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The so-called K -matrix method for unitarizing Veneziano amplitudes is analyzed and shown
to consist of proposing models for the differences between inverses of physical partial-wave
amplitudes and the inverses of Veneziano partial-wave amplitudes. A precise formulation
of the method is given, and a detailed analysis is made of the implications of analyticity,
elastic and inelastic unitarity, crossing symmetry, Pomeranchukon exchange, and Regge.
asymptotic behavior. The difficulty of avoiding ghosts within such a framework is discussed,
and the positions and residues of several ghosts present in a unitary model proposed earlier
by Lovelace are given. It is argued that ghosts are likely to be present in a substantial
number of the models for hadronic scattering amplitudes which exist in the literature. From
our detailed discussion of the aforementioned topics, we are led to propose a set of equations
for inverse partial-wave amplitudes whose solutions may afford an accurate description of
7 elastic scattering for center-of-mass energies up to 1 GeV or more. A numerical pro-

. cedure for obtaining approximate solutions to the equations is proposed, but the actual compu-

tation of solutions is deferred to a later work.

1. INTRODUCTION

Although formulas of the type proposed by Vene-
ziano! have many features of scattering amplitudes,
they fail to satisfy the relations between real and
imaginary parts of amplitudes implied by unitarity.
As Lovelace? has pointed out, one way to obtain
unitary amplitudes from the Veneziano formula is

to interpret Veneziano amplitudes as elements of
a K matrix.® However, a strict K-matrix interpre-
tation of Veneziano amplitudes is not tenable, and
the loose interpretation proposed by Lovelace was
acknowledged ? to be inconsistent with crossing
symmetry.

Several authors* have attempted to improve
agreement between crossing symmetry and unitar-
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ized amplitudes resulting from so-called K -matrix
methods by modifying the original formulas of
Lovelace. These efforts have met with varying de-
grees of success. However, no precise formulation
of a K-matrix method for unitarizing Veneziano
amplitudes has appeared heretofore in the litera-
ture, and the absence of such a formulation has
precluded any systematic study of the strengths
and weaknesses of such a method. Thus the first
goal of our work is to develop a precise formula-
tion of the so-called K -matrix method for unitar-
izing Veneziano amplitudes. The formulation which
we shall propose is sufficiently general to encom-
pass most of the work in the literature. For the
sake of definiteness and because the reaction is of
inherent interest, we concentrate attention on the
7w elastic scattering amplitudes.

Early in the course of our analysis, it will be-
come apparent that the so-called K-matrix method
for unitarizing Veneziano amplitudes actually con-
sists of studying and proposing models for the in-
verses of partial-wave amplitudes. Therefore,
both accuracy and clarity would be served by call-
ing this method the “inverse-amplitude method”
for unitarizing Veneziano amplitudes. Henceforth
we shall do so.

After presenting our formulation of the inverse-
amplitude method for unitarizing Veneziano ampli-
tudes, we proceed to a systematic discussion of
elastic and inelastic unitarity, analyticity, cross-~
ing symmetry, Pomeranchukon exchange, and
asymptotic behavior. Our invéstigation yields a
substantial number of new results, some of which
concern ambiguities and practical difficulties that
are inherent to the inverse-amplitude method.®

After completing our general discussion, we pro-
pose a set of eqhations whose solutions may afford
an accurate description of 77 elastic scattering be-
low about 1 GeV. A method for obtaining approxi-
mate solutions to these equations is proposed, but
the attempt to solve these equations is deferred to
a forthcoming paper.

II. FORMALISM

Consider the following Veneziano representation
for nm elastic scattering amplitudes®:

A%=3F(t,u) -} F(s, ) + F(s,u)]
Al=F(s,u) - F(s,t), (2.1)
A?=_F(t,u),
where the superscript on A’ denotes s-channel iso-
spin,

(1 -a(x)r( -a@))
(1 - ax) - a@l))

F(x,y)=8 +secondary terms,

alx)=a+bx,

where a and b are real. We shall use units where-
in m,=%=c=1 (except where MeV is explicitly
stated), and we use the convenient energy-squared
variable

veElRen P=3(s =4).

We normalize the A’ such that if they were unitary,
their partial waves would satisfy the representation

ADIW) =RIW)A +1/)1/2 ¢ sind! (2.2)

for v>0, where R! is the ratio of elastic to total
partial-wave cross sections, and the phase shifts
8! are real. The existence of the representation
(2.2) is equivalent to the unitarity relation’

ReAVT = {Im AT [RI(1+1/v)Y/2 ~Im AT} /2
(2.3)
with 6/ defined as
)= 3sin"{ 2 ReAV[RI(1 +1/v)"/2)-1} , (2.4)

As a final remark on notation, we shall denote
partial-wave projections of the Veneziano ampli-
tudes (2.1) by V"7,

The Veneziano partial waves V{*! are real when
v>0 (except that V{*! contains poles for I=0 and 1,
and such poles can be regarded as 6 functions in
ImV*7), In order to obtain unitary amplitudes
from the V"', Lovelace has proposed? that the
V! be interpreted as partial waves K" of a K
matrix:

K(l)’(v)=V(1)](V). (2.5)

The usefulness of this interpretation lies in the fact
that amplitudes generated from a K matrix are
automatically unitary. Therefore, let us consider
the K ~-matrix formalism.?

For physical values of s, {, and #, the K ma-
trix is unambiguously defined® as an inner product
between standing-wave states, and the relation be-
tween the K matrix and the S matrix is free of am-
biguity. To define the K matrix for unphysical val-
ues of s, ¢, and #, an analytic continuation is nec-
essary, and there are two standard ways to define
the continuation.® One definition leads to a K ma-
trix which is discontinuous at every threshold,
while the other definition results in a continuous
K matrix. Since the V(¥ are analytic at threshold,
we shall restrict attention to the second definition,
according to which A and K¥)7 are related by

(nr -
A m 5 (2-6)

where p is a completely unambiguous analytic ma-
trix function of the energy. In a space of two-parti-
cle states, p can be diagonalized in such a way that
its elements above threshold are proportional to
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the phase space for the outgoing particles. With
amplitudes normalized in accordance with (2.1),

the element of p between 77 states is unambiguously
given by

p=—i<——y—>l/2. @.7)

v+1

Since p(~1)=< and y{OI(_1) #0, we see that
AW constructed in accordance with Egs. (2.5)-
(2.7) all vanish at v=—1. Such behavior constitutes
a gross violation of crossing symmetry and is not
acceptable. This difficulty of all amplitudes van-
ishing at v= -1 could be circumvented by assuming
that K = (v +1)/2y! put the resulting A’
would have resonance widths which differed from
those of Veneziano by the factor (v+1)/2, Then
finite-energy sum rules would not be satisfied,
and the unitarization would destroy the main vir-
tue of the Veneziano model.

For the preceding reasons, we share the view of
Lovelace? and subsequent workers* that a literal
K -matrix interpretation of Veneziano amplitudes is
not tenable. However, these authors have demon-
strated that it is possible to unitarize Veneziano
amplitudes by a method which utilizes an equation
bearing a superficial resemblance to Eq. (2.6). In
order to obtain a precise formulation of the method
which has been used in practice, let us consider the
set of functions p!(v) defined by

1 1
I —
ayort ol 2.8)

Since A7 and V(" are real analytic functions, it
follows that pf is analytic except for branch cuts
generated by those in A7 and V"!, except for
possible poles generated by zeros in AT and/or
v{I, Furthermore, p! has the reflection property,
pi(v*) =[pi(v)]*.

It is a well-known consequence of the unitarity
relations (2.2)—(2.4) that A satisfies elastic uni-
tarity if and only if Im(1/A*%) = ~(1+1/v)-'/2 for
v>0 [except that 1/A"7 contains poles wherever
6f =nm, and such poles can be regarded as 6 func-
tions in Im(1/A"7)]. Since 1/V"! is real for v>0,
it follows from the definition (2.8) that A(¥7 satis-
fies elastic unitarity if and only if

Impl=—(1+1/v)"V/2 (2.9)

for v>0 (we choose %ot to regard poles in p! as 6
functions in Impf). Since the definition (2.8) implies

yr

r_
A= 1+pjvr’

(2.10)
we conclude that unitary A7 can be obtained by in-
serting any p! with the right cut (2.9) into Eq. (2.10).
Conversely, Egs. (2.9) and (2. 10) contain no infor-
mation except a statement of elastic unitavity un-
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less Rep! is specified, since arbitrary A" can be
generated from Eq. (2.10) by defining p! in accor-
dance with Eq. (2.8).

The inverse-amplitude method for unitarizing
Veneziano amplitudes consists of analyzing and
proposing models for the functions p} defined by
Eq. (2.8).® We shall examine in detail the implica-
tions of analyticity, crossing symmetry, Pomeran-
chukon exchange, and various aspects of asymptotic
behavior for the functions pf, but we shall postpone
these discussions until we have considered the
problem of inelasticity.

III. INELASTICITY

Although 77 scattering is almost entirely elastic
below 1 GeV, it seems likely that 77— KK becomes
important in the I= 0 S wave immediately above the
KK threshold at 1 GeV, and inelasticity may be-
come important in other partial waves above 1 GeV.

One way to couple the 77 and KK channels is to
construct Veneziano formulas for 77—~ KK and KK
- KK, and to regard (2.8) and (2.10) as matrix rela-
tions. A coupled-channel unitarization of this type
has been carried out by Lovelace,? who assumed
that p! is a diagonal matrix whose 77 and KK ele-
ments are given by a particular pair of simple
functions independent of / and /. In this way Love-
lace obtained a set of unitary amplitudes wherein
the I=0 nm S wave resonates twice below 1 GeV,
despite the fact that V{°° contains only one pole
below 1.25 GeV.® While there is some evidence for
a second I=0 77 resonance below 1 GeV,* we do
not regard the evidence as sufficiently firm to be
conclusive. If such a resonance does not exist, it
would simply mean that Lovelace’s model for the
matrix p! is not correct, since any coupled-channel
S matrix can be represented by A7 of the form
(2.10) if p! is defined by (2.8).

Although the effects of inelasticity on 77 elastic
amplitudes A‘*7 can be dealt with by regarding
(2.8) and (2.10) as matrix relations, it is clearly
not necessary to do so, since arbitrary A" can
be expressed in the form (2.10). If (2.8) and (2.10)
are regarded as scalar relations for 7w elastic am-
plitudes A the inelastic unitarity condition (2.3)
will be satisfied if and only if the right cut of p! is
given by

Impf=~[RI(1+1/v)"/?]-1, 3.1)

(Again we choose not to regard poles in pf as §
functions in Impf.) Since A‘Y1=0 whenever & =nw
for v>0, a second resonance in A{®° pelow 1 GeV
would imply that pJ has a pole'! at the energy where
83=m or where 83=27 (or at both energies if neither
coincides with a zero in V{®°), In order to limit
our efforts, we shall restrict the remainder of our
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discussion to the case where (2.8) and (2.10) are
regarded as scalar relations, and the right cut of
p} is given by Eq. (3.1).

IV. LEFT CUTS OF p?

The nearest left cut of A7 begins at v= -1,
which corresponds to the elastic threshold for
crossed-channel reactions. There are also branch
points further to the left in A7 corresponding to
inelastic thresholds in the crossed channels. The
nearest left cut of V(" begins at -1 — vy, and is
generated by exchange of the p tower of resonances.
There are also branch points further to the left in
VI generated by exchanges of higher towers of

resonances. Thus it follows from the definition
(2.8) that pf has a branch point at v=-1, and addi-
tional branch points further to the left. If A is
small near v=~1, as is usually assumed to be the
case,’? then Im p! can be quite substantial along the
near part of the left cut, since Impl=-ImA‘"?/
|ADTR for (-1 =v,)<v <-1.

In principle, analyticity and crossing symmetry
enable one to express A‘V/(y) for v< -1 in terms of
crossed-channel amplitudes AT (v, cos®’) with v/
>~1, In practice, one is usually forced to rely up-
on Legendre series expansions of the crossed-
channel amplitudes in order to make the analytic
continuation in cos#’. One then obtains the formula

-u_l ! 1 ’ ’ ’ ’
ADI)=_ %f du'p,<1+2” ;' )Z-a,,,(21'+1)[ReA<’ ' (yr) ~ 23 Im AT (1)) p,,<1+z"—:,—1>, (4.1)
-1

I’

where
1
3 1 3
|1 1
a111= 3 2 —'g" .
11
3 -2 %

The Legendre series for ImA’'(v/, cos¢') is conver-
gent for values of v’ within the range of integration
if v> -9, so Eq. (4.1) is valid for ImA!(v) if v
>-9.” However, the Legendre series for

ReA! (v, cos¢’) diverges over part of the range

of integration for all v<-1. Since Im p! depends

on ReA"T a5 well as on ImA?)? | it follows that
Eq. (4.1) does not enable one to express Imp! along
any part of the left cut solely in terms of AWI@)
with »>0 and the known functions V‘*)!, While this
failure of Eq. (4.1) to provide a representation for
Im p! along the left cut is unfortunate, it certainly
does not preclude the possibility of using dispersion
relations to construct the pj. We shall return later
to a further discussion of this point. '

V. POLES IN pf,

If either A or V! yanishes like (v —7)" at
some point 7, it follows from the definition (2.8)
that pf has an nth-order pole at ¥, unless the values
and the first x derivatives of A"’ and V("7 coincide
at 7.

Along the real axis, A" vanishes linearly at
every point above threshold where & =mn. For I
=0 and 1, V" vanishes linearly at some point be-
tween each pair of adjacent resonance poles. The
derivative at each such zero is closely related to
the residues of the adjacent poles.

The Adler self-consistency condition suggests
that A(©° and A(¥? vanish linearly slightly below

threshold.'? If one keeps only the leading term of
the Veneziano series (2) and incorporates the Adler
zero by using the Lovelace values a=0.483,
5=0.017, then V{?° vanishes at v=0.88, and V(22
vanishes at v=-0.50. The first derivative of each
V{7 jg approximately given below threshold by a
sum rule whose integrand corresponds to pure I=1
exchange, so each V®7 has a reasonable value for
its derivative at the zero below threshold despite
the absence of a Pomeranchuk singularity in the
Veneziano amplitudes (see Secs. VII and VIII).

Another type of zero in A7 and V¥ results
from the fact that for I >1, both A¥7 and V(!
vanish like v’ as v—0. The Ith derivative at
threshold is proportional to the scattering length,!3
and all scattering lengths for [ =1 are given by
rapidly convergent dispersion integrals.!*

Next we consider the possibility of complex ze-
ros. It is straightforward to prove theorems which
relate the asymptotic behavior of analytic functions
to the number of zeros on the physical sheet.!5:¢
On the basis of certain such theorems and a study
of the functions Af and V", it has been conjec-
tured ' that A7 with I=0 and 2 contain infinitely
many complex zeros on the physical sheet, and that
VI with I=0 and 2 contain infinitely many com-
plex zeros at angles near #=+37 on the physical
sheet, with a unique accumulation point at infinity.
For the leading term of the Veneziano series (2.1)
and the values a=0.483, 5=0.017, the locations of
the nearest complex zeros in V{®! and V{?7 for
I=0 and 2 have been determined '® by explicit com-
putation of these functions at a set of closely spaced
mesh points spanning a region of the v plane cen-
tered about the origin. A similar computation of
V1 gyer the regions |v|<50, 0<g<m, and 50 < |v|
<150, 0< 6<$m, reveals no zeros within these re-
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gions. However, for Imv>0 near 0=-8.10, yln
behaves like (~0.111+0.6824)(v - D) so 1/VV1
contains a pole!” at ¥ with residue equal to -0.2387%,
where 7122 2.0 for I'(p)= 125 MeV.%®

Any crossing-symmetric unitarization of the V(*)!
should modify to some extent the amplitudes and/or
their derivatives everywhere, as should Pomeran-
chukon exchange. Thus the zeros and/or deriva-
tives of A‘"' should not coincide exactly with those
of V(I and poles should exist in p! wherever A’
or V{¥! vanishes. On the other hand, it is clear
that to whatever extent the zeros of A7 and V!
coincide, the poles in pf will occur in closely
spaced pairs. To whatever extent the relevant de-
rivatives of AV7 and V{*7 are equal at their re-
spective zeros, the residues will be equal but oppo-
site. This potential pairing of poles with attendant
cancellations obviously enhances the tendency for
the contributions of distant poles to be nearly con-
stant. However, the extent of such cancellations
is not known at present.

None of the models previously proposed * for the
p} have contained any poles (except for some along
the negative real axis, where they were intended to
mimic left cuts). Thus we conclude that a major
dynamical assumption inherent to all such models
is that the zeros of A’ coincide in one-to-one fash-
ion with those of V¢!, and that the first » deriva-
tives of AT coincide with those of V¥! at each
zero, where #» is the order of the lowest nonvanish-
ing derivative of V(" at the position of the zero.

In all such models, the A‘Y have the same reso-
nance structutre as the V(" (subject to the reso-
nance poles having moved onto the second sheet).
In addition, the A/ are approximately equal to the
V()T pear threshold, since every V("7 vanishes
either at or slightly below threshold 2 (assuming
the usual incorporation of the Adler zero). How-
ever, even when p! contains no poles, A7 is quite
sensitive to the details of pf if v is not near a zero
of V'Y!, Thus for example the =2 S wave 4?2 is
quite sensitive above threshold to the value of pZ,
since V{92 contains no zeros above threshold.

Next we shall discuss a matter of great practical
importance, namely, the possibility that specific
models for p} may imply unphysical singularities
in A“)I.

VI. GHOSTS
If there exists a solution to the equation

1+plviI=0 (6.1)

at some point where V{"7#0, then it follows from
Eq. (2.10) that A‘")' has a pole at that point. A pole
in AV on the interval —1<v<0 would correspond
to a bound state, but a pole anywhere else on the
physical sheet would have no physical interpretation
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and would be a “ghost.” Since there exist no bound
states in the 77 system, we conclude that p# -1/
V(D! at every point on the physical sheet where

V( nr +0.

Unfortunately, no search for ghosts has hereto-
fore been carried out over any part of the physical
sheet for any model yet proposed for the p!, and
there is no reason to believe that any of the models
is free of ghosts.

The Lovelace model for p! is

o ry=1/2
2v+1/‘ v : (1+1/v")
0

I_
P ZErrn e R
Assuming that p! is given by Eq. (6.2), the present
author has searched for ghosts over the region
—100 <Rev <100, 0<Imv <100. Keeping only the
leading term in the Veneziano series (2.1) and using
the Lovelace values a¢=0.483, 5=0.017, 8=0.62,'°
one finds two ghosts in A‘®° and one ghost in A(®)2
in the aforementioned region. The ghosts in A(®°
are at v=-7.3 +687 with residue -0.057 —17¢, and
at v=21+0.20¢ with residue 0.15-0.11:.° The ghost
in A2 ig at v=-4.6+5.8{ with residue —2.7 - 5.9i.
Of course there are also ghosts at conjugate points
with conjugate residues. The contributions of the
ghosts in A0 1] vary quite slowly near threshold,
but the pair of ghosts in A(®2 contributes a term to
A%92 which is roughly given by 0.78 — 0.23v near
threshold. Thus the energy dependence of A(®2 js
strongly influenced by a ghost in Lovelace’s model,
and the energy dependence of 62 is therefore not
reliable.?

A plausibility argument can be made that great
care must be taken if the generation of ghosts is to
be avoided when using the inverse-amplitude meth-
od. One begins by noting that the unitarity relation
(2.3) is a highly stringent condition for a real ana-
lytic function to satisfy. If one imposes unitarity
on some function by “brute force” without simulta-
neously modifying the left cut in an appropriate
way, additional singularities are likely to be re-
quired in order to make the real part of the function
satisfy Eq. (2.3). In the inverse-amplitude method
unitarity is imposed by brute force, and great care
must be taken in constructing the left cuts if ghosts
are to be avoided. The only a priori guide we have
for constructing left cuts in such a way as to avoid
ghosts stems from the fact that in nature, left cuts
are related to right cuts by crossing symmetry.
However, crossing symmetry is certainly not a
sufficient condition to guarantee the absence of
ghosts. In every calculation resulting in exactly
unitary strong-interaction amplitudes of which the
present author is aware (including N/D calcula-
tions), unitarity has been imposed by brute force,
and each such model should be suspected of con-
taining ghosts until it is proven to be free of ghosts.
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For example, in addition to the aforementioned
ghosts in Lovelace’s model, the I=2 77 S wave of
Brown and Goble®! has been examined and found to
contain an important ghost.”> Also, the nm S waves
of Chew, Mandelstam, and Noyes® have been tested
for ghosts by Chung, who found that the ratios

N/D did not satisfy the dispersion relation as-
sumed for A when A>0.1.%*

It is highly unfortunate that so few of the authors
who have published exactly unitary amplitudes have
searched for ghosts, since it is impossible to judge
the significance of the results of a model unless
one knows whether the model contains significant
ghosts.

In Sec. VII, we shall discuss certain equations
whose derivation is based on crossing symmetry
alone, and other equations whose derivation depends
on analyticity as well as crossing symmetry. If
some set of amplitudes satisfies the equations
based only on crossing symmetry but violates an
equation based on analyticity as well as on crossing
symmetry, the presence of ghosts is a strong pos-
sibility.

VII. CROSSING SYMMETRY

We are now ready to discuss some of the implica-
tions of crossing symmetry for the 77 elastic am-
plitudes A", Since our unitarization procedure
applies to partial waves rather than the full ampli-
tudes, we shall restrict attention to those conse-~
quences of crossing symmetry which apply directly
to partial waves. We shall further limit our discus-
sion by restricting attention to the S waves and P
wave.

It has recently been shown by Roskies?5 that
crossing symmetry together with analyticity over
the Mandelstam triangle implies an infinite set of
equations which interrelate weighted integrals of
partial waves over the interval -1 <v <0, The
equations which involve only S waves are

)
f dvuA(°)°=%fodu VA2 (7.1)
-1 -1

0
fodu (3u+2)uA‘°>°=_zf dvBv+2)vA2  (7.2)
-1 -]

There are three independent integral crossing equa-
tions which involve only the S waves and P wave.
The first of these is

] 0
f dv (3V+2)VA(°)°=2f dy p2 AL (1.3)
-1 -1
which, when combined with Eq. (7.2), implies that
1] 0
f v (3u+z)uA<°>2=_f dv 2 AL, (7.4)
-1 -1

The remaining integral crossing relations which in-
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volve only the S waves and P wave are
V)
f dv (1002 + 120+ 3)p(2 A0 _ 54(0)2)
-1
0
=_6f dv (5v+4)2 A1
-1
(7.5)

fodv (350° + 6012+ 300 + 4)w(2 A0 _54(0%2)
-1

0
=15f dv (2102 +300 +10)p2 AL |
-1

(7.6)

To gain insight into the content of Egs. (7.1) —
(7.4), let us suppose that the S waves and P wave

are linear:
ATy =q 4+ b, 1=0,2 @.7)
Ay =q v,

When Egs. (7.1)-(7.4) are imposed on the linear
amplitudes (7.7), it follows that

o= 5bo=3(a, = 3b,) , (7.8)
b= —2b,, (7.9)
by=6a,, (7.10)
b,=-3a,. (7.11)

If the full amplitudes Al (v, cos 6) were linear in
v and cos 0 over the Mandelstam triangle, they
would contain only S waves and a P wave of the
form (7.7):

Af(v,cos8)=a;+ by, for I1=0,2

12
A'(v,cos0)=3a,vcosf. (7.12)
For the linear amplitudes (7.12), it is trivial to
verify that Eqs. (7.1)-(7.4) have precisely the same
content as the Chew-Mandelstam crossing rela-
tions?® '

5
Aolsym. pt. = 5A2| sym. pt, »
’ (7.13)
9A° _ ,0A?
OV | sym, pt. OV | sym. pr.
B 9A*!
9€08 0| gym, pt,

where the “symmetry point” is characterized by

v==% cosf=0. Thus Egs. (7.1)-(7.4) primarily

constrain the zeroth and first derivatives of the

amplitudes below threshold. It is straightforward

to verify that the left- and right-hand sides of

Eqgs. (7.5) and (7.6) are independent of constant?’

and linear terms in the amplitudes, and that

Eq. (7.6) is independent of quadratic terms as well.
Assuming crossing symmetry, the validity of
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the Froissart-Gribov representation for partial
waves with [ = 2, and the positivity of absorptive
parts of partial waves with definite isospin, sever-
al authors have derived inequalities involving 77
partial waves on the interval -1 <sv<0. Let us
denote the S wave of the 7°7° = 7°7° amplitude by f,:

fo)=5[A0°W) +24@%()].

It has been deduced from the above assumptions
that?®

(if—"<0, for -1 <v<-0.68 (7.14)
dv
o0, for —0.57<v<0 (7.15)
dv
ddf >0, for -1<v<~0.57 (1.16)
74(=0.95)< £,(~0.20) , (7.17)
Fo(=0.25)< £,(~0.95), (7.18)
0
_1)>2f v fo(v). (7.19)
-1/2

If A0 and A2 were linear over the interval
—-1<v<0 and satisfied Eq. (7.2) [or alternatively,
Eq. (7.9)], then f, would be constant over the inter-
val -1 <v <0, and the relations (7.14)-(7.19) would
be marginally satisfied as equalities. Thus the
constraints which the inequalities (7.14)—(7.19) add
to Eq. (7.2) concern only quadratic and higher-order
terms.

It has been deduced from the same assumptions
which lead to (7.14)-(7.19) that?®

0 [

f dv A° < f dv A2+ 5A9%(21), (7.20)

-1 -1

If A©° and A(”? were linear over the interval
~1<v<0 and satisfied Eqs. (7.1) and (7.2) [or al-

ternatively, Eqgs. (7.8) and (7.9)], then the inequal-
ity (7.20) would be marginally satisfied as an equal-
ity. Thus the constraint which the inequality (7.20)
adds to Egs. (7.1) and (7.2) concerns only quadratic
and higher-order terms.

It is also possible to derive inequalities for D and
F waves and then use crossing symmetry to deduce
consequences for the S waves.’® However, these
inequalities are rather complicated and obviously
constrain only quadratic and higher-order terms,
and we choose not to enumerate them here.

When combined with analyticity and basic as-
sumptions of Regge theory, crossing symmetry
implies that the s-channel amplitudes which are
pure I=1and I=2 in the ¢ channel satisfy unsub-
tracted forward dispersion relations.?' The equa-
tion for the amplitude with I=1 in the ¢ channel im-
plies that3?

E. P. TRYON 4

2a, - 5a,= lf V+1 ———Im[2A%(v) +3AL(v) - 5A%(v)],

(7.21)

where A% denotes the forward amplitude and a,

= AL(0) is the S-wave scattering length for 7=0, 2.
The P-wave scattering length'® q, is also given by
an /=1 sum rule, namely™*

17187 J, (V+1

j‘ 2V+1
3

Note that the integral in Eq. (7.21) and the first
integral in Eq. (7.22) converge rapidly in the sense
that the unitarity bound on partial waves guarantees
that the integral over each partial wave AW con-
verges like fow dv/v?. Consequently, the integral
in Eq. (7.21) and the first integral in Eq. (7.22)
can be reliably determined from low-energy phase
shifts, intermediate-energy resonances, and the
asymptotic contribution of ¢-channel p exchange,
which corresponds to the high-energy towers of
Veneziano s-channel resonances. The second
integral in Eq. (7.22) converges even more rapid-
ly, and is dominated by the p resonance.

If one keeps only the leading term in the Venezia-
no amplitudes and inserts the corresponding 6-
function absorptive parts into the integrand of
Eq. (7.21) and the first of the two integrands in
Eq. (7.22), one finds that the € and p resonances
each contribute about one third of the total values
of the integrals, while the remaining third comes
from resonances above 1 GeV (which, through
duality, contain the asymptotic contribution of p-
Regge exchange).

Because there are no known resonances with =2,
it has often been assumed that /=2 contributions
to Eqgs. (7.21) and (7.22) are negligible. However,
it is important to realize that the crossing matrix
elements present in the integrands of Eq. (7.21)
and (7.22) favor I=2 contributions over I=0 con-
tributions by a factor of —3. Since sin?39°= %, an
I=2 phase shift of 39° would contribute just as
strongly to the integrand as would an I=0 phase
shift of 90°. Several of the models which have been
proposed for 77 S waves have had 62 as large as
-39°in the p region,® so the I=2 contributions to
the right -hand sides of Eqs. (7.21) and (7.22) would
be quite substantial in these models. It is an im-
portant defect of these models®® that the values for
(24, - 5a,) and a, have not reflected the large nega-
tive contributions which Im A®? would make to the
right-hand sides of Eqs. (7.21) and. (7.22). Thus
these models are substantially inconsistent with

———TIm[2A%(v) + 3AL(v) = 5A%(v)]

A ImARY) (7.22)
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analyticity® and/or crossing symmetry, unless the
net contributions from energies above 1 GeV are
twice as large as has usually been supposed.

The forward dispersion relation with /=2 in the
¢ channel implies that?®®

2v+1)

2a,+ %fo dv 2222 1m[2A%(v) - 3AL (1) + A2 (0)] .

v(v+1)

(7.23)
Since the coefficient of the absorptive part only de-
creases like v~!, the integral over any single par-
tial wave will diverge (unless ImA" tends to zero
as v- o faster than v~ ¢ for some. €>0). Therefore
the value of the integral in Eq. (7.23) is quite sen-
sitive to variations in any partial wave, and it
cannot be reliably determined without detailed
knowledge of the amplitudes in the intermediate
and high-energy regions. For example, the g(1670)
contributes 1.0 to the right-hand side of Eq. (7.23)
for 2a,+ a,, despite its high mass and small par-
tial width I'(g— 27) =40 MeV.*® Since we will be
interested in values for 2qa,+a, of the order of 0.3,
a vaviation of only 10 MeV inT(g — 2m) would re-
sult in a variation of nearly 100% in 2a,+a,. Be-
cause of this extreme sensitivity of the integral in
Eq. (7.23) to the intermediate and high-energy re-
gions, Eq. (7.23) will not be of any practical use
in determining 2a, + a, within the foreseeable
future.?’

VIII. POMERANCHUKON EXCHANGE AND
ASYMPTOTIC BEHAVIOR OF p!

It is well known that Veneziano amplitudes con-
tain no Pomeranchuk trajectory. The leading tra-
jectories in the Veneziano 77 amplitudes (2.1) are
the degenerate p and f, trajectories, so that the
only s-channel amplitude which has the correct
asymptotic behavior is the amplitude with I=1 in
the ¢ channel, namely,

2A°+3A' —-5AZ2,

This is precisely the combination of amplitudes
which appears in the integrand of Eq. (7.21) and

the first integrand of Eq. (7.22), and that is why
low-energy phase shifts determine the difference
between a realistic value for the integral and the
pure Veneziano value. If one knows the low-energy
phase shifts, intermediate-energy resonances, and
asymptotic contributions of p Regge exchange, then
realistic values for the integrals can be obtained
without any explicit knowledge of the Pomeranchuk
trajectory.

If one accepts the philosophy of Freund * and
Harari,*® then low-energy nonresonant absorptive
parts correspond to Pomeranchukon exchange,
within the context of duality. Since any unitariza-
tion of Veneziano amplitudes generates nonreso-

nant absorptive parts in the low-energy region,
e.g., with =2, any unitarization procedure gener-
ates effects corresponding to Pomeranchukon ex-
change in the low-energy region.

Unfortunately, it is much more difficult to gener-
ate effects of Pomeranchukon exchange in the as-
ymptotic region. In fact it is easy to show that for
a large class of p!, the A"! generated by Eq. (2.10)
will not contain any effects of Pomeranchukon ex-
change in the asymptotic region. To see this, one
need only note that along a ray displaced slightly
from the positive real axis, every V{*! tends as-
ymptotically to zero like*°

V() ~ (v =*1ny)=t, (8.1)

Thus it follows from Eq. (2.10) that AV7 will tend
asymptotically to zero as fast as (or faster than)
V! unless p! grows asymptotically like

pl~vi=lny (8.2)

as v—+wo. (If pf grows less rapidly than v!=%Inv,
then ImA‘Y7 will in fact*! approach ImV("!, in the
sense of local averages, as it tends to zero.) We
conclude that if pf violates the asymptotic condi-
tion (8.2), then AY7 will contain no effects of
Pomeranchukon exchange in the asymptotic region,
and the asymptotic phase shifts will be so unphysi-
cal as to be devoid of value. Unfortunately, it is a
common weakness of all models yet proposed for
p! that p! grows less rapidly than the rate (8.2).

For I=0 and 2, it has been conjectured and made
plausible®? that V(") grows faster than any power
as v— —w. This suggests (but does not prove) that
physical A‘Y7 with I=0 and 2 also contain essential
singularities at infinity. However, putting aside
the question of essential singularities, it is evident
from the definition (2.8) that if V("7 and A‘"7 with
I=0 and 2 increase without limit at any rate what-
soever as v— —wo, then

lim p‘,’=”lim p?=0. (8.3)
Y—> =0 =P w00

Unfortunately, it is a common feature of all mod-
els yet proposed for p} that p? and p? violate
Eq. (8.3).

Recently Park and Desai®® have shown that for
any € >0,

llim pimemeyNizg (8.4)
V|—>eo

along any ray with Imyv#0. It is obvious that uni-
tarity with crossing symmetry (and also Pomeran-
chukon exchange) implies that the left cut of A(»!
is different from the left cut of V{¥?, Therefore,
one would expect that along any ray with Impy#0,
for any €>0 and § >0, there exists a v with |[v|>Q
such that
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It should be remarked that if A‘*? were equal to
V{1 50 that pf=0, then the asymptotic condition
(8.3) would be satisfied, whereas the asymptotic
condition (8.5) would not. Thus one would expect

pi(v)

v l=a=€

>1, (8.5)

where the value of |v| in (8.5) may depend on the

ray as well as on the values of € and €. Unfortu- . cpe .
nately, every model yet proposed for p! fails to the asymptotic condition summarized by (8.5) to be

. . . less significant £ - i
satisfy the asymptotic condition summarized by tfl e a:;gmn;)tlgﬁg c:;‘dgzeoio(v; ;)n ergy amplitudes than
(8.5). e
IX. A LOW-ENERGY MODEL FOR p’l

We are now ready to propose a set of equations which may afford an accurate description of 77 elastic
scattering below about 1 GeV. The equations for the S waves are

~ 1 -, Imp! (dA©/qy|, )1
Pg(V) —Pé(Vs)"' (v=- Vs){%' f_m dv W= Vs)(g’ - + Gy -1 _;I)

o) 7))t dA(o)o dv|, -1 dV(o)o avls -1
@ /av|z,) M[( Jav], )t (@v9/avl;,) ]} o

B (ZI_Vs)(V—EI) ’ (ZW —VS)(V_ZW) B (zvr _Vs)(V_Ew)

where v, is the point at which a subtraction has been made, z; is the point slightly below threshold where
AI yanishes because of the Adler zero,* Z, is the corresponding point where yor vanishes, 0, is the

Kronecker delta, Z, is the point above the € resonance where &} reaches 7,% and z, is the corresponding
zero* in V(9. For the P wave, we write

©

1 1
pi’(l/):pi(l/s)+(l)—l/s){;f day' Impl - n

o WV -v)W =v) (T-v))v-1)

L @O avl) 7 - (@) A dvlyy) @V dv]e) 9.2)
Vv Wy =v )W =v,) ~ (T =) =7,) |’ '
where v, is the point at which the subtraction has We have already remarked that if A*)! is small
been made, 7 and n are the position and residue, near v=-1 (as is usually assumed to be the case!?),
respectively, of the aforementioned pole in 1/ yot then Imp! can be quite substantial along the near
on the negative real axis, v, is the point above the part of the left cut. Thus a careful treatment of
p resonance where 6! reaches 7, and U, is the cor- the left cut is clearly to be desired.
responding zero in V2, To obtain Im p! for v<-1, we begin by noting that
It is obvious that the parameters z,, dA“%av/. , AWT g given for all v in terms of p! by Eq. (2.10).
Ve, and dAY/dv|, are closely related to the In addition, crossing symmetry implies that
masses and widths of the € and p resonances, re- Im A7 is given for -9 <v<-1 in terms of
spectively. Of the two parameters z,, only one is ImA®"!" with ' >0 by Eq. (4.1). Since we have
left independent by the crossing relation (7.1) of assumed that the Rep] with /=0 and 1 are given
Roskies. The remaining z, may be fixed by impos- for all v in terms of Impj by Egs. (9.1) and (9.2),
ing a value for the ratio a,/a, (or alternatively, by the Im pj for v< -1 are heavily constrained by the
imposing the Adler zero in some specific way**). requirement that the A"’ generated by Eq. (2.10)
Of the parameters dA(""/dulzI and a, which repre- have left cuts consistent with Eq. (4.1).
sent first derivatives near threshold, only one is In order to construct approximate solutions to
left independent by the crossing relations (7.2) and Egs. (2.10), (4.1), and (9.1) and (9.2), one could
(7.3) of Roskies, say a,. However, a, is given by represent each Im pj for —A<v<-1by a flexible,
Eq. (7.22) in terms of integrals over absorptive multiparameter trial function which has the correct
parts. The only remaining discrete parameters in type of branch point at v= -1, and which depends
Eqgs. (9.1) and (9.2) are the subtraction constants linearly on each of its variable parameters. By
p3(v,) and p}(v,). These are constrained by the choosing A to be sufficiently large, Im p} could be
crossing relations (7.5) and (7.6) of Roskies, and ignored (set equal to zero) for v<—A.*® Then for
also by Eq. (7.21). Thus it appears that the equa- any specific value of v, the integrals over the left
tions of constraint presented in Sec. VII are suf- cuts in Egs. (9.1) and (9.2) would be definite linear
ficient to determine all the discrete parameters in functions of the trial-function parameters, with
Egs. (9.1) and (9.2) except for those parameters coefficients which could be computed. The inte-

which correspond to M., T, M,, T,, and a,/a,.*" grals over the right cuts could also be computed,
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since Imp! is given for v>0 by Eq. (3.1) in terms
of R} (which, however, must be given). Thus the
right-hand sides of Egs. (9.1) and (9.2) for pf could

Next we note that Eq. (2.10) implies that *°

be evaluated in terms of the trial-function param-
eters and the discrete parameters which are ex-
plicitly present.

ImAMWI

nr_ Hy()rjz\1/2
Rep! = |V(1,),|2{—ReV(”’i:[—(ImV“)’)2+|V<”’|2<2ImP{ImV(”’-(Impf)le“"lz+ ImV D! —1m pf [VD] >] }

If we use Eq. (4.1) to determine Im A’ for v< -1
in terms of ImA¢"?" with v’ >0, and require that
Eqgs. (9.1)—(9.3) be simultaneously satisfied over a
set of closely spaced mesh points which span the
near parts of the left and right cuts [say for |v|
<12, which corresponds to about (1 GeV)?], then
the values of the trial-function parameters are
determined [assuming that R} is given, and that the
discrete parameters in Egs. (9.1) and (9.2) are
given or can be simultaneously determined by im-
posing the constraints presented in Sec. VII]. It is
straightforward to establish that if p} satisfies
Eq. (9.3) while the Im A" on the right-hand side
of Eq. (9.3) satisfies Eq. (4.1), then the ImA*)*
generated by Eq. (2.10) will also satisfy Eq. (4.1).

A potential difficulty with constructing simulta-
neous solutions to Eqs. (4.1) and (9.1)-(9.3) stems
from the fact that while Eq. (9.3) implies bounds on
both Im p! and Rep!, there are no bounds on Rep]
inherent to Eqgs. (9.1) and (9.2). Thus the values of
the subtraction constants p!(v,) in Egs. (9.1) and
(9.2) are constrained by Egs. (4.1) and (9.3). How-
ever, a little reflection suggests that these new
constraints on the p!(v,) should be consistent with
(and roughly equivalent to) the constraints of analy-
ticity and crossing expressed by Egs. (7.5), (7.6),
and (7.21). The reason is that the values and
first derivatives of the S waves and P wave have
already been fixed at the locations of their respec-
tive zeros near threshold by certain of the pole
terms in Eqs. (9.1) and (9.2). Thus Eq. (7.21) only
constrains second and higher derivatives between
threshold and the locations of the zeros in A‘®°
and A®? and we have already noted that Egs. (7.5)
and (7.6) only constrain second and higher deriva-
tives on the interval -1<v<0. However, the sec-
ond and higher derivatives of A’ should also be
largely determined by the nearby singularities of
AW , which are consistent with crossing symmetry
and analyticity if Eq. (4.1) is satisfied (provided
there are no ghosts).%

If we succeed in constructing unitary, crossing-
symmetric S waves and P wave which are analytic
and free of ghosts, then the inequalities (7.14) -
(7.20) will be automatically satisfied. The reason

9.3)

for this is that one can incorporate such S waves
and P wave into full amplitudes A’(v, cosé) which
satisfy all the assumptions upon which the inequal-
ities are based. The higher partial waves of these
full amplitudes are simply the V' plus a correc-
tion term, where the correction term has no sin-
gularity except the left cut implied by exchange of
the unitarized S waves and P wave. This point has
been fully developed elsewhere,*” so we shall not
pursue it further here.

The principal dynamical assumption inherent to
our model is that the p! contain no poles except
those explicitly present in Eqs. (9.1) and (9.2). We
conclude from the discussion of Sec. V that except
for the locations of these poles, the zeros of A¢)/
will coincide with those of V"! in one-to-one fash-
ion, and the first » derivatives of A)! will coincide
with those of V"I at each zero, where # is the or-
der of the lowest nonvanishing derivative of V(*)!
at the position of the zero. This assumption is
certainly not an empty one, for it has been shown'®
that V(®° and V(®)? both contain at least two pairs
of zeros at complex points on the physical sheet,
and it has been conjectured !¢ that V{®° and V%2
contain infinitely many such zeros. In addition,
V(®° and M contain infinitely many zeros on the
positive real axis, since a zero must occur between
each pair of adjacent resonance poles. Thus an
immediate consequence of Eqgs. (9.1) and (9.2) is
that the resonance structures of the A are in
semiquantitative agreement with those of the
V(l)1.51

If the pole structures implied by Eqs. (9.1) and
(9.2) for the pf are to be good approximations to
nature, it is necessary that the V(*! pe good ap-
proximations to nature, at least near the points
where they vanish. Thus the Regge parameters a
and b and the coefficient B of the leading term in
the Veneziano series must be given values which
maximize agreement between the V! and nature
[except possibly near threshold, where Eqgs. (9.1)
and (9.2) provide considerable flexibility]. Of

_course, it may also be necessary to include sec-

ondary terms in the Veneziano series, if the agree-
ment with nature is to be maximized.
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We remarked in Sec. V that unitarity with cross-
ing symmetry (as well as Pomeranchukon exchange)
should imply that the zeros and/or relevant deriv-
atives of A differ somewhat from those of V(VZ,
Thus we doubt the existence of exactly crossing-
symmetric solutions to Eqs. (9.1) and (9.2). The
Veneziano amplitudes are analytic and crossing-
symmetric, and we have already noted that for
I=0 and 2, the V"7 appear to grow faster than any
power as v— —o. However, Eq. (9.1) possesses no
solutions corresponding to an A‘®7 which grows as
rapidly as v€ as v— —o. This can be seen as fol-
lows. If A grows as rapidly as v¢ for some €>0
as v— —oo, then this growth together with the rapid
growth of V(! implies that p}~0 as v~ —», and
that the term involving the integral over the left
cut in Eq. (9.1) tends to a constant as v- +», The
integral over the right cut depends on R!, which is
not presently known. However, the rigorous bounds
0 <R! <1 imply that the term generated by the right
cut in Eq. (9.1) grows at least logarithmically as
V= —0, so we conclude that Eq. (9.1) does not pos-
sess solutions pg which tend to zero as v— —co, in
contradiction of the assumed growth of A©7 and
the rapid growth of V7 35 y+ —w. We also con-
clude that if A7 does in fact grow as rapidly as v¢
as v— —» for some € >0, then infinitely many pole
terms must be added to the right-hand side of
Eq. (9.1) in order for it to be valid.

Another probable deficiency of Eq. (9.1) is that
it is incompatible with Pomeranchuk asymptotic
behavior, unless A(®7 tends to zero at least as
rapidly as v=¢ as v~ -, or unless R! tends to zero
like v*~!/Inv as v— . This can be seen by compar-
ing the asymptotic condition (8.2) with the asymp-
totic behavior of the integrals in Eq. (9.1). The
rigorous bounds 0 <R! <1 imply that the real part
of the term involving the integral over the right cut
in Eq. (9.1) does not grow more rapidly than lny
as v—+o, The imaginary part of this term is sim-
ply =[Rf(1+1/v)*/2]71, and behaves asymptotically
like 1/R!. The term generated by the integral over
the left cut in Eq. (9.1) cannot grow as rapidly as
v17%1ny as v— +wo unless Im p! grows at least as
rapidly as v as v— -». Therefore, we conclude
that Eq. (9.1) is inconsistent with Pomeranchuk as-
ymptotic behavior unless AT tends to zero as fast
as some negative power as v— —w», or unless R}
tends to zero like v*"!/lnv as v— —w, If neither of
these conditions is satisfied, then infinitely many
poles must be added to the right-hand side of
Eq. (9.1) if it is to be made consistent with Pome-
ranchuk asymptotic behavior.

Notwithstanding the aforementioned difficulites,
it is not unreasonable to hope that Eqs. (9.1) and
(9.2) afford a good approximation to nature over
some appreciable range of energies above thresh-

old. The ability of Egs. (9.1) and (9.2) to describe
the threshold region is assured by the presence of
the adjustable parameters z,, dA‘“?/dv|, , and a,.
The equations are compatible with the € and p res-
onances and with the absence of resonances with
I=2. The nearest poles at complex v in 1/V(?°
and 1/V®? do not give rise to terms which vary
rapidly near threshold,'® and the net contributions
of the infinitely many poles which have been con-
jectured to exist in 1/V(*7 and 1/47 for I=0 and
2 may also vary slowly near threshold.'® In addi-
tion, the pole terms in p! should vary less rapidly
near threshold than those in 1/V* or 1/AV1,
since some degree of cancellation between the lat-
ter is expected. Thus the absence of poles at com-
plex v in Eqgs. (9.1) and (9.2) does not rule out the
possibility that the resulting p} may be good ap-
proximations to nature over a fairly broad range
of energies above threshold.

Assuming that pf with /=0 and 2 should in fact
tend to zero as v~ —wx, we can constrain the Im p}
in the integral over the left cut in Eq. (9.1) to tend
to zero as v— —w, and it need not concern us that
the resulting Rep! grows without limit as v~ —c,
provided that we use the resulting Rep! only over
a finite region about the origin. A reasonable esti-
mate of the regions over which the Rep! generated
by Egs. (9.1) and (9.2) are reliable would be circles
about the origin within which Eqs. (4.1) and (9.1)-
(9.3) are simultaneously satisfied.?

Although inelastic scattering may become appre-
ciable above 1 GeV and may (through analyticity)
influence the A(*) below 1 GeV, inelastic effects
have been explicitly taken into account by the pres-
ence of R (which, however, must be given) in
Eq. (3.1) for Imp!. Thus there is no evident reason
why Eqgs. (9.1) and (9.2) cannot afford a good ap-
proximation to nature from threshold up to 1 GeV
or more. However, the actual construction of ap-
proximate solutions to Egs. (4.1) and (9.1)~(9.3)
requires extensive computations, and we shall de-
fer them to a later work.

In earlier work by the present author, an exactly
crossing-symmetric method was proposed * for
unitarizing Veneziano S and P waves. The ampli-
tudes generated by that method contain no ghosts®
and are almost exactly unitary below 1 GeV or
more, but violate unitarity rather badly at energies
above 5 GeV or so. The present simple model for
1/AM! ig quite complementary to the earlier model
in the sense that amplitudes generated by the pres-
ent method are exactly unitary (for any given R}),
but are only approximately crossing-symmetric,
and may contain ghosts. Because of the comple-
mentarity of the two methods, it will be quite in-
teresting to see the extent to which amplitudes gen-
erated by the two methods are in agreement with
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each other. If the amplitudes generated by the two
methods are in close agreement with one another
over some range of energies including threshold,
the validity of each method would thereby be con-
firmed for that range of energy.
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