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Abstract: We consider a single-Regge limit of the amplitude for the process a + b ~ c + d + e. 
In this limit the amplitude is proportional to the reggcon-particle amplitude for a + i 
c + d, where i is a reggeon. We study the analytic structure of this amplitude using the 
dual resonance model and a perturhation theory model. We conclude that finite-energy 
sum rules can be derived, which relate the absorptive part of the amplitude at low 
(Pc +Pd )2 to a part of the double-Regge vertex function of the original five-point 
amplitude. We discuss some phenomenological applications of the sum rules. 

1. I n t r o d u c t i o n  

In this  paper  we shall invest igate  the  s t ruc tu re  o f  the  a m p l i t u d e  for  the  process  

a + b --* c + d + e, where  a, b, c, d and e are scalar part icles ,  in the  h igh-energy  l imit  

where  Sab --* oo, Sd c ~ ~o whi le  Sod is kep t  f ' txed***, fig. 1. In such a l imi t  the  five- 

poin t  a m p l i t u d e  is p r o p o r t i o n a l  to  the  reggeon-par t ic le  amp l i t ude  for a + i -* c + d, 

where  i is the  exchanged  reggeon.  A l t h o u g h  the  s ingular i ty  s t ruc tu re  o f  the  five- 

po in t  f u n c t i o n  is ra ther  com p l i ca t ed  in general  [ 1 , 2 ]  t ,  one  may  hope  t ha t  its 

s t ruc tu re  is s impler  in a h igh-energy l imit  like tha t  o f  fig. 1. This  would  t hen  make  

possible the  der iva t ion  of  f in i te-energy sum rules [3, 4 ] ,  wh ich  would  be useful  in 

the  analysis  of  da ta  for th ree-par t ic le  final states.  
As was recen t ly  shown ,  there  is an ana logous  s i t ua t ion  in the  case o f  inclusive 

react ions .  The  cross sec t ion  for a + b -* c + X is given by  a d i s con t inu i t y  of  the  

* Supported partially by a grant from the University of Helsinki, Finland. 
** Present address. 

*** We use the notation Sab = (Pa + Pb )2' Sa~- = (Pa - Pc )2, etc. 
t In ref. [2] the problem of formulating finite-energy sum rules for-five point amplitudes 

that relate the low-energy region in Sab to the single-Regge limit is considered. This paper 
also contains a discussion of the general analyticity structure of the amplitude. 
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Fig .  1. T h e  s i n g l e - R e g g e  l i m i t  o f  t h e  p r o c e s s  a + b --+ c + d + c. 

amplitude for a + b + e '+ a + b + e in the forward direction [5], fig. 2a. In the 
limit when the missing mass is much smaller than the total energy, i.e. Sab/Sab~ >)" 
1, the six-point amplitude is proport ional  to a reggeon-particle elastic amplitude 
(fig. 2b). in dual and ladder diagram models it turns out that the reggeon-particle 
amplitude has the singularity structure of  a normal four-point function. Hence one 
may write down finite-mass sum rules [6], which connect the low missing-mass 
region with the triple-Regge limit. First applications of  the FMSR to inclusive data 
are quite encouraging [ 7 - 9 ] .  

O. Q 

b j v . . ~  b b b 

C- c ~ c 

(a) (b) 

Fig. 2. (a~ The six-point amplitude which is related to the inclusive reaction a + b --* c + X. 
(b) A high-energy limit (Sab/Sab~ ~ ~ with Sbe- fixed) of the amplitude in fig. 2a. 

The reggeon-particle amplitude that we shall be concerned with here (fig. 1) is 
somewhat more general than the one encountered in inclusive distributions (fig. 
2b). In the case of  fig. 2b there is only one helicity amplitude contributing to the 
leading term, namely the one corresponding to a maximum helicity flip of  the 
reggeons [10]. By contrast,  there are many helicity states of  the reggeon contribu- 
ting [ 11 ] in fig. I. The dependence on the helicity in this case can alternatively be 
seen as a dependence on the variable r = ScdSde/Sab. The reggeon-particle ampli tude 
in fig. 1 also depends on the momentum transfer Sa~. In the case of  the inclusive 
reaction in fig. 2 the corresponding variables are equal to zero. 

The structure of  the amplitude for a + b -+ c + d + e in the double-Regge limit 
(Scd -+ oo in fig. 1 ) is already well-known [ I 0, 11 ]. In this limit the ampli tude 
decomposes into a sum of  two terms, with cuts in Scd and in Sde, respectively. We 
shall in the following be concerned only with a part of the five-point ampli tude 
which in the double-Regge limit gives the first term (with a cut in Scd). This is also 
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the part which contains the poles in she (when the reggeon is on-shell) and, accor- 
ding to the Steinmann relations [ 12], the normal threshold singularities and 
resonances in Scd. 

We investigate the singularity structure of  this part of  the amplitude in the 
single-Regge limit (Sod finite) using the dual resonance model (DRM) and a pertur- 
bation theory model. We find that when K = 0 the reggeon-particle anaplitude has 
the singularity structure of a normal four-point amplitude. 

The FESR which follow from this analytic structure relate the absorptive part 
of  the low Sod region to the first part of the double-Regge vertex. In the same way 
one can relate the other part of  the double-Regge vertex to the low Sde region. 

When K ~ 0 the reggeon-particle amplitude has singularities which are not present 
in normal four-point amplitudes. These singularities do not, however, contribute 
to the leading term in the discontinuity as Scd ~ oo. The effect of  the new singulari- 
ties in the FESR is therefore that of an additional term which is independent of  
the cut-off. 

In sect. 2 we discuss the structure of  the amplitude in the double Regge limit. 
The single Regge limit is considered in sect. 3, where we investigate the analytic 
structure of  two models, the dual resonance model and a perturbation theory 
model. The structure of  the two models turns out to be very similar. In sect. 4 we 
discuss the modifications due to left-hand singularities and signature. All essential 
properties found in sect. 3 remain unaltered for the signatured amplitudes. The 
FESR are derived in sect. 5 and some applications are considered in sect. 6. 

2. The double-Regge limit 

We shall begin our investigation of  the analytic structure of  the five-point 
amplitude by considering the double-R'egge limit (fig. 3). This is defined by letting 

Sab, Sod, Sd e -+ oo keeping Sa~, Sb~- and K = ScdSde/Sab fixed. The structure of  the 
amplitude in this limit has been investigated by several authors [10, 11, 13]. It has 
been shown that an amolitude with only right-hand cuts in the asymptotic variables 
takes the form* 

T = (-Sab)abe- (-- .Scd)aag - abe g I (Sb~-, Sag ; K) 

+ (--Sab)aa ~- (--Sde) ab~ - aa~- V2(sai- ' Sbe ; K) , (1) 

where abe  -- o~(Sbe-), etc. The vertex functions V l and V 2 are entire functions of  K. 
The important  feature of  the decomposit ion of  T in eq. ( l )  is that only the 

first (second) term has a discontinuity in Scd(Sde ). If, according to duality, the 
Regge terms in eq. ( I )  are "buil t  up" from resonances in Scd and Sde we therefore 

* This is true for amplitudes corresponding to planar Feynman diagrams and for planar dual 
models. For an example of the structure of a non-planax model see ref. [ 14 ]. 
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Fig. 3. The double Regge limit of the process a + b --* c + d + e. 

expect the first term in eq. (1) to be connected with the resonances in seA and the 

second term with resonances in Sde. In fact, the residue of a resonance in sea is a poly. 
nomial in Sde and thus cannot contribute to the discontinuity in Sde (i.e. to the sec- 
ond term in eq. (I)) .  The first term in eq. (1) also contains the poles in abe when the 
reggeon i goes on-shell. From the point of view of duality in the system a + i ~  c ÷ d 
we therefore should consider only a part of the five-point amplitude T, which in the 
double-Regge limit gives the first term in eq. ( 1 ). 

In deriving the FESR we shall start from a dispersion relation in sea keeping 
Sab , Sag , Sbe- and K fixed (note that the limit Sab -," oo has aheady been taken as in 
fig. 1). The reason for keeping K fixed is that we want the high-energy limit of the 
reggeon-particle amplitude (Sod --', oo) to be related to the double-Regge limit of the 
five-point function. 

The variable Sde can be expressed in terms of the independent variables as 

K Sab 
Sdc = - -  • ( 2 )  

Scd 

substituting eq. (2) into the expression (1) for Twe get 

T = ( - S a b ) a b e  (--Scd )aae  - C~be [Vl  ( S b ¢ , S a e  ;K) + ( - K ) a b ~  - aac  V~(sz ac-,Sb~-'K)]. 

(3) 

Both terms in eq. (3) now have a cut in seA, due to the relation (2). However, 
as discussed above only the first term can be dual to resonances in seA. The second 
term can be eliminated in either of two ways: 

(i) By extrapolating to K = 0. If abe- - aac- > 0 the second term in eq. (3) 
vanishes. As we shall see below the situation is analogous in the single-Regge limit. 
Thus at ~ = 0 the reggeon-particle amplitude has only normal four-point singularities 

in Scd and a FESR can be derived. The FESR can be continued to abe- - aae < 0 
by subtracting out tile term which is ~ngular when K ~ 0. 

(i.i) By considering the amplitude T : 

1 [e in(c tb~  -- ~ae) T(Sde + ie) 
] '  = 2i sin rr (abe- - aae)  

- e -  in  (ab~ - aa~-) T(Sd e _ i e ) l  • (4) 
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In eq. (4), T(Sde -+ ic)  is tile ampl i tude  ob ta ined  in the single-Regge l imit  
let t ing Sde ~ oo above (+ ie) or below (-- ie) its cut. All o ther  variables are to be 
evaluated in their physical  limits.  It follows f rom eq. (1) or eq. (3) that  in the 
double-Regge limit 

= ( -  Sab) abe- ( -  Scd) aa~- - a b e  V 1 (SbE , Sa~- ; K) .  (5) 

In the next  sect ion we consider  the singulari ty s t ructure  of  ~P in the single Regge 
limit.  It turns out  that '  ~ has certain singularities in Sod which are not  present in 
normal  tour-point  ampli tudes .  These come from the term T(Sde - ie) in eq. (4), 
where the ampl i tude  T is evaluated in an unphysical  limit. Such singularities cannot  
be de te rmined  from exper imenta l  data. 

The addi t ional  singularit ies do not,  however,  con t r ibu te  to the leading term (5) 
o f  ]g in the double-Regge limit.  This term is buil t  up comple te ly  by the ordinary  
singularities in Scd: The only  effect o f  the extra  singularities in the F E S R  is there- 
fore to in t roduce  a constant  (i.e. cu t -of f  independen t )  term on the 1.h.s. o f  the sum 
rule. 

This term vanishes in the l imit  K ~ 0, so that  consis tency with (i) is achieved. 

3. The single-Regge l imit  

In this sect ion we shall discuss the proper t ies  of  the DRM and a pe r tu rba t ion  
theory model  in the single-Regge limit shown in fig. 1. We consider  ampl i tudes  
with only r ight-hand singularities, signature being in t roduced  in the next  section. 

3.1. The dual resonance model 

In the single-Regge limit of  fig. 1 the B 5 ampl i tude  can be expressed in terms 
of  the hypergeomet r ic  funct ion* F(a, b; c; z) 

B 5 = r ( -  O~bE-) ( -  ~ab )ab~ [B4(--O~cd , - ~a~- + °~b~) 

Scd] 

× B 4 ( - ~ a e - , - - a b ~  + a a e ) F ( - a a e , - a c d  - -aae +abe-  ; 1 - aae- 

+ a b e - : ~ ) ]  • 

F rom this expression we can see the following. 

(i) If  K = 0 and ab~ - ~ae > O, 

B5 = r(~_ OrbS. ) (._ 0tab)abe" B4 ( _  Crcd ' _ tVa~. + ab ~ )" 

(6) 

(7) 

* See ref. [ 15 ]. The definition of the hypergeometric function is given in ref. [ 16 ]. 
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Fig. 4. The singularity structure in Scd of the amplitude 7' in the dual resonance model. The 
crosses correspond Io poles and the thick line to a cut. 

In this case the reggeon-particle ampl i tude  is given by a B 4 funct ion.  Tile derivation 

o f  the F E S R  can be done as for a four a four-point  function.  If abe  -- aa~- ' (  0 but ,  

say, abe- - aa~ )" - 1, we can consider  the ampli tude 

B;=B 5 --( ~- -~abe-aac l~14( - -aac , - -ab~ + a a c ) F  ( a b e - ) ( - a a b )  abe- (8) 
\Scd ] 

As K ~ 0 we find that B;  reduces to a B 4 funct ion as in eq. (7). The F E S R  

which were derived for abe- -- aa~ ~ 0 can thus be cont inued to abe- - aa~ ( 0 

by substract ing out the terms which are singular when K ~ 0. In the double-Regge 

limit (3) this means that only the first (V I ) o f  the two terms is present.  The FESR 

are therefore  going to relate an integral over the absorptive part in Sod to the first 

term in the double-Regge limit ,  as we already ant ic ipated above. 

(ii) When • :/: 0 we can use the def ini t ion (4) to calculate 7 ~. The expression (6) 

for T is real when the variables aab and ade are negative. Cont inuing ade to positive 

values, using eq. (2) and the -+ ie  prescript ion at the branch point  ade = 0, we get 

= F ( -  ab~ ) ( -  aab)abeB4(  - acd , -- aa~- + abe ) 

X F  - a b ~ - , - a c d ; i  - - a b e  +aa~- ; . (9) 

F r o m  eq. (9) one can direct ly  see the singularity s t ructure of  ~P in Scd (fig. 4). 

There  is a series o f  poles corresponding to resonances at acd = n, n = 0, 1 , 2 , .  .... 

In addi t ion the F- func t ion  gives rise to a cut 0 < Sod ~< ~. This cut corresponds to 

a singularity o f B  5 on an unphysical  sheet in Sde. Thus it cannot  be de termined  
direct ly f rom exper imenta l  data. However ,  we may still derive a useful F E S R  from 

the singularity s t ructure  o f  fig. 4. The cut  0 ~< Scd ~< K gives in the FESR rise to a 

term which is independen t  o f  the cut-off.  It can therefore  be e l iminated by varying 
the cut-off .  

3.2. The perturbation theory model 

Consider the five-point funct ion  T generated by a sum of  Feynman  diagrams in 
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(a) (b) 
Fig. 5. (a) Diagrammatic representation of the perturbation theory model considered in the 
text. The internal lines correspond to scalar particles and the blobs T 1 and 7"2 represent sums 
of planar Feynman diagrams. (b) The same amplitude as in fig. 5a; the thick lines indicate the 
energies which are dispersed in. 

q~3 theory*.  We may describe the ampl i tude  by the diagram in fig. 5a, where the 
blobs  T 1 and T 2 represent  sums of  planar  F e y m a n  diagrams. We assume that  the 
ampl i tudes  T 1 and T 2 satisfy unsubt rac ted  dispersion relations: 

Tl((Pa + k)2,  Sa~_ ) = ; ° l ( S l '  Sac-)dSl , (10) 

0 (Pa + k )  2 - S l  

and similarly for the ampl i tude  T 2. We shall also assume that  T 1 and T 2 are Regge 

behaved at high energy. Thus as s t ~ o% 

O l ( S l , S a ~ )  ~-aulv tsa~)saac-1 ' (11)  

with a similar re lat ion for 0 2 when s 2 -+ ~o. 
The five-point ampl i tude  T of  fig. 5a can now be expressed as (we take the mass 

o f  the propagat ing  part icles to be / / )  

T :  - ig f (ol(s 1 ,Sa~-) o 2 ( s 2 , s b ~ )  d s l d s 2 d 4 k } { [ k 2  - / / 2 1  [(k +Pa - P c  )2 

- / / 2 1  [(k + P e - P b )  2 _ / / 2 ]  [(k +pa )  2 - S l ]  [ ( k - p b )  2 - s 2 l }  -1 . (12)  

Apar t  f rom the in tegra t ions  over s I and s 2, T has the s t ructure  of  a simple box  
diagram (fig. 5b). Conver t ing to the a - represen ta t ion  [1 ], the in tegrat ion over the 

loop  m o m e n t u m  can be done.  We get then 

O l ( S l , S a . c ) o 2 ( s 2 , s b ~ ) d S l d S  2 [ I  dcti6 a i -- 1 
i = 1 "= 

T = 297r2f , (13)  
[d + ie ] 3 

* For a review of the high-energy behaviour of Feynman diagrams, see ref. [ l ]. Models similar to 
that presented here have been studied by, for example, Drummond et al. [ 11 ] and Sanda [6 I. 
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Fig. 6. The single-Regge limit of the amplitude shown in fig. 5. 

where 

d = o~la2Sac- + O~la3Sb~- + t:~3a4Scd + a2aSsde  + a4a5Sab 

+ a l a4 m 2 + a 2 a  4m2c + a 2 a  3 m 2 + a 3 a  5 m 2 + a l a 5 m 2 

-- (or I + a  2 + a3)/a2 -- a4s  I - a 5 s  2 • (14)  

To find the s t ructure  of  T i n  the single Regge l imit  of  fig. 1 we let Sab -~ _co 
and Sde -+ --co keeping Sde/Sab fixed. When - l < a b e  < 0 the leading con t r ibu t ion  
to the integral  in eq. ( l  3) comes from large s 2. Subs t i tu t ing  the Regge 'express ion 
( l  1) for o 2 we find ( the  der ivat ion is given in the appendix)  

/32($be-) d$1 Ol(S 1 , Sap) N d R. i=l 
T = grr 3 sl~n/rabE 0 0 i=1 (d '  + i e )  2 

X (-- a2Sde -- a4Sab) c~b~- , (15)  

where d '  is ob ta ined  f rom d by  put t ing  a 5 = 0: 

d '  = a I a 2 Sap + a I a 3 Sbb- + a3o~ 4 Sod + a I a 4 m 2 + a 2 a  4 m 2 a c 
+ a 2 a 3  m 2  -- ( a  1 + a 2 + ct3)/a2 - a 4 s  1 . (16)  

The s t ructure  o f  the ampl i tude  T in eq. (15)  is essential ly that  o f  the box  dia- 
gram in fig. 6, the reggeon being t rea ted  as a scalar part icle.  The only difference is 
that  the in tegrand is mul t ip l ied  by a factor  ( -  ot2Sde - ct4Sab )abe-, which describes 
the corre la t ions  due to the Reggeon spin. It is interest ing to note  that  the ampli- 
t u d e  (15)  looks  very similar to the DRM in this respect  [17].  

Consider  now the l imit  r ~ 0. This implies  $de --} 0 in eq. ( 1 5), so that  the ext ra  
factor  in the in tegrand reduces to ( -  a 4 $ab) abe-. The singulari ty s t ructure  of  T is 
then de te rmined  by  the zeroes of  the denomina to r  funct ion d '  in eq. (15).  Hence 
the reggeon-part ic le  ampl i tude  in fig. 6 has the singulari ty s t ructure  of  a normal  
four-point  funct ion.  
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We must still verify that the integral over s 1 in eq. (15) converges. The behaviour 
of  o 1 (s I , Sac ) at large s 1 is given by eq. (1 1) and ensures convergence of the re- 
presentation (15) when abe  -- aaV > 0. If abe- - aae < 0 there is a singular term 
in Twhen  K ~ 0, proport ional  to ( - K )  ab~ aae .  The singularity does not depend 
on Sod and is therefore the same as the singularity in the double-Regge limit, eq. 
(3). As in the case of the DRM above we can subtract this singularity from the 
amplitude. The amplitude has then, for all values of abe aae,  only the singulari- 
ties which come from the vardshing of  the denominator  function d' in eq. (15). 

I f~  ~ 0 it can readily be seen that the amplitude 7 TM, defined by eqs. (4) and 
(I  5), has singularities in Sod which are not associated with zeroes of  the denomina- 
tor function d'. However, as in the case of  the DRM these new singularities are not 
present in the leading term when Sc~-~ oo. in this limit the structure of T is given 
by eq. (3). "lqae only singularities of  T(eq.  (5)) are those of  the first term in eq. (3), 
and correspond to normal singularities in Sod (i.e. to zeroes of  the denominator  func- 

tion). 
If  follows that also when K 4 :0  the properties of the perturbation theory mod- 

el (12) are similar to those of  the DRM. An FESR can be derived, to which the 
new singularities contribute a term which does not depend on the cut-off. This 
term goes to zero in the limit K --, 0. 

4. Signature 

Before we can write down tile FESR we should construct amplitudes with 
definite signature in the bE and aT channels. Such amplitudes are most conveniently 
described using variables which are symmetric (or antisymmetric)  under crossing. 
We shall begin be defining as set of  such variables. We then discuss the effects of  
signature in the double Regge limit. Finally we use the DRM to study the proper- 
ties of  the signatured amplitude in the single-Regge limit. 

4.1. Crossing-symmetric variables 

In the double-Regge limit (fig. 3) all the large variables have simple properties 
uiider crossing. For  example under line reversal in the a~- channel (i.e. a ~ ~-) Sab = 
--sc- b. This is no longer true in the single Regge limit (fig. 1). The three large varia- 

bles Sab, S~- b and Sde are related through 

Sd e = Sa b + s~ b (17) 

(we ignore terms like Scd/Sab which vanish in the single-Regge limit). From eq. (17) 
we can see that Sde is symmetric when a ~ E-. Instead Of Sab we shall choose as 
our independent variable the combinat ion o, which is antisymmetric when a ~ ~-: 

o = ~ (Sab -- Seb ) .  (18) 
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Both Sde and o are antisymmetric under b ~ ~. 
In analogy with four-point amplitudes we shall use the crossingodd variable v, 

v = (Pa + P c ) " P d  = Sod + ~ (Sa~- - s lo~  " 2m2 - rn2) ,  (19) 

to describe the reggeon-particle amplitude (instead of  sod). Finally we define the 
variable 

OSde 
K~ = - - ( 2 0 )  

0 

which is symmetric both under a +--~ ~- and b +--+ F, and replaces K =ScdSde/Sab used 
above. 

4. 2. The double-Regge limit 

Let Tr~ r2 be an amplitude with signature 7-1 in the bE channel and 7-2 in the aC: 
channel. This amplitude can be constructed by adding four terms as in fig. 7, where 
a cross indicates that the reggeon line is to be twisted. The double-Regge limit of  
the ampli tude in fig. 7a is given in eq. (1). The other amplitudes in fig..7 are similar. 
except that they have left-hand cuts in some of  the large variables. The full ampli- 
tude is then [13, 18, 19] 

Trl~'2 = [ ( - ° ) a b e -  +7"1(O) abe- ] [ ( - ° )  ~'a~ - abe- + T17-2(o)aac --abe-] Vl(Sb~,Sa~ ;K) 

+ [ ( -  o) eaE + r2(o)aaE ] 1(-  Sde)~'b5 - aae 

+ 7-1 7-2(Sde)ab~ - aa~- ] g2(sa~. ' $b~-; K) .  (21) 

The structure of  Trot2 in the double-Regge limit is similar to that of  the ampli- 
tude T (eq. (1)). There are two terms in eq. (21 ), the first of  which has cuts in o 
and v, and the second in o and Sde. As before, only the first term in eq. (21) can be 
dual to resonances in v. The second term may be eliminated either by taking the 
limit K s ~ 0 (which implies Sde ~ 0 in eq. (17)) or, ifK s 4: 0, by defining a new 

amplitude ~ r l  r2" 
Analogously to what was done in sect. 2, we define ~'r~ r2 by an analytic con- 

t inuation in Sde. In the physical limit of  the amplitude Trt rz all variables approach 
their cuts from above (+ie).  We denote this limit of  Trl r2 by Tzl r2 (Sde+ ie). We 
now define the limit Trl r2 ( S d e -  ie),  where all variables approach their cuts from 
above except Sde , which approaches from below ( -  ie). Tr~ r2 (Sde - ie) can be ob- 
tained from the physical limit by continuig Sde along a circle, keeping o and v 
fixed. This is illustrated in fig. 8 for the case of  a term with a righthand cut in Sde. 

When continuing Sde we have to take care not to encircle the branch points at 
Sab = 0 and Sc-- b = 0, as these variables would then be evaluated in an unphysical 
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o C Q C O C Q C 

b ~ ¢  b /  ~ " ' -  ¢ 

Fig. 7. The four terms which have to be added to obtain a definite signature rl in the bE- chan- 
nel and r 2 in the a~ channel. A cross indicates that the reggeon line is to be twisted. 

limit.  It fol lows f rom eqs. (17)  and (18)  that  this is ensured if ISde/O I < 2 during 
the cont inua t ion .  This restr ict ion is o f  course,  only  relevant in the single-Regge 
limit.  

The def in i t ion  of  ~ r l  r2 is the same as that  of  9, given by eq. (4): 

1 [e/rr(abE- - aa~)Trtr2(Sde + ie) 
~ r l  r2 = 2/ :s in  n(%E- - O~ae ) 

- e -  i,~(abE- - aae)Tr I r2 (Sde -- ie)]  . (22)  

In the double-Regge l imit  only  the first term of  Trt r2 (eq. (21))  cont r ibu tes  to 

~ , r  I ,r 2 " 

~rtr2 = [(_o)~bE- + r l ( o )  ~bE-] [ ( - - v ) a a e  - a b e  

+ r I r2(u)aag - abe: ] Vl(Sbg ' Sag ; K) . (23)  

We therefore  expect  that  the v-discont inui ty  of  ~'rt r2 in eq. (23)  is dual  to normal  
singularit ies ( resonances)  in v. 

4. 3. The single-Regge limit 

We shall now investigate the s t ructure  of  ~'ri r2 in the single-Regge l imit  (fig. 1) 
using the DRM. In this model  Trl r2 is a sum of  four B 5 funct ions  as in fig. 7. A 
twist on a reggeon line indicates  that  the order ing of  two part icles is to be reversed. 

The ampl i tude  for the diagram in fig. 7a is given in eq. (6),  and the other  three 
ampl i tudes  can be ob ta ined  by replacing a *--+ ~, b ~ E. All ampl i tudes  consist of  
two terms,  o f  which only the first con t r ibu tes  to ~ r ,  r2" The expression for ~Prt r2 
in the single-Regge l imit  is thus 

~,~ .  = p( -%E-) [ ( -aVbe + q(o)~be] 

I ~¢s "~abE- + abE" ) F  ( -  °~bE- --°%d; 1 + aa~ ; " x [ ( l + ~ !  a4(-%d,-%~ ' - % ~  l-q-~/~l 

+ r l r  2 l --2--0-] B 4 ( - ~ a a , - ° ~ a e  - +~b~ ) F  --°%~,--°ead;l--~XbE- + ~ a e ;  i_~Ks]O~ 

(24) 
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Fig. 8. The path of continuation in Sde used in the definition of T_ _ (Sde - ie). The singularity 
t l  ~2 

structure is that of an amplitude with a right-hand cut in Sde. Note that the branch pomt of an 
amplitude with a left-hand cut in Sde is similarly encircled. 

-~K s 
I 

Fig. 9. The singularity structure in Scd of the signatured amplitude ~ l z 2  in the dual resonance 
model. Crosses correspond to poles and the thick line to a cut. 

. 'F,  

b""" b • 

Fig. 10. The two B s functions given by eq. (25) in the text. 

I f  in  eq. ( 24 )  we let  K s ~ 0 we f ind tha t  ~'~'1 zz reduces  to a sum o f B  4 funct ions .  

The  on ly  s ingular i t ies  o f  ~'T~ T2 in v are then  the  resonance  poles. When K s v 6 0 

K s (see fig. 9). Hence  the  ~'rl  r2 has,  in add i t ion ,  a cut  in u for -- ~ K s ~ u ~< 
p roper t i e s  o f  the  s igna tured  a m p l i t u d e  are very similar  to those  o f  the non-signa-  

tu red  a m p l i t u d e  tha t  we discussed in the  previous  sect ion.  

There  are two more  B 5 func t i ons  which  c o n t r i b u t e  to  the single-Regge l imit ,  in 

add i t i on  to the  four  s h o w n  in fig. 7. They  are s h o w n  in fig. 10. D e n o t i n g  the i r  

c o m b i n e d  c o n t r i b u t i o n  by  Bs(s ,  u) we have  
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1 Ks] ab~ 
Bs(s ,u)  = F ( - a b ~ - ) [ ( - o )  ab~ + r I (o) ~b~] l + ~-~-] 

X B 4 ( - - a c d , - a a i l ) F  Ctbe-'- acd;--  acd - aad;  1 +½Ks~O/ " (25) 

The singularity structure o f B s ( s , u  ) is the same as that of  l"r~T2 in eq. (24) and 
shown in fig. 9. Bs(s ,u )  is symmetric under a ~ g and vanishes exponentially 
[-19] in the double-Regge limit. It must therefore be superconvergent. 

We have now investigated all amplitudes that contribute to the single-Regge 
limit in. the DRM. The properties of  the amplitudes with definite signature in the 
bg and ag channels are completely analogous to the properties of  the amplitude 
with only right-hand singularities, discussed in sect. 3. The conclusions about the 
singularity structure which we reached in that section are therefore valid for the 
full amplitude with right- and left-hand singularities. 

A similar analysis can be done using the perturbation theory model described 
in sect. 3. The conclusions reached are the same as for the DRM. 

5. The finite-energy sum rules 

We define the reggeon-particle amplitude f i (v ,  Sac, Sbe , Ks) for the process 
a + i --> c + d (fig. l) by the relation 

T i + e -  irrai(Sbe ) 

~i = J3~- (Sb~-) sin/ro~i(Sb~_ ) Oai(Sbe )f/ . (26) 

In eq. (26), ~i is the amplitude related as in eq. (22) to the amplitude ~ for the 
process a + b ~ c + d + e, the reggeon i being exchanged in the b~ channel (fig. 1). 
j3~- is the reggeon-particle-particle vertex function, and the definition of  the vari-_ 
ables o, v and K s is given in eqs. (18), (19) and (20). 

From our discussion above we expect that f/, as a function of  v, has the normal 
singularities of  a four-point function when K s = 0. If g s 4 :0  there are additional 
singularities which do not, however, contribute to the limit I vl -* '~ o f f  i. In the 
DRM these additional singularities take the form of a cut - ~ r s ~ v ~ } K s (see 
fig. 9). 

According to (23) and 26) the behaviour o f f / a s  o ~ ,~ is 

f ir  / + exp 1-  ilr(c~.(Sa~ ) - o~.(Sbe)) ] 

f / =  ~ ~ e  (Sae) sin zr [o~/(Sb~- ) -- al-(sa~)] j. 

X Ua] (sa~-) - ai(Sbe) V//.d(sb~, Sap ; K) , (27) 
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where I/id is the part of  the reggeon (i) -- reggeon (]) - particle (d) vertex which is 
multiplied by v (i.e. V 1 in eq. (21)). 

The FESR for the amplitude f /can now be derived in the standard way 13, 4]. 
They are 

N 

c~n)(Sbe ,sac.; Ks) + f dv u n lm [ ] ; ( v + i e ) + ( - 1 ) n + l f i  ( -  v - ie)] 

OO 

: ~ [1+(--1) n+l Tirj] ~-(Sa~-)vid(sb~,SaE'K s) 
/ 

/VCj(SaV) - ai (sbE)  + n + 1 
× (28) 

~/(Sac) ¢xi(sbo-)+n+l ' 

where 
1 

Im f/(v -+ ie)  = ~ [  f / ( v  +- ie,  Sac,  She, Ks ) -- f / ( v  T- ie,  Sa~ , SbE , Ks) ] . 

The integr',d in eq. (28) is over the normal four-point singularities o f t  I- (i.e. pole 
terms, resonances, etc.). The additional singularities off i  contribute the term 
c~ n). 

As discussed in the previous sections, c~n)(sbE, Sac ; Ks) vanishes as K s ~ 0. In 
the DRM it is readily seen that 

c ~ " ) ( s b e  - , s . , ~ ;  K s )  = (K~)  '~ ÷ ] as K s ~ 0 . (29) 

For small K s the higher moment sum rules are thus less sensitive to the unknown 
term c! n). 

l 

6. Applications 

At present the only way of  obtaining lm f/(v) in eq. (28) from experimental 
data is to assume that the absorptive part is dominated by the resonance contribu- 
tions. The consistency of  eq. (28) with the data can then be tested by varying the 
cut-offN. This should be done at several values ofK s and n, so that the restriction 
(29) can be applied. 

Such an application of  the FESR is analogous to a recent analysis [8] of  quasi- 
two-body reactions using the inclusive FMSR. However, it should give considerably 
more information, as not only the total production cross section of  the resonances 
but also their decay distributions can be correlated. In addition, one can avoid 
certain resonances whose production mechanisms are not clearly understood (e.g., 
Q may contribute to K + f ~  anything but not to K + f ~  K + lr). 
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In general the two parts of  the double-Regge vertex have to be generated 
separately by summing over resonances in Sod and in Sde (and their crossed chan- 
nels). In some applications, however, the two parts can be related to each other 
by excha~,gc-degeneracy arguments. This happens in particular when particle d is a 
n-meson and the regge(ms exchanged are any of  the tbur meson trajectors f-p-w- 
A 2. As we think this case may be of  practical interest we shall discuss it in some 
detail here. 

Consider the system abcde = K-K+K+rr  - ~0 in the double-Regge limit as in 
fig. 1 la  (a l  1 particles are treated as incoming). As in sect. 4 we shall assume that 
the contr ibut ion of  a given exchange (cS.(Sb~), aj(Sae)) to the amplitude T is of  
the form 

T(i , ] )  = [ ( - o )  abe- + ri oabe ] [ ( - v )  aa~ - '~be + TirjaaE - a b e ]  V1 (i,]) 

+ [ ( - o )  aa~ +7"]G aaE ] [ ( -Sde)  abV - aac + 7".7".S ab[  - aac-] V2(J,i) (30) t l  de 

The full amplitude is 

T = T(A~,  f) + T(A~,  pO) + T(p+,  w)  + T ( p  +, AO). (31) 

By drawing the duality diagrams it is easy to see that the only planar diagram 
is the one where the particles a, b, c, d, e are ordered as in fig. 11 a. This means that 
the full ampli tude T should have only a right-hand cut in each of  the variables o, 
v and Sde. Hence six of  the eight terms in eq. (30) have to cancel in the sum (31). 
This gives six relations between the vertex functions Vk(i, j),  k = 1,2. 

Six further relations can be obtained by considering the system abcde = 
K÷K - K07r-K + (fig. 1 l b). Combined with isospin mvariance these relations imply 
that all non-zero vertex functions Vk(i,] ) are degenerate (k = 1,2):  

Vk(A+2 , f) = Vk(P +, w )  = Vk(A+2 , po) 

- Vk(f, A~) = - Vk(w,  p+) = - Vk(P °, A~),  k = 1 ,2  

Finally, observing that the process in fig. 1 la  is identical to the one in fig. l lb,  

C) = V2(A , O. 

It follows that all the vertex functions are related. 
The degeneracy of  the vertex functions means that the full double-Regge 

vertex can be obtained by summing the resonances in only one system, e.g. in Sod. 
Consistency with the sum of  resonance in the other system (Sde) then requires 
that the two sets of  resonances must be related. These predictions make the applica- 
tion of  the FESR particularly interesting to reactions where f, P, co or A 2 are the 

dominating exchanges. 
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Appendix 

In this appendix we shall derive the explicit expressions for the perturbation 
theory amplitude T in the single- and double-Regge limits. The definition of  T in 
the non-asymptotic region is given by eqs. (13) and (14). We shall assume that 
--1 < a b e ,  aa~- <( 0. It is straightforward to continue the expressions to arbitrary 
values of  the momentum transfers. 

In the single Regge limit Sab ~ --0% Sde ~ - o o  while Sde/Sab , Sod , Sb~- and Sae- 
remain fixed. The leading contribution to the integral in eq. (13) comes from 
large s 2. Substituting the leading behaviour of  o 2, 

O2(S 2, Sb~-) --~/32(Sb~-)s~be- , s2 ~ oo, (A.1) 

in eq. (13), the integral over s 2 can be explicitly done. We get 

T = grr3/32(Sb~- ) ab~ (ab~ -- l ) e_-- irrabe 
sin/rabF 

X ; o,(Sl,Sag)Cls I f [] am. "=' 
0 0 i= 1 [d" +ie] 2-abe- (A.2) 

where 

d "  = a5(ct2Sde + a4Sab ) + ala2Sa~ + ala2Sb~- 

+ a3a4Scd + t~ 1 a 4 m 2 +  a2a4m2 + a2a3m2 + ot.2a, rn 2 

+ a l a 5 m  2 - (a ! + a 2 + a3)/.t2 - a4s I . (A.3) 

Because the large variables Sde and $ab both are multiplied by a 5 in eq. (A.3), 
the leading contribution to T comes from small a 5. If we scale a5, 

X 
a 5 - , (A.4) 

a2Sde + a4Sab 

the integral over x can be extended from zero to infinity. The expression for T is 
then 
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irrab~ 
e -  

T = gTr3(32(Sbe)ab~ (abe 1 ) J _ 7 dis I Ol(Sl ,Sa~.  ) 
sin rrab~- 0 

X F J i~I 1 d0~i6 O~i-- 1 (-a2Sde--Ot4Sab) abe- d x -  
o = - o [ d ' - x + i e ]  2 - ' ~ b e  

(A.5) 

where the expression tbr d' is given in eq. (16). The integral over x in (A.5) can 
be done explicitly and we then obtain the expression (15) for Tin the single-Regge 
limit. 

Next consider the double-Regge limit. We have to let Scd ~ oo keeping Sae, Sb~: 
and K = ScdSde/Sab fixed in the expression (15) for T. Again, the dominant contri- 
bution comes from large s I . Substituting the Regge behaviour (11) of o I we get 

/31 (Sa~-)/~2(Sb¢) 
T = - gTr 4 

sin 7raat :- sin Zrabiy 

, 4  

('1 "= 

ot 4 aa~- - 1 
X ( -a2Sde  -- a4Sab) ~b6- , (A.6) 

(d'" + ie) 1 - % e -  

where 

d ' "  = o~3a4Scd + 0~1 o¢2SaE + alO~3Sb~- + a l a 4 m  ~ 

+a2a4  m2 + a2o~3md 2 - (a I + a  2 + a3)/a2 . c 

If we define the new integration variable z by 

O~2K 
~ 4 = - - Z ,  Scd 

we get for the leading term in T, 

T -gTr 4 J31(sac)J32(sb~) (--Sab) aae (-.Sde) ~b~ - C~a~ e -  in%-c- 
= ~ a c -  sin rraat- sin nabe- 

(A.7) 

(A.8) 

i 3  3 f 
× ; ~ dais ( / ~ l ° 7 " - l )  a~be- -~ac  dzz - % ~ - 1  

0 = 0 

(1 + z) abe 

( f f  + a 2 a 3 K z  +ie) 1 -aa~: 

(A.9) 

where 
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K" K" K" K* 

'1"1""  ~ ' W - i  

K " ' '~ ' ' -  ~ K* K-  K" 

(a) (b) 
Fig. 11. (a) The double-Regge limit of the process K- + K' • K- + rr ÷ + K c. All particles are 
treated as incoming. (b) The same reaction as in fig. 1 la, but with a change in the particle 
ordering: a .... b, c ~ e. 

J = a la2Sa~  :- + a l a 3 s b e  +a2a3m2d - - (a  I + a 2 + a3)/a2 (A.10)  

The denomina to r  ( d  + a2a 3 gz + ie) I -C'a~ in (Ag)  can be changed into an exponen-  
tial using the formula 

(z + ie) u 

e- i r ru  ; eX(Z+ie)~ g - I  dX 
r(~) 

0 
(A. ll) 

The result ing express ion for T can then be expressed in terms o f  the conf luent  
hypergeomet r i c  funct ion* qJ(a, b ;x ) .  This funct ion can be wri t ten  [20] as a sum 
of  two entire funct ions  ¢ (a ,  b; x) ,  which establishes the s t ructure  ( 1 ) of  T in the 
double-Regge l imit .  The expl ici t  express ion for the vertex funct ion V I in eq. ( I )  
is 

131(Sae)132(Sb~-) r (ab~-  - aa~- ) 
V 1 (Sb~-, Sag ; K) = - g u  4 sin 7raae- sin rrabe- r (  .aae- ) 

~ ~t (i_~ 1 !) ot3a~. __abe_ ; X _ab~  X(d.+ie  ) X (-I do~i5 a / -  d e 
0 i=1 - 0 

X ¢ ( - - a b e - ,  aa~ - -abe-  + 1; - a2c~ 3 ~g).  (A.12)  

The ampl i tude  T being symmetr ic ,  V 1 and V 2 are the same funct ions  in this 
model .  
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