Nuclear Physics B60 (1973) 26 --44. North-Holland Publishing Company

ANALYTICITY AND A FINITE-ENERGY SUM RULE FOR
THE REGGEON-PARTICLE AMPLITUDE IN
atb->c+d+e

P. HOYER *

Department of Theoretical Phvsics, Oxford University

J. KWIECINSKI
Rutherford High Energy Laboratory. Chilton, Didcot, Berkshire, and Institute of Nuclear
Physics**, Cracow 23, Poland

Received 23 February 1973

Abstract: We consider a single-Regge limit of the amplitude for the processa+b—c+d +e.
In this limit the amplitude is proportional to the reggeon-particle amplitude fora +i -
c + d, where { is a reggeon. We study the analytic structure of this amplitude using the
dual resonance model and a perturbation theory model. We conclude that finite-energy
sum rules can be derived, which relate the absorptive part of the amplitude at low
W+ pd)2 to a part of the double-Regge vertex function of the original five-point
amplitude. We discuss some phenomenological applications of the sum rules.

1. Introduction

In this paper we shall investigate the structure of the amplitude for the process
atb—>c+d+e, where a, b, c, d and e are scalar particles, in the high-energy limit
where s, = 0, 54, = © while 5 4 is kept fixed***, fig. 1. In such a limit the five-
point amplitude is proportional to the reggeon-particle amplitude fora +i—>c +d,
where i is the exchanged reggeon. Although the singularity structure of the five-
point function is rather complicated in general [1, 2] T, one may hope that its
structure is simpler in a high-energy limit like that of fig. 1. This would then make
possible the derivation of finite-energy sum rules [3; 4], which would be useful in
the analysis of data for three-particle final states.

As was recently shown, there is an analogous situation in the case of inclusive
reactions. The cross section for a + b = ¢ + X is given by a discontinuity of the

* Supported partially by a grant from the University of Helsinki, Finland.
** Present address.
*** We use the notation sy, = (p, + pb)z, S,c= (0, - pc)z, etc.
t In ref. [2] the problem of formulating finite-energy sum rules for five point amplitudes
that relate the low-energy region in s, to the single-Regge limit is considered. This paper
also contains a discussion of the general analyticity structure of the amplitude.
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Fig. 1. The single-Regge limit of the processa+b—c+d +e.

amplitude fora + b+ T = a+ b + ¢ in the forward direction [5], fig. 2a. In the
limit when the missing mass is much smaller than the total energy, i.e. sab/sab-c- >
1, the six-point amplitude is proportional to a reggeon-particle elastic amplitude
(fig- 2b). In dual and ladder diagram models it turns out that the reggeon-particle
amplitude has the singularity structure of a normal four-point function. Hence one
may write down finite-mass sum rules [6], which connect the low missing-mass
region with the triple-Regge limit. First applications of the FMSR to inclusive data
are quite encouraging [7-9].

g ¢ <
(a) (b)

Fig. 2. (a) The six-point amplitude which is related to the inclusive reactiona + b— ¢ + X,
(b) A high-energy limit (s,p/s - o with sz fixed) of the amplitude in fig. 2a.

abc

The reggeon-particle amplitude that we shall be concerned with here (fig. 1) is
somewhat more general than the one encountered in inclusive distributions (fig.
2b). In the case of fig. 2b there is only one helicity amplitude contributing to the
leading term, namely the one corresponding to a maximum helicity flip of the
reggeons [10]. By contrast, there are many helicity states of the reggeon contribu-
ting [11] in fig. 1. The dependence on the helicity in this case can alternatively be
seen as a dependence on the variable k = 5_454./5,,- The reggeon-particle amplitude
in fig. 1 also depends on the momentum transfer s,z In the case of the inclusive
reaction in fig. 2 the corresponding variables are equal to zero.

The structure of the amplitude fora+ b = ¢ +d + e in the double-Regge limit
(sgq = °°in fig. 1) is already well-known [10, 11]. In this limit the amplitude
decomposes into a sum of two terms, with cuts in s 4 and in s4,, respectively. We
shall in the following be concerned only with a part of the five-point amplitude
which in the double-Regge limit gives the first term (with a cut in s_4). This is also
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the part which contains the poles in s,z (when the reggeon is on-shell) and, accor-
ding to the Steinmann relations [12], the normal threshold singularities and
resonances in S.4.

We investigate the singularity structure of this part of the amplitude in the
single-Regge limit (5.4 finite) using the dual resonance model (DRM) and a pertur-
bation theory model. We find that when k = 0 the reggeon-particle amplitude has
the singularity structure of a normal four-point amplitude.

The FESR which follow from this analytic structure relate the absorptive part
of the low s 4 region to the first part of the double-Regge vertex. In the same way
one can relate the other part of the double-Regge vertex to the low s, region.

When « # 0 the reggeon-particle amplitude has singularities which are not present
in normal four-point amplitudes. These singularities do not, however, contribute
to the leading term in the discontinuity as s.4 —> 2. The effect of the new singulari-
ties in the FESR is therefore that of an additional term which is independent of
the cut-off.

In sect. 2 we discuss the structure of the amplitude in the double Regge limit.
The single Regge limit is considered in sect. 3, where we investigate the analytic
structure of two models, the dual resonance model and a perturbation theory
model. The structure of the two models turns out to be very similar. In sect. 4 we
discuss the modifications due to left-hand singularities and signature. All essential
properties found in sect. 3 remain unaltcred for the signatured amplitudes. The
FESR are derived in sect. 5 and some applications are considered in sect. 6.

2. The double-Regge limit

We shall begin our investigation of the analytic structure of the five-point
amplitude by considering the double-Regge limit (fig. 3). This is defined by letting
Sabs Sed» Sde > P Keeping s, Spz and K = 5.454./5,, fixed. The structure of the
amplitude in this limit has been investigated by several authors [10, 11, 13]. It has
been shown that an amplitude with only right-hand cuts in the asymptotic variables
takes the form*

T = (—5,5)*0% (~-54)*8T 7 *0C ¥ (Spg, Syc3 %)

+ (= 5,5) %2 (= 54¢) BT T AT V(855 S 1K) (n

where ap = a(syg ), etc. The vertex functions ¥} and V), are entire functions of k.
The important feature of the decomposition of T in eq. (1) is that only the

first (second) term has a discontinuity in 54 (s4)- If, according to duality, the

Regge terms in eq. (1) are “built up” from resonances in s.4 and 54, we therefore

* This is true for amplitudes corresponding to planar Feynman diagrams and for planar dual
models. For an example of the structure of a non-planar model see ref. [14].
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Fig. 3. The double Regge limit of the processa+b—c+d +e.

expect the first term in eq. (1) to be connected with the resonances in 5.4 and the
second term with resonances in sg,. In fact, the residue of a resonance in 54 is a poly-
nomial in s4, and thus cannot contribute to the discontinuity in 54, (i.e. to the sec-
ond term in eq. (1)). The first term in eq. (1) also contains the poles in oz when the
reggeon i goes on-shell. From the point of view of duality in the systema+i—>c+d
we therefore should consider only a part of the five-point amplitude T, which in the
double-Regge limit gives the first term in eq. (1).

In deriving the FESR we shall start from a dispersion relation in 54 keeping
Sabs Sac Spe and « fixed (note that the limit 5, = <° has already been taken as in
fig. 1). The reason for keeping k fixed is that we want the high-energy limit of the
reggeon-particle amplitude (s .4 > °°) to be related to the double-Regge limit of the
five-point function.

The variable 54, can be expressed in terms of the independent variables as

K Sab
Sde = Scd ; (2)

substituting eq. (2) into the expression (1) for T we get

T'=(=555) 08 (—59)*8% = *€ [V (g, 5,0:K) + (—K)*DE = ATV (s,0, 51,53 4)].
(3)

Both terms in eq. (3) now have a cut in sy, due to the relation (2). However,
as discussed above only the first term can be dual to resonances in s_4. The second
term can be eliminated in either of two ways:

(i) By extrapolating to k = 0. If apz — @, > 0 the second term in eq. (3)
vanishes. As we shall see below the situation is analogous in the single-Regge limit.
Thus at k = 0 the reggeon-particle amplitude has only normal four-point singularities
in s 4 and a FESR can be derived. The FESR can be continued to apz — a,c <0
by subtracting out the term which is singular when « = 0.

(ii) By considering the amplitude T:

1

C 2isinm(apgy — o,z)

[ei"(abE - aaE)T(sde +i€)

_ e—imnlapg - aaE)T(sde —ie)] . 4)
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Ineq. (4), T(sy4, * i€) is the amplitude obtained in the single-Regge limit
letting s 4, = o above (+i€) or below (— 7€) its cut. All other variables are to be
evaluated in their physical limits. It follows from eq. (1) or eq. (3) that in the
double-Regge limit

T= (- sub)abe (_scd)aaE — ahg Vl (sbé , saE;K) . )

In the next section we consider the singularity structure of T'in the single Regge
limit. It turns out that T has certain singularities in S.4 Which are not present in
normal four-point amplitudes. These come from the term T'(sy4, — f€) in eq. (4),
where the amplitude T is evaluated in an unphysical limit. Such singularities cannot
be determined from experimental data.

The additional singularities do not, however, contribute to the leading term (5)
of T in the double-Regge limit. This term is built up completely by the ordinary
singularities in s.4: The only effect of the extra singularities in the FESR is there-
fore to introduce a constant (i.e. cut-off independent) term on the Lh.s. of the sum
rule.

This term vanishes in the limit k = 0, so that consistency with (i) is achieved.

3. The single-Regge limit

In this section we shall discuss the properties of the DRM and a perturbation
theory model in the single-Regge limit shown in fig. 1. We consider amplitudes
with only right-hand singularities, signature being introduced in the next section.

3.1. The dual resonance model

In the single-Regge limit of fig. 1 the Bs amplitude can be expressed in terms
of the hypergeometric function* F(a, b;c; z)

Bs = T'(— 0z ) (— 035 )*0% [By(— g, — 0pe + )

K K \ abe - az
X F(_ N e aag;s—d) + (i) *be = %t
C C

X B(— g, =g toue) F—0p, —agq — @ Yoyt 1 —ayg

+abe-;é)1 . (6)

From this expression we can see the following.
() Ifk =0and o,z —,z >0,

B = T( - oz ) (= 0, )" By(— g, — @z + 0,5 - @)

* See ref. [15]. The definition of the hypergeometric function is given in ref. [16].
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Fig. 4. The singularity structure in s.q of the amplitude 7' in the dual resonance model. The
crosses correspond to poles and the thick line to a cut.

In this case the reggeon-particle amplitude is given by a B4 function. The derivation
of the FESR can be done as for a four a four-point function. If oz — ,z <0 but,
say, Qg — Q,z > — |, we can consider the amplitude

BSI = B5 _(S_K(;)abc aac[f‘i(_ Qyes = Opg Y0y ) I’( C“bé')(_ O‘ah)mbé (8)
C

As k = 0 we find that 135' reduces to a B, function as in eq. (7). The FESR
which were derived for apz - @,z > 0 can thus be continued to o — @,z <0
by substracting out the terms which are singular when k = 0. In the double-Regge
limit (3) this means that only the first (V) of the two terms is present. The FESR
are therefore going to relate an integral over the absorptive part in 5.4 to the first
term in the double-Regge limit, as we already anticipated above.

(ii) When k # O we can use the definition (4) to calculate T". The expression (6)
for T is real when the variables &, and ay, are negative. Continuing ay, to positive
values, using eq. (2) and the * i€ prescription at the branch point a4, = 0, we get

T = (= apg ) (- @) *¥ By(= g, — e + e )

XF(" U~ %cqs 1 — Ope +aaL_‘;sL)' 9)
cd

From eq. (9) one can directly sec the singularity structure of T in scq (fig. 4).
There is a series of poles corresponding to resonances at a g =n,n=0,1,2, ...
In addition the F-function gives rise to a cut 0 <54 < «. This cut corresponds to
a singularity of Bs on an unphysical sheet in s 4. Thus it cannot be determined
directly from experimental data. However, we may still derive a useful FESR from
the singularity structure of fig. 4. The cut 0 <s_4 <« gives in the FESR rise to a
term which is independent of the cut-off. It can therefore be eliminated by varying
the cut-off.

3.2. The perturbation theory model

Consider the five-point function 7T generated by a sum of Feynman diagrams in
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Fig. S. (a) Diagrammatic representation of the perturbation theory model considered in the
text. The internal lines correspond to scalar particles and the blobs T} and T, represent sums
of planar Feynman diagrams. (b) The same amplitude as in fig. Sa; the thick lines indicate the
encrgies which are dispersed in.

¢3 theory*. We may describe the amplitude by the diagram in fig. Sa, where the
blobs T} and T, represent sums of planar Feyman diagrams. We assume that the
amplitudes T} and T, satisfy unsubtracted dispersion relations:

= 01(51, 55¢)ds,
Ti((py t K2, 86)= | ———, (10)
1 a ac J (pd+k)2 _s]

and similarly for the amplitude T,. We shall also assume that T} and T, are Regge
behaved at high energy. Thus as sy = 0,

0151, Saz) = Br(Sag)sT2° an

with a similar relation for g, when s; = .
The five-point amplitude T of fig. Sa can now be expressed as (we take the mass

of the propagating particles to be u)
T= —igf{ol(sl,saé) 02(52»%6) d51d52d4k}{[k2 - #2] ((k+p, —Pc)2

W) [k +Pg —pp)? — 2] [(k +p)? - 51 [(k—pyp)? =51} (12)

Apart from the integrations over s, and sy, T has the structure of a simple box
diagram (fig. 5b). Converting to the a-representation [1], the integration over the
loop momentum can be done. We get then

s 5
01(51.547) 92(52,8p5 ) dsy dsy [ 1 daia(z o — ‘)
i=1 i=1
T=2gn? s (13)
[d +i€e]3

* For a review of the high-energy behaviour of Feynman diagrams, see ref, [1]. Models similar to
that presented here have been studied by, for example, Drummond et al. {11] and Sanda {6].
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Fig. 6. The single-Regge limit of the amplitude shown in fig. 5.

where
d =008, ¥ 01Q3S,5 T az04S.q T 5S4, + 04058,

2

+ajay mf + ayayms 2

+ a2a3 mg + 03(!5 mg + 011 (15 mb

— () tay taz)pu? —oys; —ags, . (14)

To find the structure of T in the single Regge limit of fig. 1 we let s, > —o°
and 54, = —oo keeping 54, /5,;, fixed. When —1 <oy <0 the leading contribution
to the integral in eq. (13) comes from large s,. Substituting the Regge expression
(11) for 0, we find (the derivation is given in the appendix)

4
- 1 5(Za,~— 1)
T=g7r3&(—s—bif ds)0y(sy,3, f ﬁ
0 0

SINT e i=1 (d' +ie)?
X (= 0y 5ge — Qg S,p)*bT (15)
where d’ is obtained from d by putting ag = 0:
d'=ajays,s +ajagsys + 305,y + a0y mg t+ay0y mg
toagagmi — (g + oy +az)u? —aysy (16)

The structure of the amplitude T in eq. (15) is essentially that of the box dia-
gram in fig. 6, the reggeon being treated as a scalar particle. The only difference is
that the integrand is multiplied by a factor (— a; 54, — a4 5,,)*P€, which describes
the correlations due to the Reggeon spin. It is interesting to note that the ampli-
tude (15) looks very similar to the DRM in this respect [17].

Consider now the limit k - 0. This implies s4, —~ 0 in eq. (15), so that the extra
factor in the integrand reduces to (— a4 s,;,)*E. The singularity structure of T is
then determined by the zeroes of the denominator function d’ in eq. (15). Hence
the reggeon-particle amplitude in fig. 6 has the singularity structure of a normal
four-point function.
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We must still verify that the integral over s; in eq. (15) converges. The behaviour
of 0y(sy,s,; ) at large sy is given by eq. (11) and ensures convergence of the re-
presentation (15) when ez - o,z > 0. If o5 — o, <O there is a singular term
in T when k — 0, proportional to (--k)*b® ~ *at The singularity does not depend
on sy and is therefore the same as the singularity in the double-Regge limit, eq.
(3). As in the case of the DRM above we can subtract this singularity from the
amplitude. The amplitude has then, for all values of a7 - - @,z , only the singulari-
ties which come from the vanishing of the denominator function d’ in eq. (15).

If k # 0 it can readily be seen that the amplitude 7', defined by eqs. (4) and
(15), has singularities in s 4 which are not associated with zeroes of the denomina-
tor furniction d'. However, as in the case of the DRM these new singularities are not
present in the leading term when Seg 7 In this limit the structure of T is given
by eq. (3). The only singularities of T (eq. (5)) are those of the first term in eq.(3),
and correspond to normal singularities in s 4 (i.c. to zeroes of the denominator func-
tion).

If follows that also when k # 0 the properties of the perturbation theory mod-
el (12) are similar to those of the DRM. An FESR can be derived, to which the
new singularities contribute a term which does not depend on the cut-off. This
term goes to zero in the limit k » 0.

4. Signature

Before we can write down the FESR we should construct amplitudes with
definite signature in the be and ac channels. Such amplitudes are most conveniently
described using variables which are symmetric (or antisymmetric) under crossing.
We shall begin be defining as set of such variables. We then discuss the effects of
signature in the double Regge limit. Finally we use the DRM to study the proper-
tics of the signatured amplitude in the single-Regge limit.

4.1. Crussing-symmetric variables

In the double-Regge limit (fig. 3) all the large variables have simple properties
under crossing. For example under line reversal in the ac channel (i.e. 2 <> C) sy, =
--$zp- This is no longer true in the single Regge limit (fig. 1). The three large varia-
bles 5,y,, Sz, and s4, are related through

Sge = Sab t Soo a7

(we ignore terms like s 4/s,, which vanish in the single-Regge limit). From eq. (17)
we can see that s4, is symmetric when a < C.. Instead of s, we shall choose as
our independent variable the combination o, which is antisymmetric when a <> ¢

0=3(s,, — Scp) - (18)
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Both 54, and o are antisymmetric under b <> e.
In analogy with four-point amplitudes we shall use the crossingodd variable v,

V=(pa+pc)'pd=scd+%(sai ~ Spe -2m3 _mg)’ (19)

to describe the reggeon-particle amplitude (instead of s4). Finally we define the
variable

USge
Ke=- — 20
£, (20)
which is symmetric both under a <= ¢ and b <= €, and replaces k =5_454./5,1, used
above.

4.2. The double-Regge limit

Let T, ;, be an amplitude with signature 7 in the b channel and 7, in the ac
channel. This amplitude can be constructed by adding four terms as in fig. 7, where
a cross indicates that the reggeon line is to be twisted. The double-Regge limit of
the amplitude in fig. 7a is given in eq. (1). The other amplitudes in fig. 7 are similar.
except that they have left-hand cuts in some of the large variables. The full ampli-
tude is then [13, 18, 19]

TTI Ty = [(_ g)“be— +T](0)abe_] l(_v)aaé T obE + ] 7'2(”)0‘:1E —abg] V] (sbg, Sqc 1K)
#[(~ 0)75% + 1 (0)7aT | [ 14,)%bC ~ e

t7 TZ(Sdc)ab€ - Qa?] Vz(satw She s K). (21)

The structure of T, in the double-Regge limit is similar to that of the ampli-
tude T (eq. (1)). There are two terms in eq. (21), the first of which has cuts in ¢
and v, and the second in ¢ and s54,. As before, only the first term in eq. (21) can be
dual to resonances in v. The second term may be eliminated either by taking the
limit k; = O (which implies s, = 0 in eq. (17)) or, if k; # 0, by defining a new
amplitude 7‘”72.

Analogously to what was done in sect. 2, we define 7‘7 -, by an analytic con-
tinuation in sgy,. In the physical limit of the amplitude L. .., all variables approach
their cuts from above (+i€). We denote this limit of 7, . by T . (s4¢ +i€). We
now define the limit T, (sq, —#€), where all variables approach their cuts from
above except s, which approaches from below (—/e). Tn n (s4e — 7€) can be ob-
tained from the physical limit by continuig s 4, along a circle, keeping o and v
fixed. This is illustrated in fig. 8 for the case of a term with a righthand cut in s4,.

When continuing sy, we have to take care not to encircle the branch points at
S,p = 0 and s, = 0, as these variables would then be evaluated in an unphysical
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Fig. 7. The four terms which have to be added to obtain a definite signature 7; in the be chan-
nel and 7, in the aC channel. A cross indicates that the reggeon line is to be twisted.

limit. It follows from eqs. (17) and (18) that this is ensured if |s4,/01< 2 during
the continuation. This restriction is of course, only relevant in the single-Regge
limit.

The definition of 7', . is the same as that of 7, given by eq. (4):

72

1

nr 2isinm(apg — @,z) [ei"(“bE ) aas)TTlfz(sde ti€)
—-e‘i"(“bﬁ"“af’i;],n(sde-—ie)]- (22)
In the double-Regge limit only the first term of 7, . (eq. (21)) contributes to
Tn .
Tr vy = (- 0)0F + 7,(0)*6 ] [(--v)at ~ @bE
+ 7 7(V)*aT T BT |V (spg, Sap 1K) (23)

We therefore expect that the »-discontinuity of T
singularities (resonances) in v.

r, iN€q. (23) is dual to normal

4.3. The single-Regge limit

We shall now investigate the structure of 7‘7112 in the single-Regge limit (fig. 1)
using the DRM. In this model Tr, 7, I8 asum of four By functions as in fig. 7. A
twist on a reggeon line indicates that the ordering of two particles is to be reversed.

The amplitude for the diagram in fig. 7a is given in eq. (6), and the other three
amplitudes can be obtained by replacing a < ¢, b <= €. All amplitudes consist of
two terms, of which only the first contributes to Tn ' The expression for T
in the single-Regge limit is thus

T172

T = I'(— e ) [(— 0)*PT + 7, (0)*bT]

T17)

1%s “bE '(s/u \
X [(1 *5;) By(—acq,—Qc +ope)F (—aba,—aw] —pg toug _—‘)

B+ ko
1 Ks\ *bE KU
Ty (] 3y By(—a,g,— 0,z topg)F (_o‘be'"o‘aa;]—abE Yoo ——71 -
L—iKs/vl

(24)
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WSG'-‘C

Fig. 8. The path of continuation in s 4, used in the definition of T.,I.r (sqe — i€). The singularity
structure is that of an amplitude with a right-hand cut in s4,. Note that the branch point of an
amplitude with a left-hand cut in s 4, is similarly encircled.

Fig. 9. The singularity structure in sy of the signatured amplitude 7' m the dual resonance
model. Crosses correspond to poles and the thick line to a cut.

d d
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Fig. 10. The two Bs functions given by eq. (25) in the text.

If in eq. (24) we let k; ~ O we find that T, - reduces to a sum of B, functions.

The only singularities of T , invare then the resondnce poles. When k; #0
7, has, in addition, a (,Ut m v for - 4 K, <v < Jk(see fig. 9). Hence the

properties of the signatured amplitude are very 31mllar to those of the non-signa-
tured amplitude that we discussed in the previous section.

There are two more Bg functions which contribute to the single-Regge limit, in
addition to the four shown in fig. 7. They are shown in fig. 10. Denoting their
combined contribution by Bs(s,u) we have
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Ks

BS(s’u) = F(_abE)[(_ O)QbE + 7'1 (U)QbE] (1 + %—;) *be

Kelv
X34(“%1,—%3)1’(—%6,—acd2—°‘cd—O‘aé;—) : (25)
1+ 3KV

The singularity structure of Bs(s, u) is the same as that of T,m in eq. (24) and
shown in fig. 9. Bs(s,u) is symmetric under a <= € and vanishes exponentially
[19] in the double-Regge limit. It must therefore be superconvergent.

We have now investigated all amplitudes that contribute to the single-Regge
limit in. the DRM. The properties of the amplitudes with definite signature in the
bt and a¢ channels are completely analogous to the properties of the amplitude
with only right-hand singularities, discussed in sect. 3. The conclusions about the
singularity structure which we reached in that section are therefore valid for the
full amplitude with right- and left-hand singularities.

A similar analysis can be done using the perturbation theory model described
in sect. 3. The conclusions reached are the same as for the DRM.

5. The finite-energy sum rules

We define the reggeon-particle amplitude f; (v, 5,z, Sz, &) for the process
a+i—c+d(fig. 1) by the relation
T e inai{spg)

T= e ) o) s

sin 7Sy )
In eq. (26), 7} is the amplitude related as in eq. (22) to the amplitude T; for the
process a + b = c +d + e, the reggeon i being exchanged in the be channel (fig. 1).
B{)E is the reggeon-particle-particle vertex function, and the definition of the varix
ables 0, v and « is given in eqs. (18), (19) and (20).

From our discussion above we expect that f;, as a function of v, has the normal
singularities of a four-point function when x; = 0. If k; # O there are additional
singularities which do not, however, contribute to the limit jv|— o of f;. In the
DRM these additional singularities take the form of a cut — § k, <v <1 K, (see
fig. 9).

According to (23) and 26) the behaviour of f; as v —> e is

_ ; 7,7+ exp [—im(a;(s,e) — % (spe))]
fi= 41\: Baz ac) sin 7 [o;(spz) — 4(5,5)]

X p%(sat) — @i (Sbe) Vi;'j(stvsaE;") , (27)
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where Viq is the part of the reggeon (i) -- reggeon (j) — particle (d) vertex which is
multiplied by v (i.e. V] in eq. (21)).

The FESR for the amplitude f; can now be derived in the standard way [3, 4].
They are

N
e (Spg s Sye i kg) + f dvw" Im [fi(v+ie)+ (- )" f(—v - i)
vo
= 22 (=)™ 5] Bl (5,0) Vi (v 5455 )
j

A/(X,'(Sazﬁ) - a,‘(&‘ha) +n+1

aj(sac) a;(spg)tn+l 7
where

. . | I . iy
Imf;(v tie)= ’—i[/’(y €, S 0, Spe» Ke) — (VT i€, 5,5, Spe, Kg)]

The integral in eq. (28) is over the normal four-point singularities of f; (i.e. pole
terms, resonances, etc.). The additional singularities of f; contribute the term
Cz(")

As discussed in the previous sections, cI(")(sbE , 8,61 Kg) vanishes as k. = 0. In
the DRM it is readily seen that

c',(n)(sb€ s SaE s Ks) & (Ks)n 1 as KS ~>0. (29)

For small k the higher moment sum rules are thus Jess sensitive to the unknown
()
term ¢;

6. Applications

At present the only way of obtaining Im f; (v) in eq. (28) from experimental
data is to assume that the absorptive part is dominated by the resonance contribu-
tions. The consistency of eq. (28) with the data can then be tested by varying the
cut-off V. This should be done at several values of k; and n, so that the restriction
(29) can be applied.

Such an application of the FESR is analogous to a recent analysis [8] of quasi-
two-body reactions using the inclusive FMSR. However, it should give considerably
more information, as not only the total production cross section of the resonances
but also their decay distributions can be correlated. In addition, one can avoid
certain resonances whose production mechanisms are not clearly understood (e.g.,
Q may contribute to K + f = anything but not to K + f > K + ).
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In general the two parts of the double-Regge vertex have to be generated
separately by summing over resonances in 5.4 and in s4, (and their crossed chan-
nels). In some applications, however, the two parts can be related to each other
by exchai.ge-degeneracy arguments. This happens in particular when particle d is a
n-meson and the reggecns exchanged are any of the four meson trajectors f-p-co-
A,. As we think this case may be of practical interest we shall discuss it in some
detail here.

Consider the system abcde = K™ K*K*7~ KO in the double-Regge limit as in
fig. 11a (all particles are treated as incoming). As in sect. 4 we shall assume that
t{le ?ontribution of a given exchange (&;(sy,z), aj(sag)) to the amplitude T is of
the form

T(i,/) = [(~0)%PF +7;,0%b ) [(~»)*aT ~ 0T 4 7,7.%aT = *bE] V, (i, j)

+[(-0)%® +7;0%T ] [(—5q,)°bT 7 T 4 1703 €] Vy(0). (30)

The full amplitude is
T=T(A5, D)+ T(A3, ")+ T(p", ) + T(o", AD). 31

By drawing the duality diagrams it is easy to see that the only planar diagram
is the one where the particles a, b, ¢, d, e are ordered as in fig. 1 Ia. This means that
the full amplitude 7 should have only a right-hand cut in each of the variables o,
v and s4,. Hence six of the eight terms in eq. (30) have to cancel in the sum (31).
This gives six relations between the vertex functions V,(i,7), k = 1,2. .

Six further relations can be obtained by considering the system abcde =
K*K" K% K* (fig. 11b). Combined with isospin invariance these relations imply
that all non-zero vertex functions V(i) are degenerate (k = 1, 2):

Vi(AS, D) = Vi (0", w) = Vi (A}, p°)
=—V,(f, AD) = — V(w, p*) = = V3 (0°, AY), k=1,2
Finally, observing that the process in fig. 11a is identical to the one in fig. 11b,
— +
Vi(AY, ) = Vy(AS, ).

It follows that all the vertex functions are related.

The degeneracy of the veitex functions means that the full double-Regge
vertex can be obtained by summing the resonances in only one system, e.g. ins 4.
Consistency with the sum of resonance in the other system (s 4. ) then requires
that the two sets of resonances must be related. These predictions make the applica-
tion of the FESR particularly interesting to reactions where f, p, w or A, are the
dominating exchanges.



P. Hoyer, J. Kwieciriski, Analyticity and a finite-energy sum rule 41

We are grateful to all our colleagues for helpful discussions. One of us (J.K.) is
indebted to Dr. R.J.N. Phillips for his kind hospitality at the Theory Division of the
Rutherford Laboratory, where this work has been done.

Appendix

In this appendix we shall derive the explicit expressions for the perturbation
theory amplitude 7 in the single- and double-Regge limits. The definition of T in
the non-asymptotic region is given by eqgs. (13) and (14). We shall assume that
~1 <ayg, @,z <0. 1t is straightforward to continue the expressions to arbitrary
values of the momentum transfers.

In the single Regge limit s, = —oo, 54, = —oo while s4./5,4, 5.4, Spz and §,¢
remain fixed. The leading contribution to the integral in eq. (13) comes from
large 5. Substituting the leading behaviour of g5,

OZ(SZ)Sb‘T):Bz(SbE)Sgbév 52 >0, (Al)
in eq. (13), the integral over s, can be explicitly done. We get

e~ imape

T=g77332(3b3)abe_ (abg - ]) W

5
- 1 s 6(§a,.—|)a;°ha -1
X 0,(sy, 8, ) ds [1 doy;—= . (A.2)
(f 1321 °ac 1(_)/‘ i=1 a’ [dll+l~e~|2——0b§

where

"o_
d” = as(0gsge t 0ys,) + A Ay, a)Sys
+ 008 g+ 0 QM2+ 0P + ayaame + ayeam?
3048cq + QoM+ apamC + cpagmy + agagm;

2
tajagmg — (o) + oy taz)u? —ays; . (A.3)

Because the large variables s 4, and s,;, both are multiplied by as in eq. (A.3),
the leading contribution to T comes from small a. If we scale as,

X

as = - ——+ H
QrS3e T X45ap

(A4)

the integral over x can be extended from zero to infinity. The expression for T is
then
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le(Xbe

T=g7r3ﬁ2(sb§)ab5(ab€ 'l) Sin Tatpg fds 01(51.5,%)

-1

1 4 4 o —aps
X f I1 daié(E o; — l) (-ap84e — X85, )*0E f dx x -
0 0

i=1 i=1 [d' - x +ie] =~ *bE
(A.5)

where the expression for d' is given in eq. (16). The integral over x in (A.5) can
be done explicitly and we then obtain the expression (15) for T in the single-Regge
limit.

Next consider the double-Regge limit. We have to let 5.4 ~ oo keeping s, =, Sz
and K = 5,454/, fixed in the expression (15) for T. Again, the dominant contri-
bution comes from large s, . Substituting the Regge behaviour (11) of 0, we get

B1(526)B(spe . I 4
T= _gn4_1(__z£bi)- e—maaEaaEf [T de, (EOL, .1)
sin o ¢ sin oy 4 i1
a; aze — 1
———1—&——-(—0(2%e — a45,,)%0¢ (A.6)
(d" + ie)! ~2az
where

d" = az045.4 * @y 0p8,c ¥ 0 Q355 +ala4m2

+ a0y mf + a0y m(Z1 - (o) oyt a3)/.12 . (A.7)
If we define the new integration variable z by

(12'(
&4 =z

» (A.8)

’

we get for the leading term in T,

By (54c)Br(spe) —_—
T= _gnt L 2CT 27087 o yeaT (s, )*bE ~ %l e iM%l
B gin ma,g sin mag g (--853)72¢ (= 5qe) ac

<
0

3 3 o s

- 1 +z)*be
[1 do;d (Z}lo.i— 1) agbe ~ at f dzz~%ac ! ( )
i=1 i= 0

i= d +o,03KzZ +ie)1_"‘aé ’
(A9)

where
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K#

-

RO
() (b)

Fig. 11. (a) The double-Regge limit of the process K™+ K* - K™+ n* + K°. All particles are

treated as incoming. (b) The same reaction as in fig. 11a, but with a change in the particle

ordering: a «-» b, c ~—e.

d =ajays,c t o assp, +a2a3m§ —(a) toy +a3)u2 (A.10)

The denominator (d + QayazKz + ie)! ~@at jp (A9) can be changed into an exponen-
tial using the formula

1 e imu

Az+ie)yu—1
_ e X dxa. (A.11)
(z +ie)* () 0

The resulting expression for T can then be expressed in terms of the confluent
hypergeometric function* ¥ (a, b; x). This function can be written [20] as a sum
of two entire functions ¢(a, b; x), which establishes the structure (1) of T in the
double-Regge limit. The explicit expression for the vertex function V; in eq. (1)
is

4 B1(sae) Balspe) Tlaye — ay¢)
sinma, o sinmoy s T(a,z)

Vi(Spe,Sagik)=—gnm

)

1 3 -
X f 11 de; 6 (Z} o — ]) a‘;aé - apg f dA A" obE e}\(J +ie)
0 i=1 o

i=1
X o(—opz, 0,z — opz +1; — ayag Ak). (A.12)
The amplitude T being symmetric, V| and V, are the same functions in this

model.
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