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CEAPTER 1
INTROD'VICTION

Most current attempts to understand the strong interactions of elementary par-
ticles are characterized by a concern with the complex angular momertum plane
{or J-plane}, and much of the literature makes at least some reference to it. But
we have travelled a long way since Regge's pioneering work of 1959 [1-3], and
there is now not much use of the framework of potential sc attering on which the
original discussions were based. In fact almost from tx¢ beginning most of tie ir-
lerest has centred on the phenomenological implications of Regge theory rather
than on its relation %o the fundamental dynamical principles (whatever these may
be}.

The basic idea of Regge theory, to be explained in more detail later, is that
scattering amplitudes are analytic tunctions of the angular momentum, J, and that
a particle of mass m and spin o will lie on a Regge trajectory a(f) (where ¢ is the
square of the centre of mass energy) such that the partial wave amplitude has a
pole of the form 7= a(H]~1, and such that a(m?) = o. Such particles are said tc be
‘compesite’ because they behave in the angular momentum plane like the bound
gtates of potential scattering rather than the fixed spin 'elementary’ particles of a
Lagrargian tield theory, which 4o not correspond to J-plane poles. Since a{f} may
pass through soveral integer values {or half-odd-integers for fermions) several
particles, of increasing spin, may lie on the same trajecicoy.

It is generally believed that the strong interactions forces are due to the ex~
change of such composite particles, or Regge poles, and, as we shall see, such
an exchiange (see fig, 1) gives a definite prediction for the high energy behaviour of
the ucattering amplitude A(s, ) (where now s is the square of the centre of mass
eneywy, and ~¢ is the momentum transfer) viz.
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A(s, t) ~ s%D (1Y)

where aft) is the highest trajectory.
olt)

}
| S

Fig. 1. The exchange of a i-channel Regge pole a(f) in the s-channel scattering process
142344,

<t

Similarly Regge cuts in the J plane correspond, in a rather complicated way,
to the exchange of two or more particles, and their asymptotic behaviour may in-
clude logarithmic terms, such as

As, 1) ~ s%Pog ) (1.9)

where a(¢) is the position of the highest branch point. In general there will be
many poles and cuts exchanged in a given amplitude, so the asymptotic behaviour
raay be a sum o terms like (1.1) and (1.2).

. Though Regge pole phenomenology excited much interest in the early years
(1961<1963) [4, 5] this enthusiasm was short-lived, mainly it would seem because
of the failure of one important prediction - that if a single pole dominated the for-
ward pear of the 7N elastic scattering differential cross section it would shrink
with increasing energy. It remained fairly easy to fit all the available data 1:ith
Regge poles, but the number of parameters needed seemed disproportionate !n the
amount of data fitted. However, as better data, particularly on inelastic pro-
cesses, became available, starting about 1965, interest revived, and Regge phe-
nomenology hag become a thriving industry.

This certainly does not mean that Regge theory is without its problems, or that
all the available data can be fitted by a few J-plane singularities without ambiguity.
But is does mean that there is now widespread agreement that the complex J-plane
is a good place to try and analyse what is going on.

In this sense Regge analysis is in a rather similar position to partial wave

'nalysis. It is well recognised that where sufficient low energy data !s available
« N essential preliminary to a thorough understanding of the scattering process is
to resolve the amplitude into partial waves. One does not, of course, expect that
such an analysis will always be free from ambiguity, or that it will be possible to
interpret the amplitude by a simple model, such as a sum of Breit~Wigner rezo-

nances. R is rather that by making use of such a basic notion as angular-momeu-
tum conservation ore axpects to gat nearer to the heart of the problem.

Similarly with Regge analysis, whenever there is sufficient high energy data it
must now be regarded as an essential preliminary to analyse the amplitudes in
terms of crossed channel J-plane singularities. Again there will be ambiguities,
and there is certainly no reason why a few Regge poles should suffice, but once
one has some idea of the J-plane structure of an amplitude one can start trying to
deduce the basic dynamics on which that structure is based.
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In fact our understanding of the fundamental dynamics lying behind the suc=
cesses of Regge phenomenology has made very little if any real progress since the
introduction of Regge's ideas into $-matrix theory in 1961 [6-9]. Indeed we shall
argue in the concluding chapter that the foundations of Regge theory now seem if
anyihing less comprehensible than they did a few years ago, though there have
been some promiging developments, such as the multiperipheral bootstrap, and
the ‘ntroduction of dual models. But there has been a tremendous increase in our
understanding of how to apply the basic ideas of Regge theory to scattering ampli-
twdes involving particles with spin, and unequal masses, and a great improvement
in the availability of experimental data with which to try and locate the dominant
poles and cuts,

In this report we shall attewpt to review the progress which has been made in
recent years in sharpening the tools of Regge analysis, particularly as regards
the kinematics of Regge poles and the evaluation of Regge cuts. Our emphasis
throughout 18 on those aspects of Regge theory which are of interest to the phe-
nomenologist. We assume that the reader is already aquainted with the basic ideas
of S-matrix theory [10-13], and begin, in the next chapter, with the representation
of an halicity amj..tude i torms of its J-plane singulzrities. Chapter 3 contains a
brief review of the information about Regge trajectories which can be obtained
from an examination of the reson.nce spectrum. In chapter 4 we summarise the
varions kinematical and dynamical requirements which must be satisfied by Regge
poles - their analyticity properties, the corspiracy reiations, etc. Chapter 5 is
devoted to a discussion of the theoretical aspects of Regge cuts, and recent at-
tempts to estimate their magnitude.

In chanter 6 we give a rathes brief survey of the idea of duality, which has
pl.yed such an important, but as yet controversial role in particle physics, and
ticn ‘n chapter 7 we review the application of the preceding theory to the experi-
mental data. Some conclusions are drawn in the fina! chapter.

We have resiricted ourselves almost entirely to the two particle - twe particle
amplitudes, partly because the evidence here is so much more complete that it is
{for multiple production processes, and partly through lack of space. The litera-
ture on Regge fits is so vast that one can not hope to be co.nprehensive, nor in a
rapidly changing field can one be completely up to date, but we have tried to give a
re.sonably balanced survey of the successes and difficulties. We have omitted al-
most all applications of Regge theory ouiside phenomenology. In pariicular we do
not discuss the several different types of bootstrap equations using Fegge poles,
some of which seem to cffer exciting prospects for putting Regge thecry ona
feeper thecoretical foundation.

We hope that the treatment given is sufficiently detailed to serve as an intro-
duction, but the going may be rather heavy for the reader who is meeting these
things for the first time, and he is advised to skip the more complicated parts at
first reading. He may also wish to consult some of the earlier introductory works
on Regge poles in potential scattering [4,5, 14], and in S-matrix theory [10-14].
The author has already coliaborated in a review of the subject [15], but that was
three vears ago, a long time in particle physics, and in any case the viewnpoint
here is rather different. However, reference is frequently made to that book for
points we do not have space to discuss fully here, and where possible the same
notation is used. This does not of course mean that this is the only, or the best,
place where the required material can he found.

Because of the fairly comprehensive references to eariy work which can be
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found in refs; [4,5, 15] it has not been thought necessary to give full credit for the
older established parts of the subject. More care has been taken with referances -
to work since 1967, but of course no ciaim to comprehensiveness can be made.
The resder is also recomnmended to other recent reviews such as refs. [16-18].

CHAPTER 2
OUTLINE OF REGGE THEORY

2.1. Introduction ¢

In this chapter we shall outline the basic ideas involved in complex angular mo-
mentum theory - or Regge theory for short.

We begin by defining our kinematics, and introduce helicity amplitudes,

Ag(s, {)(for both the s and £ channels) which we shall use to describe scattering
processes involving particles with spin. We then define ¢~channel partiat-wave
am litudes Ay (#) using the conventional projection in terms of rotation functions

'(z;) Defined in this way the partial wave series diverges outside the #-channel
physlcal region at the point where we reach the nearest singularity in s, but we
can circumvent this difficulty by writing a dispersion relation for the anplitude in
s at fixed {. We ‘hen obtain the so-called Froissart-Gribov partial-wave projcec-
tion.

These partial-wave ainglitudes arc shown to have 3 unique continwation in 7, at
least as long as the Froissart-Gribov projection is defined. Certain problems con-
cerning signature and parity have to be discussed, however, and these considera-
bl complicate the barie simplicity of the arguments which one would use for spin-

ticles. The  partial wave series is then rewritten as a contour integral in
e - the Somimerfeld~Watson transform - and the integration contour is
openea up to expose the pole and branch point singularities in J of Ag(¢).

It is then found that the presence of a singularity at J = a(t) leads to the predic-
tion of the p vser ‘behaviour for the total amplitude given in {1.1), viz.

Ag(s,f) ~ s%¢) (with possibie log s factors if the singulamty is a cut). This pro-
found connection between the - channel J-plane singularities and the s-channel
asymptotic behaviour is at the heart cf Regge analysis. The well known physical
interpretation of a < :lane pole as the exchange of a #~channel particle, and of a
cut #8 the srchange of severa: particles simultaneously, is left to subsequent
chapters, but we conclude with a brief ‘discussion of the restrictions which unitar-
ity places on Regge singularities, including the Froissart bound, the absence ot
fixed poles unless there are also cuts, and the factorization of pole residues; and
we show that cuts are needed to make the Gribov-Pomeranchuk fixed poles com-
patible with unitarity.

2.2. Kinewmaiics

We consider the strong inteiaction process shown in fig. 2 in which the direct
or s-channel consi:zis of particles 1 and 2 entering the scatterirg ragion, and 3
and 4 emerging. It Jdoes not concern us here whether the particles are stable, or
are resonanc2s which subsequently decay. In either case it iz found that the scat-
tering is predominantly in the forward and/or backward directions at high ener-
gies, and controlled by the exchange forces from the f and u crossed channels re-
spectively. We shall concentratn on describing how the £-channel forces govern
the forward direction - the corresponding % channel description is then obvious.
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Each particle (mass my; ¢=1,....4) carries a four momentum p; (as shown in
fig. 2) and from these we construct the usual Mandelstam invariants [19]

s=(ty+p9)2,  t=(pg+09)2,  u=(py+pp?. 2.1)
of which only * are independent sinre we have the ~ancteali
s+t+uw=Em§ =% . (2.2)

Then Vs is the centre of mass energy in the s-channel and, -¢ the momentum
transfer squared. The centre of mass 3-momentum of particles 1 or 2 is given by
[20]

2 1
a0 19 =45 [5= (my+ mg)?][s= (mq - mg)?) (2.3)
and ihe centre of mass scattering angle is
s? (2t - 3) 4 (m = m) (3 - me2)
cosfg = gg = -— (2.4
s 459512934 @4)

Similarly if we consider scattering in the ¢-channel corresponding relations may
be written down for ¢; 13, 4794 and cos 6y = 2; by permuting the variables. The
physical regions are bounded by -1 < 2z < 1, etc. and these boundaries are given

by

¢(s,t) = stu- s(m%- mg)(m2

-
.
r4

2

2 2 2.2
m4)- t(ml- mz)(m3- m4)

2.2 2 2. 2

2 2 2 .
- ("llm‘;'"‘z 7713)(ml+m4 my m3) =0, (2.3
see fig. 3.
Zgefy\ Zg= |

N A n
P
‘ % Py
S

Pig. 2. The scattering ampiitude for a gen-
eral four-body provess. The s-channel reac-
tionig 1+2—3+4, the t-channel ia 2+4—
~1+3, and the u-channel is 1 +4 — 3+2
where the bar indicates the anti-particle. Fig. 3. The Mand=lstam plot for aN—aN
Tkese three processes are related by and its related processes. The physical

¢ crossineg, regions of the three channels are shaded.
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The helicity of a particle, u, is defined as the projection of its spin, o, in its
direction of motion [{21] i.e. Con

@
i = %’T (2.8)
where p is the 3-vector momentum. y spans the 20+1 values u =0, 0~ 1,...,+0,

We denote a centre of mass helicity scattering amplitude [21] for our s-channel
process by B

(ug ng|A(s, 0|y g = Ag (s,1) @1

since we know from Lorentz invariance that the amplitude is a function only of the
Mandelstam invariants, s and £, and the four helicities u;. We 12presert these
collectively by Hg, the suffix being used to indicate that the helicities are meas-
ured in the s-channel cenire of mass system.

The amplitudes are chosen to be normalized as in ref. [15], so that the optical
theorem rends

1
Opais) = ———— Im{uq us |A(S,0) |y uo) 2.9)
totlS) = 5, 75 Ik g At ln1ng), (
and the amplicudes are related to the unpolarized differential cross sectior vy
—= - % (s, %, (2.9)
& 64usq§ ” 20y + 1)(;.02 +1) H s

where we sum over all the pessible combinations o the y;.
We also need tc use helicity amplitudes detined in the #-channel centre of mass
-system

(lzldlA(S,t)l?tlhs) EAHt(S’t) (2.10)

vhere the 2 are the f-channel helicities. The crossing postilate [10-13, 15) re-
quires that (2.7} and (2.10) should be the same analytic function, apart irom the
ne2d to rotate the helicities from the direction of motion of the particles in one
centre of mass system to the other {22]. So we have

Ap s,y =2 M{Hg, HAg (s, 1) (2.11)
Hy

where M(H, H;) is the helicity crossing matrix [22-24], which is simply the prod-
uct of the rotation matrices needed to rotate the helicities of the particles

< . (¢]
MH, H)) = d;;ul(xl)a;guz(x_z)d:g us("3)dh:u4("4’ (2.19)

where the angles of rotatior are

2 2_ 0 2, 2 2 2 2
(s+m1 mg)(t+m1 mg) 2m1\m1 m, m3+m4)

. I
{[s = tmy +mp)2f[s - (m - mg)?|[t - (my +mg)?|[t-(m,- mg)?;2
etc. Because of the orthogonality of this matrix we can also write

cos x; = (2.13)
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do 1 1 > ! 9
29 Agds,|= . (2.19)
at 64'nsq§ R (204 +1)(209 + 1) H, t

Egs. (2.5) and (2.14} ave equivalent, but care is needed in interpreting this equality
outside the physical regions of the s or { channels where the crossing matrix has
singularities (see e.g. ref. {25);.

2.3. Partial wave amplitudes

We have already indicated that the basic idea of Regge theory is to relate the s-
channel differential cross section, etc. to the angular momentum structure of the
corresponding ¢~channel process.

The scattering amplituds may be expresscd as a partial wave series by [21]

Ag s, D = 16n J:‘JM (27 + DARADES, (2) (2.15)

where J is the total angular momentum and is an integer or half-odd-integer de-
pending on whether the {-channel has even or odd fermion number. The partial
wave amplitudes Ay ;(f) represent the scattzring in the particular ar}gmar momen-
tum state. (The suffix ¢ is dropped from ¥ for simplicity.) The dg}.(z;) are the
rotation functions [26] with

A=Ay, A =An=dy and  M=max{|x, A}, (2.16'

The sum staris at + = M since the projection of the orbital angular momentum in
the direction of motion is zero, so J can not be less than the sum of the spin pro-
jections in that dirvection.

The inverse to (2.15) is

1

1 ad s .
Apst) = 43— fl Ap (s, by, (zpez, (2.17)

where we have used the orthogonality relation

+1
J J ‘ 2
-f1 dy, (0)d;,,(6)d cos 6 = 8, 55 - (2.18)

The factor 167 in (2.15) is quite arbitrary, but is inserted for convenieuce (see
ref. [15]).

The ]series (2.15) is only valid for the ¢-channel physical region and a small re-
gion beyond, until we reach the nearest dynamical s-singularity {i.e. inside the
small Lehman ellipse [27]). It certainly can not be used in the s-channel physical
region. To reach this we need to make an analytic continuation. (This point is dis-
cussed in greater detail in e.g. refs. [4, 10, 15].) 4

There are also kinematical s-singularities of (2.15) at z; = £1 which arise be-
cause of the rotation function [26]
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A== (A=) /2 [T+ MU T = MV S /1=2\ [A=A"|/2
diIA'(Z)z(‘l)( l \)/ [\(J.:'%)&J'Abg!] ( 23‘)‘ l

x (l.gﬁ)\“’" |72 p}f-MN R (2.19)

where Pgb (2) is a Jacobi polynomiai and
N=min{r|, [x[}.

The polynomial is of course analytic in £ so the only siagularitic= stem from the

*half angle factor' R '
’ - z’] a-a' 2 + 2 a lav 2
EM'(‘Z) (12 l ‘/ (1 2 ) | I/ * (2‘20)

Note that here we are using the phase convention of Edmonds [26]. The Rose [28]
convention is also commonly nsed and differs f» 21 (2.19) by a factor (-1)A=A'. The
factor at the front of (2.19) is used to reflect the symmetry relations

il @ = 0N ad e = (M g ) (2.21)

Later we shall wish to make an analytic continuation of d,‘{»(z) inJ, and for this

purpose it is convenient to re-express (2.19) in a form which exhibits its J-plane
structure more explicitly,

v ,fr""- -1 A=A'= DA=X" )} /2 (S + MV(T~- M [A=A" ] '% _____.1
dMF) = ( 1)( ‘ l [%JfM!(J+Mf | R-A_'”!] PL-).'I EM'(z)

X F(-J+M; T+ M+1, [A=X'] +1; 3—;—"-) . (2.29)

Since *he hypergeometric function F is an entire function of  the only singularities
stem from the square bracket. We shall also later need to make use of the fact thit

&)@ — (prmA/2 27 :
2-c0 [(T+MUT = M+ X=X PUT - M + M= [x-2 2
3 g,@) BT Ma 0@ Y o 2
80
a7 (2) ~ (5‘21)" J>-3 and (J-1) #integer < M, (2.24)

where v is defined in (2.38).

2.4. Dispersion relalions and the Froissari-Gribov projection

We have noted that the only singularities of (2.15) in 2z, and hence in s, stem
from the half angle factor £,:(2;). This singularity has a simple physical inter-
pretation in that for forward scattering, for which Z; =1, A and A* are the projec-
tions of the total angular momentum 5i the initial and final states, respectively,

and so the amplituds juust vanish unless A = A' by angular momentum conservation.
So if we define
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A[{t(sy f) = Ayt(S, /%5 a2y - (2.25)

/iﬂt will be free of kinematical singularities in s (and «). I* will, however, contain
dynamical s-singularities corresponding to the s (and «) charnel bound states,
threshold branch points, etc., which result in the breakdown of (2. 15). Thus, if we
want to make an analytic »ontinu.ztion including these singularities, Ay, is a suita-
ble amplitude in which to write dis,.ecsion relations in s (at fixed #), viz.

oy - Au', 1)

H(s f) 1 "uki
(sf)-—f — s+—ﬂ—uf . (2.26)
0

vhere Ds is the discontinuity of A across the s-channel dynamical cuts (above the
s=channel threshold sg): and similarly for D,. Bound state poles may be added to
this expression if necessary.
As far as the ¢ channel is concerned D¢y contains the 'direct' forces, and D,y
the ‘exchange' or Majorana forces. If the integrals in (2.26) converge the scatter-
_ing amplitude is completely determined by its dynamical singularities. In general,
however, the asymptotic s' or u' behaviour of Dg and D,, will be divergent for
“some ¢ values, in which case the representation (2.26) is only defined up to the ar-
bitrary subtractions needed to produce convergence. We shall see below how
' Regge theory serves to fix these subtractions, and hence completes the determina-
' tion of Ay by its dynamical singularities.
f Using the fact that (from the equivalent of (2.4) for z;)
|
| §'=-8 = 2qt 13q:24(z'~zt) and W=-u-= -2q”3 qlt_24(2"2t) (227)
the substitution of (2.26) into (2.17) gives

1 - o D i S' t
{ si(S", £ .
AHJU 32 f d“fdkk'(‘“[)&\'xv t)lﬂ. _2_'-2 dz
29

7% Dy gle, t)
L1 dz'i. (2.28)

-zo

We now introduce the 'second type' functions correspondinz to the ad , With the
definition [29, 301

(@) = (N TN D/ PN T MM @
X Q }3_‘;‘" ] gy (2.29)

where the ng are the second type Jacoki functions. (These tale the place of the
second type Legendre functions @y(2) in spinless particle scatiering.). The d's and
¢'s are related fov integer (J - M) by the ‘generalized Neumann relation’ [29]

J . , .
Euv(z)en'(z) = 2 f 7= z. h}t'(z‘)shl‘('z) . (2.00)

When this is substituted in (2.28) we end up with the Froissart-Gribov projeclion
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o0

=t eV | _qyJ=R
Agfdd = g | dzw pls. ey (=08 (20 + (1)

D“H(S‘, t)'?i{'h'(zt)gh-h'(zt)} , (2;3;)
where we have used [29]

e (-2 = ()T el 1oy, (2.9

to obtain the second terrn. Since we can rewrite (2.29) in terms of the hypergeo~
metric function as

ed (@ = (N PNh/2 L

7o [0+ 4010 - M+ Mt - i

(z 1) J=1+M

x E10e) 5 F(I-M+1,0- M+ [A=x| 41,2742, 2)  ewn

and since the asymptotic behaviour of the hypergeometric function as 2 - = js 1,
we get

-\t 1 -J= |
eppl®) = OBt - s e-mF 3 B, e

Z 0

80 i Ag(s,?) ~ zf(t) for some value of £, then Dy ~ 2; 8(£)=M and so the integral in
(2.31) converges provided

RedJ > &(t) .

We shaii discuss the continuation to ReJ < &(f) below. It is the presence of these
divergences which reguires the subtractions referred to above.
The symuietry relation

J A=A -J-1
exn@ =00 " ¢, (), J-v = half odd integer (2.35)
will be needed later.

2 5. Signature

Unfortunately (2.31) is not a suitable expression for continuation in J because of

Ehe (1)Y= factor in the second term. For large J the asymptotic behaviour of e is
29-31)

IO 1 e

7 (22-1p

J te
e, .{2) — z (2.36)
w® - Q)

|argd| <
where £(2) = log[z+(zz - 1)";'] and we take + for Imz Z 0. So, ac long as the integral
converges, the first term in (2.31) behaves like
o~ (J43)ik(z )

~ 2 —— T 0, (2.3
J—o Jz
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but the second behaves like elT(J=4) x (2.37), and so oscillates as . = =,

Carlsnn's theorem [32] tells us that if f(J) is a regular function of J and of the
form O(e® |/ b, where k < 7 for Re(J) > 0, then f(J) is uniquely detcrmined for all
J by its values at positive integer J. This condition is satisfied by (2.37), but not by
the second term of (2.31). To circumvent this difficulty, which is not present in
pctential scattering with only direct forces, we construct from Ag(s,?) amplitudes
of definite signature, ¢ =+, in the ¢ channel, by replacing (-1)9~? with +1, where

v = 0, § for physical J = integer, or half odd integer (2.38)
80

0

' 'l i J A-v

A};J([) = ...-....,2. f d:t {DSH (S: t)ekh(z£)€AA' (Z:) + d(- 1)
167 zo

X Dyyls, 0l (208, (2. (2.39)

The A;{J(t) coincide with the physical A s(t) values for J- ¢ cven/odd. So we can
write

Ap(s,t) = 16x J?M (2J+1) [A;;, J(t)d+ (d,2) +Ap 00 (0, 2)] (2.40)
where we have defined
d%.,(7,2) = 3[4, (@A + o (-2 (-2)] (2.41)
dix \J, 2) vanishes for J-v even/cdd since [26]
PN N7 (S U S (2.42)

Thus A* contains the even part of A in 2, and A™ the odd part, though neither need
be pur:ly even or odd. The physical J values of Aﬁ J(t), i.e. J- v = even/odd inte-~
ger, are known as 'right-signature' values of J, while the odd/even values ave
called 'wrong signature'.

As a result of Carlson's theorem, (2.39) gives us a unique definition of Ag s for
all J values for which the Froissart~Gribov projectiun is defined, i.e. all
Re /:» 6(f), which may now include Red < M.

W2 have noted in section 2 that physical amplitudes must have J = M since for
the incoming channel only J = |A| is allowed, and for the outgeing only J > {\'].
Amplitudes with integer J=v and J > M are known as 'sense-sense’ (ss) ampli-
tudes. When we make the analytic continuation we may alsoc become involved with
amp: itudes having integer J=-v, but with N < J < M. These are known as 'sease~
nonsense’ (sn) amplitudes, since for one of ihe iwo channeis the J vaiue does not
make physical sense. Similarly integer J=-v with J <N are knnwu as 'nonsense-
nonsense' (nn) amplitudes. We shall irequently use this notation below, sometimes
referring to all integer J-v, J < M as nonsense values.

2.6. Parity
An unfortunate complication of our formalism stems from the fact that two par-
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ticle helicity states of definite J and m y are not parity eigenstates. Rather under
the parity operator P we find [21]

J~01~08 ;.
# = - J A=A ~A ) s R 3
PlJkal\s) Tiy T"3( 1) | M g (2.49)
where 7; and 3y are the intrinsic parities of particles 1 and 3. So definite paity
states are provided by the combinaticns

01 +0g=V

1
] = 2z | ) o - - 1
[Fm x A =272 {[m a Agden, ngi~1) EECFERPEI0) PR+ 2T)

So, assuming that parity is conserved in strong interactions, the scattering ampli-
tude between such states is,

: a1 = 1 J1+0g-~v
\a2x4].4J (t)lalx:),) <aza4 lA:fI(t)}Alashnnlna( 1)

X (A?h4iAj{£){-Ai~Ag) . (245)

where % = £ for natural/unnatural parity. (A state ho ... -~ parity if P = (~ 1)'}‘*’.1
These states are physical for J-v even/odd, depending on the signature, so
Pxga. (2.46)

We then define the so called 'parity conserving' helicity amplitude [33] free of kir
ematical s singularities by the rule

A lA s, 12 09 = Ao n, 147 (5,012 00 £ L2
_p A -M BRI Ratl Sl N oy - -1
+1(-1) 7, Mg¢=1) (y3, 14 (s, 8! Ay 13>£_M'(z) .

In terms of partial-wave amplitudes this is

T, = 165 5 (@2deD) A 0 hae) y Y
A oI} = ; . Bt TN §
H J=-M J( 5:w(zt) n

oy +og= d:\,\’ {zz‘)
X {~1 Az D) ——— . 2.48
nl ??3“ ) :‘J() §,,Mv(zt) ( )
where H ={-1;-Aq, A9, \q}; Or, using (2.45),
oD

A9 - b " SNy 3o+ R PR LI

Aps,t) = 167 JiM (@7 + ) {Ay (011U, 2) +A g 7 {f)&ww,z)} L (24
where we have defined

F & \
PP R N7 E(®y 1 ’

So partial waves of both parities contribute to the 'parity consevving' ampli-
tudes in (2.49). But in the limit 2 — = we find, from (2.23)
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2 2y — (_U{A~A'~|A~A' /2 [ 144 (- 1)J‘i"J (2!
R & S AT R e e e e i e ~~——-—T
A L [(J + MY = MYH(T + N - 203
o< c}"‘l‘g ! - b . “j:?‘ \
x;,,-) }1:33«!4-0(3} ' 1). RoFow -2 2=
P2y I Wl o )

so to leading order in z the d* domjnates over the d?” in (2.49), and so asympto-
tically only A ;’}3{1‘) contributes to A I‘}Z}:s, t). It is only in this asymptotic sense that
our amplitudes are parity conserving

2.7. The Sommevrfold-Wetson transform

Having ¢owablished the vniquenegs of the anaiytic continuacion of our signatu_ed,
parity conserving, partial-wave amplitudes, we can rewrite the partial wave se-~
ries (2.49) as a Cauchy integral

16 r  2J+1
21 Y sinw{d +A")
€y

9. ~d 4 . Fr At A ad -
{4 ;!}(t)d_ oy &5 72) +AHJ“?(t)d_ o

fi‘!}m(s,t) == -2t ad,  (2.52)

where the contour ¢ encloses the real axis for J > Af, but avoids any singularities
of Ay, as shown in fiz. 4. We have used -z so that, because of (2.42), the (- )9+
coming from the residue of tiie poles of {sina{d+X")]"1 is cancelled.

If we open up the contour to ¢ as in fig. 4 we know that because of {2.37} the
contribution of the semi-~circle at < will vanish, but we pich up contributions frem
the singularities of Ay, and from the singularities of {sins{d+1}]"1 for « < a1,

The amplitude is expected to bave pole aud branch po/nt singularities, and if we
assume for simplicity that there is just one pole of fue form

e 'B'E\ﬁ RS

— ‘

A T gy b

and one branch point at J = a,{f) with the cut drawn as n 1. ¢, with ulscontizan
A(d, 1), we get

A

/

20 ~ g
~.;lq‘\
| , «(t) N
Al \
> & x.
P “
r"

5 ! i N M &7 |
2 e AN A et e
S SR TV~ S AR N SN S W RN " ey

| |
!
| .

cofmmn e e

Ca
<

Fig. 4. The Sommerfeld-Watson transform for o “elicity amplitude with A - 5 and v

In the ccmplex J plans the contour cf encloses the integer ¢ values =™ A5 When this contou
is upened up to cg we also collect distributions from the Regge pole at a{n, from the branch
cut starting at the branch-point @q(f), and from the integer J values -3 «J+ W
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P ;ﬁ(‘s, ti R L f AT+l ; {(2‘;52)}_‘1“2‘__’%‘):11_ ;3;7!“)‘{_‘_”&‘(@ -z

2i ey sinma(J+ X' sinn(a+A") I3
ae(t)
167 C 2J+1 o+ _
" Saa ) A0 AL
M-1 N-1 ) P
- T - T (6n(2r+ DA, A0 (1, A +Ap T Od (Y (254
J=N J=v

Using the asymptotic form of Jﬂ?(J, z) given in (2.51) we sei.that the first term
in {2.54), ‘he so called "background integral', goes like ~ (2;)~2~M, and the poie
term like ~ (2)2()~M_ The behaviour of the cut term depends on the behaviour of
the disc??tinuity A(J, 1) at the branch point J = ap{). If it is finite we get
~ (22e)"M (10g2,)"1, while if A vanishes like {J- ), &< 0, we have B
~ (25)2c®)~M{10g 2,)~(1+9)  pt the sn. points in the fourth term . (J = Jo, Where
J=-v = integer with N< J < M) d_y)(J, 2) vanishes like (J - J5)2 so this term will
vanish unless Agr ~ (J = Jy)"2. We shall discuss this possibility further in section
9 but for the moment we assume that thic term vanishes. Similarly in the final
term (at nn. points v € Jy <N} the leading power vanishes, and in fact {see 2.23)
dsl . (2) ~ (2)"91 50 the asymptotic behaviour is (zy)~0=1~¥,

" So'we see that only the presence of the cut and pole singularities of Agy pre-
vents the convergence of (2.39) for -~ < J < §(f). It is the principal hypothesis of
Regge theory - often called maximal analyticity of the second kind [10, 18] - thai in

--continuing the partial=wave amplitvdes the only singularities met are isolated
-poles:fealled Regge poles) and branch points (Regge cuts). Thus 8(f) = apg(f) where
(2} is the rightmost J-plane singnlarity. And the 'undetermined subtractions' in
dispersion relations like (2.26) are now identified as Regge poles and cuis. We
have already mentioned that these singularities have a physical interpreiation as
the exchange of composite particles. Hence if all the particles in strong interac~
tion physics are composite, i.e. they all correspond t. Regge poles, there should
be no arbitrary parameters left in the S-matrix. It is on this hyncthesis that the
beotstrap philosophy is based. (See e.g. refs. {10, 11, 15].)

There is no special significance about the line ReJ = -3 in (2.54); it was chosen
simpiy because, as we see from (2.28), it coincides with the most convergent be-
haviour of dg‘&, (2). Mandelstam [34] has shown how cne can continue (2.54) below
this line by making the replacement [30]

rdfda)  edu@ i 25
sinw(J+A") " cosw{J+X') cosw{J+A') (a.
in (2.49). We define, in analogy with (2.41) and (2.50),
Y-k +irl{ J-) l'e_){kv’{z) ; At LA e;}‘}‘?\v(!], 2)~
af - N~y — { o~
wih2) =dfi+oe Henm D

@ W

where we use + for Imz = 0. From (2.34) wy §ee that e:g:i.(z) has the asymptotic
z behaviour of dyy (2}, and that e§x+(2) ~ z Y"1, So we perform the Sommerfeid-
Watson transform for each term in (2.56) separately, and displace the coutour to
Red < =k. Then we replace J by ~J~1 in the second term, and note that the sym-
metry (2.35) implies that, from the projection (2.39),
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A=A
sty = CoM T ag T @ for half cdd integer (5-v) (2.57)

where # =o for v =0 and o' = —d for v = 3. Hence we find that the contributions
{rom the poles of [cos 7(J + ') ]‘ at all mtegers -& < J < M cancel pairwise be-
tween the two terms in (2.56). A similar canceilation occurs from the nn. contri-
putions in {9.54), and we are left with

L]
{ N(-'a-l -2)
cosm{a+)')

"’3{‘ 1) = 167(20(t) + 1) B4()

aa (1)
16 ¥ @y NP
tE cos (J + 17) Al dey zd=d=1,-2'a]

+ fixed poles + background integral | {2.58)

where the background integral < O(z"k’).
The background can thus be pushed back as far as we like, exposing Regge poles
and cuts, plus possible fixed poles which we shall discuss below.

2.8. Restrictions on Regge singulariti s from unitarity

Though there is a great deal of fre \dom in the types of singularities which can
appear in the complex J-plane, there are some very important restrictions which
stern froma unitarity, nawely the Froissart bound, the absence of fixed poies ex-
cept in agsociation with cute, and the faciirization of the pole residues. We dis-
cuss each of these briefly.

Froissart [35] has shown that if the strong-interaction forces are of finite range
then s~channe! partial-wave unitarity imposes the restriction [1{]

A . . s ] - \ . -
]AH(s,t)l £  constant X s log® s for /= D R
§ 00
g Ty s .
In view of the fact that poles and cuts give AH(S, o~ U neglecting log »
L—s

factors) we see that, for all £ € 0, ap{i) = 1. This meaus that il here o o
Regse poles or cuts with a{¢) > 1 for { <0 they must move with ¢ t¢ gal under uus
bound for £ < 0. An elementary partizle of spin ¢ would give rise to a contribufion

.2
Ag ) =--° 5 85, (2.60)
t=m
in a Lagrangian field theory, and so its asymptotic behaviour dg(s, 1} ~ « T yvould
violate the bound for ¢ = 1. This implies the compositeness of all particles with
0=z 1,
The {-~channel partial~wave unitarity condition for elastic scattering U
reads {see e.g. ref. [15])

Ted

<
i

f.r 2

(]
T

B}}Q]’(t_}) Brr r(‘“ ) = 21(@" 13)““0(&{)3”’ n;} {?‘ \ >4 <P, (-

0 H

1 o s
where p(f) = 2gp 13 ¢72 is tae kinematical factor, and we have defined

4 A -3L
BHJ(t) 'AHJH){% 13) . 2

where L is the orbital argular momentum at threshold ¢, {see {(4.2h. ¢, and {_ are

i3
2]
@
~
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evaluated above and below the unitary cuts, and # is the inelastic threshold. Vsing
the real analyticity of B 7(8), e, [B (e A* = BHJJ(L) (where » = complex conje-
gate) we may rewrite (2%1) as

B (0= BY (0 = 21(g, 192" PO (0 B D) (2,69

Since the BI‘}J satisfy the condi‘ions for Carlson's theorem 80 do both sides of thig
equi.tion, which may thus be continued in J.

It is immediately apparent from (2.61) that there can not be a fixed J~plane pole
of Li} 7> 1-.€. one whose position is independent of ¢, since if we put By (?) =
B, H){J -Jo)"1 we have only a single pole at J, on the left, but a double one on the
right. The only way in which this could be avoided would be it we has a J-plane cut
passing through J = J, for all ¢ for which the unitarity equation holds. Then we
would approach this cut on different sides in B and B*, and the poie could be presg-
ent on one side and not the other. On the other hand a moving pole at J = a(f) can
perfectly well satisty (2.63). So we conclude that in the absence of cuts all poles
must be moving poles. It is aiso evident that we cannot satisfy (2.63) for real ¢
with Ima(#) = 0, so a Regge pole can not cross the real J axis for real ¢.

Above the inelastic threshold, or in the presence of spin, the unitarity equation
becomes a matrix equation {15] (the rows and columns representing the various
open channels)

B,?(‘)" Bln* =21 BL® e,0B @) , (2.64)

where + = Hermitian conjugate, or' g7 is a diagonal matrix of kinematical factors
fcr the various channels. A fixed le at J, on the real axis of the form B j’(z‘) =
B, )T - J)"1 implies Blig, ™. 2 = 0 50 B =0, i.e. there is no pole. But if J,
is off the real axis we simply have 3{Jq,t.)3(Jg,2.) = 0 which does not imply 3 =0.
So fixed poles are allowed but not on the real axis.

Finally, we can write the unitarity equation for the many-channel partial-wave
S-matrix as ]

SW,H0S*UN =1 or S, t)=§-§{‘—§;}. (2.65)

So if we consider a two-channel process this becomes

(822* "321*)
S P A

S - ) 2.66
(S11% Sggx - Sig+ Tg1%) (2.66)
Then if  has a pole of the form S= 2{J- a1 ¢

{2.68) implies that this residue must satisfy

Su1 512
(321 322)

oy DI S - P k-
shing of the denominator a

B22B11 = B1zha1 »
from which it follows that we can write

s0 the residue factorizes. A generalization of this result to an arbitrary number of
channels was given by Charap and Squires [36] (see also ref. [37)).

The meaning of (2.67) is intuitively fairly obvious. i we consider a single-parti-
cle exchange diagram such as fig. 1 the pole is simply a product of two factors, one
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associated with each vertex. Note that this result serves both to relate the resi-

dues of the various helicity amplitudes for a given process, and those of different
processes.

2.0, Fixed J-plune sixgularilies and SCR

The second type rotation function ei’x which we used to define the partial-wave
amplitudes in {2.39) has the J-plane singularities exhibited in (2.33). Since x!has a
pole for x = =1, ~2,..., and F is an entire function of J, we find that for integer
JC -v

J N - . o
ey (8) ~ =J) NsJ <M amd -M<SJ <-N

~ (J-JO)‘1 -N<J <N ad  J <=M, (2.68)

and for J < -M for example the residue of the pole is just difm(z) (see =.g. refs.
[30,3i]). So we obtain

, of? A-v
Ag ) ~ 525 J Iﬁwzf dz, {D_p(s, DE,,,(2)d, ) (2) +4(-1)

X D, s, B, _ Mu Wzt (269

for J = J, < =M. Thes- fixed, real axis J-plane singularities, which appear at all
the nonsense points of the amplitude (in the nomenclature of s:ction 3) are in con-
flict withh our discuss:on in the previnrus section, so we conclude that in the absence
of cuts the integral (2.69) inust vardish like (J-J,). This ii:tegral relationship is
known as a superconvergence rela:ion (SCR). The satirfaction of such SCR allows
us to conclude that A¢ t) (J =)z for sn points so the four h term of | .54 can
be neglected. However A J(t) still has square-root branch pcint at all N < - T <M
and ~-M < Ju < ~N, and it is often convenient to take these branch pomts to be
joined pairwise by cuts running from J=M=-1-k to ~M+k; & =0,1,..., 3~ 1. In fact
because of the unitarity equation each helicity amplitude wiil inherit the singulari-
ties of the others, so these cuts run from J =g~ 1to J = -op where o =
max {67+ 09, Op+ 04}

However, it was shown by Gribov and Pomeranchuk [38] that A;{J( ) must in fact
have a pole 1t each wrong-signature nonsense point. This is because if one calcu-
lates the discont 'nuity of the partial-wave amplitude across the left-hand cut one

-

'y LO N
.._.._._ J < i
~ (2 ) {zZ ai=1
ImA J(t) .f1 dz, {DSH(S’ AT ERL N g+ oi=1)

My~ s e"l:(r”‘l\‘l I
XD H(S t)gx_?,(rzt)d _’}‘,( Z)}' + 2 j dZ’ p (S s U 38&‘(21‘ I *2'“*—} {. Q)

This last term involving the 'thlrd double spectral function'_. p;f{“(s, ), vanishes

for physical J values, i.e. at right signature points, but is finite at wrong signature
points. The e;\’h. thus gives rise to singularities in Im A gy at these points, as de-
scribed ibove. Unlike the previous type of singularities, however, these Gribov-
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Pomeranchuk singularities can not be made to disappear by an SCR, because it caﬂ
be shown that at least for some # values the integral is to be evaluated only over
the elastic double spectral function, which is always positive. So there is no
change of sign of the integrand in (2.70), and the integral can not vanish Because
of unitarity these singularities, of the form (J=Jo)"2 or {J~ Jo)~1, occur for all
wrong signature J = op =k, k= 2{4,6...001;8,6:. .

In chapter 5 we shall see how these fixed: singularities are shielded by moﬁng
cuts - indeed their presence is one of the principal arguments for the existence ot
cuts - and shows why the cuts depend on the presence of a third double spectral
function. The second term of (2.70) is absent from potential scattering, or indeed
any scattering process which lacks an exchange force.

CHAPTER 3
REGGE TRAJECTORIES AND RESONANCES

3.1. % udection
In the previous chapter we showea how a scattering amplitude can be expressed
in termes. of its J-plane poles and cuts. The poles interpolate between resonant
states o! increasing spin, and so in principle quite a lot can be learnad about the
behaviour of trajectories from an examination of the particle spectrun:. In fact one
' can dete ‘mine both Re o(f) and Im o(f) at the physical points for # > 0. The evidence
but snggests that all the particles lie on roughiy struight

aft) = a+a't (3.9

and that the slopes o' are more or less the same for all trajectorizs. We shall see
later that this behaviour is rather hard to understand from a theoretical point of
view, however.

We begin by discussing the way in which a Regge trajectory gives rise to reso-
nances, and some of the general properties of trajectory functions.

3.2. Regge poZes and resongnces

From {2.54) and (2.41) we can write the contribution of a Regge pole to a helici~
ty amplitude as

in(a=v) .
Agr,(s,1) = =16¢% [2a(s) + 1] By(#) { T - m] aDezy. e
-1r(a-v) .
= -1672 (22@) + 1] 8y) [2 sin ﬁ(ﬂfﬂt‘;\] :A' (zt) ’ (3.3)

where we have used (2.42). Evidently this expreseion has a pole in { whenever
a(f) -~ v = even/odd integer, dependmg on « = +. The factor {e""(a‘”) + 4] is known

as the 'signature factor'. In the analytically continued partial-wave amplitude this
pole takes the form (2.53)

g ~ _B(®) .
a0 2 5@ 34
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Above the t-channel threshold we expect a(f) to be complex, and so if, for some
t = t, (say), Real(fy)=v = Jy where Jg = even/odd integer, we get

A‘m () = N T = — if af'I<<:a‘R, {3.5)
Hdg (1, (tp- Nag +iep ~log(fy) (-0 -iay/ap
where we have used the expansion
alt)=v =~ J0+a'R(t- £p)+o. . +ig(t,) +ia‘I(t “t)+. .. (3.6)

the suffices R and I re;erring to the real and imaginary parts of o (for real {) re-
spectively. If we put viy = M, the resonance mass, and Vi = E, the centre of mass
energy, (3.5) becomes

B3)
(M-E)-iagM2)/ag, 2M

This corresponds to a Breit-Wigner resonance of mass M and total width

on ~ .
AHJo(t) (3.7)

T = M3/ M . (3.8)

Thus if we find a resonance of spin Jo, mass M, and width I', we know that
Re a(Mz) = Jo and that Im a(Mz) can be found from (3.8). In section 4 we shall use
this information to plot the trajectories corresponding to the known resounances.
Evidently the signature factor will cause the resonances on any given trajectory to
be spaced by two units of angular momentu.mn.

If a(f) - v passes through an integer below threshold, Ime = 0. and so here is a
bound-state pole on the real ¢ axis.

3.3. Propertics of the trajectory function

The known analyticity properties of the scattering amplitudes imply that certamn
restrictions must be satisfied by the trajectory functicns.

If A (¢) has a pole at J = a(f) we have

[A;”(t)]‘1~o as  J—ol) . (3.9)

The implicit function theorem tells us that if [4 I;’ J(t)]"1 is regular in / at sone
t={, (say) and

3 g "1 i
E'S = R )

thsn o) is also regular at #5. So we expect that a(f) will have cuts oaly where
Afi‘j(i) does. We shall see in the next chapter that A H J{i) has various kinematical
singularities, but these are specific tc a given helicity amplitude and so must be
present in the residue of the pole. The same trajectory occurs in all those helicity
amplitudes wnich are connected by unitarity. Hence off) inherits only the dyvnami-
cal cuts of A é J(t). These are of course a right-hand cut above the {-vhannel
threshold #,, and a left-hand cut stemming from the s~ and #-channe singularities
We have seen in section 2.2 that the poles of Ag{ ;{8 come from the diveryent be-

kaviour of the integrand in (2.39) as 2; — = i.e. s —, and so the left-hand cut is
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irrelevant in generating the singularity [15]. Hence the only dynamical singularity
of a(t) is the right cut above .

The significance of the condition (3.10), however, is that this theorem breaks
down if tvo traje<‘ories cross. Expanding [38) {Aﬁa(t)]“l about ¢ - £, we have

(A5 = 2 [alt) - att )] +aglath ot )P +...+b (=2 ) +dpt- )P, a1y

if ¢, is a regular point of A I‘S’U(t). So the tl:,ondition for a pole (3.9} reads
1
A (z(tl,) - '&'—1'* (¢~ tr) I (3.12)

so a(f) is analytic at £, as expected. But if oy = 0, i.e. {3.10) does not hold, then

oll) = alt,) +(~by/ag)E (t-2)% +. .. (3.19)

and two trajectorizs cross at a{f;). But if »; = 0 there need not be a branch~p.int,
so the fact that two trajectories cross may, but need not, result in a branch-point
occurring in each of the trajectory functions. The imaginary parts of the two tra-
jectories contributions tu the amplitude must be equal and opposite so that the am-
plitude itself is reai for ! < {,. Otherwise there would be a violation of the Mandel~
sitam representation.

So we can conclude that provided two trajectories do not cross the only singu-
larities of a(f) will be a right-hand cut for ¢ > £,. We car thus write a dispersion

integral of the form

had Y
o) -.-;rl- f 1‘—-‘;—‘{%-) at . (3.14)
0

But of course (3.14) has only symbolic significance until we know the number of
subtractions which are needed. We shall see that the experimental evidence seems
to support a behaviour like Re a(f) = ¢, +a'¢ so (3.14) becomes

oo .
alt) = g+t + 1 [ ) g0 (3.15)
8]

T 1t the integral may also diverge, in which case it should also be subtracted, and

vwe obtair iastead

£ 7 map)
f) = 't — — d' . 3.18
o( ) Ao+ AL + T i{; '{;‘2‘(?"—. t) ( )

Note that for either (3.15) or (3.16)

e n! ° Im a(t')
—=22 [ BR_gp g5y 3.17)
dtn w t’({ (fs - t)m-l ( !

Since we have seen in chapter 2 that Im @ can not change sign, but must remain
positive, it is clear that for all £ < to all the derivatives of «{f} will he positive,

Thus a(f} is a Herglotz function for # < ty. Of course this will not be truc for col-
liding trajectories with left-hand cuts. )
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There are also two points about the threshold behaviour of the trajectories
which deserve a brief raention. Above the threshold for the elastic process
1+3 -+ 1+3 we have the unitarity relation (from (2.61))

Da

Im{[B} (O] '}= - -”13

Since the position of the trajectory is given by [B J(t) = 0 for J = a{’), the
threshold behaviour of (3.18) is reflected in of?) [40 41} In section 4.2 w. ohall
show that the orbital angular momentum at threshold is L = J~ Y73, where Y3
represents the mis-match between J and L, and is given in (4.3). It is found (see
refs. [40,41], or e.g. ref. [15]) that the resulting threshold behaviour of the trajec-
tory is

(q, 13) ' (3.18,

a(f) = a(t )+ a(- 2 y(eltg-Tig+2) for ot )-Ys> -3 . (3.19)

913 13
Thus both the real and imagmary parts of the trajectory functions have the thresh-

old behaviour (g7 )a(to) ¥ 13+2 The generalization of this for any two-body thresh-
old is obvious. However, it is found in potential scattering that such a tiireshold
behaviour is not important, and it is not evident in partxcle physics either.

"he second point [42-44] is that as a(f,) - Y13 — -3 the equation

J"} 13+’2‘

(-qt 13) = constant (3.20)
is satisfied by J = a,, for any a, such that
[Iog(qt 13)- 117][@}2 - )’13+—‘,_;] = & Yqu (3.¢1
or
- x 277'?2 t V= Y a0,
Q.’Z e WYL 13 2 . \L).s...'

2
T+i log(qt 13)

Hence we expect that an infinite number of tralectcrxes will accumulate at
J = Yyg~% coming in from the complex plane as ;t 13 — 0. These low-lving trajec~
tories do nct seem to have much physical significance, but they serve as a warning
against models which have only a small number of trajectorics in the left-half J-
plane.

Fermion trajectories suffer a further complication. As we shall discuss in the
next caspter, definite parity amplitudes correspending to channels with odd
fermion number are subjcct to a constraint at { = 0. It is found that when the Kine-

s x 5
~ e cn .AA...A--A.-! Al sidan ana amalertis 3in o oand
Yoil oin & oan

~l
Hlﬂ\.lbﬂ.l Dl xg\.u.a.l ILICD 11&\‘: UCC].{ L THIIUVY T au'. ax dl!lb‘ll\-u“cﬂ SAAT QIR3

and there is the relation (4.4%)
] e A=A+l 200, _ s
Ag'(s, V) = (-1) Ay (s,=v

i
L . \

ERY)

'.'u

where, as before, 7 = + refers to natural/unnatural paritv. This result is a gener-
alization of the wel’ known MacDowell symmetry [45] of 7N scatter ing. We shall
see in chapter 4 that (3.23) is an example of a conspiracy relatien.

In order to satisfy the re}atlon we need two trajectories of opposite parity.
ot(v1) and a~(V1) say, whick meet at Vi = 0 and are related by
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aH (Vi) = -V) “for >0, (3.3¢)
the first containing particles of spin J and parity (- 1)" "‘%, and the second particles
of parity (-1)Y+2. Of course if the trajectory takes the form

aH(VB = gg+a'Vt  with @ >0, (5.25)

there will be physical particles only on a* and not on o™, But if the trajectory is
even in V¢, such as |
Cat (V) = ag+a't, (3.28)
then a* coincide, and we expect the fermions to appear as parity doublets, coinei-
dent in mass. A mor+ general form such as
a+(Vi) = ag+a'Vitart+. ., (3.2

splits the degeneracy, but gives a curved trajectory. -

The relation (3.13) also means that the dispersion relation for the trajectory
function should be written in terms of v rather than ¢, and in unsubtracted form it
reads.

iy =L [ ERaE) gy 1 fT Imeti) g 3.28
A w£0 et )*w.ff,o Vi - Vi ¢4

so we need to know the imaginary parts in both physical regions of the trajectory.
Subtractions may of course be needed as in (8.18).

‘8.4. The Mrajectories
a) Bosons

The principal means that we have for classifying resonances is the SuU(3)
scheme [46,47]. All the well established meson resonances can be grouped into
nonets coasisting of an SU{3) singlet and an octet. The best established nonets have
JPC valuzg 0+, 1=, and 2+ though there are also 0+ 1+ and 1% states of less
certain status. Regge trajectories carry a given isospin I, hypercharge Y, baryon
number B and 7 = + (natural or unaatural parity), and produce physical garticles
spaced by two urits of angular momentum. So taken alone the above states give us
just one particle on each trajectory, and do not give much ifea of how to draw the
trajectorfes. B ‘

There are however several additional features which enaple us to make a
'Chew- Frautschi plot' of Re a(#) versus ¢, such as fig. 5, with a certain amount of
confidence. ,

These are: a) For some trajectories such as those corresponding to the £, p and
A2 we have a good idea from fits to high energy s-channel data what the value: of

a{f) are for ¢ <0. b) There exists a certain number of higher mass states which
fall naturally onto straight lines projected through the lower mass resonances even
though their spins are not known. ¢) The evidence from those meson trajectories
that we do know (and from the baryon trajectories) is that all trajectories are
roughly straight and parallel. q) There is evidence for exchange degenerscy i.e.
for pairs of trajectories of opposite signature which lie essentially one on top of
the other and so appear to be a single trajectory with a particle at every integer
value of /. This meaus for exampie the 1=~ trajectories are approximately degen~
erate with the 2** ones. This degeneracy will oc.ur if the exchange force (the «
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Fig. 5. A Chew-Frautschi plot of Re a(f) against { for the well established meson resonances.

discontinui y in (2.3Y)) is very small so that there is at least an approximate equal-
ity between A§ J(9) and Ay J(t) There is no a priori reason why the effect of the «
discontinuity should be small, but exchange degeneracy does seem to be in accord-
ance with the facts as presented in fig. 5.

This figure contains all the boson resonances of ref. [48] whose existence and
guantum numbers are well established (though we have ignored the fact that the A9
seems to be spiit}. There are however quite a lot of states whose existence is cus-
pected, or which certainly exist but whose quantum numbers are undetermired,
and if one wishes to try and include these a speculative picture such as {ig. 6 may
result. (See also ref. [49].)

Part of the motivation for this figure is that, as we shal{ discuss in later chap-
ters, there are theoretical arguments in favour of the e-isience of daughter tra-
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Fig. 6. .\ speculative Chew-Frautschi plot for the I = 1 resonances. 81 empty circle indi-
catec that no appropriate state has been seen.
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jectories which are spaced at integer units below the leading (parent) trajectory at
t = J i.e. for the nth daughter we have

@p(0) = a(0)-n n=1,2... . (3.29)

Since all trajectories have a{0) < 1 {(because of the Froissart bound) the daughters
are always in the left-half J-plar.z at ¢ = 0. However, if they rise parallel to the
parents we should ex*»ect each partial wave to have a sequence of resonances sepa-
rated by about 2(¢")~! in ¢ from the parent. Note that this equal spacing in ¢ n, eans
that they get closer and closer together in mass (= V#). There is very little cdn
crete evidence for such a complex structure. This is not necessarily damning be-
cause we can not cbserve purely bosonic scattering processes and so all the roso-
nances have to be looked for in production experiments rather than in formation
ones. If cne remembers the large number of new baryon resonances claimed by
the partial-wave analysts in #N scattering, one may expect that there are many
boson states, even of quite low mass, remaining undetected.

There are some notahle absentees however. The most striking perhaps is the
lack of a p' resonance lying on the daughter of the p. This should have the rho
quantum numbers and a mass of about 1250 MeV. Several experiments have
searched for such a state without success [50-52]. We shall see in the next chapter
that there is no good reason why the daughters should remasin parallel to the par=
ents, however.

The only trajectory for which there is a large number of candidates is the p=- Ay
exchange degenerate trajectory 'Missing mass® experimenis [53], in which the
recoil proton momentum is measured in reactions of the form 7”p = X"p have
identified a large number of n .vrow [ = 1 states for X. Unfcrtunately bubble cham=
ber emeriments #ieve ot been alle to confirm much of the structure [48], but if we
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Fig. 7. A plot of Red and Im & for the p- Ap exchange degenerate trajectory as deduced
from the missing-mass data of ref. [53].



REGGE THEORY AND PARTIC] E PHYSICS 123

take the states at their face we can draw an I = . trajectory as in fig. 7. Since the
widths of the states are also roughly known one can deduce the corresponding Im a
from (3.8) Ima seems to fall for large ¢ so we can expect the ubsubtracted integral
(3.15) to converge. In fact the whole contribution of the integral is very small [54].
which may explain why the trajectory seems so straight. '

In fig 5 theve are no trajectories with o(0) much above J = , certainly nene
with 2(0) = 1. However it is well known that elastic scattering cross sections are
voughly constant at high energies, and we shall see in the next chapter that if this
is to be explained by Regge-pole exchange we need a Regge trajectory with 'vac-
wum' quantum numbers (I= ¥= B=0 7 = + and even signature) and a(0) = 1, i.e.
saturating the Froissart bound. The first pariicle on such a trajectory would ob~-
viously have spin 2, and so the f would seem to be a good candidate. On the other
hand exchange degeneracy seems to deinand that the f trajectery be degenerate
with that of the w. This is consistent with fig. 5, and we shall find that there are
other theoretical grounds for such a degereracy in chapter 6.

In fact the need for a vacuum trajectory with a(0) = 1 was realized before any
2** mesons were known, and so such a traiectory, called the Pomeranchen (for
reasons which will be explained in chapter 7) was simply 'inverted' [55]. If such a
trajectory exists and is parallel to the others we exj.e«t a vacui m 2%+ particle with
a mass about 1 GeV and there have been indications that such a parvicle may exist
[66], but this is not certain. There is also evidence from fits to elastic scattering
data (see chapter 7) that the slope of i~e Pomeranchon (P) may be smaller than
other trajectories, in which case identificaticn with the f is still possible. Tt could
be so flat, or turn over so quickly, that it does not reach J = 2, in which case no
particle will be seen; or it may even be that there is no such trajectory a.nd elastic
scattering requires something other than R ~gge poles for its explanation. We shall
see in chapter § that Regge cuts are likely to be important in elastic scattering.
but it is hard to see how there could be cuts at f = 1 if there were no poles from
which to generate them.

At present the nature of this Pomeranchon pol: remu.ns something of a mystery

b) Fermions

Baryons come in SU(3) sirglets, octets and decuplets, and, partly through par-
tial-wave analysis, a large number of low mass states are known {48]. At higher
energies many non-strange states have been identified by observing peaks and dips
in the forward and backward cross sections [57,58]. Thus the Chew-Frauischi
plots shown in figs. 8-10 are a good deal more impressive than those for the bo-
sons. In particular the evidence for almost straight Regge trajectories of slope
% 1GeV~# is very gnod. There is also some evidence for exchange degeneracy
though there seems to be a systematic displacement betveen the even and cad sig-
nature octets. ‘

In figs. 11 and 12 we have plotted the natural and unnatural parity traiectories
against £. There is a paucity of unnatural parity states which is in total conflict
with the MacDowell symmetry requirement (3.24). Since the trajectories are iinear
in ¢ rathe r than V¢ we would expect to find degenerate parity coublets. One way out
of this d: fficulty is to suppose that for some reason the residues of the odd pasiy
trajectories vanish when o passes through a physical integer. In fact we shali see
in chapier 7 that there is some evidence for such a behaviour from fits t> backward
mesun baryon scattering. However, it seems implausible that this should happen
at every integer, so higher mass states are still expected. An alternative way out
of this dilemma is discussed in ~hapter 5.
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Fig. 11. Octet statcs of both parities, showing the difficiency of unnaturai pari-y clates on
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Since the widths of the baryon states are reasonably well known it is possible to
determine Im o using (3.8). Some examples for the dominent trajectories are pre-
sented in fig. 13 [69). Evidently Ima(f) is a more or less linear function of /, but
with a much smaller slope than Rea. If this behaviour is substituted in (3.1f) we
again find that the integral is voxy small, and the straightness of Rea is dus to the
dominance of the two subtraction terms.
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Fig. 13. A plot of Im & against ¢ for the two baryon trajectories which have the greatest
number of established reJonances.

If we wish to find the residue of the trajectory we need to know the elasticity of
the resonance. (Remember in (3.8) I' is the total decay width to all channels, not
the partial decay width.) If we define the elasticity in terms of the decay width of the
resonance to the elastic channel I'gj as

x=T el/ r,
the eiastic residue in 12 — 13 is then
XVt
Bel(t) = Ima(?} .
el™ " 2413

So the behaviour of the sesidue depends strongly on the behaviour of the elasticity
as one goes up a trajectory. The evidence for baryon trajectories is that A is an
exponentially decrezsing function of # which we may write as

Bef® =~ const, “dReald)

{—o0

where d is a constant ~ 0.5. (See refs. [69, 61].)
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CHAPTER 4
PROPERTIES OF REGGE POLES

4.1, f.roduction

in the previous chapter we leoked at the resonance interpretation of a Regge
trajectory for positive energies. However, much more information can be ob-
tained about a trajectory through its contribution to the asymptotic behaviour of the
crossed-channel amplitude, for which we shall develop general expressions in this
chapter.

First we discuss the kinematical singularities and zeros of the residue func-
tions, which are required by the analytic properties of the helicity amplitudes.
There are kinematical constraints on the helicity amplitudes which may require
corresponding constraints in the residues of a given trajectory at the various
thresholds and pseudothresnolds. There are also constraints at { = 0 between he-
licity amplitudes of different parities, and these may (but need not) require 'con-
spiracies' between trajectories of opposite parity.

Then in section 4 we briefly examine the problem of unequi® mass kinematics
when the Regge pole terms have unwanted ¢ = 0 singularities. These may be can-
celled by 'daughter' trajectories which are spaced at inieger units «f angular mo-
mentum below the 'parent'. The conspiracy and daughter ideas j-ave also been ex-
amined by many authors from a group-theoretical vieswpoint, and, although it does
not add anything essential to the earlier discussions, we briefly review this ap-
proach in section 5.

The requirements on a3 Regge residue do not end with these kinematical consid-
erations, however, for there are also co.:dition:. ou the behaviour of the residue
function whenever a trajectory passes through a nonsense value of J. These are
due to the peculiarities of the Froissart-Gribov projecticn at these points, and
may (but need not) result in dips ir various differential cross sections. These dips
are one of the most interesting acpects of Regge phenwvinenolog .

Because of the complexity of th2 singularities and constraints in ¢ of & "~ hanne’
helicity amplitude, some authors lave preferred to work with s-chansel anpli-
fudes, which are free of them. We derive an approximate expressioca for ¢ r~chan-
nel Regge pole in an s~channel helicity amplitude, valid to first order in 2/s, i sec-
tion 7.

With all these various factors accounted for we give a general prescripaon for
the contribution of a Regge trajectory in section 8, and discuss some of its charac-
teristic features, and experimental consequences. The read~r who is not con-
cerned with the details may like to skip straight to this section, and refer back as
necessary.

4.2. Kinematical singularitics and Regge vesidues

The rogidus of 2 Rosens nals ig siven ku- fana (Q QY
= -&b‘dsb yua\l 354 B AT 2 \w\av \‘i’ .v::

By =5 JdJA“”m (4

where the integration contour is taken round the pole at J = o(f). It follows from
(4.1} that Bp(?} inherits the ! smgularxtxes of Agry(#), except that (as we found for
the tragectory function in section 3.3) there is no left-hand cut, and of course no
pole (7 - o{f))~1. Thus By () will hwe both the dynamical rxght-hand cut of A g {5,
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beginning at the #~channel thresheld, and also its kinematical ¢ singularities. It ig
these kinematicnl singularities which concern us-in this section. :

There have been many papers devoted to finding these singularities [23-25, 62
One method, devised by Hara [62] and fully exploited by Wang [23], uses the fact
that the only kinematical #singularities of the s-channel amplitudes stem from the
half-angle factors £, '(2g) (analogous to (2.20)). Hence the only other f~singulari-
ties of a é~chanael helicity amplitude are those arising from the helicity crossing
matrir (2.12). Alternatively general methods have been devised to construct invar-
iant amplitudes free of kinematical singularities (and constraints) which may then
be relsted to helicity amplitudes [24-65]. This procedure is difficult for high spir
particles, though it is the usual method for 7N and KN scattering, and the photo-
sroduction of pions. More recently a very simple and physical interpretation of
these singularities has been given [25] and our (necessarily brief) account will ex:
ploit this Zact. A good general account is that of ref. [64], and a good introductory
review may be found in ref. [12].

For our general é-channel process 1+3 — 2+4 there may be kinematical singu~
larities at the thresholds # = (my +m )2 and 2 = (mg + m4)2, and at the pseudo-
thresholds (m, - m3)2 and (mg - my)€, and at £ = 0. We assume initially that
my > mg and mg > m,. Fqual masses are considered later.

The threshold singularities stem from the threshold behaviour of the partial-

wave amplitudes. For example, if we consider the 1+38 threshold the behaviour
must be d

Apley ~  igygtm, (4.9
T 4130

where. Ly, is-the lowest possible orbital angular momentum given that J is the total
angular momentum; i.e. we expect the usual non-relativistic behaviour. We would
expect Ly, = J-(0y+0g) except that this value may be incompatible with the parity
of the state, in which case 've have tc increase i by 1. This condition may be
written {25]

Ot +Cq=-v .
L, =d= (0o +3[1=nn ng(-D"173 ) = g~y o (say) . (4.9)

But the behavicur (4.2) is not automatically obtaired from the Froissart~Gribov
projection (as it would be for spinless scattering). Instead since

t2<~2st-t(m2+m2+m2+m2)+(m2-m2)(m2~m2)

z = 17727778774 1 73V7T2 g (4.4)

d 44,139 24
and

1 2
{2~ (m +m.}3"5 te{my-m )35

€49 = 1 3 ]_ 1: 1 3 ] = T‘fn T:a (2{12;)..1 {say) . (4.5}

s A 2rz i 19 o

’ ¢

we find that as ¢ — (my+m3)2, ¢, 14 =0 and z, — =; and s0 in (2.39) ey (2p) ~ Pt
from (2.34), and &;5:(2p) ~ 2}, and dz; = ds(2tq, 139;94)"1, giving

t"'.
Ajdwy  ~  @iTM. (4.6
913 0
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The discrepancy between (4.68) and (4.2) must already be present as a kinematical
singularity in Ag(s, f), and hence in Dgy(s, f) in (2.38). 8. we need

M-Y3
AH;‘(S’ H o~ (T'{Q) 13 (4.
THy0 Y

Similar remarks apply at the other thresholds and the pseudothresholds, except

that the e fzective parity of the lighter particle (say *23) at the pseudothreshold is
(48] nq(- 1)298, so we end up with

+ o
'Yls(T_ M~¥ 13,». A7 124 ﬁf‘:’rgi‘g

M
+ g a

where ¥ 19 = cfl+0'3 2[1 NNy (- 1) 01798~ }, and Y13 is defined in (4.3) above.

I say my = mg = m, then the pneudohtreshold moves to ¢ = 0, a point which will
be discussed later. Precxsely ».milar conclusions hold if #mg = my. And, of
course, if my = mg = 23 = my both pseudothresholds move to = 0.

These {acts allow us to writ2 the threshold behaviour for any masses in the
form

o ..
AH:} K ,(f) ("?z laqf 24) {4.6)
wherc Ky (?) is given in table 1, and so from {4.1)
q; mq + (i~ M
LF1Y / 24 = M .
"ﬂ\'l - ALM’( S, /\ b?‘i\ “:{.10‘

where Ln {#} is free of singularities st the tiwesholds and psondorhreshotas. Lo
scale factor s, is arbitrary, but is (v be m2asured in th: ¢.ime units as/ s> tha
the units of Sgr(f) can remain constant as o Y varies. Wo shall discuss iz huvoaer
in section 8.

Unfortunately this does not exhaus* the yroble.. connected with the threshons
because there. are also constraints between the different heticity amplitudes at
these points. This is because at threshold rnly the lowest allowed orbital state.
L=90or 1, is non-vamshing, so the various partiai-wave helicity amplitudes ar
related to each other {at least in the physicnl region) by the Clebsch-Gordan coe ‘i-
ficients which connect them to this I state 83 €4, 2]. ‘These consiraints must a/so
relate the residues of a given trajeciory in t.s it lerent be 1icity amplitudes. They
are important from a theoretical point of view pecause if 1 Regge coriribution is
written v th the residues having the singularities of (4.10) but not the const aints,
the resuifiig differential cross section (2.14) will have kiuematical f-singularities.
We know such singularities should not occur because they can not present in {2.8).
In practice, however, the thresholds are usually rather far from the s-cheungt
physical region (f < 0) wnere we are interested in using the formulae, and pra {i-
cal difficalties only arise in cases like #N — 74 where “the ¢ = (- ;?\w pseud -
dreshold is near to? = 0.

These threshold constraints have been derived by several aut ors {24.25,83- 6%3
and their implications for Regge theory have been extensively discussed by Jacks?
and Hi‘e {25]. Drobably the most elegant derivation is that due to Trueman [84],
which is reviewed with several useful examples in ref, {12]. Here we shall conient

ourselves with giving just one illustrative example in detail, the ¢ channel ampli-
tude for 77 — NM.
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Table 1
_The threshold kinematical factor Ky «(8).

Q) my # mp, my #my (UU scattoring)
-+

: #  M=Y{qmm AM=Y7g b M-Ya( - M-Yo,
Byy ol = (T v AT AT 0" 2hT]
whexe
+ —lery 2 % . N T - 2.3
Tij =t (m‘amj) 14 Tij 1o - mj) ]

sk - - - U’&(I}-l‘
Yy = O Ot mym-1

where the ¢; is the particle spin, 7; the L: - insic parity, and we are
assuming »; < m;. The other cases cun bo obtalned from td/« by
setting the masses equal and ignoring the pseudothyeshold at ¢ = 0,
thus

b) my = my = m, mg # my (EU)

M-Y,

+ A~ 24

) T ’4" };8
Ky () = (¢ - amHBOI-1 1975 )M Vou(r

24

where

)‘* = - -
Y)q = 20, $ir-n
c)my =mg=m,=my=m(EE)

M-20
Ky ) = (¢ - an .

In the above we have assumed that if m; = m; then the two particles
have the same 8pin and paaiiy, )

The two independent helicity amplitudes have the kinematical singularities
. - o 1
A‘;H,GO(\\‘E‘) = .‘1++,00(&’f) ("'-4?};“) ) ,

A 00(s: 9} = ff,_, oofs: Bt (- 4Dy (1- LN (4.1

where + = +3, ™ is the mass of the nuclean and u that of the pion, and £ is free of

kinematical singularities. There is a constraint at the NN threshoid which takes
the form

(“‘H,u0+i“‘+- eo) o (:~4m2)‘5” . (4.12)

I each of these amplitudes is expressed in ‘erms of a single Regype pol (gsee sec-
tion 4 for the details) we put

. [ NS
Aoy 00l = (@ - 4w E (55 )0 (4.13)

1 1 e
Aym, 000 = raB [t - 4uDJF (1- 2D7 (s/5 )01 4.14)

where y1(f) and yo(#) are kinematical-singularity free residucs. When we take the
asymptotic form of z; for large s the latter amplitude becomes,
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Ayl ool mzu)x (£~ 4o )73 (575920 (4.15)
N
50 both (4. 13) and (2.18) are singuiar at £ - 42 However the constraind (4.12)
reads
yi(4m?) < yo(em?) 2m | (4.16)
which wo can ensJare by putting
2myoft) = ¥ (1) +yg(N [(4me- 1) /4m] (4.17)

where » 444} and y3(£) are unconstrained and singularity free. Putting {(4.17) in {4.15)
we get, from (2.14)

do 1 L2, ¢ , V1] s 200

do 3 0T [z; By g(8) +vott) (1 - Mw) f W, (4.18)

dr -’ al ;t:z“ m
64ns qs 12

which has no singularity.

In principle such a constraint should be included in any Regge pole fit, but in
practice had we used (4.15) instead of (4.17) the singularity at ¢ = 4m?2 would not
have made much difference. This is fortunate as . is very tedious to have invent
paraneterizatic-~ which take care of all the conciraints in processes with high
qpin

We come now to the behaviour at ¢ = © {66, and consider first the unequal mass
case sy ¢ g # omg # my. From (4.4) we find that a5 ¢ — 0, 2; — € where € = 1 ac-
cording as (#y - migling = rg” - 0. Honeo the hall-sagle factor (2.20) has the he-
haviour

; [A=ext /2

a;\‘\viﬁf) ~ (4oTon
and so from (2.25)
B0 - Thaentiy (.20
and from the definition (2.47)
Afpiso - A s, 0endy o0 > A /2 F (5,07 ety F(s.0), {4.2D)
where 'y and Fqg are regular at ¢ = 0. Hence we conciude tha 425 has a singular-
itv of the form

Ly .o !’_mé}\{ AAT(, A=A} ’;(L‘f-;\

wherc M, N are defined in (2.16) and (2.19), and .77 is regular at { = 0. However
such : singular behaviour is not permittad to a single Regge pole, for i we !
[a-entiza 1 L F1 Fol

b {4.23)

(N2 T T N /2

£

AHL,“C“’-‘} = EM'(Z ‘;.‘-ihlt(r-‘,t) 5:0
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the result is singular unless F7= % F°7, except whenA = A' = 0. Such an equality
of Fland ¥ at ¢ = 0 is in fact readily deducible by combining (4.21) and (4.22),
However this relation can obviously ouly be satisfied if we havz two trajectorics of
opposite parily. Here we are assuming that there is only one trajectory so we
must use wstead of (4.22)

" "
&h, o~ - F b 1.24
He  —o d min{par], a=a}” (a-m)72 w2

(Note that for boson-termicn scattering N is not an integer and we are uot allowed
to multiply by a half integer power of {, We discuss this problem in section 3.)

In addition to the singularity (4.24), it is evident from (4.5) that if we use the
form (4.10) for 8g{f) we shall introduce a further singularity ¢ M~<{8), we shall
find in section 4 that the (¢; 13 7¢ 24)7¢) behaviour of the residue will cancel with
that of the leading order term in the asymptotic expansion of

44 (1 4 S 44

dyy(2) ~ 2z ~ (5 Y 24) , (4.25)

but the ¢ # factor remains, so combining (4.10) with (4.24) we end up with

f)-M
-(M+N)/2 113 9 241X
B0 = M2 i (fT) vy, (3.29
where yH(t) is free of kinematical singularities. Howeves even thas wili not do fcr
Blty ~ @ {M-N)2 (4.27
t—0

is not factorizable between the different helicity amplitvi-s. Wo know irom {2.87)
that we must be able to write Sy as a product of the two vertices independently

Saa (1) = Ex (D83 (1) . (4. 26)

The simplest way of satisfying this is to put 3y{) ~ 7@ fM+N)/2 g6 we end up
with [66, 67, 37]

alt)~M

-(Af=N) /% q¢ 129
sylty = i HIN/% ST, o (.29

K?«A'(t) ( Sq

where ygif), the 'reduced residue’, is free of kinematical singularities ete., but
may have to satisfy constraints like (4.16). '

If one pair of masses is equal, say mjy = mg, then z; ~ {2, while if mg = My a8
well 2; is finite at / = 0, so the Ay have just the same singularities as the 4 H

Thaca f = 0} ginculanitiae of £ IS o 5 3
saese ¢ = 0 singuiarities stem Irom the fact that { = 8 15 & pseudothreshald; or

{equivalently under crossing) because with one mass pair equal the crossing matrix
(2.12) is singular at ¢ = 0, while for both pairs equal the line { = 0 is the boundary
of the s-chanrel physical 1 egion where the s~channel amplitudes must satisfy

Agg(s, ) ~ Ael-terz (4.30)

The resulting singularities are [87]
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] ‘;‘) 2

Ay, ~ o where # & [1~ (—!)"M /2 for EE |

IR Y NEIN-£s SRS B9, LA
u‘lf;‘;: ~ U where 2 [l=-n(-1 1A J]/é for EU, (1.3%

F

wherr EE means both my = mg anc mg = my, while EU means my = mg, mg + my.
Sivce gy g I8 finite if my = mq, and ¢; 94 is if mqg = iy, the threshold factor in

(4.10) has the behaviour :© for EE and #""' =472 for ZU, 5o we end up with gy ~ £7%/2
for EY. and 8y ~ t(M=a)/2-31+z for BU. However both forms are incompatible with
factorization, and if we also take into account the need for

(331;)2 = ‘SVEE 6U'U
at & = 0, with 3yy given by (4.29), we end up with

( - 7
24139t 24,210~ M

“0
with & given in table 2. We discuss alternative forms to this in the next section.

£ty = 28,0 ( ) (4.32)

Table 2

. . - e e —k — —
The exponert of § in a Regge pole residue (vitt[ evasion), For the
different mass configuvations the ¢ = 0 behaviour is td where

ayUu 8§ - =3 (M-A
by EU D= (x| -M]+ J{t-n¢-1y"
¢ EE & = il-ne-pRs di-nei Y
where > ( -2y is the helicity change at the equal mass end

in (O,

4.3. Conspiracies

In obtaining the ¢ = 0 behaviour of the Regge resicue function (4.32}) we supposed
that there was only a single Regge trajectory (of a g.ven parity), and sc we were
forced to give the residue the behaviour (4.24) which was less singular than that al-
lowed for the amplitude (4.22). This has the consequence that if we use the residue
(4.32) the contribution of the Regge pole vanishes at { = 0 tor all Ag(s,{) with N = 0.

This is because, as is evident from {4.23), tue definite parity amplitudes satisfy
the cunstraint equatior

Ihis,EnAgis, = o0y . (4.33)
R Hp o '
With ti.- behaviour (4.32) we say that the single Regge pole 'evades’ this constraint
by havirg an extra ¢¥Y factor in its residue.

An ~iternative solution to this constraint, however, would be for two Regge
peles of opposite particles () to 'conspire’ togeiher (0 satisfy (4.33) by having
equal trajectories, o,(0) = a-{3), and equal residues

B;;.(f}xﬁ;f(ﬁ) = oM (4.34)
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with all the other quantum numbers (apart ft-om parity) the same [8(~87]. With tws
most singular behaviour we have

Bt ~ ¢

but ‘obviously one can have a less singular behaviour than this without wmg}mm
evading the constraint. f

Unfortunately (4.35) is not compativle with factorization, but we can define the
Toller quantum number of a given trajectory, A, such that the residue has the
most singular behaviour allowed by analyticity for that helicity amplitude, Any,
which has A = X' = A; so putting B = Bﬂ» we have

-t t(M‘N )/2 ! (4.35)

‘BM\ S F Y (4.96)

So for the case (4.35) A = N; and from (4.368) we find

~ g1 A=)/ .,
CYNIED N ‘ (4.37)

And in general if we apply factorization we get
- «iath /2 -Ixdl 7
&1 ~F1 gagda-inlzz a2 (4.88)

and the constraint analogous to (4.34) is

T, - Ala=fasvi-Tamady e

or ~ 1, (4.39)
whichever is the less singular. The residues 854, 8y and 3, y have the most
singular allowed behaviour, but the others are less singular.

The effect of such a conspiracy can be looked at from the viewpoint of the cor~
responding s-channel helicity amplitudes {69, 70]. We have

- TR ? - - zé 2
Afg(s,8) =5 (G IARGs, ) ~ (- lurmual - ugmrgl (4.46)
and, as required by angular momentum conservation, only amplitudes with no net

helicity flip co not vanish in the forward direction. (As s — =, ! = 0 becomes the
forward direction where 25 = 1.) The crossing angles X; in (2.13) behave like

2m; [t]%
sin¥y ~ "T-'—-i* etc. , (4.41
§— fm 32

and d,“ “1(\(}_) ~ xll 1] as X~ 0; and so, since the residue (4.38) the 7-channel
amphtude behaves like

a=n ]+ ia-n] 2

Agtxs o~ , {4.42)

we have
A Hs(s » 1)

~ (pF i uale Do pal+ gmugl e gm g+ 1A= -ag L as o Iy 4
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when he minrimum is taken over all A{AqAgdy in the sum (2.11). S we end up with

A (s.0) ~ (AT gl ] a- lugrug /2
Thua only amplitudes whish have the same helicity li. at voth vertices, i.e.

luy=ngl = lug= gl =22 (4.45

do not vanish in the forward direction. In the case of evasion A = 0, and only am-
pitudes with no net helicity flip are finite at # = 0.

A precigsely similar discussion can be given for the EE and EU mass cases ex-
cept that now there are also kinematical singularities of 4 y(s,#) of the form /79
which give us the maximum allowed singularity at each wrtex The result is

(63, 70] that the ¢ = 0 behaviour of the residue becomeas t9, with 6 given by table 3
instead of table 2.

Table 3

The a:monant oftina Regge pole residue for a Heg;ge pole “of Toller number A.
For the different mass configurations the ¢ = 0 behaviour ic t0 where

AUU  8=§{A-M|+|A-N|}-M

by BU 6= 3{|A~|ul-M+remanr)-ea-20p)
o) EE 8 = H2+nf -1 +ni (-1} + €(A~207) + €(A-203)]

where 1 = (-1)1\*1 or (-—1)3‘7"‘1 for 20 = [
and €A ~20y = A-230 for A-2c>¢

= 0 for A-20¢€¢0,
If we were to insert 1 more zerc hehaviour than that of wable 3, f.e. 00 - 77

n:1,2.3... then we have

e e e
AHS(s,t),.,(_.t)(lA ermnal el A~ Tugm g lh/2en

(.46
which vanishes for all helicities. This is known as trivial evasion {66}

For bogon-fermion scattering {(in the t-—channel 7 and A' are half-odd-integers.
S0 if we wera to multiply the amplitude by £&¥ as in (.24} we should be introducing
a spurious square-root branch point. The amplitudes ave analytic in V¢ and s [23],

and or.e of the amplitudes in (4.21) changes sign on the replacement V¢ — - V7, so
we hate

-t

.n . . . LA =1, fan PR
Ag (s, Vi) = =(-1) Agis,=Vi) . {4.4M

This in the generalized MacDowell symmetry [45] referred to in chapter §. I
means that for fermions there has to be a conspiracy between opposite parity ira~
jectories such that

¢ V1) =a"(=VD) and  Br(VE) = T B (- 1) . (4.48)
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This solution corresponds to takmg A =4 in (4.38), which from (4.44) is obvicualy
nzcessary il all the s-channel amplitudes are not to vanish at £ = 0. A conspiracy
is thus essenti .1 for fermion trajectories.

Although 1n principle such conspiracies can occur in any precess involving par-
ticles with spin there are only a few cases where they are likely to be importont
experimentally. The reason for tlis i: that if an evasive pole can contribute o a
helicity amplitude with A = X' = O then its contribution to {(do/d?) at ¢ = 0 will not

—vanish. It will thus look very similar to a tiajectory with Toller number A cone
tributing to the A = A' = A amplitude. Since there ir usually not enough polarization
information to determine the spin structure of a process in detall it is only really
in those processes where a particle can not couple to a non-flip amplitude that a
clear distinction can be made. The leading :rajectories {, Ag, p etc. are known to
evade.

There is, however, a possibility that the pion takes part in u conspiracy in
yp ~ 7™M [71] and np ~ pn [72]. In the first case there are ne amplitudes with A = §
since Ay = =1 only, and A, = 0. In the second case the pion couples equally to only
two s-channel amplitudes, AJ, __andA{. _,, and since the latier involves helic-
ity flip and must vanish at ¢ = 0, so must the whoie pion contribution. But in both
these processes if the pion has A = 1 its contribution can remv.ca finite (in the
latter case because the natural parity conspirator trajectory cancels the pion con
tribution to the flip amplitude and leaves it finite in the n¢ *~ilip) see section 7.4.
As we shall discuss in chapter 7 there is a forwavd peak associated with the pion
in these processes which might seem to favour the conspiracy mechanism, but

, such conspiracies seem to be incompatible with factorization (see ref. [73]) quite

' from the fact that no suitable scalar trajectory is known, and explan..tion in-

volvmg Regge cuts arv now preferred.
There is in fact no evidence that any trajectory has anything; except the minimum
possible Toller number, A = O for bosons, and A = 3 for fermicas,

4.4. Daughier trajecteries
If we consider the Regge pole term given in (3.3) and take the asymptot'c form
of the rotation function {2.51), and the residue from {4.32), wu get

£ 1397 24, =M - Frla-o)

At =Bl (F5 {2 St o) o e,
where
By (6 = 167 (20(8) + 1) £ K (B vty (AN 123 D2 (4.50)
and
gla =, (2a): (4.51)

{(Q+M}‘(Q M {a+N){a- \!)§}z '
Then if we inake the replacement

s

Zp o~ g
o 201139424

we obtain
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PRA s Y}-M
X S ‘ o ;’1‘}. - . \
Aggls, D\ 9 sina o) ] (@) Eantey) ( (4.52)

and with £33 (8} ~ 8 M we end up with Agps. ) -~ SO he expmfi od Regge behav-
tour

However it is evident from {4.4) that this derivangn goes wrong at £ = 0 for un-
equal mass kinematics. For since from (4.5) g; ~ 7% we have 2y — 1 for all s, and
the usual asymptotic behaviour seems to fzil at / = 0. But this result is rather hard
to believe because we know that the scattering amplitude is not singular at / = 3 and
go it should have a uniform asymptotic behaviour.

The problem s further {lluminated if we expand dn.(;. ¢) in powers of s. We put
{f-om {4.4))

8

(14 4/5)
" 211391 24
where
2 .2 2,3 2
N -f S G ey - 4 .53
ST ié tu*"“’.’,l ;;33)(;;~z2 7714)] (4.53)
and expand
!“ﬁ/l ,““/ - ,
&) = (e, ve (@2 MR, (4.54)
where @1{0} is a known function. This gives
-im{a-v)
Afps dl = =gl } {e N ‘ﬂ Aa) (8 )
! 2 sing{a-) |~ AR
X {’.«.,/4.&;0;@”‘” + Ma- MY ds {740 R
E tz K # [
sila=M}a~M~=1),2(4s, A)‘3+a1(a)( ‘u ] (s/4s )%™ M-2 N T £ 1Y
- So

»1

Thus the term of crder (s/4s )@'ﬁ'f"” has a singularity % It is amq singularity of
the Regge pole term which destroys the asymptotic behaviour at £ = 0.

But we know that the amplitude as a whole iz analytic, so semetms g must -
cel this unwanted singularity. Oue suggestion, first breached in ref. [74] and dis-
cusseat in some detail in chapter 3 of ref. [15] is that the cancellation may coms
from the background integral in (2.54). There is a dagiculty in that the backg
shem ?re < O{s"2), but in rof. [15] it is shown that the non-uniform a*vnmzot
naviour oF the ﬁegge p()it‘ term can be matehed Z}I"&‘Llﬁ.‘_ Z“( Y that of the dac h{J\ L
whic - %atiafies the sbove bound for all ¢ = Q. The J~-plane interpretation of such &
backgvound i3 unclear, however.

An alternative, and much more popular saggcstion has been that one should in-
voke further Regge pcles, “nnwn as 'daughters’ [75] which have singular residus
which precisely cancel t ¢ singularities prodeced by the original or 'parent’ ira-
fectory. Thus the first ¢ ughter has a trajectory aj(f) »adh that

04(®) = o(¢) - i (4.3

f; (D
o
[

4=
thy
o]
s
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and a residue ‘

| a0} ~ M)Ms,,

By — B ; = +(non~singular term) ;
§)

[+3 0
At = F'w;— mg}(mi- mi) . {4.5%
We need a sequence of such cdaughters with ag(0) = o{0)=k, &= 1,2,3... and with
residues whose singular parts are jetermined by the singularities of (4.55), {Note
that By has to cancel the first singularity of oy as well as the second term of (4.55),
atc.) The non-singular parts of the daughter residues are not determined, how-
ever; and the relations (4.58) and {4.57) hold only at Z = 0 and tell us nothing about
the behaviour of the daughters at other Z values.

K there is a conspiracy {he situation 18 more complicated than this because the
relationship between the trajectories cf opposite parity taking part in the conspir-
acy also has to be maintained; and because of (2.49) a trajectory of unnatural pay-
ity can contribute to a natural parity amplitude to non~leading order, and vice-
versa. Since for a conspiracy with Toller number A an equality of the form {4.39)
has to be satisfied not only are the positions of the daughter and conspirator tra-
jectories and che singular parts of their residues determined at ¢ = O, but also the
first (A~ 1) derivatives [68]. This limits the pcssibie deviation of the daughter tra-
jectory from the position ay(#) = a{f) - % as we move away from ¢ = 0.

If one pair of masses is equal, say my = m3, mg# mg, then &' = 0 in {4.57) awd
so the f1rst term is non~singular, and only thc even-order daughters are required,
An mass pairs are equal the ¢'s are not singular either, and the daughters
ia!‘{ ot needed, Factorization 1ill demand their presence in such reactions of
course, but with non-~singular residues.

The final result is that if there is an infinitc sequence of claughter trujectories
the asymptotic behaviour AJ(s, ) ~ s®(0-7 {4 maintained for all {. Howe or at
£=0the zpin E (2 — 1 we we find that

C a{QY~ M
Apls.0;~ s (@) (4.58)
&

rather than the usual behaviour s%{0). Since we have chosen A to be the helicity
(X = &' = A) of the {~channel amplitude which has the normal kinematical behaviour
at £ = 0 {and whose contribution to the differential cross section, thereforc, does
not vanish) we have the maximum power behaviour A g(s,0) ~ sﬂ’( }=A, Such a be-
haviour holds only for a very small region round ¢ = 0, however {varishirgly small
as s — =), which may not include the s-channel physical region, and at larger |¢|
the usual behaviour still occurs {see ref. {25]}.

Thus an infinite sequence of daughter trajectories is needed each haviag the
same quantum numbers as the parent, except that the odd numbered daughters
must have opposite signature, so that their signature factors will be ideutical at
¢ =0, i.e. we need for the Ath daughter

. ema’(ﬁ)—k c 144
S0 dp=0a(~1 }k Since the perity of the daughters must be natural or unnataral cor-

responding to that of tke parent the actual parity of the odd daughters' pivticles
will be opposite to those of the parent.

s eim'(()) ,

(4.59)
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We have already noted in chapter 3 that there is very litde evidence for the ex-
wtence of such daughrer trajector.es at ph, sical J values for { > 0, though they can
cortatnty not be excluded, and there is no resson to expect that (2.58) will hold for
larger { ..

One way of trying to find out what happees {or {0 . to construct dynamical
mudols for the daughter (rajectories. For example one may solve the DBethie-8al-
peter equation with unequal masses ["16], or represent the Regge poles as sums of
ladder Feynman diagrams {77}, Freedman and Wang in their original work on
daughter trajectories {75] noted *hat the Bethe-Salpeter equation must produce
daughters, but more recent wor {76] has shown that the irajectories do not usuaity
run parallel to the parent, but gyrate wildly in the region of the negative J-axis. An
example is shown in fig. 14. This makes one feel that if they exist the daughters
may well be rather unimportant objects serving merely to maintain the s H=M pe-
haviour at 2 = O but having nothing to do with physical particles.

[y
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Fig. i+ The Regge irajectories obtained in ref. [76] using the Bethe-Saipeter equation using
a potential with a repulsive cors. The cortipuous and daghed curves correspond te different
coupting strengths. The strang: behuviour of the daughters will be roted

it shruld be noted that if the daughters simply cancel the singularities of the
teading legge pole there is no need o includ. them explicitly in a Regge fit where
only the leading power is used. If the davgniers have non-singular parts 10 their
residues addirional s®f)=1=37 contributions may be present, but ‘he other compli-
cations of the J-plane (secondary trajectories, cuts etc.) make them difficu!t to
detect in the exnerimentsal data,

4.5, i roup theovelical melhods

The conspiracy and daughter problems indicate thatf=101s a difficull powat sor
Regge theory. Incdeed the singularities which prompted the introduction G
daughters stronecly suggest that the rotation functions dih,{zf} are inappropriiie
here. 'he work of Tollex [78! and his many followers attemnts {c rectiy this by
adop vi1g 3 nore general noint of view with vegard to the mezaning of a partial-

wave & compaosition.
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The partial wave series in the {~channel (2.15) with which we began our discus-
sior of Regge theory involves a decomposition of the amplitude in terias of vepre-
sentation functions of the three dimensional rotation group 8O(3) (or, since wo ine
clude half-integer spins), the covering group SU(?)). Tuis rotation group is the
'little group' of the inhomogeneous Lorentz group (or Feincavd group) @ (sec ey,
ref. [79]), i-e. it is the group of tr msformations which leaves invariant the toigl
four~momentum of the incoming (or outgoing) particles

P#E(Plu*Pgu)=(1}2u*1’4u) R P PN (4.80)

The angular momentum J2 is of course the eigenvalue of the Casimir operator of
this little group.

However, S(x3) is only the little group for =, Pﬁ = ¢ > 0. Wigner [80] showed
that there are four distinct classes of representations of ? characterized by i
ferent values of the Cesimir operator P4. These are

(i) Timelike £ > 0 : little group SO{3)

(ii; Spacelike £ < 0 ; little group SO{2. 1}
(iii) Lightl’ke {=Cand P, # 0 ; little group E{(2)
{iv) Null { =0 and P!u =0; little group SO(3, 1} .

~i+The-representations of SU(2, 1) have been studied by Bargman [81], and he
showed (theorem 9) that a function which is square integrable on the group manifold
can be expanded in terms of the principle and discrete series of represertations;
the representation functions being agnin the d){\( zy), but with 2 ; taxing the unphys-
ical values appropriate to £ < 0. The representation of the scatteriag amphic.de on
this basis has tbo form [82, 83]

) -
“F410
; = - lﬁi " ] h_”f‘.{,fi . o ae TR T I . ‘3R
AHt(S, I) = 51 j‘ - dd Sin7r(J+7L’) AHJ(&)LA_X'\@'} + {ONSense (erins) {2.04

i.e. precisely the same as \2.54) without any Regge poles or cuts in ReJ > ~3. The
square~-integrabilily condition in fact amounts to the requirement that

A (s, &) = 0(8'5’-) , (4.67

so the absence of such singularities is obvious. It thus appears that there is a
mathematical analogy between making the Sommerfeld-Watson transform and vep-
resenting the amplitude in terms of its little group for ¢ < 0. It should be nc*ed,
however, that the Sommerfeld-Watson representation ie valid for all ¢ and /|
while this little group representation applies only to < 0, so there is by no means
a complete equivaler :e beiween them. What is more there is nothing very snecial
about the line ReJ = - in (2.54) and we are free to move the contour 45 we wish,
whereas {4.61) can only embrace Regge singularities in the right-half J-r ane by
analytic eontinuation. In non~relativistic potential scattering SO/3) is stil} the Itk
group for the time-like regicii, but for ¢ < 0 the little group is E(2) [84] whose rep
resentations are quite unlike those of SO(2, 1) and do not give a satisfactory aas.s
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for continuation in J88]. Since we kunow that the Sommerfeld~Watson transform
can be performed in potential scattering this is a further indication of he need for
caution in assuming the physicel equivalence of (2.54) and (4.61).

Bearing these qualificaticas in mipd Ong can ex: *mmg what happens av § - ¢ R

cguse of the nm%»mv!! m\mmmm ”1 - mﬁf e*“{ = 8 ete., the fact chat

3

i‘.‘

x“h [

S TR T T i o ’4)"’ = @ implies that &, = 0 umy oy = g aad g = my.
Thus whether the httle greup will be O3, 1) or E(2) depends on whether or not the
muBses are equal. If they are equal one can try, in anale g with the above, to rep-
resent the amplitude on the basis of SO{8, 1) representations, deioted by éw\ ez,
These have been derived by Toller and Sciarrino [86] (see also ref. [83]) and depend
on two Cagimir operators one of which, the Toller number A, is discrete {iaking on
valnes 0, 1, 2, 3...or %, 4, 4. ..) and the other, 0, is pure imaginary (- < ic < ),
This exira C‘asimir aperator ~1ppearé because there are two degrees of {reedom in
satisfying #% = 0 with equal masses. (The other corresponds to the variation of s.)
The partial=wave axpansion can be written [78, 83]

A"'Ti{ {oc ‘o

" ) 'S-.r S“ - - ©
Agfs t=0 =8, T D [ aoa- Al malle) . (a6
TT NA==d M =10

where the A%g«: ) are guitably defined 'partial-wave' amplitudes, 737 = min(T, ™)
and in the summation

EUI‘UE‘ ST$0'1+UB and }0’3‘0’4‘ sT‘ €03+04. (4.6‘%‘9
The hypothesis is then made that one can ins rt a Toller pole into the o variable

just as one normally inserts a Regge pole inta ‘he .f integral of {2 54) 5o if there
isapole at ¢+ a say we have

9’:

, A
AT

Ly
e
52
i

by 2
Ah*gs ) = (4. 83\+6M, ?_:; S {A” -

where o 18 the Toller number of the pole which is restricfeq by (4.64). The asymp~
totic behaviour of {4.65) can be Jdeduced from the fa~t thay
o o-1-|p- 1] i
» \ ~ {2 : ‘4 88
dT:le(‘“t) (“‘f} H {\ "@D\
s0 we find

=1~ | A~>«g

Agys,0) ~ 5 (4.87)

if we compare this with (4.58) we see that it is the same as the asymptotic benav-
iur of 2 Regge pole with a{0) = a~ 1 and Toller nmabcr A. In fact if one decom~
soses the SO(3, 1) representations in terms of the &7).{z)'s "no fuds F86] that the
single Toller pole (4.62) corresponds to an infinite sequence of Regge poles with

ak(()):a(A,G)—kal, k=0,1,2.... {(4.88)
In fact it is completely equivalent to a conspiring daughter sequence of Toller

mmbr A. Away from f = 0 of course we lose the 80(3, 1) symmetry so there is 1o
reed 1~ the daughters to be parallel to the parents.
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Unfortunately a similayr argument can not b2 carried through for unequal masses,
because then the little group is E(2), and as has already been mentioned it «does not
seem to have much connection with Regge thecry. it is thus necessary to use argu
ments based on continuation in the masses to justlly the use of Toller poles inthis
case [87

Th[e qluestion arises as to whether nature uses this extra degree of freedom at
t = 0 and containe conspiring daughter sequences, ov whether it chooses to lunore §
and evade the ¢ = 0 constraints. Just a8 a single Toller pole corresponds to 1 cons
spiracy of Regge poles 8o a single Regge pole corrusponds to a 'counter~conspiracy
of Toller poles. The real question is thus which on2 should regard as primary, fw
J=plane or the Toller o-plane. There does not seem to be any way of answering ihis
question a priori, but various models have been suggested. Weo have already mens
tioned, in the previous section, that the Bethe-Salpeter equation exhibits the
S0{3, 1) symmeiry for unequal masses [75]. Of course with unequal masses this:
symmetry is only to be found off the mass shell. But whether such a model can he
takagx seriously at the daughter level remembering the peculiar results presented
in fig. 14 is doubtful. Other dynamical models, such as those based on the ¥/D
method, which continue on shell two~body unitarity cown to £ = 0 do not nussess the
extra degree of freedom needed for this symmetry

The question of the significance of Toller poles c:n of course only finally be ve-
solved by confrontation with experiment. We have :!eady noted the lack of evi~
dence for daughter trajectories, and the at-ence o e narity doublets which are
needed for conspiracies, and unless a lot more resonant states are found one will

shederced to conclude that little trace of the SO(3, 1) symmetry persists 1 the i-
“channel ob, sical region But a more irect test is whether or not conspir ng tra-
jectorizs are needed to fit experiiental data. We shall find in chapter 7 that the
leading P, P', 0, w, Ag etc. trajactories do not conspire and we have already noted
that “he best test of conspiracy, that of the pion inyp —#¥n and pn - ap o longer
seems viable. There is thus no evidence for tmjeftometz with A > §, and the pros-
pects for Toller voles seem poor at present.

4.9. Nomsense zeros

We have found in section (2.9) that the behaviour of e{x (z4) at nonsense points
introduces various singularities into the partial wave amplitudes, and of course,
from (4.1), these must also appear in the residue function.

The story so far is that "ve may write cur Regge pole term either with first type
tunctions as in {2.54) or second type as in (2.58). I we take the asymptotic 2,
forms of these functions (either (2.51) or (2.34)}, give the residue the Kinemat:ical
singularities cf (4.32), =«nd use the arguments of secticn 4 to replzce 23 by
(s-u)/49; 13,94 for all £, s — =, we end vp with

Apys, f) = -(- !;)(K-N‘ A-a )2 167 [2a() + 1) t&K‘xﬁe{f} gt
it o5 2 : : i Ey-7M
R {20} % S = 1\ N N i ea
¥, {4.68)
gEEIEORD (e +M0ia- 3N(a+10Na- M o) St

where ¥g{f) is a kinemacical singularity free residue function. (Note thai to obtain
this result from (2.58) i is necessary ic use

T(a) = sfsinvaT{i~a)]"1 ) (4,70
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The expression in braces | } ‘!"H(c.r} has various singularities whicl can not be
prasent in the amplitude, and so we require that y{¢) should cancel th-in. Firstly
sinee

a, .
AL t S EES)

(3\:}? i )
) %3 (2a+ 1)
we can rowrite
gla+l (@) (e + 1)1 1

e [+ Ma- M)la+N)a- M1 Ber D)

The last factor cancels with that in (4.69). There are poles at @ = -3, -} ... from
the (o + 5, or at @=~1, -2, -8 from the (a)!, depending on whether M and N are in-
tegers or half integers. Such poles are not expected in the amplitude, and in fact
violate the Mandelstam symmetry (2.57). so we need yy(t) ~ {(o T )!]'1 to can-
gel them. Such a behaviour is in fact guaranteed by the behaviour of ¢ 5\}\.(25) {see
(2.33)) in the Froissart-Gribov projection (2.38) for A ff J(t) {as long as it con-
verges). The remaining part of (4.69) has the form

st
sinvz(a-v){(aw‘vl)t(a-M)!(au\’)‘.f(&-N)!]‘-i’ '
which behaves, as a— Jg, wheie Jo~-v is an Integer, like

o

P | ‘I Tw ] > wAS
(o= 0) for J =z M and v >dJ > =N
1
(a=Jdy 2 fm M>uq= N and =N >Jg» -M
{ ; Te e / oo S
finte for N >dg =t and o A

che branch point (a-Jo)“% at the sense-nonsense {sn) poinis (se: secinn 7.5 for
his rminul»:xgg;} must not appear in the amplitude, so we ne2d 2ither

i) - {a=dgi"2 or ~ {a~dgys. The furmer behaviour wuwld be expected Lon: U
Froissari~Gribov projection uxcept that, as described in section (2.8), we expcci s
superconvergence relation to hold in order to remove tue resulting fixed infinite
singularity (neglecting the third-double-spectral~function effects »* wreag-signa-
ture points). So we end up with Yy (f) ~ (a-Jp)z, at least at right signature peoints.
The poles in the ss. region J, = M corresponi of course to the phvsical particle
poles o we should normally expect ¥y(#) finite here. Then using the factoriration
requirement {4.28) we must have

“n 2 N Al R
!JSSB;'iﬁ = (ﬁsn} e (u’ "'{(}) N \'ﬁ. i 1)

50 the: nn. residues must vanish like (a- 7g). This is known 16 the choosU.g-scrae
mechzaism in that the trajectory couples te the ss. amplituce and cecouples from
N v s 5 . PR TR S {158 ith Tand
the nu. amplitude, I this bebaviour occurs at every nn. pouiy HhivTy
“ 1
(o + M)a+ N1z

Sty o | ‘ : £
FIORSE PEy vy UT)
\ Fi de]

. - wr
e oend up v

-

Combining this with our earlier requirements we can pwi



2M+1 ‘
92 M4 1 [(M-M)I(MN)!]* (4.78)

Yl = yy(d) v i) (o= M) a-
and we obtain

-ix({a-v)

: N Al - Xt b . A 1
a5, = DN yor P i 0y (S T

(@+v)l  ss=w\@M L g
(@=i{a= M)t \2so) SYUSHE (4.74)
where the residue yg{f) is free of all kinematical requirements {excent posaibly
threshold constraints).

This expression has the following behaviour at right-signature points

(1) Poles (a-Jo)"1 for J,= M
(2) Finite for M>dJdy= N
(3) Zeros (o= <) for N>Jy>v and J <0,

At wrong signature points there is an extra zero, (a-J,), comiag from the s.gna-
. ture factor o the behaviour is finite at (1), zero at (2), doubl: zero at (3) (if we
neglect the third double spectral function).

“There are however three considerations which may complicate this compara-
tively simple pictur 2:

a) Ghost-killing ‘aciors. I a trajectory passes through a right-signature sense
point for £ <0 the residre must vanish. Otherwise for our sense choosing ampli-
tude we should have a particle pole of negative £, i.€. negative (mass)z. Since the
Frowssart bound reguires a(f) < 1 for { < 0 this ie onlv a problem for even signa~
ture irajectories, such as the P, f and Ag, at & = 0. ! uch an extra zero will thea
also have to appear in the other amplitudes because « {4.71). The use of such a
zero is sometimes called the 'Chew mechanism® [88].

b) Choosing nonsense. At any given nonsense point the trajectory may choose to
satisfy (4.71) by having 8y, finite and 8gg o« (@~ J,). Although it is hard to think of
a dynamical mechanism which will cause this to happen it is an equally good solu-
tion [33]. We then have yg(#) = [(a- J )@+ g+ 1)]‘% for N = J, < M as above, but
¥Yu(t) & {a~ J)(a+Jy+1) for some sense points, say for s > dp > M, where s- v is
an integer > M. So we have

(@+8)! | (a= hyia-N) T2 ,

(o= s\ {11 ATV a2 NI {
A 4 LT L Sl A )

Yglt) = 4.7%)
insteac of (4.72). The resalting pole in the nn. a.aplitude cr.n not correspond to a
physicid particle of course, and sec it must be cancelled {or compensated) by we
other trajectory. However the asymptotic behaviour of e;_g,“ 1(31) at a nn. point Jg is
~ 2% * not ~ 2§ the compensating trajectory should pass through =Jo= 1. This is
often called the 'Gell~Mann mechanism'.

£ we wish to avoid the need for such a compensating trajectory we can insert an
exira zero in the nn. residue. Then by 4.71) an extra cero will also appear in the
ss. residue. Thir is known as the ‘no compensation mechanism'
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¢) wrong-signatur fxed poles. Because of the third double spectral function,
fixed poles (or infinite square root branch points) may be expected in the signa~ |
tured amplitudes at wrong-signature points. These do not give rise to poles in the
physical amplitudes boe use they are cancelled by the zero of the sipnature factor.
However if such poles are present in the residues of Regge poles they will cancel
the sigmatiate {actor’ s zero which we assumed above. There are iwo points o noie
about this, however. Firstly these fixed poles may simply be additional to the
Regge poles and 8o not present in their residues (see ref. [89]). And secondly,
even if they do multiply the reaidue, the fact at the nonsensie point the 1 “sidne has
gontributions only from the third double spectral function, whereas at all other
points it has contribution from all three double spectral furctions, means that one
weuld certainly expec » zero near to this point.

The resulting behaviour of the residue and of the aniplitude at the ss., si. and nn.
points corresponding 1o these various possibilities is summarized in table 4.

It will I noted tha: for some choices a zero is expected in various helicity am-
plitudes at the nonsense points. The classic example of this is the differential
cross section for 77p — #© - which i3 believed to be controlled near the for ward di-
rection by the p pole. From fig. 5 we see that ap(f) = 0 for ¢ ~ ~0.6 GeV2. i we
consider the two amplitudes for 7 “7® — pn guen in {4.11), a = 0 is a ss. p»int for

A4400, but a sn. point for A __gg- Hence we see from table 4 that if the p chooses
sense and there is no wrong signature pole, A, _gqg vanishes at / = -0.6 while A, 00
remains finite. On the other hand if it chooses nonsense both vanish, “vhile if the
residue contains the fixed pole both are finite. The data shown in fig. 15 exhibit a
dip but not a zero. This would seem to favour the choosing sense mechzanism,
though othr possibilities can not be ruled out. We shall mention an alternative ex-~
planation of this dip, involving cuts, in sed'ion (5.6).

Table 4
The hehaviour of the residue and amplitude as 2t . :clory passes
through a nongense point, J,.

Residue amplitude

nn &n 88 Mechanism nn St 88
.} Senge . ) .
-, - b4 : . Q- f i (G~ )
%’ (@=dg)  (@-dy) 1 choosing (7o) CEEN
! ;A . . Nunsense .
i i {@=dg)* YU =dg) choosing i L 1
Right  }
signaturs s
i 2 Chew .2
- of - Z e R & -4 )= iy =7 1
! (@ -~dy) {a ch {@-Jy) mechanism { g ‘ o
. 9 -
Dt ey R A TR No (L) io-d.. fa-T)
s o A T i o’ compensaticn '
Wrong é
! A S ) Fixed polt 1
signaiure (& -Jg} (@ -dg) 1 ixed pole

In the above we hav> assume,d the preseace of 2 fﬂced pele inthe rrsidue ¢t the wyo g =iz
ture point. If this {8 » sent the residue behaves in the same wo - as at the cos 1e>p‘»m N
right-signature point, apu *he amplitude is the same excepl for an exira {Q ~Jg) from the
signawure fagtor.
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1 P~ ™n [

'}v\ Rop =4 53 Geve |
-

W2

inb/(GeV/c,
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Fig. 15. Daia on do/df for m-p— #9n at various energies. The lines are a fit with p andp’
trajectories from ref. [189].

4.7. Regge poles in s-channel amplitudes

In discussing the contribution of a f~channel pole it has been essential to work
Wwith t-channel helicity amplitudes. This is rather unfortunate because, as we have
seen, we are involved with several f-channe. singularities and constraints. but
when finally we combine the helicity amplitudes to give the differential ~roas sec-
tion (2.14) all these kinematical singularities cancel out. This must be so since we
know that we could equally well use (2.9), and the s-channel amplitudes have no -
singularities except these from & pu'{gg) in the forward direction, ¢(s,i) =0 Be-
cause of this it is clear that there would be many .dvantages in working wit - the i~
channel poles in s-channel helicity = mplitudes instead [69,70]. In doing thir the
poinis we need to take care of are:

(i} The extra ¢ factore at ¢ = 0 required by parity conservation and factorization.
(il) The general factorization of the residue for different {~channel helicities A X
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(i1} The various nonsense factors required by the /-channel amplitudes.
It turns out that (1) and (i) can readily be accomodated if we work only to iirst or-
der in (£ 75}, and that the only problem concerns (iii).

One begins by writing

oA 1"2; ‘Lq,"‘PL 112 (1"‘8* l"* ;"“U"" re_‘ﬁ"’*{

Apgs i = (x“() 2 2 sinwa

' a(t)
«.g))'j (—“) BE (ﬂ .(4.76)
This has the { singularities required by angular-momentuin conservation, and the
required Regge behaviour. Now ag s — «

by lmzgy lpmw)/2 lp=|/2 i}
s R w

O

which is indepsndent of 5, as required, but it does not satiefy the f-channel factori-
zatior condition. To obtain a proper fastorized form we make vee of the result
{4.44) for the { = 0 behaviour of a s-channel amplitude due to an evasive (4 = 0)

pole, and put

pUipmeglelugmpg b= lu-p /2
Agst = (55 ) 1

o 1-2g et /2 1+ 2g ey ,/2‘- -ira- v, 5 ~a(f)
e e 1

S

where yyq(a‘) ‘s factorizable in terms of s~chanael helicities. i.e.

L2 Sm;,\amv) ?'Hg(l‘)z ; (4.78)

Yiquaugug - Spqugfugug - (4.79)
Although we have deduced (4.78) using the result (4.44) i. must in fact be —alid for
any mass combinatiors since Ay has no f singularities which depend v the
masses.

The factorization (4.79) in terms of s-channel helicities stems from the factori-
zation of the crossing matrix (2.12), but (4.78) is valid only to first order in i/s
from {4.77}). Hence one must not extrapolate (4.78) too far from the forward peak,
but in view of ite simplicity it has much to recommend it.

It is not difficult to generalize the above resuit to include conspiring trajects-
ries except that one needs to consirvcet combinations of s—~ hannel amplitudes cor-
responding asymptotically to detinite parity in the f-chanuel (see vef. [69]). One
then deduces from (4.44) the {orm
|A- =gl oA=L ogmpg - p-u

{a Y ,f,‘_\ wla gt {4 M
c;“"’ o) T E (4 1)
D

whei e the 'gond parity’ amplitudes are

T v ~nraTvatuatL2 IR
AHS(Svt ='4,z'f;z4u1u2+n"n‘2né( 1) AJJs‘,u\ L =

vad constraints 1ike (2.33; hold. This reduces to (4.78) if A = 0.
As we noted above the chief probilem with this methed arises when we consider
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the nonsense factors. For suppose that in some process just one /~channel helinty
amplitude Ay, vanishes like (a=Jo) for ¢ < 0. Then using the crossing relation
{2.11) we deduce that there must be a constraint on the s-channel amplitudes of the
form

T MHHY " Ag (5,0 = (alt)- o) © (4.8)
Hg

which is not easy to parameterize. But from table 4 it can be seen that if the tra-
jectory chooses nongensge there are no zeros in the f~channel amplitudes at the
right signature points. (Remember the nn. pole will be compeansated.) Similarly if
there 2re fixed poles in the residues at wrong-signature points there are no zeros
in any of the amplitudes. So for these two cases there is no problem. The choosing
scvse, and Chew mechanisms have zeros in some amplitudes and not in others,
however, and taere is no alternative te using the crossing matrix as in (4.82).

4.8. Regge poles and asymptotic behaviour

From the earlier sections of this chapter we have ended up with a Regge pole
asymptotic form (4.74) which countains the various kinematical factor s discussed in
sections 2 and 3, (which depenc on the external masses and whether or not a con-
spiracy occurs) and which assumes that the trajectory chooses sense. We have al-
so mentioned various alternatie a factors which occur if the trajectory ctooses
nonsense, if there are fixed po es, or ghost-killing factors, etc. We now wish to
discuss the general characterisiics of (4.74).
“"“a) Power beékaviour. Evidentiy

~ @) a(t)
sy ~ (5o)  ~ G
§—x

Sg

for all ¢ except for unequal mass kinematics when zZ, —lat¢ =0 and there is in-
stead an {{(s - u),.»"EsO)Q"M behaviour as we approach { . 0. But since ¢ = 0 is ouside
the physical region this is not usually very important. See re’. [25] for a tho.ough
discussicn. Apart from this the pure power behaviour is characteristic of a pole.
To non-leading order in (s/sg) there will be many corrections, due to the non-
leading terms in the expz-.3ion of d.(z;), and due to daughier trajectories and
trajectories of opposite parity, quite apart from more subtle corrections aneedad
because a single Regge pole has the wrong singularities in s (see e.g. chanter 3 of
ref. [15]). This should warn us against trying to work oo far below the leading
singularity in a Regge fit. With such 1 power behaviour we predict fror (2.14)

dv_ ss \20(0)-2

& {£.83)

Sa

(4.84)

{
3

a(f)-1
O,t«'.*t{,s) N(_s \ (
\So/
if a2 single trajectory dominates.
b) Trajectory dominance. If there are several trajectories present, the leading

trajectory, the one with the largest Re aff), will be dominant asymptotically. The
value of s above which this occurs depends partly on the ratio of the two couplings,
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but particularly on the value 07 sp. In most Regge {its s, i held fixed at = 1 GeV 2,
but this i3 mainly a matter of 'folklore' as we have no theoretical way of deter-
mining whai it should be (see however section (6.5)). On th: other hand if the cor-
rect value were much larger than this it would be hard to u «derstand why a smeoth
fegge behaviour is observed in most amptitudes for s > 2-3 GeV 2,

¢} Connection with particles. The trajectory functions should of course pass
through physical particles for £ > 0 and we can obtain a good idea of what they will
be simly by continuing the straight lines of figs. 5-12 to £ < 0. The dominant bo-
son trajectories will be those of the vector and tensor nonets with intercepts be-
tween about G and &, plus of course the T omeranchon with (0) = 1. We discuss fits
much more fully in chapter 7, and here we will give just one illustration based »
the 77p -+ 7% data in fig. 15. A simple {it of the equation

log {do/di) = [2a(t) - 2] log () +constant (4 85)

at different ¢ values gives the curve for «(f) shown in fig. 16. This extrapolztes
almost through the p particle, though of course there is nc reason why the trajec-
tory should be exactly straight.

A fixed power behaviour, a(f) = J (a constant), wouald correspond either to 4
fixed J plane pole (which does not give rise to a { plane pole and hence is not a par-
ticle) or to a Kronecker~delta term in the -J-plane

2
- & 1 86,
AHJ(t) 5JJC R (4.886;
which would correspond to an elementary pzrticle of spin J,. Except possibly in
photoproduction (see chapter 7} such fixed ; »wer behavicurs are not {ound.

1Oy

o5

"“O;../1‘...;..Hl.,“g,;..n.‘
1.5 40 0S8 (o) o5

deevire)’

<y

Fig. i . The P trajectory as deduced from a single pole {it to the 77p — 7
crugs section in ref. {181

o Qiflerential
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tion. We shall lind in chapter 7 that in those cases where it has been possible to
test this relation it is reasonably well verified. 1t is not really a test of Regge pole
dominance however since it follows directly from dispersion relations and the
power behaviour sal?), For example with a once subtracted dispersion relation we
have at fixed £

| * ImA(s', ¢ -
ReA(s,t)as ﬁH ?: % ) det sE I?;;‘f‘zsf) ds" (4.90)

LH
and if ImA(s, ) ~ s?{) for s> 0, and we use

ol
P s ds .a-1 a-1
= | 75 z =3 cotra
bid HTm s
o
and
£ ds' Lol a-1
- e = wN -
- J S 1s cosec w{c- 1)

the result (4.89) follows. The same result is found for any number of subtractions.
Thus any success of the phase-energy relation is really just a test of the power
behaviour and analyticity rather than of Regge pole dominance.

The other important fact about (4.74) is that the phase is the same for all helic-
ity amplitudes. Since polarization phenomena depend on helicity amplitudes having
different phises (see (7.1)) a single Regge nole can nat give rise to polarization.
Thus for example the fact that there is a po.arization of 18-15% in 7~p — 7°n shows
that there must be some other exchange besides the p trajectory contributing de-
spite the success of the fit in fig. 16. It is of course not i :icult to think of other
confributions which can interfere with the p trajectory t¢ produce the polarization
{sce chapter 7).

Y Factorization. We have already noted that a Regge residue has te factorize,
{2.67), so if only a single Regge pole is involved in a given set of processes we de-
duce {see fig. 1)

f : F RN &
{do/dt) 1284 = \dc,!’dt)u 33 (doy (“)22 4 - {4.21)

Unfartunately it is not easy to test this directly because th2re are not enough Adif-
ferent processes available (p or ¢ have always to be used 1’ the target). Moreover
it depends crucially on the dominance of just a single trajeclory. We shall mention
some tests in chapter 7. It is however an important constraint on Regge residues.

Another application of factorization is that since 1+% — 3 +4 has the same I~
channel poles as 1+4 — 3+2 (i.e. we just rotate the r'g-t-hand side of fig. 1) the
ccatribution of a given pole to these two processes must be the same apart {rom a
pesst e + sign. So if a single trajectory dominates these two cross sections are
predicied 0 be identical. This is known as 'line reversal' symmieiry. Thus {or ex-
ample the P contribution to pp — pp mus: be the same as that for pp - pp. This al-
so follows from the Pomeranchuk theore~ hr .ever (see chapter 7).

g) Dips. We have found that Regge pole amplitudes may vanish at nonsense
points (section 6), but thar there iz some ambiguity akout this depending on the
presence of fi. ed poles, etc. We shall see in chapter 7 that some but by no means
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{2.67), so if only a single Regge pole is involved in a given set of processes we de-
duce {see fig. 1)

f : F RN &
{do/dt) 1284 = \dc,!’dt)u 33 (doy (“)22 4 - {4.21)

Unfartunately it is not easy to test this directly because th2re are not enough Adif-
ferent processes available (p or ¢ have always to be used 1’ the target). Moreover
it depends crucially on the dominance of just a single trajeclory. We shall mention
some tests in chapter 7. It is however an important constraint on Regge residues.

Another application of factorization is that since 1+% — 3 +4 has the same I~
channel poles as 1+4 — 3+2 (i.e. we just rotate the r'g-t-hand side of fig. 1) the
ccatribution of a given pole to these two processes must be the same apart {rom a
pesst e + sign. So if a single trajectory dominates these two cross sections are
predicied 0 be identical. This is known as 'line reversal' symmieiry. Thus {or ex-
ample the P contribution to pp — pp mus: be the same as that for pp - pp. This al-
so follows from the Pomeranchuk theore~ hr .ever (see chapter 7).

g) Dips. We have found that Regge pole amplitudes may vanish at nonsense
points (section 6), but thar there iz some ambiguity akout this depending on the
presence of fi. ed poles, etc. We shall see in chapter 7 that some but by no means
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all the expected dips occur. Unfortunately there are also other possible explana~ -
tions of these dips involving Regge cuts, so there is some uncertainty, and the cor-
rect explanation is still anclear.

h) Exchange degeneracy. In chapter 3 we noted .videccea for thg deg\eneracp?nf
opposite signature. It is obvious fr .m (2.39} that the identity of A‘W{E) and 1;“: £y
implies that there is no exchange force, i.e. no t~chrnnel discontinuity. This
would mean that the residues were identical as well as the trajectories. Obviously
the difference between two such exchange degenerate traje.tory contributions is
proportional to

[e-in(mv)+d] _[eﬂﬂ(a-v)‘ j} 24 w2

2 sinm(a- 1;5 ginm{a-v) B sinn{a-v) °’

which is purely real. We shall gee in chapter 8 that there are som~ theoretical
grounds for expecting this so:! of cancellation to occur.

Exchange degeneracy also implies the absence of fixed poles (since there is no
third double spectral function), and that the trajectories will choose nonsense.
T"his is because e.g. an even signature trajectory must have a ghost~killing zerc at
¢ =0 jn a sense amplitude, which must therefore also be present in the exchange
degencrate odd-signature trajectory.

i} The Regge pole parameters. 1t is evident from the above discussion that
there are several characteristic features of Regge pole exchange which we can
hope to observe in the data. But there are many ambiguities, both from the pres-
e £ secondary trajectories and cuts, and from the various choices as to
ot Cy-Oor evasion, sense or nonsense coupling, etc. Even when we have de~
cided about these there are the free parameters of the trajectery functicn o) and
the reduced residues yH(t). The former can be predetermined to soure extent from
the position of the resonances, particularly if one is prepared to limit oneseli to
linear trajectories, but the behaviour of Yg(f) is almost wholly arbitrary. In a {ew
cases the residues of the particle prles are known coupling constant s, but even
then there is no unique prescription for analytic continuation. ¥ is .sual to adept a
hypethesis of simplicity, and suppose that once the essential kinemd:ical and dy-
narnical factors have been taken care of the reduced residue will be 2ither a con~
stant or a slowly varyine function. One factor which will greatly affe ct this t-de-
pendence is the choice made for sy, since varying it is equivalent to including an
extra exponential # factor ii the residue. It is obvious that if the residue is given
too much arbitrary structure the fit looses its conviction, but how many parame-
ters one should permit oneself is very much a matter of taste.

This concludes our survey of the properties of Regge pole', but hefore we can
confront these predictions with experiment we nced to know : cout the other types
of J-plane singularities which may be preseni, in particular the branch cuts.

CHAPTER 5
REGGE CUTS

5.1, mtrcduction
In the preceding chapter we discussed the exchange of a Regge pole, wrich cor-
responds to the exchange of a singie particle. The subject of this chapter is Regge

[k i

cuts which, speakirg roughly, correspond to the simulianeous exchange of two or
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more particlies. But wherear we have been able to describe the properties of poles
with some confidence afl that one can say with certainty about cuts is that they
auzt evist, and they have known positions.

In chapter 2 cuts were invoked to remove the incompatibility of the Gribov-
pomerane huk {ixed pole with the unit: rity equation. Other solutions to this pro-
iem have been suggested, such &s that the poles become like essential singularities
when they are iterated with unitarity [98,94], but all such suggestions run into the
groblem that such a singularity at a nonsense point J = J, would lead to an sJo be-
naviour of the scattering amplitude, which is incompatible with the Froissart
bound for Jy > 1. A simple pole is allowed because it is cancelied by the zero of
the signature factor and so does not contribute to the asymptotic behaviour.

The confidence that cuts can be invoked to shield the fixed poles rests mainly
on Mandelstam's argument [95] which we shall discuss in the next section. This
demonstrates that the same sort of Feynman diagrams that contribute to the third
double spectral fuuction, and hence to the fixed poles. alsu give rise te cuts.

Tuere are still two problems,; huwever. One is that there are some Feynman dia-
grams which likewise apwear to produce cuts (the so-called Amati-Fubini~-Stargi.el-
i, AFS, cuts [98]) but whose cats are known to be cancelled by other diagrams.
They appear on unphysica) sheets and do not contribute to the asymptotic behaviour.
fme can thus not be completely sure ¢hat Mandelstam's cuts are not similarly can-
selled, though the fixed-pole arguinent gives good reason to believe that they are
iot. The other problem is that we still only know how to evaluate the magnitude oy
the cut discontinuity in terms of Feymnan diagram mcedels. Since few oeople nowa~
days suppose that Lagrangian field theory is ever likely to be the basis of a viable
theory of strong interactions this means that there is no agreed methed to calcu-
late cuts.

However, some models which do permit one at least (v esibiiale the cuts given
the nput pole parameters have been suggested, and we sho: cceserive and con-
ment on two of these {the absorption and eikonal models) i~ sectivas tanu 5. Then
we discuss some of the general characteristics of cuts as . «dicatea by vuey mod-
els. In particular we introduce the as yet unsolved probiem of whether tiv: cui-
strong enough to interfere with the poles in such a way as t¢ produce the varicus
dips observed in differential cross sections, or whether these dips are. as dis-
cussed in section (4.6), due to nonsense zeros.

In addition to these dynamical Regge cuts there may also be fixed cuts which we
give a brief mention in section 7.

8.2. Regye singularities and Feyn:wan dingrams

The calculation of the asymptotic behaviour of Feynman diagrams hasg been Jis-
cussed by several authors, and comprehqnsively reviewed in refs. [97,988]. Inthis
section we shall mainly just quote some of the relevant results, and the reader
who is interested in the details should consult ref. [87] er the Jriginal works.

We ronsider a diagram consisting of scalar meson lines oF mass m wrh veriex
couplin~ constant g. The contribution of such a diagram to the scatiering amniiude
is give: by {neglecting normalization factors)

ey dty
Afs, H = lim g™ | g

. too
€t M (g e +ic)

=1
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where the ¢, are the four~moment. of the » internal lines; the k; are the internal
loop moments. (that is independent linear combinations of the ¢,), and there are m
vertices. The particles in such a theory are of course eleumentary, and since they
are scalar they contribute a Kroneker delta's to the s-channel partial wave ampli-
tudes of the form

o

A=ty S g (5.3

-m
However if we consider an infinite sequence of ladder diagrams such as fig. 17 it
can be shown (ref. [99]) that the clagram with 7 rungs contributes at large s

AMs. 1) ~ g (Ix(t)log 11_. (5.3

where K(¢} is a known function (given by the box diagram}. 3o, if we arve justified
in supposirg that the limit of the sum of the diagrams is the sum of the limits, the
sequence gives

g2 = [K{t)logs)*1 ‘
A(s,t) "”E' 2 L ((i:g:m] - —gzs’m . {5.¢)
i=1

where oft) = -1+K(f). So the sum gives us a Regge pole ehaviour with a trajectory

functions which begins at -1 for { — «, and which is cut ibove the f threshold This

is exactly the same as the behaviour of a trajectory in Yalawa potential scattering

which it closely resembles, and the fact that the trajectory end point is ot ~1 is
due to the 1/s behaviour of (5.2).

1. I -M0TT —

Fig, 17. An infinite tequence of ladder diagrams which sum to give 2 -channel Regge pole.

i

General rules for the asymptotic behaviour of mure complex diagrams have
been given [98]. In particular it turns out that for all planar djagr.uns (i.e. dia-

grams which can be drawn in a plane without crossing lines) the behaviour is al-
ways of the form

sMlogs)™ with n=1.m=20. (5.8

This knowledge is not much use to use since, as we hae just ween, the Regge be~
haviour comes from summing infinite sets nf diagraras. But it dees indicate that &
we were to treat the sides of the ladders in fig. 17 as composite particles we
should still prebabiy get a Regge pole.

~—t

Fig. 18. One of an infi.ite sequence ~f double-ludder diagrams which might be exjected o
give rise to s Regge cut. hut does not,
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The Regge cuts axre swiposed to stem {rom the exchange of two or more Regge
poles, <o we might try » model surh ag tig. 18. However it can be shown that each
such diagram has an asymptotic behovicar ~ +~3 log s independent of N and M, so
this should also be the behaviovr of the sam. This gives us o fixed-cut like behav-
four with oe(2) = =3 {or all £

At Dirst sight this result is rather surprising sinece i we take oqaeh of the Iadider
guns i {ig. 18 as giving us a Regge pole behaviour, and then apply elastic unitarity
in the s=channel to find the discontinnity across the two particle cut {fig. 19a), we
set [96]

9, . .
DiSCz A(S. £) = 52;"‘2—;‘; ] A 1(5‘, fl)f-&g(q, {2) dﬂg {5.5)

AR
and J we put each Aps £} ~ s this gives

Discy A(s, ) ~ JMax[ailipraglip]-1

8.7

where /¢ and f9 are subject to the constraint
8(t, 0, 6) = ~(E2st2 o8y vt £, 420 4262, > 0 (5.8,
M2 172 2" "1 702 ’ .,.

{We shall perform this sort of caleulation explicitly below, section 4.) These are
the AFS cuts. They are cancelled by the cuntributions of the other unitary dissec-
*jons which ¢an be made through fig. 182, such as that shown in fig. 19b. Thus the
on mass shell AFS cuts are cancelled by the off mass shell parts of the Feynman

integration, and the cuts are spurious.

T SRR I I S

T Buniis

el

SNV S

Fig. 19, ¢ay The two-particle unitacity section of fig. 16, (b) A ditferent partition of fiy. 1IN
which involves 3 particle unitarity.

i we wish to avoid this cancellation we must turn to non-planar diagrams [95]
The simplest i3 shown in fig. 20 where we have Reggeon ladders connectad by
crosses a. gach end. Because of the crosses this diagram has a thivd (su) double
speciral function and so i is also involved in the {-channel Gribov-Pomeranchuk
fixed poles. Since it rerw.res a minimum of 4 particles in the s-channel it will vl-
vibusly not be present in potential seattering. This has only Regge poles for suit-
able piientials like the Yukawa.

in . rder to demonstrate more explicitly that fig. 18 does not have 2 cut and
fig. 19 does, one can make use of the Reggeon caloulus invented by € riboy §i0d:
which zllows one to work with mixed Feynman-Regge pole diagrams. :lcrv we
shall briefly outline this method [101, 102}.

Consider the diagram fig. 21 wheie By and Rg are Regge pole amp.tivces. o
terms of the Feynman rules this may be written (neglecting normatization fartors)
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T TN,/

STTI T\

By ’Rr'; P e,
Fig. 20. An example of a type of diagram Fig. 21, The Feynman disgram of fig. 20
which,  when summed over all possible num~  with the ladders replaced by Regge poles
bers of runge, does give rise to a Regge cut. 1y and Rg.
4 a4y a4Ro Ry(ReiqR)Ral Py = Ry, Py~ o, g~ k)
1T dy ‘
m=1
where d's are the deaominators corresponding to the internal lines
2 2
d1 = kl m +i€ |
2 2
dz = (P, kl) - +i¢, etc. (.10
-We, introduce the four-vectors
Py = by (m2/s) by,
v 9,
Pg = po= {m=/s) Py . {5.13)
which have the property that
12 _ gl foBy T ;
pl - pz = G“‘O(}.;‘S ) M 2?1?2 = 8, (5.12}
As usual § = (p1+1‘:2)2 and ¢ = \pl-pg)z = qz, and we can write
IR -
a=Liry-spee, (5.19

where @ is a vector perpendicular to the plane containing py and pg. Then follow-
ing Sudakov [103] we write each of the internal momenta in terms of their compo-
nent in the plane of pj and py, and those perpendicular to it, i.e.

_13:{! A hH .J.b_.

r"““"‘l’r‘i T _L’
kiy=aipy+81Py1+Ry,
522=a’2p1+13?,1+k2.1 . {5.14}

We then express each of the denominators (5.10) in terms of these varizbles:



REGO & THEORY AND PARTIC LE PHYSICS 163

i - 2 - 2 3
(!1 :alplsﬁxkh mo i€,

2, 2
‘{g (gﬂi'- m ,"S)(p‘l* Vs ki -m +ie, eto. {5.1%)
and tie integration volume elements are
&k = 1 5| dadza®k, etc. (5.18)
We then asasume, and this ig the crucial simphficatxon that Rl(klkgk) is large on-

Iy when the energy variable sy =(kq+ & 3) ~ 2k1kg = B1ags is large (i.e. of order

$), and when the momentum teansfer 2, and the 'masses' k9, k§ are snail (i.e. of
order x:2}; and similarly for Rg. Thus we are assu;nmg that the Regge amplitude
is peripheral, and that its form factors vanish ~ (kf) (see ref. [95]). Hence the
only important region of integiation in (5.9) is when
2,2 ,2 2 2, |
k kZJ. k_L : a,B,a, ~m"/s ; and Bl,az 1. (5.17)

We then take a factorized form for the Regge amplitudes

\
R (b kyo ) = gy (83, (- k)2 B0 2, G b2 621 20 ) T1EY

Yiin b\ L 2 By
Rz(pl-klapz-kziq-k)"‘:gl({pl kl) )(:\1 kl Q’+k) ’(q k))

>
n...h‘."‘\

[ 3 2 2 2 ¢ fm 10
X[y~ ko) Py kg +q-R)", (@-R))Egge[2(Py -kt -k ‘;} e ;. 5.18)

aere EJi are the signature factors, and we have used J; for the positicas of the
poles {to avoid confusion with the Feynman parameters a). When these are subsiv-
tuted in (5.9), and the restrictions {5.17) are noted, the integrations over oy, 09,
31,8y9,a,3, k1, and kg, can be carried out separately, and we end up with

Afs, ) = 7 : fd B N FRRCR )le*"szlan, (5.19)
where
- 9 Szkzglgzﬁll(‘ 8y 2
g = J & » . (5.20
Njdy J "k, dB,da, do i {5.20)
lx d??’l
m=1

&

and it appears squared because the right-hand side gives an identical result.
in order to determine the J-plane structure of (5.19) we must make a Frois-~
sart~Gribov projection, which for spinless scatiering is

The function 4\J1 J9 is the Feynman integral over the cross on the lefl ¢f fig. 21,

(#}]
2
Py

o

Af) =2 ] Dyls.HQleg

o~
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Now from (5.19)

L1 ‘!' +J g 1 I
(@ ks TR g, 8y ) (5.42)

1 2, 2
DS(SJ) = ‘ls‘lj d ;‘.L 1VJ}*-}2

and using the fact that @ {zy) ~ s~ "} we have
Lre1- Jl(kz) ng(q x)zi

This gives us the expected cut, and its position ig the same as that of the AFS
cut (5.7).

It is fairly straightforward in principle to apply this technigque to more compli~
cated diagrams where there are larger numbers of Regge poles connected by
Feynman propagators. One is still left with the problem however that one needs to
e able to perform the Feynman integration (5.20) wkich involves the forp factors
of the Reggeons, since the couplings g;, g;are functions of the musses 2¥. It is nat
possible to evaluate the cuts using just the on mass shell properties of the Regge
poles,

A0y [aZe - (5.28)

-
-‘.-—“..-.-— - —

- -
i‘[’ \\\
Id
/ N
/ N\
! \
i \
1 e e o e o)
s s S a
) o i
\ ;
—-— \\ ¥
\ K
\\ P
a . - - i
B

Fig. 22, {a) The Feynman amplitude for the left side i {ig, 21, with two Reggeon external
lines. (b} The contour of integration along the real sy a:.s in (5.24). The costour may be
closed either above or below, but in either case it enloses one of the unitar ty cuts of Ay.

The integral for Ny, s, is essentially an integrzl over the Feynman ampl tude
shown in fig. 22a. I wé éxpress it in terms of inv..riants it becomes

o0
N, tylg) = [ dsyAqlsy, it 19, (5.24)
- o0
where
1 = i)
2 Tl T Ry g8 .
AI{SI""I tg) = dplpl}‘“*‘“l} o B u— {v.89)
o o .
i1
m=1

is the oampllitude of fig. 22a apart from the J's in the numerator. These are duc to
the spins of the Reggeouns and it can be shown that they do not atfect the singularity
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streeture of Ag. The int gral in (5.24) is carried out at fixed ¢ over §1, and one
can dow see why it 18 fieportant that the diagram should have a cross. For the
pregence of the rross roans that Ay will have both s right-hand cut corresponding
to the 1 tm'eshfo‘.‘\ds, and 1 left-hand one corresponding to the “'l thresholds
fsgatig f L M So the aegration contour will be as in fig. 22b. Since this din-
gram =~ 1/ x’{ for large ©y, if there were only a right-hand cut or only a left-hand
cut one would be able te clcae the ¢omtour by a samicirele 'n the upper or lower
ralf plane {respectively) without enclosing any singularities and so conclude that
N ={. It is only the fact that Ay has both cuts that gives us a finite answer. In fact
if we distort the contour to enclose say the right-hand cut we get (since Ay is real
analytic)
hal
Nt dytg) = 21 | _ TaAy(sy g, 9 dsy . (
4m?

(4]
e
da
g

it is now {airly obvious that one caa generalize the above discussion and obtain the
amplitude for the Regge cut in a grneral two Reggeon diagram like fig. 23 provided
that both the ampiitudes Ay and A have toth left~ and right~hand cuts. But unfor-
wnately there is then no reason o expect that the integral {5.26) will converge i’
the amplitude Ay has Regge beha riour.

.

Fig. 23 A general two Reggeon exclhiange amplitude, which will give rise to a Regge cut
provided A) anc Ao both cot*ain cresses, as in fig. 21

8.3, Phvswcal intevprelabion

S¢ fur this has just been -aathematics, and we must & oy o unde-stand the
physica: meaning of thes< reguirements m Aj ana Ag. e can o2t some idea about
deuteron-deuteron sczdering. We expect that to a good approxin atior ‘nl. can be
represente” B e o atterir ¢ of the neutyons and protons. separai..y i1 oo con
sent each of the inter: ctions by the exchange of a single eggecu we getl diagrams
like fig. 24. But fig. 2« b where two Reggeons are exchanzed belween the same pair
of particles, becomes very unlikely at high energy because the two nucleons do not
stay together long enough. This diagram has no third double speetral function and
does not give a cut {only an AFS cut). On the other hand iig. Z4c whevre the {wo
Regzeons come from different nucieons can occur at high energies, and this dia~
gram has precisely the structure of fig. 21. One may thus conclude that in general
the existence of a cut depends on the structure of the scattering particles - they
must break up and reform, virtually [104].

Fig. 2¢. Deuteron-deuteron scattering. {») A single interaction beween the nucleons repre
senter’ Ly a Regge pole exchange. (b Double Regg 2 pole exchange hetween the same pair of
ucieons {c) Double Regge pole exchange between different pairs of nucleons
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There iy obviously some relation between the above discussion and Glauber the-
ory [105], but in fact the relation turns out to be a very complicated one. For ex-
ample if one considers wd scattering, Glauber theory gives (fig. 23}

Ayg =G A, + A + J 6 pa)A,pAm a%p , (5.9m

where G is the deuteron form factor (and represents the fact that the nucleons are
off the mass shell). The first termas are the single scatterings on the proton and *
neutron, while the second term is the shadow correction, and represents the fact
that for part of the time one nucleon is behind the other anc 80 Invisibl~ .o the pion,
This must obviously make the amplitude smaller than the sum of the single scat-
tering terms. It was shown by Gell-Mann and Udgaonkar {106] that the second term
of (5.2") has a cut like behaviour, and this has been analysed in greater detail by
Abers ¢t al. [107]. However the diagram fig. 35¢ does 1ot have a real cut, only an
AFS cui, if the particles are on the mass shell. In order to get a Regge cut we
should have to regard the pion as a composite object too. This does not mean that
Glauber theory is wrong, at least at low energies, only that it does not give a valid
result at asymptotic energies. In fact qne can estimate tha: it will break down wher

the energy if of the order of m,(my/8)2 where 8 is the binding-energy of the dev-
tercn [108).

Fig. 25, Diagrams with single and double scattering for pion-deuteron scattering.

The situation is further complicz ‘ed by the fact that the iteration of the potential
(the Regge pole) corresponds both to diagrams like fig. 26a in which the potential
acts several times between the same pair of particles. and ones like fig. 26b in
which the ordering of the interactions is different, an¢ which ‘nvolve multiple scat-
tering {109, 110]. This appears to contradict what was said above about the improb-
ability of muitiple scattering between the same pair of particles, but since in
Glauber theory the energy of the incident particle is high, and any changes in it dwe
to scattering very small (otherwise the deuteron would break up}, we have a cer-

d , \1 s
\ PR ?‘

o o son §P o

\
d A }d 1 ) ‘;
o ]

Fig. 26. Two examples of diagrams which involve three Reggeon exchanges, but which have 2
Jifferent time orderiag of the interactions.
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tainty in the encrgy which implies an uncertainty in the time ordering of the inter-
getton. 8o figs. 28a and L6b are equivalent, and the Glauber correction aiready in-
cludes some of the multiple (more than two) scattering corrections, but only to the
extent that the 7, n and p can be regarded as elementary objects incapable of vir-
tual break up. Glauber theory s thus an essentially low energy approximation, and
does not seem to provide much of a guide as to what one should expect for Regge
cuts,

But at least one can see that the cuts depend on the scattering particles having a
composite structure, just as the Begge pele exchange reflects the compositness of
the exchanged particzle. However, it is one thing to be convinced of this, and quite
another to tuen it into a model for c:leulating cuts, particularly in circumstances
where the composite structure of the particles is a good deal less obvious than it
is for the deutercn. Sce ref. [108].

% A
IRBARA]
L i
F " + A
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Pig. 27 ta) The Reggeor -box diagrata, (h) represeated by ladders. (o) Fach Revgeon may ix
represented by a sum of ladders plus twisted ladders when signature is taken into account. so
giving rise tu the twisted diagrams like {d).

One approach has been tc take into account the Regge pole nature of the scatter-
ing particles by drawing a Reggecn box {104, 111) as in fig. 27a. If thes= poles were
simply -epresented by ladders a.- n fig. 2Tb we should have only a planar diagram
and no cvt. But if we remember t..at the Regge pole has a signahire so that the s-
channel poles should be represented by fig. 2%c i.e. the sum of a iadder and a
twisted adder, then part of what is represented by fig. 27a is fig 27d which coes
save a cut. This is held by some avthors {101, 104] to justify the replacement of the
s~channel noles by the sum of all the narticles lving on ife trajectory as in fig. 26
These diagrams of course have only AFS cuts, and the author has boeen unabic w
understund how this step is justified. It does, however, as we shall see in the nex

Ak et

- N
A

Fig. 2¢ Some of the terms wnvolved in fig. 27(a) when the two direct channel Regreoar
represcrted by the particles which lie on them, i.e. particies a3, a3. @z . and by, Pol by
reape. . ey,
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sections, lead to a definite prescrintion for caloulating cuts which can be compared
with experiment. o -
So far we have described the behaviour of the cuta In tha J plane, but of conree
taoy can also be interprated in the ¢~plane [113]. If they are to shield the Griboe
Pomeranchuk fixed poles we require that the branch point should be at the leading
rong-signature neagense polul (Bay Jo) for { = £, the i~channel threshold, {.e,
aello) = Jo Thus for example for the scattering of two identical spinless pariicles
of mass w, lying on a trajectory off) Juch that a(m?) = 0, the highest nonsense
point {8 at Jf » ~1, 80 we must have -

a (dm?) = -1 (5.28)
The condition (5.7) for two identical trajectorics leads to {(mee (5.87))
all) = 2a(t )~ 1, {3.29)

which satisfies (5.28). With unequal masses the cut structure is more complicated
however (see refs. [113, T14]).

In the ¢ plane we have the inverse function {0 w8, namely {,(J) dofined such
that

ac[tl) = 7 . (5.30)

T . irom (5.28) {o(~1) = 4m>. As J is increased from -1, {. moves along the
elastic branci cut untii the {irst inelastic branch point #; {say} is reached. A! this
point fo7) passes through the inelastic branch polmt onto the unphysical sheet, its
work of preventing the elastic unitarity equation {2.61) trom generating an essen-
tial singularity being complete {112], and so a {?) has a branch point at Jy, where
{6 1y This means that the cut discontinuity A, ) of {2.54) has the inelastic
branca point. I the elastic unitarity equalion is to bold & must vanish as -« fp 2.8

X
i T ; P g § 5 L g E - 4
Aﬁa:,a}‘ ! if gi:i\{i‘g W C! . !V.Eiz
ot
Inverting this result we get
A, 1 = e d {5.3%
e aidl ‘

which means that the cut discontinuity must be singular and vanish at the end poind
of integration in {2.534). Hence the leating asymptotic behaviour of the cut ferm
will be (see section 2 T

PR ts S PR IN £ § PYSISIDYITNE ) Y. | r aw
A (EELEERE R AR § 1 S E A . S

Note that this relation depeads oo unitarsty :n the f-channe! whereas the cuts <hone
selves are generated by unitarity in the s~channel. The incorporation of f~channe’
unitarity requires adding all the iterations of fig. 2! as shown in fig. 28, Infact
such & series is also strictly necessary to eliminate the GribovePomeranchuk sin
gt?fa;*itf fmperly, and the problem of calculating such a sum 8 deseribad in

ref. {1151,
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Fig. 20, The sum of iterated, crossed boxes which results when ¢-channel unit: =ity is apphicd
to fig. 24.

54. The Regpeized absorption nodel

The Reggeized absorption model {104, 116, 117] may be used for any lclastic
reaction involving the exchange of quantumm numbers. One uses a Regge pole to
carcy the quantum numbers, but also includes the modifications caused by elastic
stattering in the initinl and final states, as in fig.30. Since the elastic ampli-
tudes are predominantly imnaginary the effect is to reduce the contributions of the
lower partisl waves, which corresponds physically to the absorption of the in-
coming or outgoing particles into channels other than the one being considered.
One may of course use the elastic scattering amplitude, if it is known, directly,
but for our purposes it is more illuminating to represent it by its Regge pole, the
Pomeranchon. Fig. 30 then looks like a2 two~Reggeon cut (albeii an AFS one).

A

Fig. 30. The absorptive correction to a single Regge pole exchanye, representing (a) finad
4ate interactions or {b) initial state interactions. (c) gives the labels usod fer the partioles
in (5.37, Py being the Regge pole, and Py the Pomeranchon exchange amplitude

In detail the hypothesis ig that one may write for the s~channel partial wave
mplitude for the process channel a (particles 1+2) -»¢hoanel o (pasticles 3+ 4,
w the form of a matrix »roduct in the space of s-chann : helicity states

b jp \,.‘lh
AT - S e 4 %P1 s

Foyve
g s ek
shere 45 J b P 1(s) is the partial wave projection into the s-channel of the {-channel
Regge pole carrying the quantum numbers, and S%% is the partial wave »-matrix
fer clastic scattering in the incoming channel, etc. ¥ we put

S9%s) = 1421 0"s) A9 T2, (5.35)
whern p¥%(s) = 2g 19/ :w is the kinematical factor, and 1%9& is the partial wave
project:on of the Pg exchange amplitude {and use a s:mz!m expression for §hh e
get, expanding the square roots

15{6‘;“ ) ‘QEEP;,_& L, ;d&?

. . . LGPy, fiels gh Py,
RpaRiT .15 MDA ) P J a5 A )
€«

. fisjeip {514,

)

ik

{ev | [5.35;

The fir-t term represents the Regze pole exchange why ¢ the seoond wnd thivd ar
W mmde cuts due to the ﬁxchaﬁge of the Regge pole with a Pomeranchon. From
83y the iirst the first of these the full cut contribution is {writing out the heliciti o
exphicitiv « see fig. 30c)
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cat

Apg(s, 9
0% rae Siar.y B q0aP2 ) A%P gat (. (5.37
= i{) {-’51 i&. «:}x {u’f-'r i !} “;LG ﬁtplpzusgwflﬂ'r '151‘5546“35\*&;‘;1%) d?;;i'(xﬁ} » (5v3*¥
where ‘
B®py-ug o oand Lt oyt (5.3

If we perform the p .rtial wave projection of the pole amplitudes (dropping the
channel labels for simplicity) we get

1

cut ~ o, %N ey g gV 1 + Pi
Ag (s, t)y= o ip{s)lée (T +1)d” {2.) s f A o\ 24)
Hg ey r nut's’ 3% Tuyugusug 1

1

T A 1 ' oy v . (% 10
X d,u ,u"('tl) de . 395 -5;1 A ﬁxswumﬁt“’ xa)dﬁ,. @s'{’%) dag . (5.5

where u" & ug- ug and 2] and 2g are the cosines of the scattering angles beiween
the init'al and intermediate, and inteimediate nni final states, respectively. which
therefore satisly the addition theorem

‘1 = :azﬂl-ﬂ tz)%’{l'- xé)% cos éxl .

where ¢ is the azimuthal angle between the directions of motion {x the initial and
intermechate states {fig. 31). But [104]

E(&hl)d‘fr ,i(zﬁ}ri“}‘ .z }«fi"“!“ REA 2 ki'%} COS{u B, »u' Oy e T A) (5.46:
J patS T apttr T et e At 1 2 3
where

22 2,

8(a) is the step function, and the azimuthal angles ¢, satisfy

t 3 34
. {
.&', -
H g/f

#
Fig, 31. The angles beiween the incoming centre of mass momentum #y2. the inteymed.ale

state momenturr g54. and the final state momentum ¢y4. This latter ia taken as the awx.»
about whaoh the acimutha! angle @ beiween g0 and ¢xg is measured.
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5 ) ol .
eh' 2, (zlwzzg-evid%) (1~ .:%) 3‘(%32) =

! 3 o1 Y )
LA I {z:;!- Tay Pa®) {1- 272} {1 ::r;)
{ip
R 2-:.33)(1 zz) (1. zz} : (5.42)
g0 {5.39) stmplifies to
1 ,
, S ins) ¥y , Po
A s e L de, | dz, A $,2 )4
ile igng 3278 {; -'1 2 Y igugig ™) igugr w72
e ««{vg cos{u 6‘)1 & 1 Q‘)Z + " ms) {5.43)

This gives us a complete prescripticn for the cut amplitude in terms of the pole
amplitudos.

There are several ways of approximating (5.43) to give simple analytic expres-
gions for the cuts., For large s and small { we may write for ench 2 in (5.43)

z = 1+3s ‘gl e I«rﬁfl;’&: ] ) e 1+212;’4S (5.44)

and if we express the Regyre pole terms as exponentials in / we can vse the fact
that { 118]

o f’ Byiqaiigi i“g:{} . w3 *»{f’,\ dha:, AN 9 wd 9
[ dry | dtge V1772208 = e’ O T T 1.
- - ¢ ‘
shere
- - N . o e
K = =it *‘1*‘9"’2‘”1*“2”1’3)"“”1’2*”’ (5.48)
and
A=pplislazn b,z ) (5.47)
LS B i be-ar'? I i
Tofirst order ini/s this gives
. o102/ 14b2) .
(0,4 }’“«‘ # {h} &1)2} . {o.48}

The wiroce action of say a factor £, intc the integrand of {5.43) is equivalent to dif-
{grentinting it with respect to (. and + o the integral is jpst the right-hand side of
{5.48; differentiated with respect .o ., 3o in general if the integrand is wrilten as
% polyaomial times and exponential we have {119}

5 0 ;

Bofyah K S A hibgtMbyabed
& nom Dl & H.4 C 5 [ "’Mi
fa, fa, & a i3t Lt 8y T, T 7 g T

(. nm 1 2 ‘ X B AN ¢ by o .
-8 -5 om,m X Som 3h ) abg

= 10
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This is sufficiently general to embrace all tho cases likely to be of interest except
when there !s a pole very close to ! = 0. Inpractice this applies only to the pion
- for which sec ref. [104].

To first order ini/s, ¢+ ¢g = =¢g. The dominant terms in the sum over ;;5@5
will be those for which there is no helicity flip in the Mastic amplitude, l.e. ;' =p"
and so do not vanish in the forward direction. U we keep just thesc terms the cogine
factor in (5.43) becumes just. cos (u~u') ¢y

If for example we conalder a non~flip amplitude p = u' = u* = 0 and write the
pole terms in-the form :

bty 1 ~%1 ¢ ) t ‘
AH:(s,xl) ==G, e 11 (2’3 a, t;‘) o ay(ty) (s/sa)al( 1 (5.50)

(where we have absorbed all the ¢ dependence of the residve into an exsronential
times a polynomial in ¢, but h%\;e included the phise of the signauu: . wactor explie
itly) und a similar term for A*<, and use a linear : groximation tor the trajecte-

ries
ai{t) = a;(0) +a;i (3.51)
we find
m
cut i ay(0)+ag(0)-1 1,2 & ™
AH (s,8) - Brrs G Gz (s) nzzn manacm
1 72
clczt;(rlwz} 1
e 7 izr(aI(O)wvg{O)} (5.5
C1+C9 N
where
C; = i’i-m; flog(s/s ) -4 . {5.53)

The large s dependence of this expression is

cut _(S)aelt) | KA
.ags(s,:) (sa> c {log (%)J' , (5.54)

vhere the position of the cut is

A A

ay &

as( ) = ay(0) +ag(0)~ 1 +;{~g~r (5.55)
1+

The reader may readily convince himself that this co responds to (5.7} i.e.
chf) = wr@lftl) +a2(t2)" 1} » {5‘5‘5}’

where fy, {9 and ¢ are relater by the solid angle condition {5.46) in the limit s =
i.e. (¢, #y1n 2) 0 (see (5.8)) or

VR N N (5.5M

and whan the trajectorios kave the linear form {5.51).
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I the slopes of the trajectories are the same we get
ac(?) = ag(0) + ag(0) - 1+ sa't (5.58)

sa the slope of the cul is s aller than that of the pole. Since for the Pomerarchon
we have go(®) = 1 the cwl is

0olt) = ag(0) + 3t , (5.59)

go the cut coincides with the pole at! = ¢, and lies above if for ¢ < 0. Since all
other poies have a(0) < 1 the dominant cut in any reaction will always be that gen~
erated by the Pomeranchon together with the pole which carries the quantum num-
bers.

We also notice from (5.52) that the asymptotic phase of the amplitude is given by
the product of the phases of the poles at {=0. This is in agreement with the results
of the Reggeon calculus (5.19). In fact since APoles 5 =, AP(s, 1) from the signa-
ture factor, it i clear from (5.43) that the signature of the cut is

dcz "1 ra . (560)
This also follows {rom (5.19).
This result for the phase is to be contrasted with that of the AFS cuts (5.6),

which arise if fig. 30 is interpreted as a unitarity diagram. We then get instead of
(5.38) {120}

ImAcqu(t) - Repaa(s)[Aaan( - A ab Pl(s) (5.61)

Since the elastic amplitude is almost pure imaginary for £ = 0 the complex conju-
gation in {5.7Y changes the sign of the imaginary part of the amplitude relative to
{8.36). This sign is clearly of great unportance if we re obtain a destructive in-
terference between pole and cut to produce dips. Th~ sign {3.36) iz supported hy
the Reggeon diagram technique.

I the elastic amplitude is approximated by the Pomeranchorn with oG, -~ 1 we
may write

. o LCat
A:F(s,z) =1is, gtot (;?;Y: , (5.62)

where we have used the optical theopem (2.8) to relate the imaginary part of the
amplitude to the total cross section. This gives, from (5.52),

{c1+C9) ..
Lcut _ oto 53240y sn 1 3" [Clczf e T dinag(®) o g
AH‘ (s,2) = 16 G ) La acn Cy+Co Je . (5.83)
1

This 1s a verv convenient analytic anproximation for many purposes.

Of course {5.43) gives us the cut amplitude directly. I we want to know the cu
discontinuity we can write the Sommerield-Watson transform (ieaving out varisus
factors -~ compara (2.54)) as

&
cut ~ < _ J )
Ap (8,8 = 161 f o ,8) (=5/5) (5.64)
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and puttir.g
APl 4 = G(#) (5,5 )W) (5.85)
in (5.43) we get

A J,$ = ' . o i

x &) cog(u gy + wog e umog)8 = ay() - ag(t)) . (5.88)
b

Note th:{ in gen .ral this discontinuity does not satisfy the /~channel unitarity con=
dition (5.32). 3
Although the absorption modél has produced for us a cut which has the phasa
and position which we articipated from the Reggeon caiculus, the diagram fig. 30
from which we started is definitely planar, and so the model only makes sense if

we remember that the sides of fig. 30 are supposed to correspond to the twisted
propagators of fig. 27. The Reggeons in the direct channel will presumably carry
other narticles besides the intermediate state 5+6 (as in fig. 28). In principal one
should try and include these by adding the corresponding diagrams individually,
but 2 commonly employed appro~‘mation [104, 116] is simply to multiply the right-
hand side of (5.43) by some number A > 1 to represent the addition of these other
graphs. But these other diagrams have higher thresholds and it would seem that A
should really be an increasing function of s. If it were, however, this additional s
dependenc & would alter the cut position (5.55). And indeec wnere is no reason to ex
pect the swn (5.26) to converge [108].

There are also other worries, such as the fact that we have to take the com-
plete fig. 30, not just the part corresponding to the twisted propagator fig. 27d.
Also since the Regge pole term by itself has an imaginary part it inust already in~
clude some absorption (in the sense of an optical potential, see ref. [111]}). Thus
although the absorptive prescription has the merits of precision and simplicity,
with a physical-seeming interpretation in terms of Glauber rescattering, as well
as giving cuts of the expected position and phase, there does not seem to be any
compelling reason to accept it as giving a reliable quantitative estimate of the
magnitude of a cut.

It also suifers from the disat.vantage of being suitable only for inelastic pr.-
cesses, and gives only a two Reggeon cut. The eikonal model of the next section
suggests 2 way of overcoming both these restrictions, however.

5.5. The cikonal model

This model [111] makes use of the semi~-classical impact parameter technique

which is appropriate for elastic scattering processes at high energies when large
numbers of partial waves a.c involved.

The s-channel partiai wave series

A (5,9 = 167 > @I+ DAL dd (z) ‘5.67)
J=M s

may be approximated at high energies and small angles {s > ) and large J by
making the replacement (see ref. [121])
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i"]

0y = 1y
p (8 ST (28 (5.68)
)
where o ) J,u - ;;'1 and J,;'z is a Dgssel function Since cost » 14{/2¢% we can mut
¢ (=i y=)a. 'We introduce the impact parameter & by the expression
J=gqgb-% . (5.69)

Classically this corresponds to the closeness of approach of a particle with angular
momenta J to the target centre (see fig. 32). I we then make the replacement

2= [ ggdb (5.70)
J o
{5.67) becomes
e e
A (s,t) = 167 Qj q5db2g b AL HS) T (b - 1) . (5.71)
qs

Fig. 32. The impact paramete: i at which a particle, momentumn ¢, puasses through the
target.

Then we can write the partial wave amplitudes in tervs of the phase shift § -{s)

2i0 r(s)
e < -1 .
A S} = et (573
};'( ) Aiga
and define the elkonal phase ), i.e. the pha- e shift for scattering .t a given impact
parameter, by

x(s,5%) = 20, 51(9) - (5.73)

Physicallvy this means that we are supposing that each part of the incident particie’s
wave {ront paszes straight the ough the scattering potential at its impact parameier,
and is altered only in phase, ot direction. This is why the rcsuit is oniy valid fur
large energies near the forwacd direction.

Combining (5.71), {5.72) an1 (5.73) we get

o= 2
Ag(s.0) =187 775 [ bdd[1-e Six(s,8%)

4

(%)

P

}c.uru{i? v -‘74.‘ N

Note that thie is not the same as a Fourier-Bessel transform since X is not the
exact eikonal phase but ic givea by (5.73). Finally we expand the exponential in
(5.74) in powers of x and get

Y
A (s, =8rg.¥s f 2db rx+~ ? —X—S~ S a7 j J LB 8. (58.15)
Hgt™ s R T R B ,
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The crucial step in connecting this with Regge theory ia then to identify the
Regge pole exchange amplitude with the first term of (§.75), i.e.

o0
Ay (5,0 = 8uggVs [ babxis, oD (0 V0 . (536
8 S
The Fourier-Bessel inverse of this gives us the elkonal phase

X(s. ,,z)._rm f Yot Iy VDA, SR (5.7

§V¥ a0

so X is determined by the Regge pole parameters.
Tne two particle exchange cut is then given by the second term of (5.75) i.e.

cut(2)

A
H

- o]
$,8) = iang Vs | bdb xg(s,bz)J[_(b . (5.78)
o

which when we substitute (5.77) for x becomes (remembering the helicity summa-
tion, see (5.39))

19 . o 0 o
Ap Vep e LT [ ey [ ey [ osabyy L6
o P 5y AP TF \
X A (s tl)J1 . ,l(b Vo) Ay (s,t WLV . (5.8,

Usually for clastic scattering we are interested mainlv in non-flip amplitudes,
since these do not vanish in the forward direciion, and we can use the equivalent
result to (5.40), viz. [104]

s

S BaAbI(BVEENI(b V= TR} o(b V1) =
o]

where 3 is defined in (5.8), so we end up with

ﬂh»

ﬁbxgl (5.80)

cut(2) i 2 P p . 8(8)
A (,8) =—a—r | &, | dt, A" $,8) Ay (s, 1, . 5.81)
Hy 227G VS v 1., 2378 ( ) ( 2 54 (

This is identical with the abscrptive prescription (5.43) in the limit (5.44), s —=
and @o= y' = oy

What is more (5 '?5) tells us how to calculate th2 cut stemming frum the ex-
change of any number of pules. For instance for 3 poles we have

8
A;Iut(a)(s,t) =- _gs____ f bdb x J-(b =ry (5.82)
)

which substituting (5.81) for the x2 part and (5.77) for x, and usiag {5.80) again,
gives

4Cut(3) : 1 (. £ .. 6B cut(2) P
Ag s t)- rzq = dz, :!; di, . Apg s E)Apis,ty) . (5.8Y
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Awd this process can obviously be repeated for any number of poles. Thus ;7 we
approximate the single pole amplitude by

P e ae0) er =1 a(0)
Aﬂs(s,.) s )T e e (

with ¢ given by (5.53) we get for the n-particle cut

m n) n+l e n-1 s ~Yimna(d) (c/n)
{s,2) =(=1) (‘“‘ o217 ’
mz! w‘fﬁqq) So ' ¢

13

- i §
f“w:zﬁ [8rs_c1g(s/s N7 s ) el HTael) (5 gy,

o

where the position of the cut is
7 a' :
lac(z‘) = naf{0) + " f-n+1. {5.82)
For the dominant Pomeranchon we have
n o' ,
a ) =1+ 1, {5.83)

so all the P-exchange branch points coalesce at £ = 0, and the cut slopes get
smaller as n ig increased. And using (5.62) we get
cut(r) is Gtot f-@tm\wt {c/n}!

Mo oy 2 3ST TS ITL NG
(s, 4) nn! Brc ° " (5.84)

A

so the sign of the various cuts alternates.

It is interesting to estimaute the size of these cuts relative to the P poiE. For
example in NN elastic scattering we can take otGl = 40 mb and ¢ 7 § 3oV~ 2t na-
chine energies, 80 the ralio is
AP A 5.0 ot -0
and the 3-particle cut is only about 0.5% of the pole. Hence at £ = 0 we can expect
the pole tv dominate. But the different / dependences of the various te.ms means
that the magnitude cf the cut is comparable to that of the pole at { *-0.65GeV 21118).

If we combine the ahsorptive idea for quantum number exchange, with this
eikonal method for mulli- Pomeranchon exchange we can calculate the cuts due to
the exchange of any number of poles whether identical or not. Note that there are
two cut terms in (536) i.e. figs. 30a and 30b, and one must add all the possible
permutations of the P's and the other Regge poles to get consistent results.

Unfortunately the justification for the eikonal method is no clearer than it is for
the absorption method, however. In potential scattering the eikonal phase is given
by inserting the Born approximation for the pole in (5.77) [111}. Thus the eikonal
method rests on the identification of the Regge pole amplitude with a relativistic
Born-upproximation. It has been demonstrated {122] (at 1east to some approxima-
tion) the the eikonal expaneion corresponds, in a field-theoretic sense, to the
ladder sum of diagrams with aad without crossed rungs, as in fig. 33, where the
rungs -eprecent the Born approximziion. Thus part of each contribution would
seem ' 7 come from uncrossed diayrams which do not contribute to the cuts, and
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SRR R =R

Fig. 33. The sequence of crosged and uncroaged Yeynman graphs which are summed o the
eikonal approximati-m ~. ~ordlig wo ref, {123].

should presumably be contained instead in the Regge poles. The validity of the
identification of the Regge pole with the Born approximation thus seems doubt i,

5.6. General droperties of Regge culs

Even if we can not have complete confidence in the models of the previous sec«
tions, they do permit us to draw some reasonably {i~m conclusioprs about the na-
ture of Regge cuts:

a) Position. The position of the branch poin: due to the exchange of # Reggeons
ot)i=1...nisat

n \

ag’)(r) = max | 5 ai{zi)-n*zt . (5.85)

where the #; are related by the addition theorem generalization of (5.57)

n
T Ve - EE (5.89
i=1

If the trajectories are identical this becomes

n o
a{f)=nalny=-n+1, (5 8%
A%
while if they are iinear
a‘nm =naf0)-n+1- &' £ {2.80)
L : n

b) Phase. The signature of the cut is the product of the signatures of the poles
{see (£.60))

E
vo= {1 o9 (5.54)
=1

and if all the poles are identical the asymptotic log s — « phase is e'%w arg(s‘,‘

¢) General form. There is 2 logarithmic factor [.og(s/sg)]™*! for each pole so
that the contribations of the higher order :uts vanish relative to those of the lower
order by some power of log s. However this factor must be wrong for n - . be-
caus= it violates {-channel unitarity {see {5.33)), but the required correctios 4 is
not known.

From this we can deduce a general expression for a cut contribution from »
identical trajectories

cut(n) o el ~tima,(t , ~1241 o ans
Ag (S =, (@I FOs/s) ¢ e rog(s/s ) +a™, 500

where Fif) is an arbitruy tunction free of kinematical singularities, d is a cor-
stact, and off{f) is give: by (5.87).
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The mixed eiltonal/absorptive prescription gives « specific model for F(¢) and d
in terims of the pole parameters wh'ch may or may not be satisfactory.

d} Condensaizon. We have found Liat the Pomeranchon with a(C) = 1 generates an
infinite sequence of Regge cuts which condense on Q) at ¢ = 0. Similarly if we ox-
change some pole “’ﬁt) top: ther wite any number of Pomeranchons all the culs will
arrive at al(ﬂ) at ¢ = 0. These cuts will dominate over others due to the exchange
of two or more lover-lyinz trajectories. s

We noted in chapter 3 that the theorem on the reality of the trajectory function
below threshold breaks down when Regge singularities collide, and it is possible
that all crajectories are complex for £ <0 bocause of these cuts. Bul although this
possibility has elicited some comment in the literature [123, 124] there is no evi-
dence to support it. Regge fits with o{f) real seem to be satisfactory though of
course there is no really crucial test.

Gribov [100, 125] has pointed out further difficulties which arise from applying
the diagram technique to Pomeranchor.s. When Reggeon loops are calculated diver-
gences occur which require renormalization, but this is hard to achieve consist-
ently for Pomeranchons. So though the diagram technique gives useful insights it
can not be taken too literally.

) Cuis and dips. An important property of the cuts is that their fall with ia-
creasing |¢| is slower than it is for Ye poles so that if a single pole behaves like
¢t the exchange cut from n such pces behave like ele/m)t, When this fact is
combined with the alternating sign from muli iple P exchange (5.84) we see that
though the poles dominate at # = 0 the 2-parti:le cut is likely to be strong enough to
cancel the pole term at some larger |Z|. Similarly the 3-particle cut will :nterfere
with these at still larger M . The amp. itudes we complex, however, and the inter-
ference wiil result in dips rather than seres, and ever these dips may be washed-
out at very large |t| [116].

We have alreadv noted that there can be dips dur to the nonsense factors in *he
Regge pole amplitudes provided there are no wrong-signature fixed poles in the
residves. But there is now the possibility of an alternative mechanism in which the
poles do not have zeros, but the amplitudes have dips due to pole-cut interference.
In fact it has been shown [104, 116] that if the enhancement factor X (see section 4)
is allowed to be ~2 many of the observed dips can be explained in this way. Since
the integral {5.81) i8 heavily weighted towards /1, {g = 0 the strength of the culs,
and hence the nearness of this dip, will depend greatly on whether or not the pole
terms have zeros. If in a given s-channel amplitude the pole terms havg no zeres
except for the kinematical »ne need>d in the forward direction (~(1- LgrZ [HTHE 1)
then the dips awe found to occur systematically at £ ~ ~0.2, -0.6 and - 1.2 Gev?e for
amplitudes with | u-u'{ = 0, 1 and 2 respectively (116]. The one at ¢ = ~0.8 is obvi-
ously in the right wlace to expiain the dip in#"p - 7%, e.g. and we shall see in
chapter 7 that the others are also just where they are needed for some proces.-es.
So fixing the arbitrary parameter A puts several different dips in about the rigat
place. thougt the fact that it has {0 be so ‘arge is rather weorrying.

Since both the fixed poles and the cuts come from the third double spectra
function, both the nonsense-zero and the pele-cut in:erference explanations are
equally consistent from a theoretical standpoint. 1ne rormer requires small {or
no) fixed poles and small cuts while the latter requires strong fixed poles (so
strong that not even a sizeable dip is seen in the pole term) and sirong cuts. Both
points of view have their protagouists - sometimes known as the Argonne [126-128]
and Mic higan [ 104, 116] schools {respectively) - and we sha 141y to review some of
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the experimental evidence 'in chapter 7. At the moment neither viewpoint seeni to
have overwhelming merit, and it may well be that (as so often) the truth lics some
where in between, i.e. the poles have some wrong-signature zeros, and th.e cuts
are of importance in generating some dips, and especially in filling {n unwanted
dips.

ITQL,Cm;SPimCiQSQ, Another important aspect of & cut is that 't {s an essentially s-
channel phenomenonr, that is to say it depei.ls on unitarity in é=channel amplitudes,
This plus the absence of a factorization requirement means that the only kinematical

factors required are those essential to angular moiaentum conservation i.e.

—‘11{3(3,‘) ~ guuv\ls) ™~ (1 - ‘s)% iu- W l . (3'9})

So if we take such a cut contribution and apply the crossing relation {iaverse to
(2.11)) to re-express it in terms of #~channel helicity amplitudes we shall find that
the various conspiracy relations are satisfied automatically, sincen cutisof
mixed ¢-chanriel parity in general. Cuts can thus provide a natural explanation of
those cases wiere conspiring poles have been tried but found wanting. Thus for the
problem concerning the pion in yp — #*™n and pn — np mentioned in section (4.3), the
7-P cut, which contains parts of both even and odd parity and remains finite at

¢t = 0, can provide a ready solution. Since this cut-has the same asymptotic behav-
iour as the pion pole (apart from log s factors) a fit just as good as with ¥ + con=" ™
spirator can be made [118]. It is found that very large cuts, with A = 3.55 are
needed, however. If conspiraciecs between poles are regardad as implausible this
is of the best places to try and determine the magnitude of cut effects.

So far our discussion has concentrated on moving Regge cuts, but there may al
so be fixed cuts, and these deserve a brief mention.

We have already noted a kinematical source for ore type of {ixed cut in section
(2.9). It is found thLat square root branch points occur in each helicity amplitude a*
the sense-nonsense points, and so there are {ixed branch cuts running along the
real J axis from op - 1 to ~op where op2 max {crl +Jg, Og+ 64},, Since the d¥, 's
have complementary branch~points these cuts do not contribute to the asyn#ﬁ fe
behaviour of the amplitude. They could however pern.it the existence of fixed poles
at nonsense points with J <oq = 1. There is no evidence that they do, but mosi of
the processes which are studied have spins which are too low for op=2 to he a
sense-nonsense point. There has been some discussion [ 129] of the possibility .at
if one considers high spin intermediate states, say particics § +6 with the 546
threshold below that for 1+2 — 1+2, then such poles can eist at nonsense points
with J < 05+ 0g - 1. But in fact extended unitarity, which allows one to write a
unitarity like equation for the discontuinity across the 1+2 threshold branch peint
separately, rules this out [130].

A secord, and guite different, {ype of fixed cut ha v Deen suggested by Carlitz
and Kislinger [131] in order to remove the embarasti ent caused by the Mac-
Dowell symmetry for fermions, which we discussad in s :ctions (3.3) and (4.3).
They suggest that the scattering amplitude should have a fixed cut at J = ay, Where
@p is the intercept of the fermion trajectory at ¢ = 0. It can then be arranged that
*he negative parity trajectory moves behind this cut on an urphysical J-plane sheet
for positive V#, so that there are no physical particles on the trajectory.

Specifically, for the nucleon trajectory in N — =N they write
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¥ VEsn(d: wqiv
Adn t) - B{t) L*“ ...L- '.‘tg..i,_. - ]' -5, 5.92
where as usual 7 = ¢ for natural/ unnatural parity. (Ref. [131] uses w for / wlich is
more appronyiate for backward scattering.) This expression has a pose at
J s a;+a't and.a fixed square root branch point at J = a,. The constraint (4.47) is
saisfied by constructior. However the pole in the # = - amplitude moves through
the cut onto an unphysical sheet as v increases through zero, so there are no
poles for positive vi. I (5.82) is substituted in the Sommexrfeld-Watson transform
weg2t

127, PR B ()8 QRTy P
L, 1) = =167 sgggﬁsﬁanguga«xzﬂ

) ]
[ f s a'z Vi +n(a, - Ji2
[ @t g sy a0 - o, (599

(T - ag= a't)eg=J o)

where the contour of integration is round the cut branch point, and off) = ag+a't.
This sort of expression has been used to fit backward 7N scattering with the Ny
and 45 poles [132]. The results are reasonably satisfactory in that some spurious
wide angle dips produced by the exchange poles alone (see chapter 7) are removed,
but an unreasonably large nucleon residue is needed because the cut discontinu’ty

is too large near ! = 0. This is not really surprising because the infinite type sin-
gularity (/- ao)"% is in conflict with partial-wave unitarity, but giving the cut a non-
singular discontinuity ruins the fit.

CHAPTER 6
DUALITY

6.1. Hh and low enevgies

In chapter 2 we showed that the Sommerfeld-Wats(n transform provides an ex-
act representation of the scattering amplitude for all s and £ in terms of i-channel
J-piane singularities. The main use which we have made of it, however, is in high
energy approximations when only the leading poles and cuts are needed If we wish
to go to lower energies we must expact more texms to become relevant.

At low enargles it is ofter. more convenient tc represent the scattering +mpli-
tude by its partial waves in the direct- (s~} chanael, i.e.

o
Ag (s, =165 L (2, DAgy ()48 - (6.1)
S JS-:x"f S

The advantage lics in the fact that at low energies only a {ew pa rtial waves will be
non-zero, and it is often quite a reasonable approximation to represent each partial
wave as a sum of 1esunance poles

« Zpis)
- 2
AHJS(»\"‘:;IS."S s (6.2}
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where s, ia the (complex) resongnce position. The partial-wave series caly cone
verges in a region round the s-clmnnel physical region (the Lehman ellipse) nt
course,

Since both (6.1) and (2.54) are exact representations of the amplitude it is naty~
ral to wish to try and understand the relationship between - nproximations like {8.2)
and the Regge repr:sentation. This is particularly important in the intermediate
energy region (® 1.5 -3 GeV) where the known resonances seem to be dying out but
the amplitude has not yet settled down to it 1 smooth asymptaotic behaviour,

The first point. to note is that #~channel Rogge poles and cuts do not contain
poles in s. This means that a finite number of them can never give rise to an s~
channel resonance, so either an infinite number {1 needed or the resonances arein
‘o background integral. On the other hand the - -‘sonance poles lie on unphysical
sheets (except for bound states) and one does not know how to continue the Regge
pole terms (defined on the physical sheet) to the resonance position. The Regge
poles and cuts do not individually coutain the s~channel threshold behaviour either,
so 2gain, since the representation (2.54) must contain this behaviour, there must
either be a.: infinite number of them, or it must stem from the background inte-
gral, however far back one may push the integration contour.

Where an s=-channel pole will appear in the #-channel J-plana depends on the be—
haviour of its residue g(s). X g is real and constant as s ~ = then the 1/s behav-
iour of (6.3) will give rise to a fixed J-plane pole at J = =1, On the othcr hand if
&(s) decreases exponenti:lly with s the resonance will never appear in the J-plane
however far back we pus: the integration contour, but will always ve part of the
background integral. If there are many poles there may be a mutual carcellation

1‘p—~p«'
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Fig. 3¢. The differential cross section for backward ¥ p -~ ¥ p scuilering, siowing the iater-
ference pattern and its interpretation in refs. {57, 58] in te~ms of vesonances inferferiny with
a smooth Regge exchange background.
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between thein so that even with constant g's the asymptotic pehaviour is Jaster than
1/s, but if the s=channel poles are ever to give :ise t the asymptotic behaviour of
a I~channel Regge pole an infinite numwbes will e needad.

ii s thus not possible to give a simple a priori answer ne gquestion of how to
cope with the intermedia.e energy range, because we do not know how to continue
the Rege pole and cut terms down to low energies, or the resonance pole terms to
higher energles. The answer depends on the dynamics of the particular amplitude.

One suggestion is that one can simply add the leading trajectories and the reso-
nance potes [57,58], so that

Regge Res
Agls, ) = 4", 0 045560 (6.3)
e e
.
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Fig. 3. The reg.nance and L~ e pole centribuiions to Im.A' and Im (V' B) in 7 p T at
i= 0, from ref, {153}
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i.e. the Regge poles give a smooth background to the resonances, and the reso~
nances are part of the background integral below the leading poles. The Regge and
resonance amplitudes are both complex of course, and the resulting interference
pattern, -a bumpy resonance structure superimposed oo the Regge asymptutic be
haviour, was used by Larger and Cline [87,88] to identify resonances, for example
by louiing at backward 7N data (see fig. 34).
Hovever this 'interference model" was criticised in a now classic paper by
Dole., Horn and Schmid {133] on the grounds that the resonances may already be
included in the Regge terms, at least to some extent, so that double counting may
cceur. In particular they found that in 77p — #%n if they added the known reso-
nances to the p trajectory obtained from a high energy fit the result was much
larger than the amplitude (fig. 35). »
This in itself is not conclusive, however. Firstly it is not difficult to think of
different parameterizations of the Regge pole terms, such as [(s~s;)/ 30]““} In-
stead of (s/so)?) for example, which greatly reduce the magnitude of the Ragge
term at low energy (near the arbitrary point 5;) without altering the asymptotic be
havicur. The branch point at s = s; would be spurious of course, but then 50 is the
one at § = 0 in the usual Regge term - it comes from the approximation (4.25) and
is inconsistent.with the analyticity of the amplitude. - g B
Secondly the size of the resonance contribution is ambiguous. The usual method

of identifying a resonance in partial-wave anaiysis is to make an Argand diagram
plot.of the phase of the amplitude varying with energy. An inelastic Breit~Wigner
t) y o : ~-,;:fs,,».-n.w.;.‘w “ pey q

I‘xv‘s,,

Ays) = {6.4)

sp=s=iTVs ’
(where T is the wifth and v the elasticily) would produce an anticlockwise loop in
this Argand diagran:, as in fig. 36. and so the resonance parameters may be eg-
tablished by trying to fit the loop with such a Iweit~Wigner foraula {134]. The pa-
rameters are chosen so as to saturate the amyiliivde at the resonance point, hut
the contribution of an inelastic resonance can oe made much smaller by giving its
residue a phase el®. (Reality of the residues ‘s requived only for eiastic reso-
nances without background [135].) Low energy, fairly slastic, resonances - sually
produce bumps in the amplitude, and their identification is not in doubt, but ia e

) a

Fig. 36. Showing the behaviour of the partial-wave Argand di gram when an inelastic res50-

nance occurs. For & range of energies near the regonance e.ergy SR the curve follows the

circle cue to the Breit-Wimer ierm, but this cirele is smaller thaa the unitarity circic be-

cause ¢’ the inelasticity, ard it is { .shed over to one side and the phase at resonznce is
rotated from 37 by the backgreund.
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intormediate energy region there can be litile certainy about their existence and
strength. In fact, as we shall discuss balow, periectly good fits to the data can he

made using the interference mode! (8.3), with phases {or the resorance residues
11981

AV

- Despite this there have been several theoretical develonments which have led
many people to believe that the double-counting of the inierference models is seri-
ous, and it is these developments which form the subject of this chapter. But fiisf
we must introduce another tool which has heen much used in recent Regge phenory -
enology, finite energy sum rules.

§.2. Finite energy sum rules

Finite energy sum rules (FESR) are akin to the SCR of section 2, but they differ
in that they are not restricted to cases where the amplitude is convergent at infin~
ity [183]. It is only necessary that the amplitude should have a known asymptotic
bebaviour. Most of the applications have been restricted to situations where only
Regge poles are expected to be important in the high-energy behaviour, and we
shall make this simplification in our presentation. The inclusion of cuts is men-
tioned in the final section.

A scattering amplitude is expected to obey a fixed ! dispersion relation (2.26)

. 1 2 Dgls',h) 1 2Dy, b
Aps,ty=o [ —god v [ i du (6.5)
o U,

Since we are supposing that there are omuy Regge poies we can write

-ir{az‘w)w. o
_”______9 ,g‘)ag(z;‘-.‘u , (5 &)
O

where we have defired
ve(s-u)/2 (8.7)

and the residue G;(f) may be found by comparing with (4.74). We will suppose that
the sum (5.6) includes all the poles with Rea(f) > ~& (say). From (8.6}

. o (- A o
Dels, )~ TG /s T (6.2)
L+ ‘!
and
D (s T e .G (v s )OO M MY 6.9)
g{“’g ;i Ty i(‘)(i’;’s’g . (0.%]
§ = 1
Hence we may wr.te
. [ "}'M"
Dy, 1)~ DG (v /s, it
; | 1 ¢
A fs,éé-ﬂnegges 2 T . . e dy”
H{S A S B = v -y '
t 3
x ] 1t _1‘;1‘?’”1’@ {: . (f PR Gz 2)";10?
T L S A T A PR PP
7’ Y
Yt

where ., ig the thres hold expressed in terms of v, an. the integrals will converge.
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A8 §— =
Regge * .
“{H((Sv 5 -Aﬂt (s, H~ 1/v", (6.11)

since all the higher contributions to the asymptotic behaviour of the amplitude are
included in ARegge. So taking the limit of (6.10) as v -~ = we conclucte t at the coe
etficient of (¥)~1 on the right-hard side of (6.10) must vanish, i.e.

0
J g 0= Dy 0, = Z{1- 0 D) 6,0 0 /50" M e c0 . sy
Vt ?
Now since the Regge poles contain the asymptotic behaviour of D(v, ) the integrand
will vanish for v > N say, if N is chosen to be sufficiently large, 8o we can write

N 23, G4(t) (N/8 )07 (8)-M~1
S s (0, 0= Dy, (v, B}y = ;u“ 0 j(;f:t){ ;)” , (6.13)

Ve

where we hav2 pexlormed the integral over the Regge pole (and taken itc contribu-
tion from the lower limit of integration 1¢ to negligible relative to that from .he
upper limi! N). 1t must be noted that cnly poles with siguature oj = (= 1M-v+1 cope
tribute to (6.13).

This expression gives us a relation between the imaginary part of the scatterin;
amplitudes at low energies (< iV}, and the Regge pole terms which fit the high energy
- mplitude (> Nj. It depends only on the analytic properties of the amplitude and the
asymptotic behaviour, and is exact to thic extent that Regge pole dominance is valid

We can generalize (6.13) by writing a dispersion relation for

IAH,(S~f)°ﬁ§fgge(s, B (—% o 6.14)

instead of (6.10). As long as 2n < & the coeflicient of the 1/v term must vanish and
S0 we have

N - 25, G (NS, aj(“f}";lfé-g;wi
2n 485 BN/ Sy)
s - D o (V) oo -
};ft_ {Ds (l [y ) ~g (3" Y t); (.;0) di -..;J Q}(I)* j‘ ! +2 . 1 . (akls)

If an odd power of (1 /so) - 're used in (6.14) only the poles with sp = (- MU would
contribute giving

N Yo 3 aQ 0”;‘4-&2’3
[ s 07,8 Dy 0,0 ()P g 325°C’5St~}4&v;§-°}mﬁ~~~-~«~-~»- . (R.6)
vt ' S o 1 ap(l) = M+2n

o

An uiternative, and perhaps more elegant, way of deriving these results is to use

Cauchu'c thonwam $a weida
V“\Q\"l: LR S ¢ L WK

~ F - -4 W
A WEII VW YT R AL \V.\f,f S~
FAg ', Hder =0, (v 17
P i

where ¢ is a contour round the threshold branchpoints as shown in fig. 37. Hence
we have
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where ¢' i8 the cirele at |{r| = N. If we then replace the amplitude at wt - N by
(6.6) and perform the integration round the cirele by putting v = N pl¢ and take

suitable care of the discontinuity of the Regge term at the branch cuts we obtain
the same result as (6.13).

A4

Fig. 37. The contour of integration in the complex ¥ plane used in (6.17).
These sum rules involve only the imaginary part of the low energy amplitude.

It is possible to include arbitrary mixtures of the real and imaginary parts by
writing a dispersion relation for [137]

I
pe-pe 82

Agfen (< 5) 6.19)
"o

where ¢ is a continuously rariabl : parameter. Ve then zet instead of (5.13)

:\y yvﬁ..uz plz

[ feos{93/2) Im q;,(, Y - sin (3/2) ReAHj» ] ( 2 ) dv'
“t

> 2s, Gj(t) (N;"so)aj(t)*ﬁ*l cos%z{a‘};{t) + 3]
Ped - __l' . ,
i a]-(t) +34+1 COS 37 0}(5)
again neglecting terms of order uth . However only in a few cases is the real part
of an amplitude known directly (e.g. from Coulomb interference), and usually ihe
reéal parts are determined from dispersion relations, in which case they do not oi
eourse give independent information about the high-energy behaviour.

These sum rules have had a widc variety of applicatiens [138]. For exaniple

iAdam the thuade fam o wsmmne dha mamatiza cionadinmen o
qu} if we consider the amp ditinde for 77p — 7Pn, where the negalive signature o

(6.20)

Regge pole is expected to be the dominant contribution, we find {using the usual A’
and £ notation for the amplitudes ~ see e.g. ref. {12] for the relation of thes: to
helici'y amplicudes), seiting 55 =1

N o(6)+1 N we{fy+1
e - '(—) 1 — A + (-) R ; LI o A\ . .21\
. b A, A = 6\ ST ;{t v Im B ddv =Gl "y (6:20)



whe:'e the G;{f) are the independent residues in the A" and B amplitudes, and the ‘
(=) sign indicotes that the anti-symmetric isospin combinations have been taken
(ses e.g. ref. [12]). These re.ations have been used to find the p trajectory and -
residue functions, by insertirz the phase shift results for the low energy ampli~‘
tudes. Since phase-shift aralyses have only been carried out at low energies it is
anavoidable that 'V shouid be-taken vather low:® i-1.5.Gev<. This is rather tcm -
low for one to have confidence that the. asymptotic behaviour hias been reached.
None~-the-less the resulting Regge parameters are in fairly good agreement with
thioge found in high energy fits.

Since there are two Regge parameters ot) and G4(2) in each of the relations
(6.21) they do a0t have a unique solution. But it is possible to deduce aff} from the
ratios of different moment sum rules directly. Thus if we define [133]

G4 (8) N

f v ma e, faw e

> o1

then we have

Spit) alf) +m+1 ,
S " al)+n+1 | (6.29)

So a(t) can be deduced by taking the first two non-vanishing moments, and then in-
serted in (6.21) to give the G;4(¢). The trajectories obtained agree well with those of
high energy fits, the residues rather less well. The various resonance cortribu- -
Adons energy integrals have different ¢ dependences due to their different
- oscillate like dMq(z ). The result is that the integrals have ze-
rosat variaus t-values R is fouwd that G4 (f) changes sign at{ = <0.15 GeV and
Gg(t) at t =~ -0.6 GeV. This latter point iz d course just where we expect a non-
sense zero in the p residue at op(t) 0. The former we shall identify in chapter 7
as the 'cross~yvar' zero of 7N scattering.

In principle the g ~esence of secondary trajectories can also be determined by
these sum rules. Thus if there is a second wy r' trajectory below the p with a tra-
jectory function aq{f) we can deduce

$1(t) - Gy et @) +3 ; 24)
Sg(t) - g‘(gié GuN) A+l

In rel “733] it is foud that o1(t) ~ 0.3 +0.8 which is much higher than one would

expect, and it can no" really be taken very seriously because of the large errors.
The higher moment sum rules weight the integral more towards the upper limit

of integration where the amplitudes are less well known. In fact if one takes N large

ennugh the sum rule f)ecomes just the same as a Regge fit at N The sum rule can
a\r nand #n nwmadiat ¢ha s Inoatesm wel maece Boesena e 22 AT e
W MBI WP LR c\auvt- \.ur; uzsu ‘:nc;sy WCIMLVAVUL AKXV .“JW Ullt:xsy uzu.a. uxny I iV i3

taken large enough, but if N is really in the asymptotic region a high energy fit is
x2ally just as good. n either case becsuse of the limited accuracy of the data the
results obtained will depend very much on the arsumptions which are made as to
the number of input trajectories etc. With data of finite accuracy there is no pos-
sibility of a unique analytic extrapolation.

There is, however, one crucial advantage of the FESR method over conven-
tional fits, namely that the input amplitvdes {e.g. the A* and B 7N amplitudes
apove) are already decomposed into their spin components whereas, the high-~n-
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ergy ¢ 'dt data only enables us to find |A'|2 and | B|2, and the signs of the ampli-
tudes can not be determined. In fact in the old fits of 7N scattering the sign of 2(+)
was opposite to the value subsequently obtained from FESR. The FESR sign has
recently been confirmed by measuring spin-rotation parameters {139].

Ancther interesting aspect of FESR is the possibiliy they offer of finding fixed
poles at wrong-signature points. These do not contribrite to the asymptotic behav-
iour, of course, and so can not be obtained directly in fits. But if we take ampli-
tudes of definite signature (2.39), which have the dispersion relaticns

AH (s, ) =~71r- j DHS(S i ds! +(-1)M"” me—H;f;(f%tz ds' (6.25)
S uo
and follow the procvdure (6.5) to (6.16) we find
N 228 CANN/ s )a'z\z} Ma+1
J;‘ [Dypelv' £) + "'("1) D‘IM(V SN (v /so) dv p a{f)- Mn+ 1 -.{6.26)

These coincide with (6.15) or {6.16) only for aliernate moments. The mistake in
(6.26) is tbat we have neglected the fixed poles in the signatured amplitude at
wrong-signature nonsense points. H there were no fixed poles (6.26) would hold,
and to the extent that they are small it may still be approximately valid, but other-
wise we need to add them to the right~hand side of (6.26). Thus if we consnier the
negative signature p contribution .. the spin-flip amplitnde B with A = 1, and for
which J = 0 is 2 wrong signature peint, it is found [183] that for the zeroth moment

La(i)
f m B o fay = Gyl ‘Lw +g(f) (8.
Yt

where g(¢) ic - ‘most independent of {. This constant i¢ due to the dominance of the

s=channel uclaon born term on the left-k nd side of {6.27), whose 1/v tuil gives

rise to the fixed power behaviour. It may be interpreted as a fixed pole at J = (.

However, our main interest in FESR in this chapter is that thev le¢ Dolen,

Horn and Schmid [138] to the conclusion that the interference model commits dou~

ble counting. 7he point is that essentially the whole of Im A" and Im B at low ener-

gies is given oy the s-channel poles. Hence we have approximately

[AV]

]

N . t‘ 1
a(=)Pole, . _ NB+ & o8}
[ maA (v, 8)dor = Ga(B 077 e (6.28
Yt
In other words the average of the direct channel poles is equal to the Regge pole
term. This gives one definition of duality - so called 'iverage duality’ - the reso-
nance poles are dual to the Regge poles m this average sense., The authors of
e {133] suggested that instead of the inlerference model {8.3) a bettor represen-
tation of the amplitude would be given by
A (S’ f) R‘IARegge’S t) AR( S(‘_"f) %RGS(S ‘ta\ (6.23}

H

The {inal term represents the average of the resonance terms. Whather or not this
is very different from the interference model depends whether the rese‘m{tes tend
to add, as they appear ¢ do in B(~) and A'(*), or canzel as they do in 4'("} and B+



‘However, as we -ve already mentioned, the-work of ref. [136] indicates that:!
siace we do not kuov'a priori the phase of an inelastic resonance contribution it 1s-
possible to make either prescription work in any amplitude. But if (6.28) is ac-
cepted it leads to a new sort of bootstrap~like principle in which the direct channel
resonances determine the cross-channel Regge poles. It is very different of
course from the conventional form of bootstrap in which unitarity is used to gener-
ate the resonances frcm the crossed-channel potential, and in particular, as we-
shali see in gection 5, the solutions of the FESR conditions are in no way unique.
Because 0f this we would prefer to use the term 'FESR consistency condition' to
describe this duality idea, and preservz the word 'bootstrap' with its former
mes.ing,

It should be noted that the resonances dominate the imaginary part of the ampli-
tude but not the real part (the real part of a Sreit-Wigner forinula vanishes at the
resonance position). A common approximation is to represent the imaginary part
as a sum of delta~functions at the resonance positions

D(s,?) = ?R(s, £ 8(s-s,) . (6.30)

The reasou why the FESR gives such a strong constraint is evident from this ap~
proximation, For substituted in the dispersion relation (6.5) the form (6.30) gives

R(s,., ¢
A(s,B) =2 1 (6.81)
" ‘

- ’
s Sr s_.cos

aasumed that A - ARegge < o 1/s) so the resonances must be containe

Regge term.

6.3. Schmid loops

The form of a Regge pole amplitude presents us with a further rossible source
of ambiguity in identifying inelastic resonances. We have mentioned that the
method used in phase-shift analysis is to look for anti~clockwise loops in the par-
tial-wave Argand diagram, but it was shown by Schmid [140] that the crossec-
channel Regge pole term may also give rise to such loops because of the phase
variation given by the signature factor.

For example in a spinless scattering amplitude with the exchange of a single
Regge trajectory a(f) = o{0) + o', and equal mass kinematics,
2 _ §__-_-_4m2

_m_ (6.32

2=1+__€__. q
2q§’ S 4

§

the phase of the s-channel partial wave projection depends on [141]

;‘1 cima(t) . ~i7r[a(0}-2qz_a'l o2 e s
;€ Pz jdz =e 7" 71 j k-3¢ 1), (6.35
-1

where j /(%) is the spherical Bessel function. Thus as the energy (or qg) increases
tae phase of the partial-wave amplitude rotates anti~clockwise. And if we identify

the point s,-, where the phase reaches 7/2, as a 'resonance’ pos tion, then ther:
will be another 'resonance’ at ‘
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$y 2 s+ 1/a" ete. {6.34)

and every partial wave resonates at these same values of s. So the form of the
partial waves is similar to that for a set of trajectories. The par :nt trajectery i3
linear with slope a', with a sequence of daughter trajectories suchthat in each
partial wave the resonances are spaced by 1/, (There are also trajectories ¢bove
the parent which we discuss later.) The / dependence of all the other factors ir. the
Regge pole terr will cbvicusly alter the shapes and sizes of the loops, but the
phase variation must retain the nattern indicated above as long as off) and {¢) are
real. The reason for this structure is of course that the oscillating phase of the
Regge term matches the oscillations in zg of the Legendre polynomials represent-
ing the spins of the 'resonances’. Since Pj(zg) -~ 1 as z; — 1 all the 'resonances’
add in the forward direction coryesponding to the peripheral forward peak of the
Regge term.

How should these loops be interpreted?. We know that the Regge pole term is a
smooth function of s and does not contain any poles, but on the other hand we only
know the form of the Regge term on the physical sheet and the resonance poles are
on unphysical sheets. Remembering the average dualily suggesteud by FESR anual-
yses it seemed natural to Schmid [140] to identify the loops with a set of over-
lapping resonances. The difference is that now the duality is local - the matching
of the resonances with the Regge pole holds at each s point without any need of av-
eraging. The sum of the poles gives rise to a smooth Regge behaviour because as
one partial wave reaches its maximum a* a resonance others are at minima. The
fact that the resonance has becn projected froir a smooth function guarantees this
cooperation between the partial waves. Olwiously such a cooperation is a good deal
less than perfect in the actual paysical ariplitudes at low enevzies because w2 see
bumps, but it may be supposvd that the sincoth high energy behuviour represents
the onset of local duality.

This would inean that at anv energy one could use ¢ her the s- “Fannel reso-
nance prescripzion (6.2) or the f~channel Regge pole description (2.54). At low en-
(rgies, where ‘he resonance poles are well separated, the s-chamal descriniion
is to be preferred since a large number of Regge poles are needed (0 produce the
bumps; while at high energies the s-channel prescripiuon becomes complicated,
requiring many overlapping resonances, but the {~channel prescrigtion requices
only 1 few Regge poles.

The failure of the s-channel partial-wave series outside the Lebman ¢ lipse
should make one cautious about pressing the equality of the two descriptions oo
far, however. An equally good interpretation [142] of what is happening woi'c
seem to be that the Argand loops at high energies do not correspont to rese inces
at all but are simply the resust of the phase variation caused by the crossed- han-
nel Regge poles. For example it is certainly the case2 that if one takes a high ener-
gy fit to say 7N scattering, and continues it down to lower energies, and makes a
partiil-wave projection, the Argand loops obtained are very sim:lar to those found
it lew energy partial-wave analyses [142, 143]. This obvicusly must be so to rhe
extant that the continued Regge poles give o reasorable {it to the low energy duta.
The Inops are more complicated than in the discussion above becasse the phrse of
the .mplitude at any point is the sum of the phases of several diflereni Regge
poles. And of course if one chooses not to interpret the loops s resonances the
whole case for duality crumbles, and the interference model may be re~-instated.
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The oaly way of distinguishing these two hypotheses is to try and find some cri-
terion for the existence of inelastic resonances apart from Argand loops. When g
resonance produces a strong bump in some amplitude its existence is very plausi-
ble because a small number of Regge terms can not produce such a bump, but at-
higher ~nergies where the amplitudes are smooth there does not seem to be any
simp’ . eriterion that can be applied. A resonance pcle exists on an unphysical
sheet, and there is no unique way of analytically continuing the experimental data
from the real axis. = .

In order to make such a continuation one requires a dynamical model. The
Breit~Wigner formula is one such model but it is by no means unique, and in fact:
ought not to be applied in situations where the resonance may have a large back-
ground [135]. If we had an adequate dynamical model for inelastic resonances -
(based for example on many channel N/D equations) one could try to confirm the.
presence of such resonances properly, but as we are still very far from having
satisfa~tory models only the low mass resonances can be regarded as well estab-
lished ot present.

There is one other important property of a resonance pole, that it should ap- -
pear in all communicating channels, which at first sight might seem to offer hope
of distinguishing true resonances from Regge pole effects. Put in arother way,
since the Regge poles must factorize in the #-channel, and the resonances must
factorize in the s~channel, if Regge generated loops are to be interpreted as rese-
nences they must factorize in both s and £, which is hardly possible. This is only"
true for single trajectery exchanges, however, and we shall find in the next sec-.
ticn that very often either there are cancellations between different trajectories,
or a closely related set of poles can be exchanged in the various communicating

_chann, at.similar circles are produced in each. This only confounds the
the existence of high mass resonances, but it also means that if one
dual models one must place various restrictions on the trajectories

which can be exchanged which have very interesting consequences for Regge phe-
nomenology.

6.4. Dual models [144]

The first thing to note about the suggested equivaler .e of crossed-channel Reg-
ge poles and resonances it that it can not be made to work for the Pomevanchon
(P). For example, as far as we know K*p scattering does not give rise to any res-
onances. If there were such doubly charged strange baryons they would not fit into
any of the SU(3) mult’plets discussed ir chapter 3, and could not be made up from
three quarks as the other baryons can. For this reason K'p is known as an “~xotic'
channel. But, of course, like other elastic scattering processes K*p — K'p is ex-
pected to be controlled at high energy by the exchange of the P trajectory. We
shall see n chapter 7 that there have been many successful fits of this kind. Since
there is no other trajectory known which is high enovgh to cancel the P we would
expect to find Schmid loops in K'p scattering, but these would not correspond to
resonances.

The most popuiar way out of this dilemma [145, 146] is to suppose, not implau-
sibly, that the P is quite unlike other Regge singularities. We have already noted,
in chapter 5, the condensation of cuts which results from multiple P exchange, and
it may well be that the singularity which has been represented by the P pole in
Regge fits is really a complicated superposition of cuts. Alternatively it can be ar-
gued that the P may have a very small slope, so that ite phase oscillations arc
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slow, and will only produce loops at high energics if at all. In fact at one time an
almost zero slope for the P seemed to be favoured in Regge fits, and the more re-
cent Serpukhov data seem to favour aP ~ 0.5 which is only about half that of other
trajeciories. Thus the P may not give rise to "oops (cr perhaps to very weakly
coupled, sometimes exotic, ones), and its main function may be to give a pra-
dominantly imaginary background to the resonances produced by all the other ex-
chaaged trajectories. In K'p these other exchanges are p, w, f and Ag, but we
have already found that these have roughly degenerate trajectories, and if we sup-
pos. that this degeneracy holds for the residues too, these contributions to the
imaginary part of the amplitude will cancel (see (4.92)) leaving only the P. This
suggestion is born out by the flatness of the K'p total cross section {see section
7.6) which can be fitted by the P alone. In fact quite generally the total cross sec-
tions for those processes which do contain resonances, such as #¥p, K'p, K™ n, pp
and pn, are decreasing at high energies so the lower trajectories must contribute,
while in processes with no known resonances, like K'p, K™n, pp and pn, the cross
sections are more~or-less constant above abou. 2 GeV (below which threshold ef-
fects may be important). One also finds that exotic processes have smocth differ-
ential cross sections, while those with resonances exhibit dips in do/df character-
istic of Regge pole exchanges.

These facts suggest that, if one first subtracts the Pomeranchon {rom all the
amplitudes to which it can contribute, it may be possible to fit the remaining am-
phitudes with just the lower lying trajectories, and that these trajectories will be
dual to non~exotic resonances only. One is thus postulating a solution to the FESR
consistency condition which contains only poles (direct channel resonances =
crossed channel Regge poles).

To see how such a model {fits together we start with #7 scattering. When the P
has been removed we are ieft with only the p and f from among the dominant tra-
jectories. The = 2 r¥rt and 77~ states are exotic, and if they are to contain no
resonances we require that the g and { exchanges should he exchange degenerate
and cancel each other, i.e. ap(f) = @§{f) and Bppy = Bgyg. Then in 7777 scattering
the sign of the » contribution is opposite (due to charg conju jation) and the re-~
quired reronances do occuy in the [ =0 and 7 = 1 channels. Tnen in KK scattering
we can excrange the 7 = 0 f and w, and the 7 = 1 p and Ag. The sbsence of rese-
nances iv. the exotic KK~ and K*K‘) channels requires of = ¢y, @p = QAa, JIKK -
Buky @1 BpKK = BAgkK: And in 7K scattermg, where we have the exchangs de-
generate K*, K** trajectory, the I = } channel is exotic, and we require tha: the o
and f should be exchange degenerate with 8y = Brxk:

In fact we can express all these requirements in terms of octet~octet catter-
ing with SU(3) symmetry [147] However, the symmetry can rot be exact for we
need 8 ggx = BwKK, While SU(3) gives V3BprK = Bwkk: But if we introduce a mix-
ing betweon the ¢ and w, so that the phvsical « particle is a mixiure of the cctet
and singlet I = 0 states,

lwY = cos @|wg) +sind|wy) ,

P - - & _ LM !n\-".‘: N oy
we c:m »atisfy the duality requirement with a mixing angle cos € = = 13178, Le

of st:ax ge guarks (= A\) - the so called 1dea1' mixing ancrle - ‘md is in rou :;b m_,
ment with the experimental value obtained from the mass splitting, § = 400 [48].
This same angle is needed for f, f* mixing if the £’ is to decouple fmm T serttes
80 as not to spoil the above picture, and experimentally it is found that for the 27
nonet 7 =~ 300 {48].
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If we procecd to examine forward meson=baryon scattering, exactly the same:
restrictions are needed - in fact we have already noted that the above degeneracy
of p, f. w and Ag is also needed to ensure no exotic resonances in K'p. New results
come ‘rom backward scattering however since the u channel trajectories can also
give Schmid loops. The absence of K'p resonances requires a degenerscy of the A
and Zg ,, trajectories [148]. (There are many Y* states but the others are weakly
coupled, and may presumably be neglected to some approximation.) Similarly in -
K p — Z*r~ the A resonances in the « channel (K*Z* —pr?) are dual to the K*, K

= 1 trajectories, and there has to be a degeneracy betwe 1 the A and T trajecto-
ries in order to avoid 7= 4 K*'s. So generalized to SU{S} we need a degenexacy be-
tween the various singlet, octet and decuplet trajectories having the same {or re-
lated) quantum numbers [146]. This is partly substantiated by some of the best
cases shown in fig. 38, but is not well satisfied in general.

Recx 1, ‘ /

0,

Fig. 38. S'yme examples of exchange degenerate baryon trajectories. These are the best ex-
amples. The trajectory splitting is much greater for other baryons.

The idea of duality thus produces an impressive set of predictions - that reso=
nances fall into singlets, octets and decuplets only with no exotics, that the 2* and
1 mesons, and the octet and decuplet baryons, are exchange degenerate, ~nd that
the 2% und 1~ mixing angles are about 35°. All these results may be expressea
very simply with the "duality diagrams' of Harari {148] and Rosner [150}, in which
each cxternal particle is represented by lines corresponding to the quarks (p, n, )
of which it is composed. The quarks maintain their ide:tity throughout the process,
and this telis one what the intermediate states in either channel are. Thus three
quarks trav:lling in the same diractions give a baryon, while two travelling in op~

posite directions give a meson, and only diagrams with 2 or 8 guark intermediate

states are allowed (see fig. 39). Diagrams with crossing lines or more than this
number of quarks are 'illegal’. These cules embody SU(3), no exotic states, and
the mixing angle.

There are, however, some serious problems with this duality scheme. The
first concerns baryon-anti-baryon scattering. Here we have 3 quark lines in each
direction (fig. 39) which is illegal so we predict that there are no meson reson~nces
in the BB channel. One night think of altering the rules to include them but it dc2z
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gf: ; N\
¢ d
Fig. 39. Duality diagrams for (a) meson-meson and (b) meson-baryon scattering. {¢) ic an

fillegal' meson-baryon diagram because the quark lines cross. (d) The diagram for baryon-
anti-baryon scattering showing the four quarks in the BE intermediate state.

not seem to be possible to do this consistently {151]. For example in AA scatter-
ingthere are I =0, 1, 2, 3 channels, and only / = 0, 1 should contain rescances.
Imposing no exotics in I = 2, 3 in both the s and ¢ channels requires that ail the
amplitudes should vanish. Another problem stems from the fact that the 0” mes-
ons do not hzve the ideal mixing angle, but rather 8 =~ 100 [48], so there is no con-
gistent solutioan to the duality requirements for proresses in which these trajecto-
ries can be exchanged, such as pseudoscalar~scalar, or pseudoscalar-vector
scettering. And although we have found a solution with three groups of degenerate
trajectories a, = q, = ap = GA9, Qg ~ Upees anc g4 = dp, if one considers simul-
tancously the three reactions np — w¥p, 77p — K*S* and K¥'T" — K'ZY, all of
which contain A's in the s channel, but which exchange members of ditferent

groups in the ¢ channel, one must reguire all the trajecrories to be degenerare{152]
That is (0 say we need complete SU(3) degeneracy, despite the fact that we a so
need 2 mixing angle. Also the attempts which have been made to {it amplitud>s by
a sum of the P plus direct channel resonances have not been all that impreasive
quantitatively [153, 154], and in chapter 7 we shall show evidence that the 2xchange
asgeneracy of residues seems to be violated by factors of 2 and more.

So one must conclude that these dual models involving just poles bear at best
only a rather partial resemblance to the real world, though they do seem tc have
several merits as a first approximation. But so far we have only considered the
construction of dual models in terms of their interral quantum numbers. We must

now think about the consiruction cf functions which satisfy the requirements of
duality.

6.5. The Veoneziano model
The Veneziano model [155, 156] is a simple analytic f
most of the requirements of duality in a model involving pules only.
As an example we consider the amplitude for #¥7~ — 7%= which ha . poles in the
sand ¢ channels, but the # channel is exotic (f = 2). Cnce the P contribution ns
been removed we expect the leading contribution to be the p-f exchange degenerate
trajectory in both channels. Duality requires that the sum of an infinite number of
s=channel poles should be re-expressible as a sum of an infinite number of {-chan-

2¢! piles, io such a way that either sum gives the complete amplitude. And the

ies
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asymptotic behaviour must correspend to that of the lerding trajectory exchanged,
in either channel.

The simplest functional form wh:ci* nas an infinite set of s channel poles lying
on a trajectory ag(s), with the polea appearing when ag = positive integer, is
I'[1-ag(s)]. Since we require an identical behaviour in the &~channel we might try

A(s,8) =T [1-ag(s)]T[1-a,®)], (8.9

but this would have a double pole at every s~¢ point where both a¢ and a; are inte-
gral {157]. (In our case ag and a; are the same fun-tion, but in more general am-
plitudes this need not be true.) We can easily remouve these poles by dividirg by
T'[1-ag(s) - aKf)] so we end up with the Veneziano fcrmula

ol B ~ag(s) ryi- ay(h)
Flleags)-ap)] °’ (8.3¢)

V(s,bt) = g

where £ is an arbitrary constunt giving the scale of the couplings. This function
has pole lines at fixed s and at fixed /, where the a's are integers, and lines of

zeros running diagonally through the intersections of the poles, as shown in fig. 0.
Its asymptotic behaviour may be obtained from Stirling's formula:

TS |
I'(x) — (@n)fe ¥ r2
X =00

, {6.30

except along the negative » axis where the poles occur. If we combine (8.37) with
(4.70) we find that for large s, assuming ofs) is an increasing function of s as s—~=

a?)
V(s, ) — rlegoN e imaylt) (6.38)
T [oy(t)] sin may(t) ‘
auea®l=1 2 3 4] 8 & . 7
N Ny \{ it~
a{tines
(-
N AtV 2
PLOER

EAE N
\\\\

/7

b S
. r = g‘:
w(, - P .
a?:§\zn Lo ¢ b

Fig. 40. The Ven_e;iano amplitude in the s-¢ plane. Tha poles occur where ®(s) and o{#
pass through rositive integers, and the lines of zeros connect the pole intersections diago-
nally in order to preven: there being double poles.
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o if ag(s) i8 a linear function of s, ag(s) = o(0) +a's we end up with Regge behav-
four, V(s, ~(a* s)“t(*).Comparmg this with (4.74) we see that we obtain o' = 15,
We have noted that 5g is usually taken to be = 1 GeV~2 which agrees with the tra~
jectory siopes, and this model provides the only known connection between these
two quantities; in fact it is the only prediction of s, in any theory known to the
author. There is a problem, however, in that the asymptotic benaviour does not
hold within a wedge along the real s axis because of the accumulation of s poles
there.

Since, if os) = integer J (say) for some s = 5, we have

r[1- - )
[1=ast)] TS

(6.39)
§—38

and the expression I'[1- qy(f)]{I'[1-7 - )]} "1 can be written as a polynomial in
t[= -2q§(1 - zg)] of order J, we find that the residue of the pole at s, is
2y

4 (245) -
gla)’! (J_sl)—! (zg)l +O(=L7Y) (6.40)

And if this polynomial in Z¢ is expressed as a sum of Legendre polynomials in zg
the highest term is Pj(z¢), so the pole corresponds io 2 degenerate sequence of
resonances of spins J, J-1,...,0 i.e. a daughter sequence [158].

For mm scattering the coupling factor ¢ may be determined by ensuring that the
residue of the rho mceson pole on the leading trajectory at J = 1 corresponds to the
known p — 7w decay width. Once this is done the whole 7t7~ amplitude (apart from
the P) is fixed. The full 77 amplitude for all isospins may then he found by adding
V{s,u} and V(I,u) terms in accordance with the crossine matrix and the absence of
I= 2 resornces (see e.g. ref. {159]). The resulting r sonancc spectrum is shcwn
in fig. 41 with the degenerate daughter trajectories below each of the parents. Un-
fortunately most of the required states are not known, as we have already seen in
chapter 3. Similar Veneziano constructions can be made for other processes.

It is 2lear that since the Veneziano model is an aualytic function of s and ¢ con~
taining just poles, and having the correct asymptotic behaviour, it must provide a
solution of the FESR consistency condition (6.28) [155, 160]. It has, however, a
very serious deficiency in that the resonance poles all lie on the real ax’s and have

Fig. 1. The 0, P, f, g... states required in the Veneziano model for 7% scattering. The
open ~ircles above the parent trajectory represent the posgitions wuerc ancestors cccur U
complex d's are used.
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zero width. Thix grevents there being Regge behaviour on the real axis, and of
course it is incompatible with the unitarity condition. It also means that it is not
possible to compare the formula directly with experiment.

The trajectories should obviously have an imaginary part above threshold gen-
erate by unitarity, nnd if this is inserted intc (8.38) the poles are moved off the
real axis. But this has the undesirable-side-effects, that all the resonances ata
given s value (all the daughters) have the same width (though they have different
residues, and hence different elasticities), and that the residues of the poles
cease to be polynomials in £5 and so there are resonances of arbitrarily high spin
at every s, point. The trajectories generated in this way which lie above the parent
trajectory are called '2acestors' [161] (fig. 41). (We have already noted a simtilar
problem with Schmid leups.) Despite the fact that these trajectories lie higher than
the parent the asympiotin behaviour of the amplitude is still given by the parent
(i.e. iz s@(®)) by construction. This indicates that an amplitude with ancestors fafls
to satisfy the conditions for Carlson's theorem, and does not have a Sommerfeld-
Watson representation. Even if we are prepared to ignore these a“cestors this
procedure still does not give very good agreement with experiment becauvse the re-
sulting Argand diagram loops are very poorly correalated with the resonances [162),
and the: amplitude is very oscillatory at intermediate energies and does not achieve
a smooth Regge behaviour until very large s (~ 20 GeV) ia reached unless Im a{f)-
is made to grow very rapidl; with s. In this case the resonances rapidly become
so wide as to disappear [162, 163}, unlike fig. 13.

Alihough there has been a large literature [164] on more sophisticated methods

itariging the Veneziano model all the different suggestions seem either to
fous; mathematical defects or to impose unitarity in such a way that the
oslglnai é.mlity nrOperties of the modei get lost in the process. The basic problem is
that the Veneziano model is independent of the external particie masses whereas the
unitarity cuts depend directly on these masses. It thus seems more-or-less inevi-
table that unitarity must break the dwdlity between the poles, and that this sort of
dual model will only provide a non-unitary first approximation. And all aftempts to
confront dual models with experiment necessarily involve approximations which
desiroy some of their essential {eatures,

There is also a lot of ambiguity in the precise form the Veneziano model should
take. The particular form (6.36) is only one of a whole class of functions satisfying
our requirements, and we can write more generally

e
R

Al = L Chym Vipm(s: ) » (6.41)
Imn

where the C's are arbitrary expansion coefficients and

Pll-as)+ 0T« o) + m}
Vinds,?) = [ ,S() !} [ vl § (6.43)
e D1~ ag(s) - ap{i) + n] i

where I, m, 2 are positive integers (or zero). Terins like (6.42) are known as Ve~
neziano satellites. They differ from (6.38) in that the first pole in s lies at ag(s) =1+l
not 1, etc., and the asymptotic behaviour is s@+M"%_ eic. Thus (6 4%) provides

a perfectly good solution to the FESK constraints mxich neeil to give ne relaticn

LI A s

what~sc-ever baiween the leading singularities in the s and ¢ c,hannels [165, 165}
Only if both sets of leading singularities appear ir the same Veneziano term are
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they correlated. This soxt of ambiguity highlights the difference between the FESR
consistency :ondition and a trug bootstrap whose uniqueness depends on satisfying
unitarity as well as the analyticity requirements.

The fact that the trajectories all appear in exchange degenerate paics meaas
that there as2 no {ixed poles in the residues, and the Regge pole amplitudes have
wray - signature zeros. It also means that the trajectories decouple from the
gense as well as the rsense amplitudes. Thus for example in #N scaitering the £
trajectory must decouple from the sense amplitude at @ = 0 in order to avoid a
ghost, so by exchange deg 3neracy the p decouples as well. In other words the tra-
jectories all choose nonsense in the nomenclature of section (4.6). The Veneziano
amplitudes themselves cortain fixed poles [167], however, because they contain
(essentially) a third double spectral function(except in cases where there are exotic
channels with no resonancaes). These are unshielded by cuts of course, but since
we do not apply the unitarity condition this does not matter.

Experimental applications of the Veneziano mode] require that we should be
able to deal with particles having spin. This has not been done in a completely sat-
isfactory way for arbitrary spins, because there are the usual problems of the
parity doubling of straight Fermion trajectories, and the fact that the daughter se-
quences in the Veneziano model do not correspond to those of a Toller pele means
that in ordw-+ to satisfy the conspiracy relations etc. infinite sums of Veneziano
terms with parity degeneracy are needed to give the Toller pole behaviour. None-
the~less such processes as 7N and KN scattering have been treated by several
authors, who represent the A and B invariant amplitudes by Veneziano models
containing the appropriate trajectories [168, 169].

A comprehensive fit has been attempted by Berger and Fox [169], who find that
sizeable ratellite terms are needed, so that the duality between the leading trajec-
tories in the various channels i¢ broken. Also the A exchange rosiduc does not ex
trapolate to the known 7NA coupling constant at the A p2' . [his and other exam-
ples would seem to prove that although the Veneziano r .del may be a very inter-
esting toy it is not in any sort of quantitative agreement wich the two-particle —

- twe-particle scatiering data.

One reason for iis continuing popularity is tha. it can readily be generalized to

processes involving many particles [170]. Thus we may rewrite (6.36) as

V{s,D = By[-ac(s) ~a)] (1-ogs)- (8) , (8.43)

wtere

1 .
B4(x1, xz) = f dul u;l ugz : ty = i- uy (6.44)
o

is the Euler beta function. The generalization to the live point function is then [171]

1 1
1 Xy Xg Xo XNg X -
{x v x = A2, 374 70 §.45)
Bs\ll’xZ’“"Aé’xs) = 6[ ci;u1 of du4 i, wtugSu SR (8.495)

withu; = 1= ugug, ug = 1-uqug etc. It is outside the scope of this article to dis-
cuss Regge fits to many particle production precesses [172], but it is evident that
this representation provides a convenient way of coping with Regge behaviour in
amplitrdes depending on many variables. There is no reason to expect good quan-
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titative tits with only single Venexiano terms because we know they can not be
achieved for the 4-point function, but given the very approximute nature of the *
most of the multiple production data a few torma may be enough. Though reason-
ably good fits have been achieved they do not really tell us very much about duality,
or (except in a very crude way) about the validity of multi~Regge models. For re-
views see refs. [172, 173]. |
These many-particle models also give us turther insight into how to cope with
spin. For example if one is interested in a four-point amplitude in which one of the
external particles has spin, one can go to the corresponding five-point function and
take the residue of the pole corresponding to this particle. This residue gives the
required four-point function, which will be a sum like (6.41) with determined coet-
ficients. This has opened up exciting possibilities for dealing with muitiparticle
intermediate states in bootstrap problems [174], but so far neither the self-con~
sisiency of the approach nor the validity of the basic postulates has been estab- -
lished. See ref. [175]. One important consequence of such models is that factori-
zation demands that many of the trajectories should be multiple {178]. Thus if the
leading parent trajectory is single, the first daughter Is doubled and the second
daughter 5 fold. These multiple trajectories do not necessarily have multiple poles
at the lowest spin values but they do at the higher ones. There is of course no real

evidence for such a multiplicity of resonances except perhaps for the splitting of
the 4,. .

6.6. The problem of duality
It will be evident from the preceding discussion that the precise status of the
“duality 'concept is unclear. Rt seems to be possible tu construct an ideal dual world
consisting of an irfinite number of parallel Regge trajectories witk zero width res-
onances which satisiy exchange degeneracy, exact SU(3) symmetry, and the ideal
mixine zangle botween the singlet and wctet isosinglets, with no Pomeranchon. But
suca .. .nodel can rot be compared directly with exveriment beca. se among other
things it violates unitarity. However, if we relax the strict duality requirements
by giving the resonances finite widths and ignore the ancestor problem, put in
SU(3) breaking for the trajectory functions and ignore the factorization prolilem,
and include the P, we find a world which it can plausibly be claimed boars 2 strong
qualitative resemblance to the real world. Indeed it provides the only 'explanation'
of rany facts (or seeming facts) such as the absence of exotic resonaices. the
magnitude of the mixing angle, exchange degeneracy, and a' =~ 1 /8o
The agreement with experiment is far from being quantitative, but it is not clea

whether this is (2) because duality is only valid to an approximation; or (b) because we
have not succeeded in constructing dual models for the real world, where unitarity
applies, SU(8) and exchange degeneracy are broken, and cuts, and perhaps weak
exotic resonances, exist; or {c) because duality is completely faise. Obviously
unitarity must make quite a large ifference because among other things it will in-
terrelate the P with other trajectories, require the presence of new trajectories
(such as those which appear at L =-3, -}... which we normaliy choose to ignore)
and will require cuts to shield the fixed poles. The failures of Regge fits involving
just poles, such as the factorization problems which arise with conspiracies and at
the cross-over point (see chapter 7), and the need for cuts to explain some of the
do/di dips, make it obvious that if dual models are tc have any hope of succeoding
Some way must be found to incorporate cuts. To give just one example, if the pion
conspiracy explanation of the forward peak in yp — 7*n is rejected hecause of fac-
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tuplgation problems, thin peak must be due to a cut. However in terms of the s-
channei thie peak is produced by the resonances, in particular the nucleon Born
term {177]. So the nucleon pole must be dual to a Regge cut in this process, not a
trajectory.

It has been suggested that the Veneziano model shouid he regarded as a sort of
Born approxiniation for strong interactions {14], and thet if some sort of unitarity
{teration were applied the physical S-matrix would result. But quite apart from the
difficulties of carrying out such a unitarization program it is by no means clear
that the Tinal amplitudes will obey duality just because their Born approximation
does.

What is worse we have seen seen that if duality is not accepted at the outset then
the criteria used for identifying resonrances by partial wave analysis ace inconclu-
sive, and the existence of a resonance can only finally be decided when we have a
dynamical model (involving unitarity) which tells us how to continue onto the phys-
lcal sheets. One can not tell by looking at experimental data alone, except in the
case of very strongly coupled elastic resonance like the A. Thus even if the ob-
served 'resonances’ (Argand loops) can be made to saturate the amplitude this still
does not prove that duality is true because we do not know if they really are reso-
nant es.

The author i8 thus led to the somewhat pessimistic conclusion that the duality
ides will only really become experimentally verifiable if a dynamical model which
incorporates it can be constructed. Until then it will remain a suggestive but tan-
talisingly inprecise idea whose meaning is unclear, and whose application to phe-
nomerology is iraught with ambiguitiec. On the other hand if such a dynamical
model can be found it may well be able to explain most of what we now know, or
think we know, about strong interactions.

CHAPTER 7
HIGH ENERGY PHENOMENOLOGY

1.1, Exchange models

The principal aim of Regge phenomenology is to try and identify the exchange
forces which control elementary particle scattering. We have discussed the main
features of the Reggze pole and cut exchanges in chapters 4 and §, ind in this chap-~
ter we shall give a ratner brief survey of the successes and failur2s of Regge
models.

The dominant singularities in any reaction are those ~hich lie right-1nost in the
complex J~plane. In constructing exchange models one must of covrse bear in
mind the rvstrictions of charge, baryon number, strangeuess, and G-parity rcn-
servation, and charge conjugation invariance, as we’'l ac the SU{2) isospin sym-
mor w ”?hﬂ trajectories exchanged must correspond (o the known particies, as
’iISCUbuEd in chapter 3, and the various residues of s given pole must be related by
factorization. We may also try to add the additional restrictions of SU(3) symmetry
for the residues, and exchange degeneracy. Though the cuis are mvch less re-
s'rict=d, we have seen in chapter 5 how their power tehaviour is reolated to thit of
the puies, and that there are various models which can be used, ¢ least tenta-
tively. to try and estimate the magnitude of the cuts.

We shall see that some featvr =~ ° ° - Regge model, such as the fact that the
enery. dependence of the amplitudes close to the forward and backward girections



should correspond to the highest trajectory which can be exchanged, are very wej
verified. But there is rather more friedom at larger angles due to the alternstive
choices of sense or nonsense, etc., the arbitrariness in the behaviour of the resi-
due functions, and the uncertainiy in the magnitude of the cuts.

The experimental information available is greatly restricted because the only
high energy beams available for experiments ave 7%, K*, p, p and y, and the only
elementary parucle targets are the p and the n. (The n is sufficiently loosly bound
in the deuteron for one to be able to deduce rieutron scattering from deuteron srat-
tering witk some confidence.) Since- isospin relates atp = #"nand 77p = 7 this.
means that there are just .12 possible incident channels. Fortunately there is a -
much greater variety of two-~body final states because one can measure resonance
production processes such as 7N — zA —7#N with reasonable accuracy. Table 5
contaias a list of most of the two-body processes which have been analysed to-
gether with the trajectories which can be exchanged.

We antm.pate that elastic scatteriog will de dominated by the Pumeranchun, P,
with @(0) ~ 1 (see section 4.8), but there are also the f (assuming this to be differ-
ent from the P) and the {' trajectories. Each of these has vacuum quantum num~
bers, which means that they can also be exchanged in quasi-elastic processes (i.e,
10 guantum number exchange). There are also the 7 =0 wand ¢ trajectories which
involve no exchange of internal quantum numbers, but which have negative G par-
ity, so their couplmg to processes involving mesons is restricted. Because they.are
so similar it is usually impossible to separate their contributions which are
lumped tcgether. The neutral members of the 7 = 1 pand Ag trajectories are also
pmsmm E:} elastxc processes, but these trajectories also dominate charge
s, ;which demand an [ = 1 exchange. The /= 1 pion is a mu-h lower
trajectory than any of the above (see fig. 5), but because of its strong coup JAng, and
the nearness of the exchanged pion pole to the direct~channel physical region, itis
often essential for explaining the data near the forward direction. We therefore
treat pion exchange processes separately in table 5. Processes with strangeness
exchange require K* and K** trajectories, ard also, where quantum numbers al-
low, the X. ""or barvon exchange processes (i.e. the backward direction in meson
barvon scattering) we may need the Ny, Ny and Ap trajectories, depending on the
amount of charge exchanged, or, if strangeness is also exchanged, the Aand
trajectories will be'used.

With this set of leading trajectories, i.e. P, f, w(¢), p, Ag, 7, K¥, K** K, Na,
Ny, 85, Ags Ay, Zg, £8, Ty and T, we can hope to fit all the various two-bo *r pro-
cesses. There maybe complications due to the presence of secondary t,rajectom
with the same quantum numbers (referred to with primes, e.g. f', p*), but fig. 6 sug-
gests that these are all much lower than the leading trajectories and wili no. be very
important unless they have very strong couplings or smail slopes. There will also be
cuts, but the dominant cuts in any process are always those stemming from the
highest trajectory which can be exchanged together with the Pomeranchon, and
these will have the same quantum numbers {except parity? and ine same intercept,
as the lead.mg trajectory {see section 5.6). Other cuts produced by the exchange of
two or more Reggeons other than the P will huve a lower intercept than the leading
trajectory and are unlikely to be very important except in those processes where
no single trajectory can be exchanged. We discuss some examples below. Other
*rajectories such as the Ay (7= 1, JPC= 1) and B (= 1, JPC = 1+-) are some~
times invoked, but they are hkaly to be rather low lying. The main reason for
using them in the past has been to obtain a contribution of opposite parity to that
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Tabie 5
Regge fits.

Process Trajectories References o fiig
Charge exchange
processes

7p~ 7°n , p [104,182-201,206,281, 357, 361]
r-p ~ 1°n A, [128,180,195,196,199, 202, 20¢,281-284 357, 361}
K-p — K% p+Asy 1183,190,195,196,199, 203,204, 206, 242, 281,
K*p — K% p+As ‘ 287, 288, 357, 358, 361]
7tp — 7°att p {205, 206, 281, 289-291]
mtp-natt Ay [205, 206, 281,291}
K'p EOAH praz i [203-2086, 289]
K™n— KA~ p+Ag
N~ WN p [206,292,293]
"IN WA p [216,292-294,296, 325}
N = ApA p [206,294]
yp = 7% p+w [128,207-210,216,294,297,299-303]
Yp—np p+w [209-210, 284]
Hypercharge
exchange processes
T p— KOA K* + K** [203,204,213,281,304, 357)
7 p —~ KOE° K*+K** [203,204,213,25 1,200, 304,007}
rtp-- K¥TY K* + K** (213,281, 304,357, 338)
K'p- 7°A K* +K** {204, 303,357]
K'n— 7" A K* +K** [203,213, 304]
Kp— w5t K* +K** (203,204, 213,289, 304,357, 358]
Kn-— 717%° K* +K** [213, 304]
Kp— 7~Z*%-(1385) K* +K** [203,306]

Pseudoscalar meson
exchange processes

TR ON T+Ag+ W {104,208, 244,294, 307]

Tp - fON T+Ay

Tp— Ag.. T 72086]

To DA g:r+A2 {104,225, 2998, 308-310 3¢
ap- fOA T [310}

P np TP+ W+ A [215,217,220,248,31%, 512}
pp— NA T+P+W+As [216,218,2198]

po— AA T+P+W+ A9

pp— nn T+P+W+ A2 {104,215, 217,226, 311
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Table & (continued)

 References to fits

Process Trajectoriea
Pseudoscalar meson
exchange processes , _
pp—~ AA T+ prw+Ag ‘{216, 218,310]
+ WL B . . N ]
—=7rn T+p+A o .
B b (71,104,207, 214,218,218, 221, 299, 313-319]
Y= 1P T+P+Ag o .
vp - AN T+p+Ay [2186, 218,225,226, 314]
pb—~ AACE) K+K* +K** [213,229)
p—~ KA (Z9 K+K*+K** [71,207, 228, 812, 314]
vp - KA (59) K +K* +K**
Baryon exchange
processes
T™p = pT” A
PR S & [132, 320, 321, 235,236, 238, 321, 350}
TP P N‘d+Ny+A5 ) |
K™n— A%~ Ng+Ny {237,238]
- RytN, +Ag
Nty tas (231,233, 2385, 322, 323]
N +Noy +Ag
. NgtNy [235)
Ng+N, +A5 [235, 323]
Ag [324]
7 p— AK® Ta+Zg+Sy+Zp [241]
K*p — pK* Aa + Ay [240, 325, 350}
Elastic processes
TP WP P+f+p {133,136, 1583, 154,169,183, 189, 196-198, 243,
mp— 7'p P+i-p 245-247, 250, 255, 258, 260, 527--336, 5 .. 343)
Kp—Kp P+f+p+w+Ag
Kn— K™ P+f-p+w-Ag {127,153, 169,183,196, 242,250, 254, 255,
K+p— K*p P+f-p-w+Ag 258-260, 284, 285, 288, 327, 337-343]
1ty
¥'n~ K'n P+i+p-w- Ay
PP~ pp P+f-p-w+Ay
pr T Privh-w-Ag 220,243,252, 25
- - &u, ’ p s ) 2 3 3 )
PP — Pp P41 p+w+Ag [ 2,255,260, 263, 344-.49]
PR = pn P+f-prilaAg
Y= ¥p P+i+pru +Aq [267, 351-354]
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Table 5 (continued)

Process Trajectories References to fits
Quasi-elastic
processes
7p - #N*(1400)etc.. = P+f+p [268,274]
yp - p% Prdy T [216, 226, 314, 355, 356]
¥p ~ Wp P+Ag+T [218, 226, 314, 355, 356]
yp = Op P+Ag+T [226,269,270, 314, 355, 336)
Exotic exchange
‘ processgs
rp = KYZT {PK®)
K'p - KV~ {(PK*)
Kp - KO (K*K*)
o~ 7t A” (PP)
Kp-ntEm (DK*)
Kp-pZt (PK*)
pp ~ S (PK*)
K'p—~pK~ (1K Ay
K“p — nK° (K*A)
ip— AA, IT (NAY, (ND)

provided by the leading trajectories, especially in conspiracy models. Such op-
posite parity contributions are also provided by cuts, howevae, since they do oo
have definite parity (thas the B is similar {0 a pP cuf, and the Af (0 a P cul), and
it is probable that they will not be necessary if strong cuts are included.

I we are to try and isolate the contributions of the various singularitizs it is
obviously desirable to start with processes where only 2 few trajectories can be
exchanged, and for this reason we begin our discussion with quanium-n mber ex-
change reactions before proceeding to the more complicated elastic seattering
processes. This is the reason for the grouping in table 5.

This table also includes & representative set of references {o some of the mor>
recent fits so that the reader can compare for himself the various Regge models.
From these papers it should be possible to trace the earlier literature where nec-
essary. We have ceitainly not attempted to mention all {or even most) of *ho fits
to a given pr ocess {the author is aware of some 70 papers on fitting = p -+ ~On for
exaw ple), nor can we hope to be completely up to date. The discussion whih fci-
lows is concentrated on what we feel are some of the mostl interesting problems,
and we can only plead for the indulgence of the authors of neglecled papers, and
rer‘ad the reader that other thorough reviews have been given receutly in reis.
[15-17, 178-181].
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7.2. Charge excharge processes

a) 2°p — 7°n. Tatle 5 shows that only one of our set of Regge poles, the p, can
be exchanged in this process, :und because of this it has been subjected tc very
close scrutiny, and fitted by many kinds of Regge models.

We have already presented some of the data, and a simple one pole {it in figs.
15 and 1€. In fact it is possible to obtain a very good representatjon of the daty if
the p chooses sense [182-185], and has a zero in the sense-nonsense amplitude

+__ o (see section 4.6) at a = 0, i.e. there is no wrong signature fixed pole in the

residue. (We use the amplitudes (4.11).) The forward dip is explained by the dom-
inance of the spin flip amplitude, which of course has to vanish in the forward di-
rection, and the dip at? ~ -0.6 is accounted for by the nonsense zero in this am-
plitude.

Unfortunately this nice simple picture became untenable when it was discovered
that there is a substantial polarization (shown in fig. 42). The polarization of par-
ticle 3 normal to the scattering plane, P, is given by

P - E [(03+ug)og= ng+D]* Mn[{ug=1ugl Al nyugXrgugAlugng*] (1Y)
s

and so depends on there being a phase difference between the amplitudes. We have
noted that a single Regge pole gives the same phase to all amplitudes (assuming
and y are real) and so the single pole fit must b: wrong.

However it is not difficult to think up other contributions which might interfere
‘with the o to produce this phase difference. Cue possibility is interference with
direct channel resonances [186-188], though this explanation is in conflict with
duality which requires that these poles should already be included in the Regge
poles. The presence of another trajectory, the p*, is suggesic? by the work of
ref. ["23] (see section 6.2), and has been used by several authors [189-192]. The
p' so cotained has quite a large intercept (= 0 in ref. [189]) and is much above the
daughter value (a,,«(()) = 04(0) = 1). Another suggestion, inspired by the fact that the
Ag with which the p may be exchange degenerate is known to be split [48], and by
the multiplicity of trajectories found in multi-particle dual models {see section
6.5), is that the p trajectory is doubled. A small separaticn Ap = @y = 0.1 can ex-
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Fig. 42. The polarization in p— 7°n from Bonamy et al., Phys. Letters 23 {19686) 50:.
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plain the polarization [193]1. Models have also been suggested in which the second-

ary p' trajectory is a A = 1 conspirator [191-192, 194~ 195}, which has the advan-
tage of vxplaining the zero in the non~flip amphhlde at £ = 0.15. This 'cross-over'
gero i5 not apparent in simple fits to the high-energy charge~exchange differential
~ross section because of the domiinance of the flip amplitude, but is is neaded to
explain the fact that in 7N eiastic scattering the diiference

[%tg (n"p) - g;i (W"p)}

changes sign at this point (see section 6 below), and it is also demanded in the
charge exchange process by FESR [133], a fact which we noted in section 6.2.
There have been many papers applying FESR to determine th2 pole parameters
following the work of ref. [133].

Once one includes some such additional contribution besides the p pole one can
if one wishes allow the p residue in the non-flip amplitude to vanish at & = 0 along
with the {lip amyg.itude without there being a zero of do/df. This means that egually
good fits can be obtained with the p choosing nonsense instead of sense [1968]. This
choice of nonsense is of course required if the p is to be exchange degenerate with
the f. The energy dependence in the region of the dip is not very different from
other I values, however, so the additional contribution can not e much lower in
the J-plane than the p.

An obvious way to obtain such a secondary c~atribution is of course from cuts.
These can readily fill in the dip with the right sort of energy dependence, and may
also account for the cross-over zero [187-199], though in practice it seems to be
difficult to get this zero in the right plice ~ it tends to want to be nearer to the
pole zero, say ac ¢ = ~0.3~-0.4. A more radical suggestion is that {as discussed
in section 5.6) the cuts are very strong and interfere with the g pole to praduce the
dip at £ = ~0.6 without there being a zer: of the pole am: litude; i.e. there is a
strong fixad pole in the p residue at ¢ = 0. Fits of thic Lype Fove been obtained
[200], though there is some difficulty in fitting the data for (#] > 0.€ because the
smaller slope of the cut tends to make the shrinkage of the differential cross e~
tion too small at these larger # values [178]. A plot of the effective irajectory,

Ogff; due to the sum of the cut and pole in this model, which raakes this problem
rather evident, is presented in fig. 43. It will be easier to assess the severity of
this problem when higher-energy data are available. The existence of a strong
fixed pole, which therefore requires a strong cut, is certzinly suggested by the
FESR analysis of ref. [133] (see anlso ref. [201]).

This brief discussion highlights both the successes and the failures of Regge
theory. Fig. 16 is certainly excellent evidence for the dominance of a moving Reg-
ge si.cularity associated with the p pole. But despite the reasonably good data we
can not even be sure whether the pole is finite in both A, go and A, gg af £=-0.5
{and there is strong cut). or is finite in A,, gp but not AJ_ oo (ie. choose:, sense?,
or vanishes in both (chooses nonsense). And the secondary contribution may be an
additive pole, the p', or a cut (strong or weak) or direct chanrel resonarces: 2
ly goou fits can be obtained with any of these hypoth2ses. Of ceurse some acidiuomai
information car be obtained by examining other processes to which the g also con-
tributes, but the ambiguities persist. In fact we shall {ind that it is quite impossi-
ble to arrive at an agreed set of Regge parameters for any process; the parame-
ters ol‘ained always depend on the model which has been used for che fit.

One can of course invoke additional principles such as excnange degeneracy
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Fig. 43. The effective trajectory in the strong cut model for 7-p — 7°n compared with the éx-
perimental values, from ref. {178]. .
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which requires all poles to choose nonsense, or, at the other extreme, suppose .
that all dips are due-to.cuts interfering with the poles just because some of the:*:
dips predicted by the nonsense factors in poles do not occur. But the unbiased ob=
server has to admit that at the moment almost any of the above models ¢n be

made to give a rsaso.- L.e fit with sufficient ingenuity, and none has an overwhelm«

ing: for:all processes. ‘We shall therefore not go into much detail below:
indesoriby; he parameters of the fits but will leave the readzr to look up those
in which he is interested. - .~ - : : Gx

b) #"p — nn and KN charge exchange. The process 7”p — 7n is very similar to
the above except that the Ag rather than the p is the only pole from our list which
can be exchanged. The basic featursy also seem to be quite similar in that the spin
flip an plitude appears to dominate (tl.ough the forward dip is less evident), but
there is no dip at ¢ = «0.6. This mears that the sloye of the trajectory is hardler to
determine.

The early fits used a rather small slope {202], principally because they as-
sumed the Chew mechanism (see section 4.6) which gives a dip at o = 0 due to the -
vanishing of the flip amplitude. (Of course the sense amplitude remains finite as
the residue zero is cancelied by the pole). However if the trajectory choos.< non=
sense both amplitudes are finite (see table 4) and there is no difficulty in fitting
with a trajectory similar to that of the p [185}. But even this is not conclusive, for
of the non~{lip residue is given the change of sign at £ ~ »0.15 suggested by the
cross-over effect a good fit with the Chew mechanism and a normal slope for the
Ag is possible because of an interference between the two amplitudes. If the p and
A2 trajectories are exchange degenerate of course both must choose nonsers:.

Sincc this process is kinematically very similar to 77p — 2% the strong ¢t
model would also expect a dip, and its absence has to be explained by a smaller
value of A [180], or by non-degenerate couplings [361}.

The processes K™p — K°n and K*n — KC are related to the above in that they
require both the p 2nd Ap with same couplings at the nuclecn end. In fact if one as-
sumes SU(3) for the residues one can predict them directly from the fits 7"p— 7%
and 7. Equally good fits con be obtained with either the sense or nonsense
choosing mechanism so there is no resolution of this ambiguity r185].
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‘These processes can 21so provide a test of exchange degeneracy because if the p
and Ag are exactly exchcnge degenerate the K¥n — K°p amplitude must be purely
real (see (4.92)) while that for K'p ~ K°n has the el'm(t), and two diff:rential
cross sections should be exactly equal. In fact the K*n data ‘s larger than K™p a:
low energies (< 5 GeV), but they seem to be equal at higher energies [203, 358, 360].
various suggestions hauve been made to account for the discrepancy at low energy,
such a5 a splitting of the trajectories [204] (the Ag is heavier than the f), second-
ary trajectories [204], or cuts [358]. However the leading cut (generated by the P)
produces an effect in the wrong direction, and pole~pole cuts must be blamed [358].

~ ¢) Other hadronic charge-exchange processes. The remaining charge exchange
processes in table 5 all involve resonance production. This fact introduces further
ambiguities both because the data are less accurate, and because with the higher
spins there are more residue parameters to juggle with. The set of processes
itp~a0att, atp —natt, K'p —~KPa** and K'n — KC4A™ are similar (o those dis-
cussed above in requiring p, Ag and p+Ag exchanges respectively, whiie 71N — wN,
N ~wa and 7N — Ag A require only the p. Fits to various combinations of these
processes have been attempted [205, 206] using some of the different types of
models described above. There is of course no difficulty in fitting, but no narrow-
ing of the range of possibilities either.

d) Neutral psewdoscalar-meson photoproduction. This is a convenient point at
which to discuss two photoproduction processes which though they do not involve
charge exchange should be controlled by the non-strange vector mesons g and w,
i.e. p — 7%p and yp — 1p.

The data for yp — 7% shown in fiz. 44 are in fact consistent with an effective
trajectory which is fixed at zero [178], whick may perhaps indicate a non-Regge
behaviour. But it is not too difficult to reproduce this effe~t (within the rather
large errors) by a suitable combination of singularities. Fixed poles are ruled out
by unitarity, but of course a fixed power behaviour may be obtained from a 9 ;9
term in the J~plana, and various fixed power fits have been suggested.

The differential cross section has a forward dip followed by a further dip at
t= -0.5, which is suggestive of an w oryp nonsense zero. The dip appears t:. he
filling up with energy, however. Cross sectic: = for scatiering by polarized pho-
tons have been measured, and it is fourd that perpendicular polarization domi-
nates. This is controlled asymptotically by naiural parity exchange, so it confirms
the dominance of the p and w trajectorios, and shows that the dip is not filled in by
a negative parity object such as the B wh:ch was used in earlier fits {2071, If one
makes use of the yn — 7°%n data it is possible to make an isospin decomposition as
well, and it is found that some isovector p coatribution is definitely needed along
with the isoscalar w. A model with w and ¢ together with wP and eP cuts appears
to fit the data fairly well [208], but as usual it is not clear whether the cuts shouwd
be strong enough to produce the dip [209], or merely to {ill in tc some extent the
dip produced by the poles.

The process yp — np has exactly the same exchange, and il is raiher surprising
that there is no corresponding dip at? = -0.5. Presumably o exchange dominates,
and it has been argued that the absence of a dip can only naturally be explained by
2 strong cut model [209, 210], though the B trajectory has been invoked [211] as &n
altarnative way of fitting it. Higher energy data shc ild be able to distinguish be~
tween these explanations.

It has been noted [117, 212] that the presence or absence of dips in scire of these
processes can be explained in terms of the rule enunciated in section 5.6e, thata
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Fig. 44, The differential cross section, and deff(f) for yp — % from ref. [224].

cut-pole interference gives a dip at f = -0.6 if the dominant amplitude has helicity
flip Ak = {uy= pg| = {ug- pg| = 1. The w coupling to NN is predominantly elec-
tric, ] Hg= ;44[ = 0, wiile the p coupling to NN or NA is predominantly magnetic,
] tn = ;;45 = 1. Since ST/(3) predicts Y wmy > Y prrys and Yoy > Ywny We find the heljc-

ity flips shown in table 6, Those with |Ak| = 1 are the ones with dips, and the fact

that this rule works so well must be re

model.

garded as good evidence for the strong cut

Table 6
Processes with and without dips at ¢ = -0,6,
Process Dip? Exchange Ah

YN — 1°N yes w(o) 1
YN =N no pw) ,
YN —rtN no p ,
TN — N no p 0,2
7™p — % yes p 1
TN~ wA no p 0,2
N —-rd yes p 1
TN — pN W 1

yas
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3. Hypercharge exchange processes

These may conveniently be divided, as in table 5, into those processes where
the K can be exchanged and wmose where it can not. Where it can not the dominant
trajectories should be the exchange degenerate (?) K*, K¥*. If the degeneracy
were exact should expect an equality of the moduli of the pairs of amplitvdes such
as (1°p — KPA, K"p — 7)), (r*p —K*Z*, K'p —#"2%) and (Kp — 7~ Z*{1385),
tp — K*E*‘( 1385)) The agreement is in fact very poor {203]. The lack of equality
can be blamed either on a splitting of the degeneracy [204], or on cuts [348], but 2s
with the charge exchange processes the effect seems to be in the wrong direction. A
detailed fit of recent data including absorptive cuts and SU(3) residues has been given
inref. [218]. The results are moderately good given the rather few parameters, but
the data do not have any distinctive features (dips etc.) to constrain the fit strongly.
Unfortunately there does not seem to be very good agreement with such little po-
lafization data as are available. One ean hope that good polarization data will be
available suin using the weak decay of the hyperon.

4. Pseudcscalar-meson exchange processes

The group of processes in table 5, in which the pion can be exchanged present a
particular problem for Regge theory The reason is that many of these reactions
exhibit sharp forward spikes or dips (see table 7), waich have awidth = m2 and so
seém quite clearly to be associated with the pion, and yet an evasive pion 1s de-
coupled in the forward direction (see section 4.3). There are two possible solutions
to this problem; either there is a pion conspiracy or there are very strong cuts.

Table 7
Processes with dips and spikes near { = 0 due to 7 exchange.
Process Structuc~
717p —p°n D.p
7tn —p%p Dip
T — P*p Dip
tp — po At Spike
7tp — AT Spike
*n —©p Dip
vyp—7tn Spike
Yo —unp Spike
yp—n-att Dip
yn—atA~™ Dip
K*p — K**p Dip
K'p—K* Dip
K*p—K*A Spike

The way in which the conspiracy works in photoproduction ¢an be understood by
writing the differential cross section for small |#| in terms of invariant amplitudes
which are free of kinematical singularities aad constraints [214], i.e.

e ([1ag12+ 121a412 < [1Ay+2a,512+ [elAgl?) (7.2)
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where the first term in square brackets correspond to natural parity, %=1, and

the second to 77 = ~1. At ¢ = 0 only Ay is finite and must contain equal contributions
from both parities. The pion couples only to Ag and so vanishes unless the residue
takes the form ag/t. However Ag can not be singular so we need a conspirator tra-
jectory with a singular coupling Ag P i 0 - ag/t. However the conspirator has even

parity and so does not contribute to (Aj +f Ag), so its contribution to Ay is finité,
ay = ag. Hence the natural parity A, amplitudes is finite at / = 0 and has the same
residue as the pion. v

There were several successful fits of processes such as pn — np, pn — fip,
vp -» *n [71,72, 218, 217] making use of such a conspiracy. Since there is no
known scalar particle with the pion mass it is generally assumed that the conspir-
ator chooses nonse..se, and so has vanishing coupling at @ = 0, though a very flat .
trajectory is also a possibility. In order to get a fit a very rapid variation of the
pion residue is required such that it vanishes for £ ~ -mg. This rather strange be-
haviour is found in all the three reactions above, and is confirm.d by FESR. Fac-
torization them implies that all the 7NN vertices must vanish at this point. (Some
authors have connected this with PCAC.)

However it was shown by Le Bellac [ 73] that this sort of conspiracy 1s incom-
patible witn factorization. Thus if Vge consider the f~charnel amplitudes for ;
P — NN, A11 oo must vanish like £z, and no conspiracy is possible. And by fac-
torization %’

( 7p—NNy2 _ Bnp-—wﬁo NN —NN

33,00 0¢,00 "3%,3%

so if there is a conspiracy in pn — np and the latter residue is non-vanishing then
1338 ogp must vanish like 7. I we then look at TN — pA we have

1e—NA\S gTP TP NA—NA

31,00 700 00 "iz,33
and since the residue on the leftuhaind side is kinematically finite it must have a
dynamical zero (it can not have a £2 singularity). This means that the forward
7N — pA cross section is predicted to vanish, and so is NN — AA. There is some
difficulty in testing these predictions beciuse the A is a broad resonanc: (which
'fuzzes' the kinematics) but the evidence is definitely against it [218].

This argument leaves us with cuts as the only way of getting the forward reaks.
The rapid variation near { = 0 is explained naturally by an interference between tie
smooth cut and the evasive pion pole, and no zero is needed in the pion residue.
Cut models of yp -~ 7*n, 71N —pN, 7N —pA, pp — nh, np —pn and pp — nA++ are
available [200, 209, 219, 220], =nd all require very strong cuts, stronger than in
most other processes; and in particular for yp — n*n the enhancement factor A is
found to be 3.55 [209]. This makes one feel a bit uneasy, particularly as really all

one is trying to do is to reproduce the forward peak obtained from a gauge invari-
ant Born term [221],

(s- m%,)(t- m,z;)

Ag (7.3)
In fact as in yp — 7% there is some evidence in both yp — 7*n and yp — 7~A+* of an
effect?ve @ approximately constant, = 0 [178]. It has been suggested that this may

be a fixed J-plane pole [222], but unless something totally unexpected is happening
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this is ruled out by unitarity { higher order electromagnetic corrections ensure taat
the trajectory has a siope a' = 0 (137) at least). In any case such a fixed pole can

not be correlated with the pion (a fixed ./ pole does not give a f~plane and so does
not correspond to a particle) and is completely at invariance with vector domi-
nance which relates the photoproduction amplitudes with those of purely hadronic
reactions mvolvin;r vactor mesons.

-There is a further problem with the pion coupling to yp — #'n, namely that if
one appl es the usual rules of Reggeization (chapters 2 and 4) there is no pion pole
at all [223). The reason for this is that the exchanged pion is at the /-channel y7
threshold, and if one inserts the usual threshold behaviour the pole is cancelled by
a kinematical factor. Since the pion manifestly is present it is essential to find
some way of rectifying this. One possibility is simply to neglect the unitarity
problem and invoke a fixed pole, but an alternative which seems preferable in
some ways is to suppose that the yr threshold does not give rise to the usual
threshold behaviour, perhaps because there is no non-relativistic limit for photon
processes. Normally if one were to alter the threshold behaviour one would intro-
duce a kinematical singularity, but in this case it does not happen hecause the sn.
factor an(f) has just the forra needed to cancel “he singularity at ¢ = m2 This
problem only arises because of the identity of the external and mtern.l pions, and
does not occur in any other process, except Compton scatteriag, which we sha'l
discuss below.

The very good data on yp — #*n and vn — 7°p present an inveresting challenge to
Regge theorists. As for neutral pion piotoproduction, data with polarized photons
make a complete experimental isospin and parity decomposition possible. I we
assume that an evasive 7 plus 7P cuts gives the extreme forward peak, one stili
needs the p and Ag to explain the larger angle data. The gt/n™ ratio fails rapidly
from unity indicating the presence of the positive G-parity 5. Unlike neuiral photo-
production there is no dip at # == «0.6 so one must assume that the dip is filled by a
wrong-signature fixed pole and cuts. Both the Michigan and Argonne models seem
to be able to reproduce this effect.

Inyp— 7w~ At do/df is of the same magnitude as yp — n*nat { = 0, then rises 1o
alarge maximum at { & -m%, after which descends to follow the yp — 7#™n da.1 at
larger |¢|. Again a gauge invariant Born term can give a good fit near the for ward
dxrectlon 224]. A Regge pole model with a pion conspiracy plus the p and 4o .s
possible, but since the conspiracy is now ruled out one must cxpect strong cuts to
be present. The related processes yp -~ 7vA°, yn— 7+A~, and yn — 77 4* have also
been studied experimentally, and seem to indicate the need for an / = 2 exchange as
well as the p and Ay [2241. If thie is confirmed it cculd be evidence for a 0~p cut.
If one is to have any hope of disentangling the pole and cut coniributions one needs
to look at several processes simultaneously and use the extra consiraint provided
by factorization. So far this nas oniy been attempted on any scale for these pro-
cesses with purely pole models {e.g. refs. [225, 226]).

In general whether one gets a peak or a dip from a 7 exchange reaction depends
on whether the helicity amplitude which dominates has zero helicity flip or not.

One can account for the results of table 7 by supposing that the coupling to say
particles 1 and 3 favours the minimum possible helicity change Lzzﬂ,

min |2, - }\3{ though of ~curse for the NN vertex we must have A{- Ast 1. Thus
1*17'P-~ 7~p there is one unit of helicity flip in both the yaw and NNr vertices, and
A= n)-2g| - ].\3 Ag| = 0 and a forward peak results. On the other hand for
15 'ﬁ A“’ there is one unit of flip at the y7 end but none at the NA end so we have
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Ak = 1 and & narrdw dip results, while for #p — pN the meson vertex conserves .
helicity and the baryon one does not, so A% = 1 and there is a forward dip.

Most of the corresponding K exchange processes listed in the table do not have
good enough data for convincing fits {o be possible. The photoproduction processes
yp — K*A and yp — K*Z0 can be fitted with a K conspiracy similar to that for the
pion [71], but because the: K pole is so muct. further from the forward direction
there is a turward dip rather than the peak of pion exchange processes. Again cuts
can be invoked instead of the conspiracy [228]. ‘.

The gy coupling ccems to be much larger &k -n ygy, and new data on
vn— K*Z* indicates the need for J = ¥ exchanges as well as I = 4, This could be 3
pX* cut [224]. The A* and T* photoproduction proceiises are very similar, In gen-
eral the strange particle couplings seem to be much ¢ maller relative to the non-
strange ones than one would expect from SU(3) [224] In pp — AA some forward K
contributioi: seems to be needed, which again could in principie be produced by a
conspiring pole or a cut [229].

7.5. Baryon exchange processes

% Near the backward direction of meson-nucleon scattering processes we expesct
the ~channel baryon exchangesto dominate, o backward scatiering data can give
us insight into a-quite different set of trajectories. This is particularly useful as
we already have quite a lot of information about these trajectories for # > 0 from
figs. 8-12.

-There is the complication that we must expect a A = § conspiracy between oppo-

site parity trajoctories, so for pseudoscalar-meson-baryon scattering the differ-
ential cross section is

-irat-%

at=i2
F M6

do 1 3
du  g4q2 gsVs

iyt -
| +e 0 i (Es_)" 2|2
cosmTo™ ¢ O

where + correspond to nutural and unnatural party poles, which satisfy (4.48).
Thus at fixed 4 we havr,

+

B~

Lo

do s \@H( \/'u)+..f"(vru)-2

FvRPAC (g;) {7.5)
b}

and any odd %2 terms in & do not contribute to t -e amplitude (see (33L27)). The res-

idues 8 must take the form [{a~$)1]~1 to kill the poles at @ = -4, -} ... provided

there are no fixed poles at the wrong-signature nonsense points. The 7tp back-

ward dats avrs ghauwm in fie A8 Wa aveand AT P oand A. avahanens and ftha din in
TYM L A WIELLEL XA Y RIAAVW FTYEE JAA ‘*5. TEU . Y W W“yv\al L‘a’ In-.'Y IR -o vn\’llmlsCD, SA-EA% LAANS .VX‘Y 22

n*p &t # = ~0.15 can be explained by a nonsense zero where oy = -3, provided the
Ky coatribution is small [230]. If the N, were exchange degenerate with the N, the
dip would be completely filled in. The lack of a corresponding dip in the #™p - pr°
data is cxplained by the dominance of the Ay contribution. The trajectories needed
to fit agree well with those of figs. 8 and 9, but a dip is to be expected in 7°p at
@p = -4, i.e. u ~-1.9 GeV2. This dip is not observed, but its absence can be ex-
plained by a fixed pole, a cut, or by the t: ajectory bending so that it does not pass
through -} within the region of a fitted {2390, 231]. The residues are given the torm
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Fig. 45. The differential cross sections for 7*p — p7™ compared with the Rugge pole fit of
ref. [230].
1
Blee) = [a(Vu+ M) + blu~ M2)] ™ 7.8

i~ ‘:aj)'

which vanishes 2t vu = -Af, where M is the mass ¢ the excharged particle (N v Ab,
in order to kill the first particle on the parity doublet trajectorv. The resulti=.
trajectories ar» ay = ~0.38 +0.91x and ap = 0.21+0.84u. The N_ residue functic v
extrapolated to :he M pole gives good agreement with the #NN coupling constaat,

but the Ay residue disagrees with the A width, being much too small. This sug-
gests that a more complex parameterization is called for. In fact if the A cheoses
nonsense at ap = 3 (u ~ 0.35) and so changes sign there, the extrapolation iz much
improved [232].

I we next turn our attention to the photoproduction processes yp — pr© and
yp — n7* we find that there is no corresponding dip at ay = -3, and that the ratio of
pr® to nr is u dependent so the I =3 and I = 1 contributions must have different
dependence. In a pure pole fit it is necessary to incorporate the N, lagenerale
with N, in order to fill the dip [233]. This is very embarassing since the two tra-
jectories are certainly not degenerate for # > 0 (see fig. 8), and it is hard to see
why N, should contribute strongly here, and not at all in backward sN. Thi, pro-
cess aiso shows little shrinkage, in {act it is consistent with a {ixed power behav-
iour at @ = 0.5 [178]. Thie can be explained away by a A contribution which is
small at v = 0 and becomes Jarge at larger ||, however.

The N, and Ny trajectories also contribute to backward pp — 7*d and the (so {ar
rather poor) data show little structure, and so are compatible with exchange degen-
eracy {234]. If the couplings are degenerate here then they must also be in 7N by
factorization, and it becomes impossible to explain the dip by a nonsense zern.

The obvious way round this problem is to assume thar where there is dip struc-
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ture it is due to pole cut. mterference rather than the vanishing of the poles. A
comprehensive fit of all these processes ‘with strong cuts has been reported in ref.
[235). The fit is fairly satisfactory given the rathex few parameters, but, as would
expected, the discrepancy is worst for the 7N — Ny processes which are the .nes
best accountec .. r by poles alone. ‘On the other hand the A width comes out rigtt.
A recont comparison [236] of all possible Regge pole and/cr cut models for
7N — N7 concludes that all can be made to work with equal case, and there is no
reason to favour-any. -

Drago et al. {237] have used K™n — An~, which also has a dip at u = 0.2, to try
and distinguish between the Argonn. and Michigan cut models, but both sesm tc be
equally satislactory. ¥ pole domina.e is accepted the Ny exchange in #N — Nv and
K"n — A#" enables one to determine the ratio of the 7NN and KNA coupling con-
stants by extrapolating the fits to the pole. A recent determination [238] gives
YKNA = 15.5+5, which is within the range predicted by SU(3) (unlike some other
estinrates froin dispersion relations [239]).

Of the strange baryon exchange processes K*p —pK* has no dip structure, a
fact which can readily be explained [240] by A A, exchange degeneracy with
a = -0.7+0.98%, while 7~p — AKO requires Z exchanges ‘and a fit with Ty and Zy
trajectories which are degenerate in a {see fig. 38) but not in residue has been
made [241]. It accounts well for the polarization. One should expect an important
contnhution from the higher lying =g, :'35 as well, however.

7.6. Elastic scar.te*/mg

There is of ¢ourse more data on elastic scaitering than other processes but
there wre also more probiems, mainly oecause of the reed for the Pomeranchon
which i3 not neécessarily associated with any known pa ciicle, but also because of
the number of lower lying trajectories which contribute.

Many good fits using just poles have been achieved for all the processes in ta-
ble 5, as well as some which include cuts. In recent years it has become common
to combine both high and low energy data by using FESE techniques, (see section
6.2). However all of the older fits are in substantial disagreement with the new
high energy data on #"p, 7~n (= 7*p), K"p and pp cross sections obtained at Ser-
pukhov. This is not really surprising as the new data do not extrapolate in any
simple way from the old. Since the Serpukhov data must be reagrded as prelimi-
nary, in the sense that thefe is as yet no confirmation from another experiment,
we shall first discuss the pre~Serpukhov fits, and then go on to some of the at-
tempts which have been made to understand the newer data.

Daia on total cross sections are shown in fig. 46. The signs of the contriv.ting.
trajectories in table 5 depend partly on the fact that particles of even charge con-
jugation, P, f, Ag, contribute with the same signto 1+2 and 1 +2 scattering (Z1s
the antiparticle of 2' while those of odd C, i.e. p, w, contribute oppositely. Simi~
larly the isovector p and Ag contributiors change sign under 7+ -— 77, Kt — K" or
p — n, while the isoscalars are unchangod The absolute signs within a givc:: ETOup

of processes are not determined, however. If we use the signs given in the table, -

and we have exact exchange degeneracy i.e. p = w = { = Ag then the exotic channels
(see section 6.2) K*p, and pp are given solely by the P, This accounts for the flat-
ness of their cross sections compared to the other processes. But asymptotically
all the total cross sections should be controlled by the P so we predict o(r'p) =
o(7"p), < <*p) = o(K"p) and o%pp) = o(pp) = ofpn) = o(pn) a8 s — =, in accordance
with the omeranchuk theorem (dxscussed below).

Similarly if we take the differences A(rp)= o(r™p) - o{z*p), A(K*p) ~ A(K*n) <
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Fig. 46. The total cross sections below Serpukhov energies, frcm ref. [15].

ofK"p) - o(K*p) = o(K*n)+ 0(K"n), and Afpr) ~ &(pn) =o(pp) - o(pp) - o(pn) +o(pn), these
combinations are given solely by the p. The very small difference between o(op)
and ofpn) for example indicates the smallness of the pNN non-flip coupling.

The charge exchange processes are related to the elastic amplitudes by the iso-
spin relations

V2 A(z~p —70n) = A(rtp) ~A(r )
A(K™p — K°n) = A(K™p) - (K™n)

A(K™m —~Kp) =A(K') - (K"}

App—in) = A{pB)-A(n)
A{pn—np) = A(pp)-A(pn) (7.7

so it is useful to have fitted the charge exchange prceesses first in or.er to pin
down the p and Ag parameters before trying the elastic amplitudes.

Some recent pole fits have been made [189, 242, 243] using secondary {', o’ and
w' trajectories in addition to those of table 5. They are very impressiv:: consid-
ere purely as descriptions of the data. In particular the structure of the pclariza-
tiens are very well accounted for. The trajectory parameters [189] are
U= 1:037 o = ag = 0 5640 94, Uge = Qg = t. The p chocses sense r.nd its ipin-
ﬂTp residue van&hes at £ = -0.8, and the f chooses nonsensc sO both its residues
vanish at this point. The sr condary trajectories are needed to fit the FESR, aad
the o' 1s also required tc it the charge exchange polarization. The cross-over
plenomenon referred to in g, stion 2 (i.e. the fact that

[%2 e - 47 () |



changes sign at ¢ = ~0.15 GeV2) requires a zerc of the p residue in the non-flip
amplitude. KN zad NN show the same cross-over, and a corresponding zero is re-
quired in the w residue at £ = ~0. 15. Such a zero does not cccur in other related
processes such as m —pN z d yp — 7%, however, as it should by factorization
{244], so this procedure can not be regarded as satisfactory. But provided one
does not mind the cirall P slope this cross-over zero is reaily the only problem
with purely pole ﬁts

Various attempts have been —.iue to test the hypothesis that these processes
can be fitted by a sum of a flat P plus the direct channel poles, as required by
duality [153, 154, 245]. ‘foderately good fits can be obtaired, but the ambiguities in
the resonance contributions make them unconvincing, at least to this author. There
have also been generally rather unsuccessful attempts to fit 7N and KN and NN
with Veneziano models [169, 246-248].

I one invokes cuts cne can explain, at least in principle, both the cross-over
zero (by the usual pole~cut interference) and why the shrinkage is less than would
be expected from a P of slope = 1 GeV~2, Early fits were made with cuts gener~
ated by a flat P (the so called hydrid model) [249-251] but more recently a P of
normal slope has been used [252]. The ¥ can not be the only vacuum trajectory,
however, because the change of slope of do/d/ from the steepness of the pole to the
less stesp cut should occur at lower ¢ as the energy increases whereas in fact the
opposite occurs [178]. To explain this one still needs include the secondary f tra-
jectory etc. The position of the cross~over zero is hard to explain on the weak eut
(Argonne) model (see section 5.6). The w pole gives a zero at ¢ ~ =0.6 and it is not

possihle for the cut to move it to f = -0.15 [252]. The Michigan strong cut moedel
‘has le ,s rouble: f!&ﬁ]
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Fig. 47. The total cross sections at high energies, from rei. {138].
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~ As we have mentioned all the earlier fits failed to predict the Serpukhov data on
7N and KN ¢cattering shown in fig. 47. It is easy to understand why if one notes the
discontinuity of slope between the old data < 30 GeV and the new cata, 30-70 GeV.
What is worse the nrew K™p data appears o be running parallel to ine X'p daia

(still onuy available at low energy) instead of meeting it as the Pomeranchuk theo-
rem [253], and all simple Regge pole and cat models, require. Similarly the 7™ p
data are not approaching those for 7*p. However, the latter are deduced from 73
scattering by Glauber theory (using n°n = 7*p) and so are in some doubt.

As usual there has been a wide variety of explanations suggested. They fall into
ihree classes. The first is to suppose that the errors in the data are rather largsy
than claimed by the experimenters, in which case Regge poles (with slightly differ~
ent parameters from the previous ones) still fit [254]. Or one may accept the data
but suppose that despite fig. 48 the 7¥p and K¥p data will eventuaily mest at «. In
this case the cross sections must rise again above 70 GeV. A simple way to obtain
such a rising behaviour is to use cuts [255], since we have seen (section 5.6€) that
the PP cut is negative and decreases logarithmically to iecve a dominant P pole.

An example of such a fit is shown in fig. 48, and we see that very large asymptotic
crog” sections are predicted.
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Fig, 48. A fit to the Serpukhov data with Regge cuts in which the asymplotic ¢ro s 8¢
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are predicted to be well above the currently measurad values, from ref. [25]

The third possibility is that the Pomeranchuk theorem [283] itself is {alse. Thi:
states that the particle and anti-particle cross sections on a given target must be-
come equal at high energy, and its proof depends on assuming that the amplitudes
become imaginary at high energy, i.e.

ImA/ReA =,

&

If instead they become dominantly real the theorem breaks dow:: and the particie
and anti~partic!= cross sections can be different {266, 257]. An sliernative deriva-
tion for 7N sci.ttering is to use (7.7) and require the vanishing «{ the inelastic
charge cxchange process, but this does not work for KN ete.

It is not ~osgible to construct Regge pole medels which viol. te this theorem.
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{indeed it was just because it does satisfy the Pomeranchuk theorem that th: Poin-
erarchon receivad its name [55].} The reason for thls is that in order to get a con-
stani asymptotic behaviour at < we need 2(0) = 1. But the difference

[A(E+p) = A(K™p)] (s2y) i given by an odd signature trajectory (by crossing sym-
metry) and an odd signatare trajeétory with a =1 is purely real and so does not
coniribute to the total cross section. Cuts are no ;good either because they have the
same signature properties and vanish asymptoticaily.

Two ways of viola.ing the Pomeranchuk theéorem which have been suggested are
to introduce J-plane dipoles{258] or other more complicsted singularities [259]
which can give a finite contribution to the imaginary part, or to make the odd sip-
nature trajectory complex [260}, which produces an oscillating cross section. The
first is unpleasant because the singularity has no obvious explanation as a particle
exchange. effect, and tends to produce Mgarithmicaily mcreaaing eross sections. ;

‘while the second has even less intuitive meaning. -

The pp differential cross sections continue to shrink at high energies and are
consistent with a P slope of about 0.5 GeV™2 for -0.1 <# < 0 [261]. This revives
the idea that the P is associated with the f particle, which would require a trajec-
tory ap = 1+0.64¢. In this case the P' trajectory, presumably contains the f(1514).
It has been pointed out [262] that the f seems to have zero NN flip coupling, which
if "rue for the whole trajectory would explain why the #N helicity flip amplitudes
seem to be very smali However cuis generated by a P with slope 1 :an reproduce
the eliective slope of 3 just as well [263].

L m the results of the first Serpukhov experiments are so un~
expe?* od that one is unwilling o put too much weight on them until they are inde~
pendently confirmed. It will be a very unfortunate coincidence if nature has chosen
to change the slopes of the total cross sections just at the maximum energy of the
previous gencration of accelerators, as fig. 49 sugqests.

'The final elastic process in our list, Compton scattering, presents a particular
difficulty for Regge theory [214]. One expects of course a constant cross section
controlled by the P, but because of the helicity of the photon (Ay =2 1) e =1isa
wrong- sngnature nonsense point. Hence the P coupling would have to vanish at
a=1, i.e.{ =, if there were not a wrong-signature fixed pole [265]. But it is
rather peculiar that Compton scattering should be controlled by the third double
speciral function in this way. An alternative way out of the dilemma [=23] is to
note that f = 0 is the yy threshold and if one is willing to alter the threshoil hehav-
iour on the grounds that the raocton has no non~relativistic limit (just like the 37
threshoid in yp — 1tn discussec above) the nonsense decoupling factor (a(t)—]) can
renlace the reguired kinematical zero and leave a finite coupling. Also because
this process has two clectromagnetic vertices the usual theorem ~mainst the pres~
ence of a fixed pole (which still applies in photoproduction) breaks down [268]. Fits

to the yp total cross section data combined with digpersion reletions ::uggest the
presence of a real part unconnected with the Regge terms, and of magnitude
roughly equal tc the Thompson limit (= - 1/13 I?HN) [267]. This could Le inierp:cied

as a fixed pole at J = 0.

. Quasi-elastic scattering
In view of our uncertainty about the rature of the P required in elastic sc.atte!‘“
ing, it is important to iry and ‘est whether quasi-elastic processes !i.2. processes
which are inelastic but involve no exchange of quantuvm numbers) ars also con~
trolled by this trajectory, and hence have constant cross sections,
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&

In fig. 49 we show the cross sections I 'r 7p — 7N*, where the N*'s are various
[=4 nucleon resonances [268]. The data are not particularly good, but cleariy in-
dicate constancy at high energy. This is to be contrasted with the decline of the
cross sections for production of I = 3 N* resonances which zre centrolled by the p
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Fig. 49. The total cross sections for the production of so...¢ N* resonances, from ef. [268].

The vector~meson photoproduction processes also provide a wsofu. test, and
again the cross sections seem to be compatible with constancy, at leust for the p
iud w[224]. There is a large slope in the w cr-oss section at low energies which
can be attributed to v-exchange since one exp:.:cts from SU(3) that the wry coupling
will be much iarger than the pmy. It has recently been pointed out by 3arger and
Cline {269] thut the reaction yp — ¢p may offer a particularly good ch.nce of ob-
.erving the P trajectory unencumbered by the P’ (or £?} which complicates the
analysis of other reactions. The reason for this is that because of the mixing angle
(section 6.4) the ¢ is decoupled from non-strange hadrons (it is made up of AA
quarks) so that in N — ¢N {in which only I = § =iates can be exchanged) the @
should decouple from the { leaving just P excharge. According to the vector domi-

2
do e do

g7 P — ¢p) = o2 & {¢tpp — 0P},
¢

Wieis ¢y, mes .S a transversely polarized ¢ meson, and ¥y is the ¢y coupling.
The rather _vor data on yp — ¢p suggest a P slope of zhout 3, but because of the
posgibili’ ; that one i3 really observing a sei of multiple P cuts this only regre-
seats a "ower bound to the slops. In fact 2 cut analysis suggests ap = 1 GeV2

[276]). A P with such a large slope is rathe: difficult for the durlity hypothesis be-
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cause it will oroduce Schmid loops in exotic chenuels, and so requires ¢ wtro-
duct .on of exotic states. Also if the P is identified wilh the f, the pfA ¢ degener-
acy, whirn is essential for pole duality (see section 8.4), is destroyaid.

7.8. No single paiiicle exchange possible

An imporiant test of e consigtency of our theory is that thoxe processes where
no known trajectory can be exchanged should nct give rise to prominent £o; ward or
backward peaks. Some «xamples are given in table 5, none of which have any sig-
nificant structure {in iac«t several are tco small to measure). This confirms the
association of peaks wila particle exchanges, and once that is gianted, shows that
thcie are ro strongly coupled exotic trajectoricz in the channels considered. Ther
should, however, be contributions from multiple trajectory exchanges, and the two
Reggeon cuts which one wowa expect to dominate (given the rules of section 5.6)
are shown in the table. A determination of the energy dependence and magnitudes
of these amplitudes could provide a good deal of inforimation about these cuts. Un-
fortunaiely experimeais on 77p — K + {missiug mass) show no amplitude a¢ 211
[271], while K™ p — pK~ stows a sirong decrease ~ s™9 2t low eaergies {the reso-
nance region) [A7I]. There should be ~ ¥*4 cut wiih an <3 depeadence hut this is
not seen. A model of tiis cut has been suggested [278], but it is well below the
hounds of the present high energy experiments. It must be hoped that much beiier
data on this soit uf process will be available before tnn 15y,

7.9. Factorizction

The question of the factorization of Regge polcs deserves a more generzl men-
tion.

We have »sed arguments based on factorization to decide against the existence
of a cross-over zero in the 2 and w trajectories at # ~ -0.15, and against the con-
spiracy explauatior of » dominated reaciions. But one ought also to ask whether
there is any direct experimental evidence in favonr of factorization. In fact it is
very hard to obtain because one can not do .he necessary experiments; e.g. ong
can lcok at #N and NN scattering but rot #7. One fairly direct test f274] “or the P
is to test the equality

}110‘

17 N~ 49 NN--NN*
ar NN—NN) 5 (NN--NN*)

A~ ’
z%j (7N — aN) i‘f’» (7N — 7N*)

where the N* is any / = 3 nucleon resonance. The left-hand side is 2.7 at £ = U and
the right-haad side is 3.2 and 2.9 for the N*(1400) and N*(1688) respectively (with
errors of + 0.6 on each}. This is some, but not very strong. evidence fur v tori
zation. Bari an. Razini {275] have looked at the ratio

do ! do
o ("N —aN) | 57 (NN — 7NN)

for a range of 7N final~state energies and find good agreement with factorizaiion
aaspite tie fact that there will be [ = § contamination {dropping wiw increasing en-
ergy of course).

The absence of mure direct tests of factorization permits the (? floeting)
thought that pernaps all trajectories ure multipie, as suggested by the split A9
+nd multi~particle Veiieziano moadels [276]. A sraall splitting can explain several
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of the problems of the simple pol: model (such as 77p — 7% 1+ Laiization (see sec~
nen 2) and the eross~over zero) bhut not *he & cunspiracy. Howeve:r, sinee we know
that noo-faciorizable cvts ynusi also pe present it seems me =t nnc =1 ‘o Slame aov
i ot of faciorization on them., |

The discussions of the preceding chapters should be sulficicui 1o vindicate the
claim made in the introduction, that Regge theory provides a most sueccsalut ap-
aroaen to high-energy scatiering, and that J-plane an~lrzis 1n an essential tool for
nnderstanding scrong interactions.

Despite the many aivbiguilics we have heen able 10 draw some reasonably firm
cLaciusions about Regge poles. Most trajectories seem to be essoentinlly ctiuight,
parallel lines, with a slope about 1 Gev~2, and mapry of the dominant frajecturics
are approxXimately exchange-degenerate. We have found no evidence that trajecto-
ries take part in conspiracies, but ali seem to have Toller qumber A <1, There (s
. pruciem with regard to the baryons in that ciwe does not find approximately de-
generate pairs of ornositc parily trajectories. This is incomgpatible with the
straiczhiness of the baryon trajectories unless there is some mechanisn: to make
the residues vanisli for every integer on the odd parity side: or some singularity
like the Carlitz-Kislinger cut (disrugsed in saction 5.7} is invoked. There is very
little evidence for daughter trajectorics, and it seems likely that if they exist they
stay In the lefi-half .J-planc. serving merely to preserve analyticity at /= 0, and
do ne' produce physica particles. Their status may oo similav o al of the man
unimportant low-lving ‘rajectories i1 potential scatter.ng, sach s those which o~
cur at thresholds at I = *ﬁg, “% .

The nature of the Pomerancion 1s 8till uncertai . The fact that the prodnt o oo
tnee to shrink at Serpukhov energies requires a moving singulnvily. wod we o oo
know of 2 mechanism which can preduce cuts with ag(0) = 1 if there are not also
poles with &{0) = 1; but wnether the .’ has the slope indicated by the pp data (~ 0.5)
and so perhaps passes through the {, or has a similar slope to other trajectorics
{~ 1) but is partially masked by the cuts, remains unclear.

We have found no evidence tor fixed J/-plane singularities {apzrt fiom ihe non-
sense wrong-signature fixed rrles), exeept possibly in soine photoprciuciion pro-
creses, but even here the evidence geems (o bo against them at larger /.

Polee zlone are not abie to {it the 4+*2, howsver, because in particular he
iross-over zero and th2 pion conspiracy air  incompatible with factorization, ant
to explain these effects we must use cuts. We know on theoretical grounds thal
cut- are needed to explai how the Gribov-Pomeranchuk fixed noles are ghielded
{rom rne unitarity equation, bui unfortunatelv we do not have 2 reliable model to
caleculate their magnitudes because thev depend (ot least in Feynman diagram
models) on continuing the Reggeon couplings off ihe mass sheil. The varicus on-
mass-shell prescriptions, such ag the abso. ptive and eikoanal models, do not have
any very ~ompelling theovetical backing; indeed both seem to iuvolve planar dia-
tTams which should not give rise to cuts.

The absence of a reliable method of estin :*ing ci1t magni‘udes is the principal
aroblr 1 of Regge phenomeaology at precent. It has not so far oeen possible to dis
tinguisi experimentally bet ve~.. tte go cailed strong {or Michiganj cut r ruinl 1o
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which pole~cut interferenca i3 responsible for the vaxious dips in the differentia)
cross sections, and the weak (or Argunne) model in which the poles themsieiveg
have zeros at wrong-signaturc nonsense points, and the cuts sarve merely to move
or fill in these zeros. But is seems likely that better data, particularly on polart-
zations may ¢nable a choice t¢ be made. It must be born in mind, however, that
since neither mode! has a very sound theoretical status it is quite possible that
neither will be found {0 work in all processes. At present yp - £*n spoms to -
quire very s.rong cuts (even by tho standards of the Michigan model) while

7"p — 79n would be quite happy with almost neglig*ble ones.

The plea for better data is of course perrennial among theorists, but so much
has been learned hy fitting two body processes that one feels justified is asking for
more data on resvnance production processes so that tests of factorization canba
made; more high energy pola: = «tion measurements 8o that the spin structure of
amplicudes can be determined “vith greater confidence; and of course the more
data there L3 on any process at large s and ¢ the better, since the differant pole
and cut mod.'ls become more readily distinguishable at higher cnergics and wider
angles. It seems that more is likely to be learned in the near future from quasi
tvro~-body prc;fuction experiments than from more complex final states which are
so much ha |er to analyse.

Dual mom&ls, which have enjoyed such a vogue in recent vears. pose scme very
difficult theoretical problems. We have sr.en in chapter 6 that the ideal duai wnrld
where every amplitude is saturated by narrow resonances which fall iato non-ex-
otic SU(3) multiplets with exchange degenerate trajectories bears »nly  partial,
and by ne ..:<2n8 quantitative, relation to nature. Once one atter.pts ‘o make cor-
rections for unitarity, SU(8) breaking, et>., the whole cdifice seems to cruiible,
The model becomes too imprecise (o test because there are 80 many ambiguities
in determining the existence and magnitude of inelastic resonances, and in how to
continue a Regge pole term to low energizs. One can not decide what is meant oy
‘broken duality’ until cne has a clear idea of what exact duality means (if anvt ing
outside a wurld of narrow resonances. It seems to the author that little if any
progress can be expected urless and until some fairly precise prescription can be
giver. for constructing dual models with resonances of finite width, =0 that there ig
a Aefinite prescription for continuing the amplitude onto the unphysi:al sheets to
the poles. The Veneziano models provides no help in this, and not surprisingly it
does not fit two-body processes at all well.

Most of the problems really stem from the {act that duality is to¢ varue to be a
fundamental principle itself, and yet it is hard t« see from what more oasi> con~
cept an approximate duality could derive. At the moment it is a purely ad “oc no-
tion. Probably the chief current interest in dual models is that they provide a con-
venient framework for constructing many-particle amplitudes which have the re-
quired poles and multi-R«:gge behaviour, rather than in duality itself.

Though Regge phenomenology has made great progress in the last few vears the
same can not be said for our understanding of the basic dynamical principles on
which this success presumably depends. In particular both the straightness of the
irajecicries, and exchange degeneracy, are completely unexpected, and seem guite
at variance with the pulential scattering ideas which motivated *he introduction of
Regge poles intc particle physics. In potential scattering {4, 5, 14] the leading tra~
jectories satisfy dispersion relations of the form
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" _ (I Imay') .
alfy Ve poog G (8. 1)

aagl are strongly curved, the:e reod pacts caching o maxbtoum e far above
threshold when Ime becomes aleeable, ana then turn down agudin, Excliange duegen.
erate trajectertes ocoar only in the absence of an exchange (Majoraan) force.

Nane of the attempts which have been riade to calculate Regge trajectorics from
‘equival 'nt potentials’ [16 ™77} have been able to reproduce such straight, cegen-
erate trajectories. The lack of curvature is in fact strong evidence thai the chan-
nels which cuntrel the dynamics are of very high mass [278]. This is clear from
(8.1} in that if the threshold, {5, in (8.1) is very {ar away we can approximate the
ilegeal by a pole

aft) = a(m)a,»R/(tpws) for ) « ty s (1.2)

where fp g, Then a'{(0) = R/t‘g and o”{h -« 2K /t% o we get @ %> ¢" (prime  d/dd)
and the trajectory | aearly straight for amall ¢

The dominance of such a high mass channel is stiongly saggestive of the heavy
guark model of course, and this can also exprain why the trajectories are exchang 2
degenerate in that there will be no particle~-exchange forces in the exotic qq # char-
ael, but only in the qq ! channel. But, it should be note that the observed residues
will nnt se 00 kAl 4o dogenerate in this model, for what we see are the couplings to
low .. . . Lar-n's, and it is only in the "inobserved qq channel that the resiaues
w1l be degencrate {249]. There is a aifficulty with this quark mod:l hewever {273],
for if the trayoviciv is to ~bey (8.2) with ¢{0) = § and o’ (0) = 1 GeV~2, we have

a(=) = 3~ Gev~2

Now {, 1= above the qg threshold at 4r222, s0 if the uarks have me =sas of apout 10
feV say then of ») < ~400. In potential ceattering fsav for a Yukow, potentin!

biry g e”A/r) the leading trajectories have (=) - -1 because the potential fog .
term /(s -~ A<) corresponds to a {"~ed po'e in the [~channel ./-plane at ~1. To re-
move this pole we must require that the potential obey SCR (like section 2.2, In
cor liruraticn space these SCR correcpond to zeros in the potential at the origin,
say V(1) = g v €27, and we requir - » -+ 400. It is bard to see how such a poten-
tia: can be strong enough to produce hi hlv bound states (though of ccowse the anal-
ogy w.th potential scattering could break down completely). Very similar remark-
appiy even if we do not re juire the existence of real ¢-arks tut simply use them to
simuliite the coupling to raany-particle channels. Li aw ench medel the trajecto-
ries are CDD trajector’es as far as the low n.ass channels are concerned, and it
is hard to see how Re jge behaviour can hold for s ¥ 'r%.

An alternative possibility is that fhe trajectory obeve the t wice suutracted dis-
persicn relation {3.15). We have see) that this is in gocd ace rd with e observed
behaw.our of Ima, at least for mescus. But in this case ¢ .5 10t delemmi - Dhy
unitarity at all (which simply deterr...nes Ima), 2. the two :ibtraliion parameters
af=) and a' are arbitrary. The trajec-cries are now CDD crajectories i Wl elova &
Since 10 fact o' is observed to te approximately the same for all trajec.ories we
can sveculate that it represents a fundumental conctant of tirong interactions. an!
that uritarity (via Im o) simply determines the small deviaticn of o* trom this uae
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versal value in individual trajectories. However, this iakes us 80 far from jaten-
tial scattering that it becomes hard t. eee why there should he any application of
Regg~ theory to particle physics at all.

We conclude therefore that the straightness of Regge trajectories is one of the
most baffling, 2nd most important, problems of 2lementary particle thcory. But
it can be solved then we shall probably be we'l on the way to a complete under~
sanding of stroug interaction dynamics.
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