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We exhibit a model for analytic, crossing-symmetric 7 7 amplitudes which satisfy I = 1 sum
rules and the inequalities of Martin. The S-waves and P-wave are unitary to excellent approximation
up to energies exceeding 1 GeV. The model enables us to convert a small number of experimentally
accessible parameters into phase shifts reliable up to 1 GeV. Predictions are made for the S-waves
which lend support to certain analyses of TN — 7 N data. Solutions are displayed which constitute
counter-examples to the claims of Le Guillou, Morel and Navelet that the S-waves must possess
Adler-like zeroes, and that the € resonance must be broad.

In this letter, we display a model for 77 elastic scattering amplitudes in which the following condi-
tions are satisfied exactly: analyticity, crossing symmetry, positivity of absorptive parts of partial
waves with definite isospin and validity of the Froissart-Gribov representation for partial waves with
1> 2. It follows from the preceding properties that the inequalities of Martin [1] and others are satis-
fied.

Our model also satisfies exactly the I = 1 Regge sum rule [2] for the derivative parameter A1 of
Chew and Mandelstam[3].

In addition to the preceding exact properties, the S-waves and P-wave are unitary to excellent ap-
proximation to energies exceeding 1 GeV and the Regge sum rule [4] for the combination (2ag - 5ag) of
S-wave scattering lengths is satisfied to excellent approximation.

Our model enables us to convert a small number of experimentally accessible parameters into
phase shifts reliable up to 1 GeV. It also sheds light on the physical content of the inequalities of
Martin. Several important conclusions are drawn.

Our model may be described briefly as follows (a thorough exposition is in preparation). Let vi
(v, cos 8) denote the Veneziano 77 amplitude [5] with isospin [ in the s-channel, where v = %s-l (we
use units wherein m; =% =c¢ =1). Let Al (v, cos 8) denote the physical 77 amplitude. Then consider
the functions

aal(v, cose) = al - vI (1)

If the resonance spectra of the Al agree with those of the VI, then resonance contributions to
Im [AA] vanish, in the sense of local averages. Thus resonance contributions to all but the nearest
singularities of A4/ are effectively zevo.

In our model, we assume for I = 2 that the ImA(D! are given for v > 0 by the 6 -function absorptive
parts of the Veneziano resonances (which, through duality, contain the contributions of Reggeized p and
fo exchange):

lz2, v> O:Im[AA(l)I] =0. (2)

Analyticity, crossing symmetry and the approximation (2) imply representations for the aA! which
are unique up to the addition of entire functions (only one of which is left independent by crossing sym-
metry). Our choice of the independent entire function is a simple and natural one whose virtues will

* This research was supported in part by the US Atomic Energy Commission,
** Present address: Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10021,

470



Volume 36B, number 5 PHYSICS LETTERS 4 October 1971

become apparent . For I = (g), we have (3a)

2(V+2V'+2)Af1(u, v') _Afl(vo, v')] v-v,

(01}
(v+20'42)2-12¢0526 v'=vo ¥ (v'-vo)(v'-v) Im [AAT20N]1

AAI(V, cos ) = (:g)AA + % 0f°°dy. ;[

where v, = -2 A is a subtraction parameter which bears the same relation to the AA! as the param-

eter
x= 44%,,0) = -342(,0)

bears to the Al and Af!is given by
1

2
aflw,v) = T app T (@red) imfad 1)) Pu(1:2250),
1'0 1I'=0 v

where a, ., denotes the crossing matrix [3]. For I =1, we have

ir

had 1 ' 1 '
AAl(u, cos 8) = cosf %f dv' 287 (v, V') Stm{ad (D1 )]i (3b)

+
0 (v+20'+2)2-12 cos2 6 v'(v'-v)

The amplitudes (3a-b) are manifestly analytic and free of ghosts (singularities at complex points on
the physical sheet). The crossing symmetry is perhaps not obvious, but has been explicitly verified by
the present author for arbitrary Im[AA (0)1], Im[ad()1), v=0.

It is evident from inspection of eqs. SSa-b) that as £ — « for fixed s, the A4l do not grow more rap-
idly than . Thus the partial waves AADI satisfy the Froissart-Gribov representation for I > 2.

Since the Veneziano partial waves V(D Ia1s0 satisfy the Froissart-Gribov representation for ! = 2,
the Al = vI1i aAl generated by our model will automatically satisfy the inequalities of Martin and
others if the positivity condition is satisfied: ImA(l)I(u) 20forv=0forallI.

We shall use the single-term Veneziano formula and the Lovelace values [5] for the trajectory pa-
rameters: @ = 0.483, b =0.017, where a(s) = a+bs. We shall constrain the Im[AA(0)]] and Tm[AA(1)1]
in such a way that the positivity condition will be satisfied by all the Im A if all the resonance poles
in the V(! have residues of correct sign above the second (fp) tower. This is true at least up to the
fiftieth tower ¥ (which occurs at 7.5 GeV) and appears to be true for all higher towers [6].

From a Regge analysis of the combination of 77 amplitudes with I =1 in the £-channel, it follows
that the traditional derivative parameter [3] A{ obeys a sum rule [2], as does the combination of S-
wave scattering lengths (2aq - 5ag) [4]. It is straightforward to show that the Al generated by our model
satisfy the sum rule for Ay if

®_dv (11 = 0. 4)
Of (v )2 Im[aA()] =0 (

Above 1 GeV, we shall constrain Im[AA(l)l] to tend smoothly to zero. Below 1 GeV, we shall con-
strain A(D1 to be unitary and contain a p resonance. We shall choose the overall multiplicative con-
stant in the V/to be such that eq. (4) and hence the sum rule [2] for A1 are satisfied exactly. We then
find that the sum rule [4] for (2aq - 5ag) is satisfied within 0.3%.

By projecting the I =0 and 1 waves out of egs. (3a-b), respectively, we obtain

A0 - (5a)

Af{(vo, V') v-vg
)- V'-vg +(u'-uo)(u'-u

(:E)MV(O)’(v)- Vv, 0)+117({ du';ng(hZEﬁ—l) afl(y, v j Im (24Ot |

1 If one requires that the Froissart-Gribov representation be satisfied for I = 2, then the right sides of egs, (3a-b)
could only be modified by adding functions which are linear in s, ¢ and u. If one also requires that the Regge sum
rule for the derivative parameter A, be satisfied, then eqs. (3a-b) are unique, provided that the overall multi-
plicative constant in the VIis such t}mt the Veneziano p resonance has the same mass and effective width as the
unitarized p in A4 ()1,

i Verified by the present author.
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Table 1
Low-energy parameters corresponding to the 77 amplitudes whose S-waves are
displayed in figs. 1 and 2. The first entries in each column correspond to the so-
lutions a), while the second entries (in parentheses) correspond to the solutions b).

A llo az )\ 1

-0.09 1.07 (1.11) 0.083 (0.081) 0.168 (0.173)
~0.05 0.60 (0.62) 0.018 (0.016) 0.137 (0.141)
-0.01 0.25 (0.26) -0.046 (~0.047) 0.111(0.113)

0.03 -0.02 (-0.02) -0.109 (-0.110) 0.089 (0.090)

(1)1 1) 17 g 12 viHly 1 v (1)1
- 1 2 1 }e "y, ¥ '
A (v) = ¥ (1/)+77 g dv ;VQ1(1+2 5 )Af (v, v )+V,(V,_ l/)Im[AA 7] 3 (5b)

The remaining condition to be imposed on our S-waves and P-wave is unitarity:

ReAWT - ;ImA(l)][Rll(h 1/u)1/2-ImA(l)1] 1/2

(6)

for v> 0, where Rllis the ratio of elastic to total partial-wave cross sections.

To obtain approximate solutions for the A(0)! and AT which simultaneously satisfy egs. (5a-b) and
(6), we represent each ImA (0! petween threshold and 1.25 GeV by a flexible 39-parameter trial func-
tion with correct threshold behaviour and ImA{1)! between threshold and 1.05 GeV by a flexible 29-
parameter trial function with correct threshold behaviour. Above the aforementioned energies, we let
the ImA () (7 = 0, 1) tend smoothly to Im V(DI We then determine the trial-function parameters by
requiring that eqs. (5a-b) and (6) be simultaneously satisfied within 2% over a set of closely-spaced
mesh points which span the regions where the trial functions are flexible.

We find that solutions exist as A, m¢, T¢, m; and '), are independently varied * over substantial
ranges of values. Thus our model does not have very restrictive bootstrap properties. However, once
the aforementioned parameters have been specified *, the solutions are unique.

For the solutions exhibited in this paper, we hold the p parameters fixed at my = 762 MeV, Fp =
120 MeV and we set R{ equal to unity.

Motivated by analyses of 7N — 77N data [7], we display two types of € resonance in fig. 1. In 1a, 600
is constrained to equal 759 at 800 MeV and 900 at 960 MeV. In 1b, 600 is constrained to equal 900 at
730 MeV and 1350 at 875 MeV.

We remark that no €(730) solutions exist wherein 600 pauses or vacillates in its rise from 900 to
1800, In particular, the published € (730) branches [7] of phase-shift analyses of 7N — 77N data are in-
consistent with eqs. (5a) and (6). This conclusion would not be affected by moderate (< 20%) inelasticity
below 1 GeV, nor by any amount of inelasticity above 1 GeV. Thus the € (900) branch [7] must be
Nature's choice, unless the published error bars along the € (730) branch are several times smaller
than the actual errors|[8].

In figs. 2a-b, we display the I =2 S-wave phase shifts 502 which correspond to the 600 of figs. la-b,
respectively.

In table 1, we display the values of the S-wave scattering lengths a; and the derivative parameter A
which correspond to the solutions displayed in figs. 1 and 2. The functional relation between ag and ag
constitutes the "universal curve" derived earlier by Morgan and Shaw [9].

For the two types of € resonance displayed in fig. 1, we find that A(0)0 vanishes on the interval
1.1 s < 1.7 only if ~-0.0026 < A < 0.0040. Thus all solutions with A > 0.004 or x < -0.003 constitute
counterexamples to the claim of Le Guillou, Morel and Navelet [10] (henceforth G.M.N.) that A(0)0
must vanish on the interval 1.1 < s < 1.7.

* We find that it is possible to constrain a resonant amplitude at two (but only two) points inside the resonance
peak. Thus for example we can constrain A (1 to have the values appropriate to 611 = 90° and 135° at Eem.=
=mp and (mp-+ i), respectively, for a range of values of the parameters mp and T.
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Fig. 1. a) Solutions for & 0 constrained to equal 75° at Fig. 2, a) Solutions for 602 corresponding to the 0 00 of
800 MeV and 90° at 960 MeV, b) 600 constrained to fig. 1a. b) 602 corresponding to the 80 of fig. 1b.
equal 90° at 730 MeV and 1350 at 875 MeV.

The 600 of fig. 1b constitute counterexamples to the argument of G.M.N. against a narrowe I . Note,
however, that these 600 all rise through 180°. The S-wave parameterization assumed by G.M.N. does
not permit 600 to reach 1800 and this may explain why G.M.N. were unable to obtain a narrow €. A sim-
ilar remark applies to the work of Carrotte and Johnson [11] and of Gore [12].

Observe that for each value of A, the 600 in fig. la differs from that in 1b by less than 10% below
400 MeV, while the 602 in fig. 2a differs from that in 2b by less than 3% below 1 GeV. Thus if one
accepts the Weinberg prediction [17] A = -0.008, which has been confirmed within statistical uncertain-
ties of +0.01 by analyses of 7N »77N data [18] T, our model then implies definite values for 5.0 and 602
over the aforementioned ranges of energy. Since the 602 in fig. 2 do not vary by more than 138 between
threshold and 1 GeV as A is varied over the wide range (-0.01%0.04), our model is especially decisive
in its prediction of 63", which we believe to be reliable up to 1 GeV or more [15]. Certain analyses of
7N — 7w N data are in good agreement with this prediction and gain support from ittf.

We remark and wish to emphasize that if one had never heard of Veneziano amplitudes but simply
wrote twice-subtracted dispersion relations for the A DI with subtraction parameters corresponding to
A and Aq and then determined Ay from the usual sum rule [2], the resulting A(Y would agree with the
amplitudes of our present model within about 10% below 700 MeV for (I)I = (0)2 and within about 10%

i In the present context, a "narrow" € is one wherein .0 rises without hesitation toward 180° after reaching 900
near 730 MeV, as opposed to a 600 which hovers near 90° from about 700 MeV up to at least 900 MeV. The total
width of such a "narrow" € may be as much as 400 MeV.

t These authors give values and uncertainties for the ar which correspond to A =~ -0,01+0,01 in our model. The
published uncertainties in the ayare primarily statistical in origin and do not adequately reflect the theoretical
uncertainties in the analyses.

Tt The 602 of Walker et al. {16], Morse et al, [17] and Colton et al. [18} and the recent 602 of Baton et al. [19] are
‘all in good agreement with our result up to 1 GeV or more. The earlier 602 of Baton et al. {20] was too small in
the p region by a factor of two.
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below 900 MeV for (/)I = (0)0 and (1)1 [19]. Thus the amplitudes of our present model have a much
greater generality than does the Veneziano model itself.
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