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We discuss how one can extract the reggeon structure functions from the inclusive 
distributions up ~ u + H + X, where H = p, n, A(Nrr), ... We concentrate mainly on the 
pion structure functions, which can be extracted from UP ~ U + n + X and UP ~ U + 
A(Nrr) + X, by virtue of the dominance of one-pion exchange (OPE). Here we include 
an estimate of the cross section and discuss in some detail the possible backgrounds, 
which, under certain plausible assumptions, we argue are small in an accessible experi- 
mental region, where the OPE cross section is largest. The discussion includes experimen- 
tal tests for these backgrounds and procedures for disentangling the OPE from them, 
should they be important. We conclude by giving a possible experimental test of the 
validity of basic assumptions involved in showing that absorption corrections to OPE 
are small in the deep inelastic region. 

1. I n t r o d u c t i o n  

The  adven t  o f  new very energet ic  m u o n  b e a m s  w i t h  h igh  luminos i ty  at  N A L  and,  

in the  near  fu tu re ,  in the  C E R N  Super  P r o t o n  S y n c h r o t o n  (SPS) p rogram,  has  open-  

ed the  way  to new k inds  o f  measu remen t s .  In par t icu lar ,  it will  be feasible to  meas- 

ure the  inclusive d i s t r i bu t i on  ~p ~ ~ + H + any th ing ,  where  the  h a d r o n  H = p, n, A, 

K, ... is recoi l ing " s l o w l y "  in the  lab system.  In the  app rop r i a t e  k inemat i ca l  region,  

these  d i s t r i bu t ions  give us valuable  i n f o r m a t i o n  on  the  deep  inelast ic  s t ruc tu re  o f  

v i r tua l  h a d r o n  targets .  In  par t icu lar ,  it is possible  to  ex t r ac t  the  p ion  s t ruc tu re  func- 

t ions  in the  space-like region,  fo l lowing the  suggest ion o f  Sul l ivan some t ime  ago [1 ] 

The purpose  o f  the  p resen t  art icle,  w h i c h  is p r imar i ly  addressed to exper imenta l i s t s ,  

is to discuss in some detai l  the  k inema t i c s  and  p r o c e d u r e s  involved in analys ing 

these  k inds  o f  d i s t r ibu t ions .  In par t icular ,  we shall discuss the  p r o b l e m s  involved in 

ex t rac t ing  the  p ion  s t ruc tu re  f u n c t i o n s  f rom the  inclusive d i s t r i bu t ions  ~p  ~ / ~  + 

(A, n) + X, w h i c h  make  use o f  one -p ion-exchange  (OPE)  d o m i n a n c e  in a cer ta in  ki- 

nema t i ca l  region.  We shall discuss the  Regge and  a b s o r p t i o n  b a c k g r o u n d  in the  case 

o f  the  la t te r ,  po in t i ng  ou t  t h a t  the re  exist  accessible k inemat i ca l  regions in w h i c h  

the  OPE cross sec t ion  is large and these  b a c k g r o u n d s  are re la t ively  u n i m p o r t a n t .  We 

shall also m e n t i o n  some e x p e r i m e n t a l  tes ts  for the  b a c k g r o u n d ,  and  how one  can 
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disentangle the OPE from, for example, the Regge exchange backgrounds in regions 
where the latter cannot be neglected. In the case of  the absorption background, we 
shall show that, unlike other situations, in which one encounters OPE dominance, 
the absorption background is negligible in the deep inelastic region. This is based on 
the assumption that the electromagnetic structure of  the pomeron is similar to 
other Regge exchanges, where we expect a form factor behaviour for the electro- 
production of  fixed-mass exclusive states (i.e. a particle or resonance). The absence 
of  a form factor for the pomeron would imple, through the Drell-Yan relation [2],  
that the pomeron structure function will be singular as co -~ 1. 

As an introduction,  we mention the theoretical interest in knowing the pion and 
reggeon structure functions. It is clear that the above kind of  measurement will not 
be of  high precision and, for example, we can probably hope to know at least the 
pion structure functions to about the 20 -30% level. However, this accuracy is suf- 
ficient to give us valuable information on a number of  outstanding theoretical ques- 
tions concerning the deep inelastic structure of  mesons. We give the following three 
examples: 

(i) Scaling in the space-like region. This has become an interesting question, in 
view of  the gross violation of  scaling in the time-like region [3],  in particular in the 
inclusive distribution e+e - ~ 3% -~ 7r + X, which can be thought of  as the crossed 
process to yv ~ ~ X. 

(ii) Validity o f  the quark parton model. This model [4] was constructed in order 
to describe the proton and neutron deep inelastic data, where it has been quite suc- 
cessful. However, so far the model has failed to describe to the same degree other 
processes involving currents [5]. It would therefore be desirable to examine the 
most closely related process, namely deep inelastic scattering off  meson targets. 
The quark model alone makes a number of predictions (essentially from the SU(3) 
assignment), which can be expressed in the form of  sum rules; for example (note 
that the pomeron cancels out): 

j _ _  1 2v dcoco [ 2 F ~ ( c o ' q 2 ) - F ~ ( c o ' q 2 ) ]  = 5 '  c o -  , (1.1) 

1 q -  

In quark consistuent models [6,7] one can predict the threshold behaviour as co - 1 
and, for example, 

Y~(co, q2) 
(co I)  P , (1.2) 

~(co,  q2) ~o~ 1 

where in the dimensional counting analysis [6],  P = 2, while (if one assumes 
F~(q 2) ~ 1 / Iq 2 [3/2 as [q 21 --> oo) in the massive quark model [7],  P = 1. 

(iii) Generalized crossing relations. A number of  at tempts [8] have been made 
to connect the deep inelastic distribution 7v ~ - ,  X (q2 < 0) to the e+e - annihila- 
tion inclusive distribution 7v -+ 7r + X (q2 > 0). Here one has to make some detailed 
assumptions about the underlying dynamics, which amount to simplifications and 
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Fi~,. 1. D i a g r a m  g i v i n g  t h e  k i n e m a t i c s  o f # p  ~ ,,  + t t  + X. 

are supposed to be good approximations for large q2. One such relation is the so- 
called reciprocity relation [9],  which states that 

~2(6o, q2)= I_~ F2(I/co ' q 2 ) ,  
(.19 .5 

(1.3) 

where F 2 is the deep inelastic pion structure function and/?2 is the corresponding 
structure function for the e+e annihilation inclusive distribution. I f ( l . 3 )  is used 
to predict the pion structure functions in the space-like region (q2 < 0), using the 
SPEAR e+e annihilation data [3] as input, then it would predict a drastic viola- 
tion of  scaling for large co (co > 2) and, in fact, the pion structure function would 
be very large, for example F~r(w, Q2) > 25 Fl](co, Q2) for co > 5 and Q2 ~_ 20. 

Clearly, any information on (i) to (iii) above will be of great value in helping our 
theoretical understanding of  the electromagnetic structure of  hadrons. 

We have divided the work up into five sections. In sect. 2 we discuss the kinema- 
tics and relevant dynamical functions, which are measured in the inclusive distribu- 
t ion / lp  -+/J + H + X, where H is an arbitrary one-ha&on state. In a particular kine- 
matical domain we recall, in sect. 3, how these distributions are related to the reg- 
geon structure functions through the Mueller-Regge model. In sect. 4 we discuss in 
some detail the problems of  extracting the pion structure functions from the inclu- 
sive distributions/.tp ~/~ + n + X and/ lp  ~ / l  + ,5 ++ (prr +) + X, in the region where 
OPE dominates. The discussion includes an estimate of  the cross section and the le- 
vel of the most hnportant  backgrounds. Finally, we mention in this section how 
one can experimentally test for these backgrounds and disentangle the OPE from 
them. Sect. 5 is devoted to the problem of  the absorption background, where we 
give arguments as to why one can expect them to be small for large Q2, except as 
w --, 1 (the resonance region). Finally, in sect. 6 we make some concluding remarks. 
In particular, we mention consequences for the inclusive distribution ~p -~ ~t + p + X, 
if the basic assumption we make in sect. 5 is not valid. Thereby, by measuring this 
distribution, we can test the validity of  the latter. 
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2.  K i n e m a t i c s  

In the one-photon exchange approximation the process 

/~(k) + p(p) -+/2(k') + H(p ')  + X 

corresponds to fig. 1 and is described in terms of the following variables: 

s = ( p + q ) 2 ,  Q2 = _ q 2 ,  M 2 = ( p + q _ p , ) 2 ,  

where q = k - k' .  
It is also useful to define the"scaling variables 

2v 2u' 
c o -  u = p . q , c o ' -  v' = (p  - p ' ) .  q . 

Q2  ' Q2  ' 

In the lab system, where we define 

Mp ' ' ' p = , 0 ) ,  q = (q0, 0, 0, q ) ,  PL = (EL, P L ) ,  

with 
t v . v , 

PL = (PL sinOL c°stPL, PL sinOL slntPL, PL cos OL), 

we have 

v = M p q  0 = M p [ E k -  E k ' ]  , 

EL' ~ M H  +pL'2/2MH for [ t l ~ M  2 , 

where M H is the mass of  the detected hadron H, 

'2 MH 
PL =~pp [(MH - Mp) 2 - t] , 

co' (1 El" - pk  c°s0L7 j 
~ c o  - M-t~ for c o > > l .  

For large Q2 the tmi n of  the inclusive distribution is given by 

F co,2M  
t r a i n  ~ - -  Lco(co - co') + (M2  - M2)  

For co >> co' and H = p, n (equal-mass configurations), 

' 2 

t m i n ~ - -  16o ] P 

for co >> co' and H = A 
t 

C O  , ~  ~ - [ M ~  - M ~ I  . 
~ 0  

t = (p - p')2 , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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The main " tuning" variables for singling out kinematical regions in which a parti- 
cular dynamical  mechanism dominates,  are 

Q2, t, M 2 or equivalently t, co', co. (2.6) 

In general we will also be interested in H being a resonance, decaying into two or 
more hadrons; however, for the moment  we shall take it to be a single-hadron state 
and discuss the generalizations involved, when we come to consider the case of  a 
recoiling 2x. The cross section for detecting the outgoing muon and the recoiling 
hadron H is given in the lab system by 

2Ek,Ep ' d6°  _ 2oe 2 
d3k 'd3p ' Q4(2rr)4MpE k spins 

where 

= 1 ITI 2 
spins 

1 
WUV(q, p,  P')  = 

JTJ 2 , 

[u( k')v uu( k ) l [u( k ')vvu( k ) ] + W.V(q, p, p') , 
muon 

helicities 

~ ( f l  - -d3pi  (2n)e64(q  + P -  P ' -  P l  - ' "  - Pn) 
p, H X J i =  1 (2~r)32E i 

helicities 

× (p IJU(0) J H,X}(H,  X IJU(0)ip>, (2.7) 

5 

WUV(q, p,  p ' )  = ~ p~ v Vi(s ' q2,  M 2 ,  t) , (2.8a) 
i=1 

where 

p~v = qUqV q2 gUV , 

P ~  = (pUqU + pVqU)p .q  _ pUpVq2 _ gUU(p, q)2 , 

F~v = (p'UqV + p'VqU)p' ,  q p'Up'Vq2 _ gUV(p', q)2 , 

F~v = (p'UpV + p'VpU)q,  p ' q .  p _ p'Up'V(p,  q)2 _ pUpV(p' ,  q)2 , 

We shall find it useful in the present case to introduce instead of  V 2 corresponding 
to the covariant F~ v, a structure function V'2, which corresponds to the covariant 
tensor 

p'~v = (kUqV + kVqU)(k . q) _ kUkVq2 _ gUU(k, q)2 , (2.8b) 

where k = (p - p ' ) .  
In the equivalent photon approximation we write (2.7) in the form [10] : 
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Table 1 
Relationship between HhX , and V i (i = 1 ..... 4) where a (-+) = Ei. Iql _+ P'Lqo and Up = p'.q 

H x . , ~ i  1 2 3 4 

++ q2  p2 pp2 1 2 ,2 , 2^  1 2 ,2 s i n 2 0 L  
- 2 q  PL s i n  o L - -~u  PL 

1 2 ,2 - 2~ 1 2 ,2 
+-  2q PL sm o L ~u PL sin20L 

1 2 f S ~ ,  (+) +0 -x/-~q P'L a( )sin0 g x/-~q PL ua sin0 L 

,2 + M~t -q2a(+)2 O0 _q2 _Mpq2 q2 PL sin20L 

d5o d3o 
2Ep, - 27rFe2E p, , (2.9) 

d3p'dQ2ds d3p ' 

where 

F~ 
167r2M~E~Q2(1 - e) 

e = 1 + 2q2 tan210 
Q2 

and q2 = u2/M2p + Q2, u = M p ( E  k - EX,), Q2 = 4EkEx, sin2½0u; 0 is the angle be- 
. ~ 3 r . tween the incoming and outgoing muon in the lab system; 2Ep,(d a /d  p ) describes 

the hadron H distribution resulting from the absorption by the proton of  a virtual 
photon with fractional longitudinal polarization e. We denote this distr ibution by 
7vP -+ H + X. The latter cross section can be decomposed into the usual form, in- 
volving the cross section for absorption of  transverse and longitudinal photons plus 
interference terms. In lab kinematics (2.3) this decomposit ion takes the form 

d3o _ 1 Ep' F d2°u  d2°L 
2Ep, 

d3p ' ~ p' Lp 'dp~OSOL+ep 'dp 'dcosOL 

d2 (7I L] d2OT cos 2 ~L+ X/2e(e + cos¢  , (2.10) 
+ e p'dp'd cos 0 L 1) p'dp'd cos 0 L 

where 

EP' - H++,Ho0, H+_, - 2  ReH+0 , 
d2o U,L,T,I 1 ot 

p p'dp'd cos0 L 2rr s - M 2 

Hxx, = e~ e~*WUV(q , p, p') . 

Hxx, are the helicity structure functions in the lab system and reflect the dynamics. 
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i O'i ¢[J ~ 
7a j2m2 g 2 

(a) (b) I' 

cq(h ) %(t2) 
(c) 

Fig. 2. (a) Mueller-Regge expansion of ab ~ c + X in the region sIMS( >> and small t. (b) Corres- 
ponding cross-channel configuration, in which we have indicated the partial-wave expansions 
over (/1, ml) and (/'2, m2) in the t I and t2 channels. (c) The reggeon-particle four-point func- 
tion c@t 1) + a ~ c@t 2) + a. 

[e~ are the polarization vectors of  the photon in a given polarization state X = (+, 
0).] The relationship between the helicity structure functions Ha? ,, and the covariant 
structure functions V i (i  = 1, ..., 4) is given in table 1. If we integrate over the q~-dis- 
tr ibution in eq. (2.10), the cross section can be writ ten in the form 

with 

d4o 

dM2 x dtdQ 2 ds 

d2°u  d2°L / 

- 2rrPe t d M x d ~  + e  ~-2xxd t j  

d2°  U,L c~ 
d M 2  dt  = [4Mp~/ (E  k _ Ek , )2  + O21-1 {H++,Hoo } . 

2 (s - M2)  
(2.11) 

3. The reggeon structure functions 

It is now fairly well established that Regge theory extends to inclusive distribu- 
tions in the appropriate limits. It is this fact, together with factorization of  Regge 
poles, that allows us to single out, for example, in the present case, the reggeon deep 
inelastic structure functions, i.e. the structure functions associated with virtual ha- 
dron targets. Inclusive distributions are functions of a number of  variables and have 
a number of  different experimentally accessible asymptot ic  kinematical regions, in 
which different kinds of  Regge behaviour emerge. These regions are singled out by 
using the variables, in the present case q2, M 2  and t, as "tuning parameters".  

We briefly recall the rudiments of  Mueller-Regge theory [11]. The cross section 
for the inclusive distribution ab -+ c + X is determined by the appropriate missing- 
mass discontinuity of  the sLx-point function abc -+ abc, 
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r~ ~, ~ P P 

(a) (b) 

Fig. 3. (a) Mueller-Regge diagram for 3"P -* n + X. (b) Mueller-Regge diagram for pp ~ A ++ + X. 

(3.1) 

In the limit slM 2 large and t = ( l O b  - -  pc) 2 fixed at some small value, (3.1) reduces 
to a sum of Regge-pole exchange contributions (fig. 2a) plus possible non-factoriz- 
able background terms. This Regge-pole expansion corresponds to a particular cros- 
sed or t-channel configuration of  the six-point function abc ~ abc, there being a 
number of  different Regge-dominated s-channel domains (e.g., fragmentation and 
pionization regions), each corresponding to a different crossed channel. This is un- 
like the four-point function, for which there is a unique t-channel. The derivation 
of  the Mueller-Regge expansion, starting from the partial-wave expansion in the 
appropriate crossed channel, has been treated in a number of  works [ 12,13]. In 
particular, the double Regge limit is discussed in ref. [13], in which the helicity de- 
pendence of  the external hadrons is considered. Here one starts with the partial- 
wave expansion in the t-channel configuration shown in fig. 2b, and after dealing 
with the problem of kinematic singularities, one makes a Gribov-Froissart projec- 
tion of  the partial-wave amplitudes, which allows one to carry out a Sommerfeld- 
Watson transform of the partial-wave summation. Consequently, in crossing to the 
s-channel, one finds in the region (s/M 2)  -+ oo, t-fixed, that the inclusive distribu- 
tion is dominated by the same Regge exchanges found in a corresponding analysis 
of  the four-point function. The latter involves only Regge residues, i.e. vertex ft/nc- 
tions coupling the reggeons to the external hadrons. For an inclusive distribution, 
on the other hand, one has in addition the reggeon particle "scattering" amplitudes 
Ao~ia~a "a ( M2,  t, t l ,  t2), where t I and t 2 are the mass squared variables of  the reg- 
geons (~ig. 2c). Present-day inclusive phenomenology provides useful information 
about the behaviour of  such functions, the existence of  which has already been im- 
plied by the presence of  important Regge-cut corrections to exclusive processes [14] 
If  we take only the leading term in the expansion shown in fig. 2a (a i = a/= a), we 
obtain for the inclusive distribution ab ~ c + X (neglecting external helicity) a cross 
section of  the form 

d 3 
°ab = 1 [ s ~2a(t)M2 tot (M 2 ,  

2E c d3pc siMS>> 1 s I~c(t)12 [ ~ - ]  XCr~a--'aa~ X ) '  (3.2) 
~'~X-- 
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vv - -  ~v vv 

H H K" K" 

(a) (b) 

Fig. 4. (a) Mueller-Regge diagram for 3,vp ~ H + X. (b) Mueller-Regge diagram for 7vp ~ K + + X. 

w h e r e  a t a ° t a a ( M 2  ) is the effective total cross section for aa elastic scattering (for 
small t one can usually neglect its t-dependence). Measuring the inclusive distribu- 
tion ab --, c + X for large s/M 2 allows one to extract this quantity, since the Regge 
residues ~bc are known from the corresponding exclusive process. For example, if 
we use the data on the pion-exchange-dominated inclusive processes (a) 3'P ~ n± + 
X [15] (see fig. 3a) and (b) pp ~ A ++ + X [16] (see fig. 3b), we obtain for UnN~t°t 
(M 2)  values close to the known experimental (on shell) nN total cross section. This 
is essentially demonstrated in the analysis of  refs. [17] ... [18],  respectively, where, 
by using the experimentally known ,~tot V r N as input, one effectively reproduces the 
normalization in (a) and (b). 

In the case of  3,v(q2)p ~ H + X, with H = p, n, A, -.-, and restricting ourselves to 
the region, typically (s/M2) ~ 6, Itl < 0.5 GeV 2 and s/Q 2 > 10 (we shall discuss 
later the important kinematical regions at NAL and SPS energies in some detail), 
the mechanism in fig. 4a is singled out, where 

(a) for H = p ,  R =  P ,n  o ,O,.. .  

(b) for H = n ,  R = n  + ,o  + .... 

(c) for H = A  ++, R = n - , A  T .... 

If  H is a strange meson, then R corresponds to a strange baryon exchange, as shown 
in fig. 4b for example. 

Let us consider (a), (b), and (c) in the very small t-region, where pion and pome- 
ron exchange are expected to dominate. 

For (a) 7vP -~ P + X we have 

d2°p _ d 2oP" d2o~ ° 
- - + - -  (3.3) 

dM2xdt dM2xdt dM2xdt ' 

where 
, , 2CiR(t) 

d2°pR - 1 cR(t)~ s_~ WR(q 2,co',  t ) .  (3.4) 
dM2xdt s 2 \M~! 

Since CRp(t) depends on the lower vertices in fig. 4 and the reggeon signature factors, 
it is in principle always a known function of  t (i.e. it can be extracted from the cor- 
responding exclusive process). We shall define these quantities, in the case of  the 
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OPE contribution to (b) and (c) in sect. 4. For (b) 7vP ~ n + X we have OPE domi- 
nance, i.e. 

2 n + d2an d o n 
- ( 3 . 5 )  

dM2dt  dM2x dt 

Similarly for the A ++ and A +0 distributions (c), where we have 

d2oa++ d2o~++ d2 o~+0 d2o~°o 

dM2d  t -dM2xdt , dM2d t - d M 2 d  t (3.6) 

However, in the case of  the A the region in which the OPE dominates is strongly 
restricted by the t m i  n of the process (see eq. (2.5)). We shall discuss, in sect. 4, how 
the A-decay distr ibution can be used to disentangle the n-A 2 contributions in a re- 
gion in which they overlap significantly. 

For ( a ) - ( c ) ,  the lower vertices in fig. 4 are known, so that an analysis of these 
inclusive distributions provides information on the pomeron and pion structure 
functions. In particular, a combined analysis will allow one to obtain information 
on the pion structure functions for different charge configurations. The importance 
of  knowing the latter is evident from the recent SPEAR data [3] on the e+e - anni- 
hilation inclusive distributions e+e - ~ 7v ~ n±'0 + X, where, although the n o distri- 
but ion has not yet  been measured directly, it is clear that it must show substantial 
deviations from the charged pion distributions (see ref. [3] ). In the following sec- 
tions, we shall discuss in some detail the problems involved in analysing the distri- 
butions (b) and (c) and the question of  the absorption background, which has con- 
siderably complicated the detailed description of  exclusive processes [19]. 

4. The pion structure functions 

In this section we discuss in some detail how one can extract the pion structure 
functions from the above inclusive distributions. This involves disentangling the 
OPE from the A 2 (or O) and absorption backgrounds. We shall mention the various 
ways this can be accomplished and give some cross section estimates. We begin by 
considering the pure OPE contr ibution to (a) 7vP ~ n + X (the equal-mass configu- 
ration) and (b) 7vP ~ A + X. For the latter we initially treat the A as an elementary 
particle. Further  our considerations apply to the region s = 3 0 0 - 6 0 0  GeV 2 and 
Q2 = 0 to 20 GeV 2. The OPE dominates only at very small t-values and these are 
constrained by the tmin, which depends on co or co' or alternatively on Q2 and M 2 
(see eq. (2.4)). For  the equal-mass configuration (a) this turns out to be a rather 

~ = weak constraint, typically, when co ~ 5co (for example s 300, Q2 = 10 and M 2 = 

6 0 ) ,  [ tmi n I ~  2m2). For the A, case (b), this co' region would correspond t o  Itmin[ 

5m 2 = 0.1 GeV 2, for which the A 2 contribution,  although still small, starts to be- 
come important .  However, at SPS energies, there is sufficient room to obtain 
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) Y v (q) ~ ) . ~ )  

II.'(k )/' ", rc-( k )," ", 

n ZX 

(a) (b) 

Fig. 5. (a) OPE contribution to ~'vP --+ n + X. (b) OPE contribution to YvP --+ 2~++ + X. 

co > 10oo', where the situation is correspondingly better. We shall discuss in detail 
these regions later. 

4.1. Pure OPE contribution 

For (a) "YvP ~ n + X, the full inclusive OPE-dominated structure function is given 
by (referring to fig. 5a): 

1 ~ u(p')T5 u(p ) 2 
WUU(q'P'P')=-2 p, n I qrrpn t m 2 W~U(q 'P-P ' ) '  (4.1) 

helicities 
where 

1 Wg(co', q2, k 2) (4.2) 
- 

The apparent kinematic singularity at t = k 2 -- 0 in the definition of  (4.2) does not 
enter into the helicity structure functions Hxx, defined in (2.10), which are given by 

1 sin20] H++ = ~ ( t )  [W 1 + ~ W 2 

H+ = C~n(t)[-½W 2 sin20], 

ReH+o=C~n(t) sinOc°'7?=j=-~w/-~ [1 ~ p  t ] +  W 2 

1 r t T , ,  
HO0 = C~n(t)[W 1 - $co u w2] , 

where 

u' = k ' q  =(p - p ' ) ' q  , t = k  2 , 

(-t) 
C~n(t) =g2pn (t m2) 2 " (4.3) 
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Instead of (4.2), a more appropriate decomposition of I4/uv would be in terms of the 
causal structure functions V 1 and V~ [20], defined in eqs. (2.8), which do not ex- 
hibit the apparent kinematic singularity at t = k 2 = 0. In the scaling region, we have 

Wl(Co',q2, t ) -  ~ FI(CO') , 
Q2 --.~o 

v'W2(co' ' q2, t) ~ F2(co ' ) ,  (4.4) 
Q2 -~ oo 

so that 

H++ = C~n(t)F 1 ( w ' ) ,  

H00 = C~n(t ) IF 1 (co') - ½ oJF2(co')] , 

H+_ ~ 0 ( ~ )  , Re H+O ~ 0 (~2)  • (4.5) 

In (4.4) scaling implies that there is no t-dependence for finite t (i.e. Itl ~ m~2), so 
that F 1 (6o) and F2(co ) defined in (4.4) are in fact the physical pion structure func- 
tions in the scaling region. This, of  course, assumes that there are no kinematic sin- 
gularities (or zeros) in W 1 (w, q2, t) and W2(w, q2, t). However, if we had used, 
instead of  (4.2) the decomposition in terms of the causal structure functions V 1 
and V 2 [20], where no such singularities should emerge, we would arrive at the 
same results (4.4) and (4.5). The absence of the interference te rms/ /+_  and Re H+0 
for large q2 means the ~ distribution is flat. This can be used as a test of  the OPE 
model or more generally of  the dominance of pure Regge-pole exchange. For (b) 
3'vP --> A++ + X (treating the A as an elementary spin -3 particle), (4.1) is replaced 
by (referring to fig. 5b): 

2 1 
m~ GPArrU~(P" ~kA)k/~ U(p, ~.p) WUV(q'P'P')=-2 p, Zx 

helicities 

1 
X (t -- m2) 2 V~V(q' p - p ' ) '  (4.6) 

where Uu(p, X) is the Rarita-Schwinger spinor and lc = p - p'. Eq. (4.6) differs from 
(4.1) only by the structure of  the lower vertex and we obtain for Hxx, the same ex- 
pressions as eqs. (4.3) and (4.5), with C~(t) replaced by 

t IX(M2 '  2 t) 1 2 1 Mp, ( t - m 2 )  -2 
% + ( t )  = 5 GpA,r ~ [(M A + Mp) 2 - 4M 2 

fftTT 

X(Mzx ,Mp, t) 1 (4.7) ~, 4~ G2Arr (MA + MP )2 2 2 

47r m 2 4M 2 (t - m2) 2 
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~.~ 21/// s= 400 GeV 2 _ 

2 4 5 6 10 12 14 16 18 20 

M~ (OeV 2) 

Fig. 6. Plot of [ot°t(Q 2, ~o)}-lftn2ndtd2a/(dM~dt) as a function of M~(, using the pion struc- 
• , v r , - -  ture functions Dven m ref. [23]. 

For the distribution 7vP ~ A+O + X, we use 

q ° 0  (t) = ~ + ( t  ) . (4.8) 

We can estimate the cross section in a number  of  ways;  however,  perhaps the most  
useful estimate is as follows (concentrat ing on 7vP -+ &++ + X): 

d2o  1 . 1 a 
~ 2 d t  - 4MpX/v2/M 2 + Q2 s - M2p ~ [H++ + e/-/00] , (4.9) 

with 

H++ = q + + ( t ) ~ l l ( Q  2 co') 

1 t t , , ,Tr  ~ , ~  2 H00 = ~ + + ( t )  [W~(Q 2, co') - ~co p w2t~ d , co')] . 

Assuming the Callan-Gross relation [21 ],  i.e. H00 = 0, we obtain for 0 < co'/co < 0.1 
3 ) s >> Q-,My<: 

train _ _ = -  ~--_ 1 (G2&n~tm~ + Mo~ 2 fxfd   d2o 4.2 1 
_= d M 2 d t  Q2 L2co 12n2 \  4~ ] \  mTr ] 

10 
X f dco'u'W~(Q 2, co ' ) [0.1 + ~ - ] .  (4.10) 

1 
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Table 2 
- 2 Q2 and M~ (with s 300 GeV 2) Values of Itmi n I, in units ol mrr, for different = 

,,2•Q 2 2 5 10 
M~ 

5 0.7 1 1.5 
10 2 1.5 2 
20 4 2.5 3 

We can use eq. (4.10) to make the estimate, by inserting the value G2pzxrr/4rr = 0.26 
and using a simple parametrization of  uWg(Q 2, co) = F~(co). This we assume [22] 
to rise linearly with co from co = 1 to co = 2, and then to be a constant for co > 2. 
The constant is determined by F~(co) = 2F~(co) for large co, which follows from 
Regge exchange in the large-co region. For large co, the total cross section for 
3'vP -+ X is given by 

4n2~x 
~tot ,,q2 co) ~ _ _  F~(co) (4.11) 
u"/vP~'~ ' Q2 

with F~(co) -+ 0.35 for co >> 1 [231. 
Putting this together and performing the integral in (4.10), we obtain the follow- 

ing rough estimate 

tmin d2o 

n ; 2  dM2 _~f at ")'VPdM2dt-~ A++ + x -2col [0 .25+ 1 ~ ] 5  U3.vpt,~_tot ,,q2 , co) . (4.12) 

For co in the region 30 50, we see that the OPE contribution to 3'vP -+ A++ + X ac- 
e t o t  _+ + 0  + counts for (0 .5-1 .5  ~) of o. r p. If we add the contribution from 3'vP A X, 

3'vP --" n + X and "YvP -+ P + }{ (the latter including the pomeron exchange contribu- 
tion), then these distributions account for approximately (5-10%) of o_ t° t  in the 
region Q2 = 5 - 2 0  GeV 2 and v = 100-300  GeV 2. This means that abou/V~ 10%) 
of  the events in this region will be useful as far as measuring these distributions is 
concerned, assuming 100% detection efficiency. 

For comparison, we have plotted in fig. 6 for Q2 = 5, 10, 20 GeV 2, the quantity 

train d2a 
f .~,vp __~ A++ + x C - 1 dt (4.13) 

-tot l,q2 co) dM~dt 
U T v p ~  , _ ~  

using as input the structure functions fW~(Q 2, co') obtained in a model [24], 
which essentially predicts scaling. If, on the other hand, we use the reciprocity re- 
lation in ref. [9] (see eq. (1.3)), then the recent SPEAR data [31 would imply a 
substantial deviation from fig. 6 at large co' and a drastically different variation with 
Q2 for large M 2.  Furthermore, the cross section would be much larger. One can 
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Table 3 
Range of it - tminl for which the value ofR < 20%. (see text) 

s/M~ R < 20(>; R ~ 100~ 
It - tmi n I range It I (GeV 2) 

10 0-6  rng 0.2 
20 0-4.5 m~ 0.3 
60 0-2.5 m 2 0.15 

also expect deviations from fig. 6 for small Q2 and M 2 ,  due to resonance produc- 

t ion in the "yv~r system, which has yet  to be studied. 

4.2. The A 2 Regge background 

The A-dis t r ibut ion is obta ined by  detect ing the rrN system, which causes quite a 
complicat ion.  However, the A-decay dis t r ibut ion provides a powerful  tool  for sepa- 
rating the OPE cont r ibu t ion  from the A 2 exchange background.  Before discussing 
this, we consider at what  point  one can expect the A 2 con t r ibu t ion  to be impor t an t*  
We assume W ~ ~- W A2 , so that A2-exchange differs from OPE, in a simple Regge 
pole model ,  by  the Regge factors and the lower vertex only,  which are essentially 
known.  From this it is simple to see that ,  for 7vP -+ AX++ + X, the ratio 

d3°A2 / d3°rr (4.14) 
R = 2L),, ~ 3 ; - / 2 E p ,  

d3p ' 

is given by 

t32p&A2(t) ( s  ~2C~A2(0) 
R - [a ' ( t  - m2)]  e at (4.15) 

where etA2(0 ) ~ 0.4 and t~ = 2(C~A= ' -- o~) log(s/My O. From a naive quark model  cal- 
culat ion,  one expects/3pAA2 ~ ~pArr" NOW, since itmi n I ~-- 0.6 co'/co, the t-region, in 
which R is small, is rather restricted and will require a rather accurate knowledge of  
t. We give in table 2 some typical values of  Itmi n t for different Q2 and M~(, taking 
s = 300 GeV 2. In table 3, we give the ranges of  It - tmini as a funct ion  o f s / M  2 
(with s = 300 GeV2), for which R < 20%, assuming c~ = 0, this giving an upper limit,  

t t 

since there are indicat ions that C~A2 >> c~. [26] .  ( In table 3 we also give the approxi- 
mate value of  I tl, for which R ~- 100%). 

From table 3 we see that if one works close to t - tmin, with a b in  size of  appro- 
ximately  At ~ m 2, one can always single out  OPE from the A 2 Regge background 
to about  the 20% level. For  comparison,  we plot in fig. 7a and b the OPE and A 2 

* The tJ-contribution is known to be small compared to the A 2 contribution, see e.q. ref. [25]. 
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Yv Z 

p,~kp p',X p, X 

(a) (b) 

'~y 

Fig. 8. (a) ~r (or A 2) exchange contribution to ~'vP ~ A(N~r) + X. (b) Definition of A-decay an- 
gles in the Gottfried-Jackson system. 

contributions for the extreme cases s/M 2 = 20 and s/M 2 = 60. These correspond to 
M2x ~ 15 GeV 2 and M 2 ~ 5 GeV 2 respectively, choosing s = 300 GeV 2 and Q2 
5 GeV 2 . 

4. 3. The A-decay distribution 

We now turn to the A-decay distr ibution; since the A has to be reconstructed 
from a n N  final state, one in fact measures the double inclusive distr ibution 
3'vP -+ np + X, where the 7rp system has invariant mass M .2 -~ M 2 and is recoiling 
"slowly" in the lab system. 

For  a particular missing-mass state X, fig. 8a corresponds to a product ion ampli- 
tude of  the following form, using the resonance approximation:  

1 
T(TvP -+ p~T + X) = T(3'vP ~ A + X)M*2 - M 2 +/Max Fax T(A -+ r ip) ,  (4.16) 

where M .2 = (p '  + k , )  2 . 

Summing over the missing-mass states we obtain for the two-particle distribution 

7vP -+ pTr + X 

d6a  
- [flux factor] ~ ~ I T ( r v p + A + X ) 1 2  

2Ep'2ETr d3p'd3k~r h'rT, p X 

X 1 ~ IT(A-+Trp)I 2 . (4.17) 
(M*2 _ M2)2 +)t~2,,,a_axp2 Xp, 

Since the A can be produced in different helicity states, for a given initial proton 
helicity, depending on the product ion mechanism, we make use of  the density ma- 
trix formalism in the Gottfr ied-Jackson system [27]. In the latter system the heli- 
cities are defined in the rest frame of  the A, with the spin quantized along the initial 
proton direction (chosen to be the z-axis) as shown in fig. 8b. In terms of  the density 
matrices, we write 
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= ~ ~ ITxa 12 ~ Txzx(Tv p A + X)T~x~,(3,vp ~ A + X) pxzxxa, XyXP xzx X h.l~ p X 
(4.18) 

r 

where X a and XA refer to the A-helicities of the respective production amplitudes 
entering in the right-hand side of eq. (4.18). The decay distribution of the A in the 
helicity frame (i.e. the Gottfried-Jackson system), is given by 

4 ~ 1T3~2( A -+ wr)12D3~p,(O, ~o)D312Kp,(O, ~) (4.19) Rhaa~'(O' SO) = 4---~ Xp, =_+1/2 

formSince IT 3/2~.p [2 = [T3~p [ 2 from parity conservation, we can rewrite eq. (4.19) in the 

R~,aaex,(O , ~) = Axa2vzx,(O , ~) ~ IT(A -+ 7rp)l 2 , 
Xp, 

where 

AXAaA,(O tp)= ~ D3/2 t 0 ,,,~D3[2 ~a , XP '=-+1/2 XaXp,, , , ,  x)XXp,tU,so ) . (4.20) 

We now change the variables from 

d3p ' d3k~r 
to dM 2 dtd~2zx kTrdk~r (4.21) 

2Ep, 2Err 

and integrate out the k,r dependence and obtain 

do d 2 o MA PA 
- W(O, So), (4.22) 

dM2dtdM*2dg2a dM2dt  (M .2 M2)  2 + M 2 r 2  

where 

W(O, ~0) = Wr {pA(O, So)}, 

Mapa=~ap, f d3p' d3krr [T(A ~ rr(p)t264(pa _ p, krr) (2rr) 4 
(27r)32Ep, (27r)32Err 

and d 2 o / ~ 2 d t  is just the cross section for ")'vP -+ A + X in the approximation 
p2  = N 2" The general form of the angular distribution function W(O, dp) is given by 
[271: 

3 
W(O, tp) = ~  [/933 sin20 + Pll(~- + c°s20) - 2x/T Re p3 1 sin20 c°s2 tp 

- 2x/~-~ Re 031 sin20 cos~0] . (4.23) 

For the OPE mechanism, eq. (4.23) considerably simplifies, since, by choosing the 
t-channel helicity system, one readily sees that only one helicity configuration sur- 
vives, so that, in converting back to the Gottfried-Jackson system, it is simple to see 
that 
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1.00 

0.75 

0 50 

0.25 

I I I ] I 

[ I I I I 
0 30 60 90 120 150 180 ° 

Fig. 9. The A-decay distribution (integrated over O) for rr (solid curve) and A 2 (dotted curve), 
respectively. 

Pll  = ½ and P33 = P31 = P3 - l = 0 (4.24) 

and hence 

1 [1 +3cos20]  (4.25) w'~(o, ~) = ~ 

For the A 2 exchange, the situation is more complicated, and one usually argues on 
the basis of  p-A 2 exchange degeneracy, that its angular distribution will be the same 
as that for p-exchange. For the latter, which was first considered by Stodolsky and 
Sakurai [28],  it turns out that the decay distribution is simplest when one quanti- 
zes the spin along the normal to the production plane. It is then argued that the 
NpN* vertex behaves like N~'N* (for example on the basis of  vector dominance), so 
that we have a pure MI+ excitation, which means that the production of  -+3 helicity 
states along this axis is negligible. In terms of  the decay angles (0', 4~'), defined with 
respect to the normal to the production plane, the angular distribution is simply gi- 
ven by 

1 
WP(O ', ~o') = ~ [1 + 3 cos20 '] . (4.26) 

We can convert back to the helicity angles (0, q~) by making a simple rotation 
through ½7r about the y-axis and using the following transformation properties of  
the density matrices under rotation: 

' 3 /2  ^ ~ D  3/2 * t& P~X' = ~ ,  Pnn'Dxn (a,  fl, I )  x'n' t , fl, 3') • (4.27) 
n n  

The Stodolsky-Sakurai distribution corresponds in the (0, ~) system to 
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Yv ~'v P'P"'" "'~ Yv p t~ q~... 

b,n /X,n 
(a) (b) (c) 

Fig. 10. (a) Absorption corrections to 7vp ~ A, n + X. (b) Absorption corrections to ~,p-, ;r + 
X. (c) Resonance contribution to diagram (a). 

t 

Pnn' =6½~8½n' + 6  1 ~ 1 , -~-n -~n  ' 

so that using eq. (4.27) wi th  c~ = 3' = O, and 13 = 1 ~Tr, one sees that  

' = i x / 3  P31 = 0 (4.28) P33 = 3  , P l l  = 8  , P 3 - 1  , ' 

and correspondingly 

1 [5 - 3 cos20 - 3 sin20 cos2~] . (4.29) wp(o ,  ~) = 

For the reasons ment ioned  above, the A2-dis t r ibut ion is expected to be approxima- 
tely the same. This is confirmed in a static Chew-Low type calculation for N* pro- 
duc t ion  via A 2 exchange by  Hara [29] .  Fur thermore ,  it seems to work empirically,  
for example in the reactions Kp -+ K0A ++, which is p-A 2 domina ted  T and 7r p -+ 
A++r/0, which is pure A 2 domina ted  [31] .  The marked difference be tween  the two 
decay dis t r ibut ion (4.25) and (4.28) (see fig. 9) allows one to disentangle the ~ and 
A 2 exchanges, even in a region in which they overlap, providing the statistics on the 
decay d is t r ibut ion  is high enough. Here one would use the following decomposi t ion  
of  the full cross section, neglecting 7r-A 2 interference terms, which are likely to be 
small (see appendix):  

do 

dM2dtdM*2d$2(0,  q)  

+ d 2OA2 wA 1 

d M 2 d t  

_ M a P a  f d2Cr WTr 

(M .2  _ M 2 )  2 + M 2 [ '2  LTtM2dz 

(4.30) 

By choosing suitable missing-mass bins ZXM 2 and integrating over t, one can make a 
m a x i m u m  likelihood fit to the angular d is t r ibut ion in (4.30) in order to ob ta in  the 

o 2 7r 2 2 A2 2 c efficients d o /dMxdt  and d o /dMxdt.  Experience shows that ,  for each mis- 
sing-mass bin,  about  500 to 1000 events would  be adequate for such an analysis [32] 

J" For the p-A 2 exchange degeneracy, see ref. 130]. 
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4.4. Absorption background 

The second kind of background that one might expect to accompany the OPE 
mechanism for 7vP ~ (A, n) + X, are absorption effects, which can generally be un- 
derstood in terms o f a  P-~ cut contribution of  the form shown in fig. 10a. In the next 
section, we shall give arguments as to why we can expect this kind of  mechanism to 
be suppressed in !he de_ep inelast!c limit and under certain plausible assumptions, in 
fact to decrease like MX z =  1/(co 1)Q 2. However, there are two different experi- 
mental tests that can be made for this background, even in the presence of A 2 ex- 
change. Before discussing these tests, we mention here briefly a reason why one can 
expect the physics of  the absorption corrections to the OPE contribution to the 
deep inelastic processes 7vP -+ A, n + X, to be quite different from that in other si- 
tuation, in which one encounters OPE dominance. As an example, let us consider 
the photo-induced process 7p -+ ~r+ + X in the photon fragmentation region, where 
7 is a real photon.  Here a good case can be made for attributing the absorption cor- 
rections to p, p ' ,  ..., diffractive intermediate states [33] (fig. 10b). However, if we 
insert diffractively excited intermediate states in fig. 10a, which corresponds to fig. 
10c, then we expect the contributions from the lower-lying states p, co and q~ to die 
out with Q2 because of  their form factors. This means that only the higher-lying 
states or, more realistically, only a continuum with an invariant mass growing like 
Q2 contributes. The quark pat ton model  has been used to describe the latter situa- 
tion; however, this involves highly fictitious quark-hadron scattering amplitudes, to 
which it is difficult to at tach any physical intuition. It is therefore correspondingly 
difficult to discuss absorption corrections within the context of  this model. On the 
other hand, the arguments we offer in the next section are somewhat less model-de- 
pendent,  depending essentially on one assumption, which itself can be experimen- 
tally checked. We might mention also here that it is sometimes argued that absorp- 
tion corrections to OPE are only important  for the equal-mass configuration, in our 
case 7vP -+ n + X, since these are always proport ional  to ( - t )  and thus vanish as 
t -+ 0, which is not the case for 7vP -+ A + X. If the Regge cut correction to the lat- 
ter has the same order of  magnitude as that in the equal-mass configuration (which 
might, for example, be parametrized by the so-called poor man's absorption model 
[30],  in which ( - t )  is replaced by (m r + V/2~)2), then it is simple to see that the 
cut will be negligible iia the case of  7vP -+ A + X. However, this amounts to little 
more than a guess, and we shall not pursue this possibility further, since the argu- 
ments we offer in the next section are independent of  the lower vertex in fig. 10a 
and therefore apply equally to both cases. 

In the case of  7vP -+ A + X, one can carry out two independent tests for the pre- 
sence of  a non-Regge pole background, even when the A 2 exchange is non-negligible. 
For the equal-mass configuration 7vP ~ n + X, only the first test is relevant, since 
the second concerns the A-decay distribution. 

4.4.1. The angular distribution in the laboratory system. We return to the general 
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decomposition (eq. (2.10)) of  the cross section 2Ep,d3o/d3p ' for 7vP ~ H + X, in 
terms of  the helicity structure functions Hxx, in the lab system, in which the mo- 
mentum of the detected hadron is defined by 

! . r 

PL' =(PL sln0L cos eL, PL' sin0L sinCE, PL c°s0L) , (4.31) 

t ~ (M H - Mp) 2 Mp ~'2 
-- ~-~H/JL , 

where M H = M~ or Mp, and 
t r 

co = co , (4.32) 

which are independent of  the azimuthal angle 4)L. We saw that, in the deep inelastic 
region, the OPE mechanism leads to 

H++ c . ( t )  ~ ' = WA(co, Q2) ,  

Hoo = c . (  t) F~ (co', Q2) ,  

where 

1 t t . ,  ,?T F~ = W] r - ~-co v W 2 , 

H+_ cc~2[H++ + ell00] , ReH+0 ~ 2 2  [H++ + e/-/00 ] . (4.33) 

Hence the eL distribution will be fiat. This property depends crucially on the facto- 
rization property of  the Regge poles, which means pure Regge-pole exchange will 
only contribute to the structure functions V 1 and V' 2, However, the presence of  a 
non-factorizable background would lead to contributions to V 3 and V 4 as well, and 
if these are significant for large Q2, then by examining the relationship between the 
V i (i = 1,4)  and the helicity structure functions (table 1), we see that in general 

H+_ , ReH+ 0 cc [H++ + e_H00 ] , (4.)4) 

as far as the Q2 dependence is concerned. A measure of  the non-factorizable or ab- 
sorptive background is therefore given by 

IH+_ I/[H++ + ell00 ] and IRe H+O I/[H++ + e.H00 ] , (4.35) 

which can be extracted from the ~b L dependence. 

4.4.2. The density matrices and the Treiman-Yang test. In the case of  7vP ~ A + 
X, if we look at the A-decay distribution in the Gottfried-Jackson system, then the 
absence of  any q~-dependence corresponds to pure OPE. This is the so-called Trei- 
man-Yang test [34].  Pure OPE implies 

_ x (4.36) P33 =P31 = P 3 - 1  = 0 ,  Pll  - ~  , 
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Vv Vv ! Vv 
X 0 

In A "° p A "° E o p 

(a) (b) 

Fig. 11. An additional background to 7vP -~ A+° + X. 

whereas the A 2 contr ibution corresponds to 

-- 1 W / ~  - 1  (4.37) P33 = 3 ,  P3 1 , P31 = 0 ,  P l l  -g - "  

Hence, even if the A 2 contr ibution is present, a significant deviation from P31 = 0 
would indicate the presence of  an additional background. If  such a background 
were present, then one could work close to t = train, so that the A 2 contr ibution is 
below the 20% level, in order to see if there is a significant deviation from (4.36) by 
measuring the angular distribution. In this way, one can ascertain the importance of 
any absorption corrections to OPE. 

Tests (a) and (b) are sufficient to check OPE dominance in the presence of  both  
a Regge pole and Regge cut backgrounds. In summary, pure OPE corresponds to 

(i) No dependence of  2ELd3o/d3pL on 0 t ;  
(ii) No dependence on the azimuthal angle q~ of  the A-decay distribution in the 

Gottfr ied-Jackson system; 

1 [1 + 3 c o s 2 0 ] , i . e .  P33 =P31 = 0 3 - 1  =0 .  (iii) 14m(0) = g 
Although these tests should be made, statistics permitting, as we have suggested 
above, in a limited kinematical region in which the cross section is at its maximum, 
these backgrounds are likely to be small, i.e. at the 20% level or even less. Before 
we give arguments as to why we expect the Regge cut background to be small, we 
should perhaps mention one other source of  background in the case of  3'vP --* A+0 + 
X. If  the diffractive excitation mechanism in fig. 1 la  is important  and the 7r ° is not 
detected,  then this will appear to contribute to.~.hg-tatter distribution. This kind of  
mechanism involves the pomeron structure "ftan'~tions of  fig. 1 lb  and, at least for 
large M2x, we can expect it to be neglig~le, because the tr iple-pomeron coupling is 
relatively small. Nevertheless the above tests can be used to distinguish the OPE 
from this kind of  background, because it falls under the non-factorizable category. 

5. Estimate of  the absorption corrections to the deep inelastic OPE mechanism 

We consider here the various ways in which absorption corrections to the OPE 
contribution ot "TvP ~ A, n + X are built  up, for large Q2. We have already hinted 
that the physics involved is somewhat different than in other situations, where one 
encounters OPE dominance, essentially because of  the deep inelastic structure of  
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( d )  

Fig. 12. (a) Pure-OPE term. (b) and (c) Initial- and final-state absorption corrections. (d) Diagram 
involving pomeron coupling to more than one particle in deep inelastic continuum. 

the production mechanism. The general structure of  the Regge-cut contributions 
we shall be considering is shown in fig. 12b and c. Fig. 12a depicts the pure OPE 
contribution. 

We consider first the influence of  these initial- and final-state absorption correc- 
tions on the pure OPE, based on the assumption that the pomeron couples to single- 
hadron states in the continuum. For example for the pomeron, we know this is a 
good approximation from high-energy nuclei collisions [35].  The main corrections 
come from diagrams like that of  fig. 12d, which are relatively unimportant by virtue 
of  the small size of  the effective triple-pomeron coupling [36]. We begin by concen- 
trating on pomeron exchange in the final state. Referring to fig. 12c, we write the 
pion structure function in the form 

w.v - i f  d3k' k, k', k -  k"), (5.1)  
- n .  (27r)32Ek, 

where n .  is the multiplicity of  the final state X and W~) is the missing-mass discon- 
tinuity of  the six-point function, depicted in fig. 13a and defined by 

u, ' k")  = W(3)(q, k, k ,  k - ~ (Tr(k')IJ~0 ) [Tr(k"), X)(rr(k"), XIJ~0) 17r(k )) (5.2) 
X 

. G  r vq;i( 2, s', . . . .  2 = s (5.3) 
l 

where 

s' = (q + k) 2 , 

s" = (q + k")  2 , 

K 2 = ( q + k - k ' )  2 ,  

7 = (k - k') 2 = (k" - k ' " )  2 , • = (k' - k ' " )  2 . (5.4) 
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(a) (b) 

Fig. 13. (a) Non-forward missing-mass discontinuity of the six-point functions ~,v(q) + n(k") + 
n(k') --, ",/v(q) + n(k") + ~(k). (b) Missing-mass discontinuity of the six-point function 3, v + P + 
7r --, ~'v + R +n, R =o, a, .... 

The first four covariants are the same as those defined in eq. (2.8), with k and k'  
substituted for p and p ' ,  respectively. The remaining ones are constructed in the 
same way, using the vector k - k"  plus crossed terms involving this vector, k and k ' .  
The latter vanish as k " -+  k. After performing the phase-space integral in (5.1), the 
whole expression reduces to the form 

WU~V(q, k) = F~V V~I + F~V(q, k)V~2. (5.5) 

If we return to the whole process ~'vP ~ 2x, n + X, fig. 12a then factorizing at the 
pion pole, we see that the OPE contr ibution corresponds to 

W ~ p g ( q , p , p '  ) = F~vv1 + P~ ' (q ,p ,p ' )V '2  , 

where 

r i = IgpH~(t)121A~(t)12V~i(Q2,s ' ) ,  i = 1 ,2  , (5.6) 

and VpHTr(t ) describes the lower vertex [H = A, n] and ATr(t ) is the pion propagator.  
The corresponding expression for the absorption correction (fig. 12c) is given by 

r d 4 k  ' '  7rP 
WaU~s(q, p,  p ' )  = VpH~( t )A~(  t ) J  (-~n)4 ApH(S O, t, t 1 , t2) 

× A n ( t l )  P(t2, s / s " ) G , , p f  d3k'  W N (  q, k,  k ' ,  k - k " ) A n ( k ' " 2 ) ,  
d(27r)32Es' (5.7) 

where 

s 0 = ( / 7 - k ' ' )  2 , t 1 = k  2 , t 2 = ( k - k " )  2 = ( k ' - k ' ' ' )  2 , 

and 

[P(t2, sis") = i(s/s") an(A2) . 

7rl" describes the four-point function 7rp ~ PH and GTr~r.p is the The amplitude ApH 
pion-pomeron vertex. For  s >> s', s", Q2 (i.e. the kinematical  region, in which we 
are interested), we can make the change of  variables 

d4k , , _  1 0(X(i, t l ,  t2) ) 
dt  1 dt2ds"ds  0 . (5.8) 

4s Xl/2(t ' t l  ' t2 ) 
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' 1 

p p 

Fig. 14. Diagram which would lead to a violation of scaling in 3"vp --, X if diagram 13b violates 
scaling. 

The various covariants  in (5.3)  clearly con t r ibu te  wi th  similar weight  in the  integral  
(5.7)  and lead to con t r ibu t ions  to all the s t ructure  funct ions  {V i} def ined  in (2.8).  
Fo r  s implici ty ,  we concent ra te  on the te rm FUr(q, k)c1;2, which  cont r ibu tes  only  to  
the s t ructure  funct ion  F '  2. Here we obta in  

= VpH~(t)2x~(t) f dtldt20(X) N~p~(t, t l , t2  ) 
V~2abs 16s(2n)6xl/2(s',q2,m 2) )t l/2(t~ tll t~-) 

,, 1 c/y ~ 2  ' , ,  . . 2  =- 
2t~g , s , s  , A X , t ,  t 2 ) ,  x G. .p /x . ( t l ) fds  P(t2, s/s")fdcd~dK2x k ''2 _ m 2 (5.9) 

where  we have changed the phase-space integral  d3k'/2Eld tb  an integral  over 
d t d K 2 d ¢ ,  ¢ being the az imuthal  angle o f p '  wi th  respect  to the plane def ined by  k 
and k ' .  

In the c.m. frame k + k '  = 0, we can wri te  

(s' - s " ) ( s '  - K ~ )  
k ' ' '2  ~ (1 - cos ®) 

s,,,s,,Q 2 >> m2n 4s' 

where 

cos (9 = p" k'/Ip [[kl.  (5.,1 O) 

F r o m  (5.10)  we see tha t  the in te rmedia te  virtual  p ion is near  its mass shell, when 

k . . . .  k ' ' ~ s"  ' -~ K We now make the scale t rans format ions  s rts and K r /xs $ - -  o r  S . = = 

and wri te  (5.9)  in the form 

VpH"(t)A"(t) f dtldt20(X) N~p~H(t, t l , t2)G,~p 
g'2abs = 16(2n)6xl /2(co ' -- 1, 1 , 0 )  Xl/2(t ,  t 1, t2) 

r 

1 ( ~ )  a t2 id~od~-dr/x 4 
A l r ( t l ) s j  d r ? l (  r/(1 - r/) 1 --r? X 

X 

X 1 clY2(Q2, s ' ,  r?', r ?x S ' , t  , t2) . (5.11)  
1 - cos O( t ,  ~o) 
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Fig. 15. Plot of ratio v~bs/V~2 in the resonance region. 

Comparing (5.11) with (5.6) we see that, for large s', 

V,2abs < 1 V, 2 . (5.12) $ 

where in the deep inelastic region s' = M2X = (co' - 1)0 2. The initial-state absorption 
correction in fig. 12b can be treated in much the same way; however, it involves a 
completely different input, namely the six-point function shown in fig. 13b. Assum- 
ing this has similar scaling properties as W~), then, as far as the s ' - I  = 1/(co' - 1)0 2 
behaviour is concerned, the same argument as above goes through. On the other 
hand, should this not scale, but rather grow like some power (O2)~ relative to the 
scaling behaviour, this would cause a serious violation of  scaling in the total inclu- 
sive distribution ep -+ e + X in the large-co region through the contributions from 
diagrams like that shown in fig. 14. 

There are two extreme regions, where one might expect a different behaviour 
from that discussed above or at least where one has to argue differently, namely 

(i) the resonance reg!on M2x ~ 4 GeV 2, and 
(ii) the large co' region, where one might try to describe the deep inelastic state 

itself by Regge exchanges. 
We begin by considering the resonance region, since here the absorption correc- 

tions are most likely to be important. In order to make a quantitative estimate of  
the corrections in this region, one needs a more detailed knowledge of  the inclusive 
structure functions c0~ defined in (5.3). We shall make the following narrow reso- 
nance ansatz, which we suppose to be valid for large q2 = _ 0  2 and s', s" ~ 0 2, na- 
mely 

N-x - '  2 2, , . - , ,  q2 2 2 _ M y  2) (5.13) c l~  = z_aAts ,q  ,MvJa ts , ,Mv)8(K x , 
V 
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Fig. 16. (a)-(f) Show the OPE plus possible Regge-cut corrections, when the deep inelastic 
state is described by Regge exchange. 

where A(s ' ,  q2,  M 2) and A *(s", q2, Mv 2) are the residue functions at the pole at 
K 2 = M 2. In this region we have assumed the t--dependence drops out, which fol- 

, 2 lows from, for example, the dual light cone model [24] (Q2 >~ s ,  Mx) .  The absence 
of thist-dependence in (5.13) considerably simplifies eq. (5.11). In performing the 
ds"(d~) integration, we note it is dominated by the region s" ~ s' and make a mean 
value approximation, in which we replace A (s , q2, M 2) by A*(s' ,  q2, Mv2). Final- 
ly, performing the two-dimensional integral over dt I dt2, we obtain the following 
rough estimate of  1~2 bs for a given resonance V: 

I V2abs ~ c 1 . 1 (5.14) 
V~ rn2A (t) 64n G ~ p G H H  ~, a'~(s' - M 2) ' 

where we have assumed that the reggeon-particle amplitude A ~P (see eq. (5.1)) is 
dominated by the intermediate state H. If  we allow a factor of  1.5 for the contribu- 
tions of  other intermediate states in A~I ~, then a crude upper estimate of  the nume- 
rical constant c is c ~- 0.2. In fig. 15 we have plotted the ratio V2abs/V ~ for t = 2m 2, 
as given by (5.14), taking a'p = 0.25 GeV 2 and assuming the nH total cross section 
is about 20 nab. We see, in fact, that the absorption corrections can become impor- 
tant in the neighbourhood of the resonance. One should therefore make experimen- 
tal checks for the level of the absorption corrections in the resonance region, follow- 
ing the suggestions of  sect. 4. 

Finally, we briefly consider the situation where we describe the deep inelastic 
state itself by Regge exchanges, which might be the appropriate description of  the 
large-co' region. The pure OPE corresponds to the triple-reggeon diagram shown in 
fig. 16a and one can envisage Regge-cut corrections of  the form shown in fig. 16b 
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and c. The latter can be computed in a naive way using Grib<~.v's reggeon calculus 
[37] and it is simple to see that in the region s /Q 2 = 2 0 - 1 0 0 ,  t -~ tmi n < 5m 2, only 
the diagrams which contain the pion pole are significant. The former simply corres- 
pond to vertex corrections associated with reggeized OPE and should be included in 
the proper parametrization of  OPE. We have neglected diagrams of  the form shown 
in fig. 16d, which decompose into two pieces shown in fig. 16e and f, because apart 
from the resonance piece (fig. 16e), they are already included in fig. 16c. The reso- 
nance part is neglected because of  the assumed form factor behaviour for the pho- 
ton-pomeron resonance vertex. We shall mention the consequences of  relaxing the 
latter assumption in our concluding remarks, where we suggest how it might be ex- 
perimentally tested. 

6. Concluding remarks 

Given reasonable statistics, we have discussed how the pion structure functions 
can be extracted from the inclusive distributions 

/lp ~ / l  + n + any th ing ,  (6.1) 

~p ~ / l  + A ++ + anyth ing ,  (6.2) 

~+ p+~r + 

in the small4 region (Itl < 0.I GeV2). The data for itJ> 0.i GeV 2 can be used to 
extract information on the deep inelastic structure of  an unspecified virtual mesonic 
system. Here one might look for a universal behaviour by comparing the resulting 
structure functions (assuming factorization) for different detected hadrons and with 
the pion structure functions obtained from the small-t data. 

The pomeron structure functions can be extracted from the inclusive distr ibution 

/ap -+ ~ + p + any th ing ,  (6.3) 

where both the pomeron and pion exchange compete.  We have based our analysis of  
the absorption corrections of  the OPE contribution to (6.1) and (6.2) on the assump- 
tion that the photon-pomeron diffractive resonance transition vertex has a form fac- 
tor FTvPR(q2 ). If  the Drell-Yan relations hold for the pomeron structure functions, 
then we would expect the following threshold behaviour 

F~r(co ') ~- (co' 1) 2n-1 , (6.4) 
co ---~ 1 

where n is defined by 

F~v~R(q2 ) ~ Iq21 n . (6.5) 
Lq 2 I---~ 

This means that in the small-co' region the inclusive distribution (6.3) behaves like 
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_ 2 - - l ( s  ~2%r(t)c(co' - 1)2n-I (6.6) d2o 
d~rdi- PPWr(I) S \Q2 ] 

If n = 0, we see that this distribution will be singular as co' -~ 1. Hence looking at 
the threshold behaviour of  (6.3) as co' -+ 1, suffices to check our basic assumptions, 
namely n > 0. From the latter it follows that the absorption corrections to the 
OPE mechanism in (6.1) and (6.3) are negligible in the deep inelastic region, except 
perhaps in the resonance region co' ~ 1 (see sect. 5). 

We wish to thank U. Amaldi,  F. Brasse, E. Gabathuler,  G. Kramer, J.C. Polking- 
horne, G. Preparata, H. Scott,  F. Wagner, and particularly R. Worden, for informa- 
tive discussions. We are also grateful to G. Preparata for reading the manuscript. 

Note added: An at tempt  to extract the pion function from the existing ep data 
has been made by M. Chaichian and H.R. Rubinstein (private communication).  

Appendix 

We discuss here the interference between n and A 2 exchanges in 7vP -+ A++(P +n+) 
+ X. For the PA2A vertex we assume the same helicity structure as the ppA vertex 
corresponding to o-A 2 exchange degeneracy. The ppA vertex is assumed to corres- 
pond to a pure MI+ transition (cf. p~,A), leading to the Stodolsky-Sakurai  A-decay 
distr ibution for 0-exchange, which also works well for A 2 exchange (see ref. [30]).  
In this case it is simple to show that the density matrices defined in (4.18) for the 
n-A 2 interference term are given in the Gottfried-Jackson system, by 

_ 1  
01 1 - 3 ,  0 3 3 = 0 1 1 = 1 3 3 - 1 = 0 3 - 3  = 0 .  (A.1) 

The angular distribution for the unpolarized cross section is given by (cf. eqs. 
(4 .20)- (4 .22)) :  

3/2 " ,~) r-~3/2 rn lYrrA2 (0, SO) ---- Tr oA(O, SO) = - i l m  D1/21/2(0 , ,e *-,_1/2 l/2t t, , SO) 

+r~3/2 3/2 1/2- 1/2( 0, SO)D-I~2- 1/2 (0, so) = 0 .  (A.2) 

Hence there is no interference term between n and A 2 exchanges in the unpolarized 
inclusive cross section. 
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