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Abstracted from a dual model, we present a concrete ansatz for the light-cone spectral function F(a, ~, t) recently 
discussed by Gatto and Preparata and give the correct continuation prescription from deep inelastic scattering to the 
annihilation region. We discuss the scaling properties of this ansatz and, in particular, show that the deep inelastic 
structure functions fulfill a new type of Gribov-Lipatov reciprocity relation. 

In a recent paper [ 1 ] we have constructed a dual model for the Compton amplitude* A(s, t; q2, q2) with the 
following interesting properties: 

(i) The model exhibits generalized Mandelstam analyticity. In particular, it incorporates broad resonances with- 
out introducing ancestors. Mandelstam analyticity allowed us to continue the amplitude from the deep inelastic 
scattering to the annihilation region. 

(ii) The good factorization properties of  the original Veneziano amplitudes are preserved. The model reduces 
to a Veneziano type amplitude in the limit of  linear trajectories. 

(iii) The scaling behavior is intimately connected with the current algebra fixed pole at J = 1. This is achieved 
by a six-point ansatz similar to the one of Ademollo and Del Giudice [2]. 

In the scaling limit the full amplitude A(s, t; q2, q2), originally written in dual six-point function variables, is 
reduced to (here we only write the st-term, the ut-term is given by crossing) 

1 1 -a  
A(s,t;q2,q2)=- f da f dfJF(a,fJ, t ) / [½(q2+q2)(1-a)+ I 2 2 + ~(q l -q2) /3  sa] (1) 

0 -(1-~)  

where 

1--a 2 2 c 1+~ 2 2 -c+c'+at(t,4a/[ (1+a)2-~])-2 
F(a,f3, t) = Na -at(t'4a/[(l+a)2-t~l \ 4 ] \ 4 ] (2) 

and 

at(t, "t) = ta't(t(1-~/)2) + a(O). (3) 

2 2 The trajectory (3) (and analogous trajectories have been introduced in the s, q l  and q~ channels) was a choice [3] 
which allowed for Mandelstam analyticity even for positive arguments (provided that It~ (t)l ~ O(I tl-1/2)) but  
maintained the good properties (ii). Here c and c'  correspond to constant "trajectories" in the mixed channels 
having lepton number ~ 1. The significance of  these constants will become clear in the following discussion. For 
linear trajectories, i.e., a' t = const., and c' = c + 2 our model coincides with the dual model of  Ademollo and Del 
Giudice [2] which, however, lacks Mandelstam analyticity. 
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Surprisingly, our form of  the Compton amplitude (1] is exactly the same as derived by Gatto and Preparata 
[4] from a light-cone dominated current commutator. It also can be understood as a DGS-Nakanishi representa- 
tion [5] with all mass terms neglected. Thus, even though the derivation of  eqs. (1) and (2) from a dual model 
was very instructive, we can look at our model amplitude as a self-supporting ansatz bearing in mind, however, 
the origin of  the constants c and c'. In the following we shall discuss this particular ansatz for the light-cone spec- 
tral function in respect to deep inelastic electroproduction and annihilation. 

The corresponding deep inelastic scattering structure function (s > 0, q2 = q2 = q2 < 0) F(x) = vW 2 = (2v/rr) 
Im A(s, 0; q2, q2) is given by 

1-x  
F(x) = f dfl F(x, 13, O) 

- ( l - x )  

f ( l+x)  2 1 x)2/3 '2 - ' - = Nx-a(O)+l(1-x) 2c+1 (4) 

-1 

where x = - q2/2v. Eq. (4) clearly exhibits Regge behavior for x -+ 0 while at threshold, i.e., x -+ I,  we Fred F(x) 
"~ ( 1 -x)2C+l. 

In the Regge region A(s, t; q~, q2) is dominated by the current algebra fixed pole* (which was one of  the pil- 
lars of  our model) 

2 2 1 ~ 'da  I f  ~ 
AFp(S, t; q l '  q2 ) = -- di3 F(a,~, t). (5) 

Current algebra now requires that the residue be of  the form 

1 l - a  

f dt3F(a,fl, t)=Eel(t) (6) a 
0 - ( l - a )  

where Eel(t) is the electromagnetic (pion) form factor. For t = 0 this essentially gives the Adler sum rule [7] as 
can easily be verified by comparison with eq. (4). 

In the dual model [1 ] the electromagnetic form factor Fel(t ) is obtained through factorization at the lowest 
s-channel pole (i.e., the pion pole) which led to 

1 

Eel(t ) = 2~/ f 'dy  y -at(ty)(1-y)c. (7) 

0 

We can easily check that Eel(t ) ~ ttt -c-1 as t ~ ~ .  This proves the Dre l l -Yan relation [8] between the threshold 
behavior of  the structure function and the large momentum decrease of  the form factor. For large t, expression 
(7) is also consistent with the left-hand side o f  eq. (6). However, in order to achieve consistency for general t we 
have to include satellite terms** a t ~ a t - 1, a t - 2 ,  etc. in F(a, ~, t). 

Now we shall consider the continuation ofA(s ,  0; q l  2, q2) to the deep inelastic annihilation region s, q2 > 0, 
q2 ~ = q2 _+ ie. This has previously been discussed by  Gatto and Preparata [4] whose ideas we shall closely follow. 
In't~his region we expect A(s, 0; q2, q2) to scale with the structure function if(x) = vW 2 = (2v/rr)ImA(s, 0; q2 + ie, 1 2 
q2 _ ie). The correct relation between if(x) and the analytic continuation o f F ( x )  in x to x > 1 now reads 

F(x)  = - Re F(x) + a(x) (8) 

* Note that the variable c~ is exactly the infinite momentum variable appearing in the parton model [e.g, 6]. 
** For details see ref. [1 ]. 
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Fig. 1. Integration path C h. 

where 

~discxl- '(x ), P ( x ) =  lim f d3F(x ,3 ,0 )  (9) G(x)  = 
X--* 0o C h 

with C a shown in ftg. 1. 
We differ from Gat to  and Preparata [4] in the integration path C x. From the explicit  form of  F ( ~ , 3 , 0 )  we can 

easily deduce how their choice of  C h fails1. The inequality [4] 

( ImF(x ) )  2 ~< G(x)(G(x) + 2 R e F ( x ) )  (10) 

1 implies I m F ( x )  = 0 if G(x) = 0. If  we now take C a as in ref. [4] we obtain G(x) = 0 as long as c' + ct(0) - 2 < - 
since C a can then be closed at infinity around the upper half-plane. However, we find that  I m F ( x )  ~ 0 for x > 1 
and noninteger c which contradicts inequality (10). 

For  c '  + a(0)  - 2 < - ~ the contour C x can be deformed, e.g,, around the left-hand cut (dot ted  line in fig. 1) 
which explicitly givest"'~ (x 1> 1) 

G(x) =-2Nfin27rex-a(O)+l l fx  dr3( (1-x)2-(32~c((l+x)2-32]-c+c'+~(O)-24 ] \  -4 I 

- ( l - x )  

+1 , 1--3 '2 ( l+x)2-- (1- -x)2~ '2 (11) 

-1 

For  integer c (i.e., for multipole behavior of  the electromagnetic form factor) this leads to 

E'(x) = -F(x)  (12) 

t The source lies in the wrong symmetry argument leading to their eqs. (2.16) and (2.17). From F(~, 3) = F(,*,- 3) we obtain 
fo d~F(x(l+li/g), ~+ie) = l 0 d~F(x(1 +ll/g), - ti - ie) = j.k d~ F(x(1 -~/h), ~-ie) which results in our different integration 
- g  -K  2 20 path C h. This path guarantees the symmetry in ql and q2- 

t~ Note that one has to be very careful applying symmetry arguments since the symmetry depends on the choice of the branch 
cuts. 
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where F(x) turns out to be the analytic continuation o fF (x )  (and thus F(x) is, in principle, determined by F(x) 
though, in practice, this is a difficult task). Eq. (11) is now consistent with inequality (10) as can be deduced from 
eq. (4). Furthermore, we see that the Drell-Yan relation remains valid even in the annihilation region since G(x) 
has the same threshold behavior as F(x). 

(the physical meaning of  c' will be discussed later) P(x) does no longer exist. However, For c '  + a(0) - 2/> - 
we still can derive the general relation (8) with G(x) given in eq. (11) by first taking the discontinuity of  the in- 
tegral (9) and then letting ?~ go to infinity. This is justified because, in our model the discontinuity of  the integral 
(9) vanishes for 1/31 ~> x - t .  In other words, the infinite part of  F(x) has no discontinuity and, hence, does not 
contribute to G(x). This choice of  c' only affects the (singular) behavior of  F(x) and G(x) at x ~ ~", but does not 
give rise to violation of  scaling, as argued by Gatto and Preparata [4].  

The continuation procedure so far discussed is fairly academic as it bears very little experimental significance. 
It seems much more appealing to us to look for a Gribov-Lipatov type of  reciprocity relation [9] which connects 
F(x) and if(x) in their physical regions. In fact, we fred 

if(x) = -x2C'-l F( I /x). (13) 

For integer c, i.e., in the absence of  branch cuts, this can be directly read off  from eq. (4) whereas for noninteger 
c one has to be a little more careful about the branch cuts (taken care of  by G(x)) in deriving eq. (13). The con- 
stant c '  (i.e., the mixed channel "trajectory") now controls the large momentum transfer behavior o f  the electro- 
magnetic (2 +) ~ (1 - )  transition form factor (e.g., A 2 ~ PT) which was shown to be [1 ] 

Ftrans(t ) ~ I tl - c ' - I  . (14) 

This leads to a Drel l -Yan type o f  relation between the asymptotic behavior of  the transition form factor (14) and 
the large x behavior of  if(x) provided that F(x) is known. For c ' =  2 eq. (13) gives back the original Gr ibov-Lipatov  
reciprocity relation which, in our model, corresponds to Fnans(t ) "" t -3 .  

From both the DreU-Yan and the generalized Gribov-Lipatov relation we explicitly see how the light-cone 
carries some notion o f  compositeness which provides a new point of  view. The relation between dual and light- 
cone models in general deserves further investigations. 

We would like to thank R. Blankenbecler for helpful comments and S.D. Drell for the warm hospitality ex- 
tended to us at SLAC. 
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