- 
defining B according to 

B = {b+ ' ~ c~co (ln -½ i~ ) }x  (3.25) 
Mz 

One obtains for HX'v~ the expression 

HX'~x~ (T, ¢) = HX~av + ~ r x ~  (0, 0) 
" CO ¢*) 

(3.26) 

where 

I ?  =~11--  - k± 2e-61r2 rr(a+B) 

with 

B*(a+Bv) 
81 = B +  * a +B +B 

V 

* 2 '  (a +B +By) 
(3.27) 

(3.28) 
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= _ _  e -62 r 2  X2Bv +a2k21 (a+B*+2Bv)(a+B+2Bv) 
12 D 2 D ' 

~r2a2k~ e -62r2 (a + B* + 2B v) (a + B + 2By), + 

12 - D3 

(3.29) 

with 

D =la+B+Bv[2-B 2 
V ~ 

6 2 = D(21B]2 + (B* +B) (a + 2By)). (3.30) 

As one expects we see that -~(H ++ - k f f - )  ~ % is completely de termined by the 

double-cut  term, namely, 

H++ '~  rr2x2 e - a 2 @ x 2  (3.31) 
½(H ++ H + - ) =  w ! o ,  0) ica) 2 8 2  

Except  for the integrat ion over z and z '  this has the same structure as o I for one- 
pion exchange (see (3.25)),  it vanishes like x 2 for x -+ 0 and ks = 0. If in a model  us- 

t t 
ing Regge poles, we define c~ R and % to be the t-slopes of  the Reggeons in the t- 
and t0-channels  respectively and cx~, to be the t-slope of  the pomeron in the initial 

t 
7P channel ,  then we can calculate the t = -xk~ slope of  the cut % ,  using the substi- 
tu t ions  

t 
B -- xc~ R In s/M 2, B v = C~'v In M 2, a = a e + % In s. (3.32) 

In the l imit s -~ 0% M 2 fixed (x m 1), one obtains 

t t 

O~pO~ R 
c( - -  (3.33) 

c O~p + ct R 

while in the limit s ~ ~o, ( s/M 2) ~ s ( x ~ 1) one obtains 

' = ' (3.34) Ot c Ct R . 

4. Discussion and conclusions 

Using the results of  sect. 3 we have calculated the Regge pole plus cut contr ibu- 
t ions for various values of the absorpt ion parameter  c. In fig. 4 we show a compari- 
son of  the k 2 dependence of  the "/p ~ r r -x  dis t r ibut ion with the data of Moffeit et 
at. [ 13] at Ey = 9.3 GeV. The c = 2 curve reproduces the data at this energy quite 
well, in particular the peak-shoulder structure in the region 0 < k 2 < 0.1 GeV 2. On 
the other hand the value c = 2.6 reproduces the data of  Burfeindt  et al. [ 14] at the 
lower energy E 7 = 3.2 GeV (fig. 5). The non-vanishing of  the cross section with k 2 
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Fig. 4. Data for 7P ~ rr-x  from _Moffeit et al, [ 13] ,  compared to the theoret ical  curves wi th  c = 2 

and c = 2.6.  The  dot ted  curve is the pion pole  contr ibut ion.  

is more marked in this data, for which k~ ~ 0.01 x 2 ~ 0.5 m}. we see that both ~+ 

and 7r- distributions are reproduced with c~-- 2.6 expect nearx  ~ 0.9, where one 
has to properly take care of tile A33 contribution (see ref. [1 ] ). 

The variation of c with energy may indicate that multit~le-pomeron-exchange is 
relevant at these energies. A nice test of the detailed dynamics would be obtained 
from a measurement of Oii and cr I seperately. For example o± is given entirely in 
terms of the double cut contribution and leads to the exponentially falling curve in 
fig. 6. In contrast oll shows a marked interference structure. This is responsible for 
the shoulder in cr U. 

Similarly the calculation for neutral pion inclusive photoproduction is compared 
with the data of Berger el al. 115] in fig. 7, where we again plot the distribution m 
k}. Here the two curves for x = 0.86 and x = 0.64 are shown with c = 0.7. ]he  data 
for the larger x is adequately reproduced with this value o f t .  However dlere is a de- 
viaton from the data of sinaller x, which mighl be expected from the kinemalic limi- 
tations on the triple-Regge expansion and the likelihood that the photon m~d target 
fragmentation regions overlap at these energies. For x > 0.7 a good test of the lnodi- 
tied triple Regge dynamics we have considered, would be again to m e a s u r e  oll and 
cr~ individually. In this case the double cut contributes only to Oii and o± shows a 
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Ey =32 GeV 

0 09 kl{:Ollx) [GeV) 
07 0.08 0 l 

, - - T  - - -  --I00 

"%. 

O~ 07 Ot~ 09 1.0 

X 

2 Fig. 5. Comparison of the model with c = 2 and 2.6 respectively with the small k± data (k± = 
0.11 x) of Burfeindt et al. [ 14]. (The dotted curve shows the prediction for ~p -~ ~ -x). 

marked interference structure (fig. 8). It  is interest ing to compare  figs. 6 and 8, 

when one sees some differences in the small k 2 behaviour.  In particular we not ice 

the expec ted  d/ifference in the scale as ref lected for example  in the posi t ion o f  th( 

y p ~ + X  
Ey = 3 GeV 

, x = 7 5 ,  c = 2 6 

' i  ~ ', 

, , \ ' ~  j J , 
Ol 02 0.3 O& 05 ki2 [GeV ~] 

'2 Fig. 6. A plot of the dependence of oll , o i  and o U and the pole term as a function of k±. 
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l ine represents  the  co exchange  term and the solid curve corresponds  to  c = 0 .7) .  
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2 Fig. 8. The  dependence  o f  oil, o1, o U and the co-pole term on  k 1.  
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Fig. 9. Comparison of  the Mueller Regge model for q :  = 0.0, 0.2 and 1 GeV 2 with the x distribu- 
tion of  the inclusive data for yp + rr + x from ref. [16]. 

1,ig. 10. Triple Regge expansion of y,,p ~ p x °.  

d ip .  Th i s  c o m e s  f r o m  the  sha rp  va r i a t i on  in the  p ion  p r o p a g a t o r  as a f l m c t i o n  k 2 in 

the  case o f  c h a r g e d  p i o n  p r o d u c t i o n .  

T h e  e l e c t r o p r o d u c t i o n  o f  cha rged  p ions  has also b e e n  ca l cu l a t ed  fo r  var ious  values 

P O P 

t:ig. l l .  Full Mueller Regge diagram of ' rvP --* rr x in the photon fragmentation region (x > 0). 
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yv+p ~++x 
Ey:3 
q; =005 
x :07 
c =26 

io@ 

a:~ 0-11 

I 

k] [GeV 2] 

Fig. 12. Plot of all, o±, cr L and o I for "rP "-' n+ . 2 x as a funcUon of k± in the transitional region 
q 2  0.05. 

o f q  2 and compared with the data [16] in fig. 9. The conclusion in (I), that  fo rq  2 
2> O. 1 GeV 2 the charged distributions are predominantly longitudinal is unchanged 
by the addit ion of  the cuts. We see that Regge cuts smear out the x distributions, 
which for the pion pole, is dictated by the dependence of  the pion propagator on x 
and q2,  namely 

X 2 / [( 1 -- X) + ( m  2 + k 2 ) / ( - q  2)] 2 

The broader distributions agree bet ter  with the data. In the calculation we use, for 
q2 = 0, 9.3 and 1 GeV 2, the values o f c =  2.6, 2.2 and 1.8 respectively. A dependenc~ 
o f c  on q2 is expected and in principle could be extracted from the q2 dependence 

of  7v + P --* P + x0, which will recieve an important  contr ibution from the interfer- 
ence term shown in fig. 10. However, we see that the larger q 2 data [17] in the re- 
gion 0 < x < 0.8 is not easily explained within the triple Regge framework. The rea- 
son is the dependence on the particle-Reggeon form factors, which for fixed mass 
are expected always to be rapidly decreasing functions o f q  2. Presumably for larger 
q2 the triple Regge mechanism becomes an increasingly poor approximation to 
fig. 11. 

We finally remark on the behaviour of  air , ~±, o L and o I in the transition region 
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q2 ... m 2, which is indicated in fig. 12 forq  2 = 0.05 GeV 2. In particular one sees 
that the interference term o I is only large in this very narrow region. This demon- 
strates how the electroproduction can change very rapidly as a function of q2, when 
we go to the photoproduction limit, in contrast to the smooth limiting behaviour 
proposed by Bjorken and Kogut [11]. Presumably this small q2 range would be a 
sensitive region, in which the Mueller-Regge-expansion discussed in this paper can be 
tested. 

Appendix A 

Here we derive the representation (2.4) and its inverse (2.5) from (2.1). We begin 
by explicity exhibiting the summation over the total helicity X x of the missing mass 
state x. Denoting the total angular momentum of x by s x and all the other labels in- 
cluding the degeneracy by ~/x, we can write the summation over ~ defined in (2.1) by 

~ ; [ ~  d3ki (2rr)eg)(4) f~k.+k_p_q)lk ,k  1 JCn)(k,k 1 , ,kn] 
t 1 (2rr)32k/o \ 1 / , ' . . . . . .  

(A.I) 
= ~  [k, Px, Sx, Xx,~x)(k, Px, Sx, Xx,~lx[. 

S X , X X , ~ X  

On inserting (A. 1) in (2.1), we can partial-wave analyze the matrix elements with 
the result: 

Hx, x _- ~ ~ (2J+l)  (2J '+l)  D J 
47r 4~ X-Xp,Xx (q~' 0, -q~) 

m=Xx+Xp J =Max{tXxllX Xpl} 
J'=Max (17txll;C-X p } 

j , ~  . ¢ 
X DXx,k, Xp((,b, 0',--q~') ~ Ot',Xpi]rfn(S,M2)[S]x , N,r /x)  

/7 ,Sx )q X 

X (Sx, Xx, r/x I/~n'(S , M2)I)k, Xp) 

+ ~  

= ~ e i(m+x)O e-i(m+x')Ch'HXrnX'(s,M2,cosO , cos0'),  
m = - - ~  

where 

(A.2) 

HX, X -_ ~ (2J+l) (z: '+l) d J 
m J =Max {Irn- Xpl ,IX- ~.pl} 4~" 4• X-Xp,m-Xp (0) 

J'=Max {Ira- Xpl,IK- Xpl} 

X d J' hKmX(J, J') , (A.3) m-Xp,X'- Xp (0') 
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with 

hX'Xm = ~  0t', XplT~nls x, m Xp,r/x)(Sx,, rn-Xp, r~xlT/n'lX, Xp> . (A.4) 
H ,S X ,1~ X 

One obtains an impact parameter representation by using the approximation 

dJx, (0) --~ Jix_,l ((2_J+ l) sin ½0) , (A.51, 

and by defining the variables, 

b = q - l ( j +  !) 2 ,  r = 2q sin 10. (A.6) 

The result is 

Hx'x = ?  db'b' f dbb J +x(b'r')Jm+x,(br)hX'X(b',b;m ), (A.7) 

brn bm 

where 

b m =l-[Max{[m-Xpl,lX-Xpl}+ ½1 
When one examines the kinematic singularities of the D-functions, which have to 

be compensated by corresponding factors in the amplitude one finds that 

hX'X(b,b';m)~(bb')  m as b,b'-+O. (A.8) 

Hence at high energies the lower limit b m ~ m/x/s can be set equal to zero provided 
rn < x/s i.e., summation over m converges sufficiently fast. 

Appendix B 

We provide here an alternative method of deriving (2.13) based on analyzing 
Reggeon diagrams in the triple-Regge limit. We illustrate the method by considering 
the double Regge cut diagram shown in fig. 13, which can be represented by the ex- 

t t '  

P' ÷ q / 2 ~ " ,  

P'q/2 

P~ -q/2 

Fig. 13. Reggeon diagram for the double-cut contribution. 
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pression (neglecting helicity) 

a 2 [ - S  7cq(tt) t S 1 a2(tz) 
( d4k A2' (Sl,tl,t2,t)[~lS2J 

H -'-j (2¢r), ~ c (M2+s2)sl J 

X (" d4k' A ~ j ~  '* ' ' V s ]~l(t~l)F s ] ~2(t~) 
d ( 2 r r ) 4  2 tSl ' t l ' t2 ' t ' )ksTs2J L(M2+s~)s;.-J 

! r t 

X DiscM2 A61 ~z (s2, ~? ,  M 2, tl ' t2 ' t, t l ,  t2, t ,  to) . 

(B.1) 

The standard procedure [ 12] is to convert the loop integral over d4k to an inte- 
gral over the reggeon mass variable t 1 = k 2, t 2 = ( k - q )  2 and the channel invariants 
s l = ( p - ½ q - k )  2 ands  2 = ( p ' + ½ q + k )  2 defined in fig. 13 

d4k = J dtldt2ds l ds 2, 

I p 2 ' p.p' p .k -3 

p.k p"k 
J = 4  P'P p,,2 p;q 

p.q p "q q.k 
p"k k.q k 2 

(B.2) 

(a) In the limit s -+ °°, M2, s 1 , s 1 fixed; 

J = 4s-1 [(q. k)Z-k2q21-1 

=s lX-a(tl,t2, t), 

d4k ~ (1/s)d 2 yds lds  2, 

where 
,2 , 2 

= T )  , t = t 1 • , t 2 = ( r -  r 2 .  

(b) In the limit (s/M 2) = (1 - x )  fixed, s ~ % s 1 , s 2 fixed; 

j =  4s- l [ (k .  Q)2 _ k Z o 2 ] - 3  , 

(B.4) 

where 

Q = (1 +x)q/2 + (1-x)p ,  

Defining 

Q2 = xq2 = xt. (B.5) 

t 1 = r  '2, t 2 =(T--T ' )2 /X,  t = r 2 / x ,  
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then 

d4k -+ d2~ ' ds 1 ds2. (B.6) 

Providing the singularity structure of  the ampli tudes in the channel  variables s l and 
s 2 etc. have the necessary left-right singularity structure,  for case (b) we can rewrite 

H i n  the following form 

-2  , -2  ,, 2 
H = f  u-'r ['~_~_~_N(,,r')N*(.t, r")s~l(r ' )+c~1 ( r"2)- I  

(2r02"/(2rr) 2 (B.7) 

x l  ss_] ~2([r- r'12/x)+~2([r- r"12 /x) 
t M  2] DiscM2 T a '  ~2 (M2, t l ,  t 2, t, t;, t ; ,  t ' ,  to),  

where 

N(r, r') = ¢ ~ ( t  1)/3~2 ( t2)  + f dSllmA~lC~;(s 1 , t 1, t 2, t), (B.8) 

SO 

DiSCM2 T ~, ~2 = 13%'(tl) ~ l ' ( t ' l )  DiSCM2 T~62 (M 2 ' t2 ' t2,, to ) (B.9) 

t 
+ terms involving discont inui t ies  o fA  6 in the variables s2, s 2. 

In (8 .8)  and (B.9) we have explicity extracted the pole cont r ibut ions  in the vari- 
able s I and s 2. These terms lead to the reggeon diagrams shown in fig. 3 for 3'p -+ 
7r +x.  (The c o n t i n u u m  cont r ibu t ions  are est imated by inserting a mult ipl icat ive fac- 
tor as a first approximat ion  see (sect. 3)). 
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