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Abstract: 

An introductory review of the application of co~,~plex J-plane theory,, or Regge 
~heory, to the annie, sis of elementary particle pro~sses  in ~tven. We deserlbe 
~how a h e l i c ~  av~lit~de ~ be repre~uted in t e r m  of :lts J-plane u ~  
lties~ , ~  the restrictions ~ l c h  can be placed on those sinsularitleL The prop- 
erties of R e ~ e  poles and cute, and the e y e , t o n  og cut contributions, ere din- 
cussed, and the .ero]l~ep~ ot ~ i t y ,  ~ ~ formul~tlon of dual models is consld- 
ercd..The ~ I n  ~IReh inforlnstlon about thb R e a e  singularities can be deduced 
from the experimental data, both from the resonance spectrum and from the hLgh- 
enerF, v behaviour of scattering amplitudes is described, and an satemp~ is msd~ tr 
assess the current state o~ RegKe phenomenology and its place l~t particle phys- ~,. 
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CHAPTER I 

INTRODT;CTION 

Most current attempts to understand the strong interactions of elementary par- 
ticles are c "haracterlzed by a concern with the complex angular mome~,tum plane 
(or J-plane), and much of the literature makes at least some reference tc it. B~t 
we have travelled a long way since rlegge's pioneering work of 1959 [i-3], and 
there is rt~w not much use of the framework of potential s~ attering on which the 
original discussions were based. In fact almost from t:'.~ beginning most of the iP- 
*erest has centred on the phe,omenologlcal L~_plications of Regge theo~T rather 
t~n on its relation to the fundamental dynamical principles (whatever these may 
be). 

The basic idea o~ Regge theory, to be explained in more detail later, is that 
scatter~ amplitude~ are analytic hnctlons of the anguAar momentum, J: an,~ that 
a particle of mass m ~ ~in a will lie on a Regge trajectory ~(t) (where t is the 
squ~re of file centre of mass energy} such that the partial wave amplitude has a 
pole of the form r rJ. o~t)]-l, and such that a~m 2} = ~. Such particles are said to be 
'composite' because they behave ~n the. angular momentum plane llke the bound 
states of Imte-ntlal scatterL-tg rather than the fixed spin 'elementary' particles of a 
Lagr~ field theory, which do not correspond to J-plane poles. Since a(t) may 
pass through several intefer values (or half-odd-integers for fermions) several 
particles, of increasing spin, nm,v lie on ~e same trajectory. 

It is generally believed that the strong_ interactions forces are due to the ex- 
c~age of such composite particles, or Regge poles, and, as we shall see, such 
an exchange (see fig. I) gives a definRe prediction for the high energy behaviour of 
the ~,c~ttering amplitude A(s,t) (where now s is the square of the centre o_f mass 
ene:~, and -t is the momentum transfer) viz. 
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A(s  0 ~ s 

where  a(t) is the h ighes t  t ra jectory.  

i $ a 
Fig .  1. The exchange of a t -channel  Regge pole ~{t) In the s - c h a n n e l  s ca t t e r ing  p roces s  

1 + 2 - - 3 + 4 .  

Shnt lar ly  Regge cuts  in the J plane cor respond ,  in a r a the r  complicated way, 
to the ezclmnge of two or  more  pa r t i c l e s ,  and their  asympto t ic  behaviour may in- 
c lude logari thmic t e r m s ,  such as 

A(s, t) ~ sac(t)(log 1 el.n) 

where  ~c(t) is the posi t ion of the h ighes t  branch point. In genera l  there will be 
many poles and cuts  exchanged in a given ampli tude,  so the asymptot ic  behaviour 
ma y  be a sum of t e r m s  like (1.1) and (1.2). 

:Thm!gh Regge pole phenomenology exci ted  much in te res t  in the early yea r s  
(196t'~'i965) [4, 5] th is  enthusiasm was shor t - l ived ,  mainly it would seem because 
of the  fai lure of one impor tan t  p red ic t ion  - that  if a s ingle  pole  dominated the for- 
ward  p e ~  c& the ~N elas t ic  sca t te r ing  different ia l  c r o s s  sec t ion  it would shr ink 
~rith Lucreasing energy.  It remained  fa i r ly  easy to fit all the available data v:ith 
l tegge poles, but the number  of p a r a m e t e r ~  needed s e e m e d  d ispropor t ionate  ~o the 
amount  of data fitted. However,  as be t t e r  data, par t icu lar ly  on inelastic p ro-  
c e s s e s ,  became available,  s tar t ing about 1965, in teres t  revived,  and Regge phe- 
nomenology has become a t~riving indust ry .  

Th is  cer ta in ly  does  not mea~ that  Regge theory is  without i ts  p rob lems ,  or  that 
al l  the available data  can be fi t ted by a few J - p b n e  s ingu la r i t i e s  without ambiguity. 
But is does mean  that  t he re  is now widespread  ag reemen t  that  the complex J-plane 
i s  a good place  to t ry  and analyse what is  going on. 

In this sense  Regge analysis  is in a r a t h e r  s imi l a r  pos i t ion  to par t ia l  wave 
,nalysis.  It is  well r ecogn ised  that  where  sufficient low energy  data ~s available 

, n essent ia l  p r e l i m i n a r y  to a thorough unders tanding  of the sca t te r ing  p r o c e s s  is 
to r e so lve  the ampl i tude  into par t ia l  ~ w e s .  One does not, of  course ,  expect  that 
such  an analysis  will always be f r ee  f r o m  ambiguity,  or  that  it will be poss ible  to 
in t e rp re t  the ampl i tude  by a s imple  mode l ,  such as  a s~m of Bre l t -Wigner  rc ,~-  
nances .  It is r a t h e r  that  by m.k~ng use  of such a basic  not ion as  angular-mome'~- 
t u r n  c o n s e r v a t i o n  o n e  ¢~ru~.~t~ t n  t ro t  n ~ . r e  r ~ thA h~, , , , t  ,~¢ ~k~ - . . , , . t . l . . , -  

Similar ly  with Rsgge analysis ,  whenever  the re  is  suff ic ient  high energy data it 
m u s t  now be r e g a r d e d  as  an essen t ia l  p r e l imina ry  to ana lyse  the  ampl i tudes  ~n 
t e r m s  G c~os~ed channel  J -p l ane  s ingula r i t i es .  Again t h e r e  will be ambl~uit~es, 
and  the re  is ce r ta in ly  no reason  why a few Regg~ poles  should  suffice, but once 
one has  some idea of the  J -p lane  s t r u c t u r e  of an ampl i tude  one can s tar t  try lng to 
deduce the basic  dynamics  on which that  s t ruc tu re  is based.  
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h~ fact our understanding ot the fundamental dynamics lytng behind the suc- 
cesses of Regge phenomenology t~as made very little 1f any real  p rogress  since the 
introduction of Regge's ideas in toS-mat r ix  theory in 1961 [6-9]. Indeed we shall 
argue in the concluding chapter  that the foundations of Regge theory now seem if 
anything less  comprehensible than they did a few years  ago, though there have 
been some promising developments,  such as the multiperipheral  bootstrap, and 
the ~troductlon oI dual models. But there has been a tremendous increase in our 
understanding of how to apply the basic ideas of Regge theory to scattez ing ,~xnpli- 
tt~des involving particles with spin, and unequal masses, and a great improvement 
in the availabilitF of experimental data with which to try and locate the dominant 
poles and cuts, 

h~ this 'report we shall atteznpt to review the progress which has been made in 
recent years in sharpening the tools of Regge analysis, particularly as regards 
the kinematics of Regge poles and the evaluation of Regge cuts. Our emphasis 
throughout is on those aspects of Regge theory which are of interest to the phe- 
aomenologiat. We assume that the reader is already aquainted with the basic ideas 
of,~-matrix theory [10-13], and begin, in the ]lext chapter, with the representation 
of ~,' h,~llclty ~:n~..tt.'4v ~a terms of its J-plane singularities. Chapter 3 contains a 
brief review of the information about Regge trajectories which can be obtained 
Zrom an examination of the resonance spectrum. In chapter 4 we summarise the 
varioa~s kinematical and dynamlc,-d requirements which must be satisfied by Regge 
poles - their analyticiW properties, the corspiracy relations, etc. Chapter 5 is 
de~cted to a discussion of the theoretical aspects of Regge cuts, and recent ~t- 
tempts to estimate their magnitude. 

In ch,~ter 6 we give a rather" brief ~, urvey of the !~lea of duality, which has 
pL.yed such an important, but as yet controversial role in particle physics, n~d 
ti~ n .n chapter 7 we review the application of the preceding theory to the experi- 
mental data. Some conclusions are drawn in the final chapter. 

We have resLricted ourselves almost entirely to the t'~.,o particle .... two particle 
amplitudes, partly because the evidence here is so much mo~'c complete that it is 
for mu]tiple production processes, and partly through lack of space. The litera- 
ture on Regge fits is so vast that one can not hope to be coJnprehensive, ~or in n 
rapidly changing field caa one be completely up to date, but we have tried to give ~ 
re.~sonably b-danced survey of the successes and difficulties. We have omitted al- 
most all applications of Regge theory, outside phenomenology. In particular we do 
x~ot discuss the several .4ifferent types of bootstrap equations using i- rgge poles, 
some of which seem to c,ffer exciting prospects for putting Regge theory on a 
deeper theoretical foundation. 

We hope that the treatment given is sufficiently detailed to ser Ce as an intro- 
duction, but the going may be rather heavy for the reader who is meeting these 
things fo=- the first time, and he is advised to skip the more complicated parts at 
first reading. He may also wish to consult some of the earlier introductors, works 
on Hedge poles in potential scattering [4, 5, 14], and in S-matrL~ theory [10-14]. 
The author has already collaborated in a review of the subject [15], but that was 
three years ago~ a long time 'in particle physics, and in any case the viewp_oint 
here is rather different. However, reference is frequently made to that book for 
points we do not have space to discuss fully here, and where possible the same 
aotation is used. This does not of course mean that this is the only, or the best, 
place where the required, material c~n :~ found. 

Because of the fairly comprehensive references to early work which can be 
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f ¢ ~ d  in refs~ [4 ,5 ,  15] it  has  not been thought n e c e s s a r y  to give  full  credit  for the 
o lder  e s t ~ i s h e d  parts  of  the subject.  ~ o r e  e a ~  has  been  taken with r e f e r e n c e s ,  
to work s ince  1.q67, but of  course  no c i a i m  t o  c o m p r e h e n s i v e n e s s  can be made.  
The  re~-der is  a lso  r e c o m m e n d e d  to other recent  rev iews  such as refs.  [ 16 - 18]. 

CHAPTER 
OUTLINE OF REGGE THEORY 

2.1. IntroducHon 
In this chapter we shall outline the basic ideas involved in complex angular too' 

mentum theory - or Regge theory for  short. 
We b e ~  by d e f i n i ~  our kinemat ics ,  and introduce helicivy ampli~,udes, 

AIJ(S, t)(for both the s and t channels) which we shall use to describe scattering 
processes  involving part icles with spin. We then define t-channel partta~-wax, e 
a~pli tudes AHj( t )~t  ~ the conven t t0~  p r o J ~ l o n  in t e rms  of rotation functions 
d~,(Zt). D e f l n ~  in ~ i s  way the partial Wave ser ies  diverges outside the t-channel 
physical region at the point where we reach the nearest singularity in s, but "~e 
can circumvent this di~/iculry by writing a dispersion relation for the amplitude in 
s at fixed l~ We ~hen obtain the so-called Froissart-Gribov partial-wave pro.lcc- 
t!on. 

These partial-wave ~.~.~!itud~s arc shown to hav~ ~ unique cnntinuation in ~T, ~t 
least  as long as  the Froissart-Gribov projection is defined. Certain problem~ corr- 
cerlfi,~g signature and parity have to be discussed, however, and these considera- 
b~?" c( mplicaLe the b ~ i c  simplicity of the arguments which one would use for spin- 
l e s s  ~ c : l e s ,  The ~ r t i a l  ~ave ser ies  is then rewritten as a contour integral in 
~ i ~ ~ - i : t h e  ~ e r f e l d ' W a t s o n  transform - and the integration contour is 
o p e ~  ~ to ~ e  the pole and branch point singularities in J of AttJ(t). 

It is  then found that tb.,~ presence of a s i ~ r i t y  a~ J = a~t) leads to the predic- 
tion of the P Ot~erbehaviour for the total amplitude giveu ~n (1..1L vtz. 
AH(.~,t ) ,-- s (t} (w~;th possible log s factors if the s i n ~ a r i t y  is a cut). Thi~ pro- 
~oun~ com~ection b e t w e ~  tht: ~o char~el J-plane singula~.ities ~nd the s-channel 
asymptotic beha~our is at the heart cf Regge analysis. The well known physical 
interpretation of a / ?~.~ne pole as the exchange of a ~,-channel particle, and of a 
cu'~ ~s the .~change of s e v e r ~  ~ r t i c ] e s  simultaneously, iv left to subsequent 
chapters, bu~ w~ conclude wi~  a br ie f  discussion ~ the restr ict ions which unttar .o 
ity p],aces on Regge singu!srities, including the Froissar t  bound, the absence o~ 
fh-ed pole~ unless there are also c~t~ a~d the £actorization of pole residues; and 
we show that cu~s a re  ueeded to make ~ e  Gribov-Pomeranchuk fixed poles com- 
patible wi~  unitarlty. 

2.2. Kinem~ics 
We cGnsider th~ strong inte~ actlon process  shown in fig. 2 in which the direct 

or s-channel consi~,L~ of particles 1 and 2 entering the scatterlng rv~ion, and 3 
and 4 emerging, It ~ioes net concern us here  wh~ther the part icles are s ~table, or 
are  r e s o ~ c , ~ s  ~hicit s~seq_uently decay. In either case it is found that ~ e  sc~f- 
~.erir~ is predominantly in the forward and/or  backward directions at high ener- 
gies, and controlled by the exchange forces  from the t and u crossed cha~-mels re- 
zpectively. We shall concentratn on describing how the t-channel forces ~:,~ove.rn 
the forward d/reCtton - the Corresponding. u channel description is then o0vious. 
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r~ach p a r U c l e  ( m a s s  mi; i = 1 , . . .  ,4) c a r r t e s  a four  m o m e n t u m  Pi (as  shown in 
fig. 2) and f r o m  the se  we c o n s t r u c t  the u sua l  M a n d e l s t a m  i n v a r i a n t s  [ 19] 

_- ( o a + /h)  2 , t -- ( p ; .  @ ) 2 ,  u = ( t'a + /4 )  2 • (2.1) 

o:~ which onty 2 a r e  i ndependen t  s ince  we have  tko "onz*.raint 

s + t + u  ,= D m 2. - ~ . (2 ~) 
t 

Then ~fs is the c e n t r e  of m a s s  e n e r g y  in the  s - c h a n n e l  and, - t  the  m o m e n t u m  
transfer squa red .  The  c e n t r e  of m a s s  3 - m o m e n t u m  of p a r t i c l e s  1 or  2 is  g iven by 
[201 

¢s  ~ 12 = ~ z  I s -  (m 1 . ~n2)2][s- ( ' 1  - m2) ~'] (2.3) 

and the centre of mass scattering angle Js 

2 2 .  m~) s 2 +s(2t  - Z) + (m~  - m2)(m 3 
= = ( 2 . 4 )  

cos  0 s - z s 4s  qs  12 qs 34 

Similarly ff we consider scattering in the t-channel corresponding relations may 
De wr~,tt~n down for qt 13, qt 24 and cos 0 t = z t by permuting the variables. The 
physlc~J2 regions .are bounded by -I --< z.~ ~ 1, etc. and these boundaries are given 

, 2 
~(s, t) =- s t u - s~m~ 2 2 2 t (m 2 .  2 2 2 

- m3) (m 2 - m 4 ) -  _ m 2 ) ( m 3 "  m4) 

2 2 2 2,, 2 2 
- (m l m  4 - m  2 m 3 ) ( m  l + m  4"  

2 2 
m 2 - m 3 )  =O , (2.5) 

see fig. 3. 

- t  

"~", V \ [/~ 4,s</ 

Fig. 2. ~'he scattering amplitude for a gen- 
era/ four-body process.  The s-channel reac- 
tioll i s  1 .~ 2 - - ' ~ + ~ [ .  t h e  t - c h ~ m n e l  i~  2 + 4  -~  

• " . . . . . . . .  C :  . -  

-" 1 + 3, and  t h e  u - c h a n n e l  i s  1 + 4 ---" 3 * 2 
where the: bar indicates the ~ t i -pa r t i c l e .  Fig. 3. The Mande]stam plot for ~N--;rN 
These three processes are related by m~d its re!ated processe~, The physical. 

' crossing, regions of the three channels are shaded. 
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T h e h e l i c l ~  of a p a r t . , ' c l e ,  

di rec t ion  of moUon[Bt] ~.e. 
#, i s  def ined a s t h e  pr~JecUon of its spin, (~, i~ its 

where p is  th~ 3-vector  momentum. 

p . o  

s r a n s  the 2~ + 1 values  ~ = ~, (r- 1,. •. ,-~. 
W~ denote a centre  of mass  hel lci ty sca t te r ing  amplitude [21] for our s-chan~el 

p rocess  by 

(~3 ~4[A(s, t)[  ~tl ~t2} ~" Atts (s,t) (2.7) 

s ince we know from Loren tz  invartar, c-e that  the amplitude Is a function only of the 
Mandels tam in:~ariants, s and t, and the four hel tcl t les  ~i" We z ~present these 
collect ively by Hs, the s ~  being used  to indicate that the hel ici t ies  are  meas- 
ured in ~he s-chap_nel cent re  of mass  sys t~m.  

The  a~xplitudes a r e  chosen to be z~.grmalized as in red. [ 15], so that the o p t i ~  
theorem re,,ds 

1 Im(/~ 1/~2 ]A(s,0) I/~1/~2) (2.8) 

and the ~mpl~L~des ~re related to the unpolarized dif ferential cross secUov, vy 

dCdt = 1 1 I ¢ 12 (~,9) 2 
64~rSq s 12 Hs 

~ We sum over  a l l  the poss~,ble combinations ~ the ~t i. 
We also need te use  helici ty a m p l i ~ d e s  tl~,ined in the t-chamzel centre  of mass 

sys tem 

~k2k41A(s,t) I k 1 ~.3 } =- AHt(s,t) (2.10) 

vlhere the ~.i a re  the t -channel  ~telicities. The cross ing post i la te  [10-13, 15] re-  
q~.ti~s that (2.7) and (2.10) should be the same an31ytic fimction, apart  from the 
n ~,~?d to rotate the he l ic i t ies  from the d i rec t ion  of motion of the par t ic les  in one 
cen t re  of mass  sys tem to the other [22]. So we have 

AHs(S , t) = ~ M(Hs,Ht)AHt(S, t) (2.11) 
ut 

where M(Hs,Ht)is the hel ic i ty  c ross ing  matrLx [22-24], which is  s imply the prot~ 
uct of the rotation ma t r i c e s  needed to ro ta te  the he l ic i t ies  of the par t ic les  

M(Hs,Ht) = d ~I '× ~d ~ "X "d ~3 "g ~d ~4 tv.~ (2.12) 
kl /~l  ~ 11 A2/~2 ~ 2/ ~3~t3 ~ 31 k4~4~,~t~ 

where  the angles of rotatiort are  

(s+m21.m~2(t+ 2 m5  ,, 2, 2 2 2 2 
m 1 - - z m  l ~ m l  - m 2 - m 3 + m4) 

= . . . . . . .  " r (2.13) 
cos  ×I { [ s -  (m 1 +m~)2l[  s -  (m 1" m9)31[ t" (m 1 + ~ s )  ~:][t'(m 1- ms)91] 

etc. Because of the orthogonality of th is  mat r ix  we can a l so  wri te  
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a(T 1 
dt - 2 

64~Sqsl 2 
1 ~ tAHt(s,t ~ 12 . 

(2cr 1 + 1)(2a 2 ÷ 1) Ht 
( 2 . 1 4 )  

Eqs. (2.9) and (2.14) a re  equivalent ,  but c a r e  is needed in in t e rp re t ing  this equal i ty  
outside the physical  r eg ions  of the s or  t channe ls  where  the c ros s ing  ma t r i x  has  
singularit ies (see e.g. ref .  [25!). 

2.3. Partial wave amplitudes 
We have already ind ica ted  that the bas ic  idea of Regge theo ry  is to r e l a t e  the s -  

channel different ia l  c r o s s  sect ion,  etc.  to the  angular  m o m e n t u m  s t ruc ture  of the  
corresponding t -cha :mel  p roces s .  

The sca t te r ing  ampl i tude  may be e x p r e s s e d  as a par t ia l  wave s e r i e s  by [21] 

OO 

AHt(S ,t) = 167r ~ ( 2 J + l ) A H j ( t ) d J , ( z t )  (2.15) 
J=M 

where J is the t,~tal angu la r  m o m e n t u m  and is an }ateger or  ha l f -odd- in tege r  de-  
pending on whether  the  t - channe l  has even  o r  odd ~ermion n u m b e r  The pa r t i a l  
wave ampli tudes  AHj(t) r e p r e s e n t  the s ca t t e r ing  in the pa r t i cu l a r  an$~ular m o m e n -  
turn state.  (The suffix t i s  dropped f r o m  H for  s impl ic i ty . )  The  dJ,~zt) a re  the 
rotation functions [26] with 

k - Xl-~- 3 , k'--" ~ ' ~ ' 4  and M ~ - m a x { [ X l ,  IX'!}. (2.16" 

The sum s tar t s  at  J = M s ince  the p ro j ec t i on  of the orbi ta l  angular  m o m e n t u m  in 
the di rect ion of mot ion  is  ze ro ,  so J can not be l ess  than the sum of the spin prc~- 
jections in th~t dtrec*~on. 

The inverse  to (2.15) is  

1 

AHJ(t) - 32~ " ' 
-1  

where we have used the or thogonal i ty  r e l a t i o n  

+1 j j ,  2 (2.18~ f d~),,(O)dkk,(O)d cos  0 = 6 j~  2J  + 1 " 
-1  

The factor  16~ in (2.15) i s  qui te  a r b i t r a r y ,  but is i n se r t ed  for  convenience  ( see  
ref. [ 15]). 

The s e r i e s  (2.15) is  only valid for  the  t - channe l  phys ica l  reg ion  and a s m a l l  r e -  
gion beyond, until  we r e a c h  the n e a r e s t  dynamica l  s - s i n g u l a r i t y  (i.e. ins ide  the  
small Lehman e l l ipse  [2'7]). It ce r ta in ly  can not be used  in the  s -channe l  phys ica l  
region. To r each  th is  we  need  to make  an analytic continua'tion. (This point is  di~- 
cussed in g r e a t e r  de ta i l  in e.g. refs .  [4, 10, 15].) 

There  a re  a lso  k i n e m a t i c a l  s - s i n g u l a r i t i e s  of (2.15) at z t = ~ i  which ari:se be-  
cause of the rota t ion funct ion [26] 
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d~,(~) : (-1) (x 'x ' - Ix-x ' I ) I~ F(J+~i(J- ~IG½ (~) Ix -x ,  1I 9. 

× { _ - )  112 I e~. M I(z), (2.19) 
where P~bc (z) is a Jacobi polynomial and 

N -  min f lx l ,  Ix' I ) .  
The polynomial is of course analytic in z so the only s~gular;.'.l~.~ stem from the 
'half angle factor' 

(~__~) Ix-x' i/9. (1 +~.~ ix+x'l l~- ~,(z) \--f-/ (~.20) 

Note that here we are using the phase convention of Edmonds [26]. The Rose 1)x.x,[~Sl 
conventiol, is also commonly used and di f fers f, ,: ~ (t. 19) by a factor (- . The 
factor at the front of (l.  19) is used to ref lec t  t e  symmeh~y relat ions 

c - , )  : • 

Later we shall wish to make an analytic continuation of d A, (z) in J, and for this 
purpose it is convenient to re-express (2.19) in a form which exhibits its J-plane 
structure more explicitly, 

d~vti) ( . i )(X-~'- Ix-x, l )12p'(J+M)i(J-M+ X-x, )i]½ 1 
L-¢Y' M)I(J + M-IX x,l >,j ,~-~, ~,<:> 

+ ~ ;  J +.~+ ~, t x -  x' i  + l; l_~_~) . (~.~.) × F(-J  

Since ~tie hypergeometr ic  function F is an ent i re  function of J the only singularitie.~ 
s tem from the square bracket.  We shall a lso later  need to make use of the fact th:tt 

d~,(z)- (-1)(x-~"tx'x't)!2 ~J 
z--.oo [(J+ M)I (J-  M+ iX-X'  I ) ! (J- M)I(J+ M- IX- X' I)ll½ 

>,, ~xx,(~ ) ~)J-M+ o ( / - ~ - 2 ) .  . .  + o (  - j - 1 ) + . .  . ,,~.~:l) 

SO 

dJ(z)  ~ (~)J J 

where v i s  defined in (2 .38)  

> -½ and (J- t , )  ~ intvger < M ,  (2.24) 

2.4. DisT~ersir.~ii relati~i;~ ~ the FToissa~-G~fibov projection 
We have noted that the on!y s ingular i t ies  of (2.15) in zt, and hence in s, s tem 

fr~m the half an~,le factor  ~ , ( z t ) .  Thiv singulari ty has a s imple  physical inter-  
pre ta t ion  in that eor fo rwardsca t t e r lng ,  for  which z t = 1, X aaid X' a re  the prgjec-- 
tionk of the total angular momentu~  of the tntttal and fin~l s ta tes ,  respect ively,  
and so the amp!;.~.ud~ ~lust vanish unless X = k' by angular momentum conservation. 

8o ff we define 
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At~rt(s, t) - Atlt( s, t)/c,~.h,(~.t) . (2,25) 

,4Ht will be f ree  of k inema t i ca l  s ingu la r i t i e s  in s (and u). If wil l ,  however,  contain 
dynamical s - s i n g u l a r i t i e s  co r r e spond ing  to the  s (and u) char,nel bound s ta tes ,  
threshold branch  points ,  e tc . ,  which r e s u l t  in the  breakdown of (2.15). Thus,  ff we 
want to make an analy t ic  cont inuat ion inc luding these  s i n g u l a r i t i e s ,  AHt is a su i ta -  
ble amplitude in which to wr i t e  dis~.ersion r e l a t i ons  in s Cat f ixed t), viz. 

~tHt(S , t) = ~ d s-'; :"s ds '  + --~r J W - u  du' , (2.26) 
So u o 

where/)s is the d iscont inui ty  o f / t  a c r o s s  the s -channe l  dynamica l  cuts (above the 
,-channel th reshold  So); and s i m i l a r l y  for  D u. Bouna s ta te  po les  may be added to 
this expression if necessary. 

As far as the t channel is concerned DsH contains the 'direct' forces, and Dull 
the 'exchange' or Majorana forces. If the integrals in (2.26) converge the scatter- 
ing amplitude is completely determined by its dynamical singularities. D. general, 
however, the asymptotic s' ar u' behaviour of D s and D u will be divergent for 
some t values, in which case the representation (2.26) is only defined up to the ar- 
bitrary subtractions needed to produce convergence. We shall see belo~ how 
Regge theory serves to fix these subtractions, and hence completes the determina- 
tion of A H by its dynamical singularities. 

Using the fact that (from the equivalent of (2.4) for z t) 

s' - s = 2q t !3 qt 24 (z' " zt) and u' - u = -2qt  13 qt24 (z' " zt) (2.27) 

the substitution of (2.26) into (2.17) gives 

1 1 ! i ~ Ds i I ( s ' ,  t) 
AHj(t) -- 327: _ f l  dztd~' (z t )~?&'(z t )  i -~z o j ~_" -:-z- dz' 

, f oc Dull(u, ' t) i + dz' (2.28) 
~ : z  " 

- Z  0 

We now introduce the ' s e c o n d  type'  funct ions correspondin:$ to the  d~x, with the 
definition [29, 30] 

r(J+ M)~[J- M). l~ e~'(~) = ('l)(x"~'" Ix'x' D/2 (" 1)x'x' L (J ~ ~-~)!' '.!' ~'( ')  

x %-M-[x-x'l Ix+x' l(~) , (2.29) 
where tile Qab a re  the second  type Jacobi  funct ions .  (These  take  the place of the 
seconci type Legendre  funct ion~ Ql(z) in s p i n l e s s  pa r t i c l e  sca t te r ing . ) .  The d ' s  and 
e's are r e l a t ed  for  i n t e ge r  ( J - M )  by ~ e  ' g e n e r a l i z e d  Neummm re la t ion '  [29] 

1 
t~kk,(z)eJ,(z)  = ~ f dz...' Jk ' L "  ' z "  (z.;~O, -z- z ~ d , (a '~XX,,  , 

-1 

When this is substituted in (2.28) we end up with the Froissart-Gribov projec'.ion 
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1 ~ t)eJ(zt)t~X,V(zt)+(.1)J-~ AHj(:) = - ~  f dztt~sH(S, 

where we have used [29] 

J oun( s, t),~..~, , ( ,.? h.~.,  (,,?} (2,3i) 

,J , ( -~)-  (-i) J'~÷1 eJ.x,,'-.), (2.3~) 

to obtain the second terxa. Since we can rewr i te  (2.29) in terms of the hypergeo- 
metr ic  ~c t i on  as 

eJ(z) (.1)( ; t 'k ' '  IX-X' I)/2 1---1----'[(j+M)I(j.M)I(J+N)I(J.N)I]½ 
(~Y+ 1)! 

~- l , ( z )  1 z "  1 " J ' I + M  . . . / .  (T) ~- ~÷ i, ~. ~÷ I~- ~' I ÷ i, ~,~ 2, ~j ~2~ x 

and since the asymptotic behaviour of the hypergeometric function as z -,o0 is 1, 
w e g e t  

1 ,1(~)-~-1 
¢;~r~.,(z) -~ (-I) (~''k')/2 (2J+I)~[(J+M)I(J-M)!(J+.'V)I(J-N)I]~ -~ , (2.34) 

~ffAH(s,t ) ~ z~ (t) for some value of t, then D H ~ ~.St(t)'M and so the integral in 
(2,$'~ converges provided 

Re J > 5 ( 0  • 

We sha~  discuss  the continuation to R e J  < 5(t} below. It is the presence  of these 
divergences  which requ i res  the subtract ions  re fe r red  to above. 

The symmet ry  re la t ion  

J , J - v  = half odd integer (2.35) e ,(z) = (-1) ~''2t' e2ot, 

will be needed later. 

2 5. S i g n a t u r e  
Unfortunately (2.31) i s  not a suitable express ion  for continuation in J because of 

the (- 1) J-X factor in the second te rm.  For  la rge  J the asymptot ic  behaviour of e is 
[29-31]  

J - 1 -(J+½)~(z) (2.36) eM~.,(z) -- ~½ e :~eilr(k-X')  
.t. e 

j.-.oo ~ (z2- 1)~ 
largJl < ~ 

where ~(z) -- log[z+(z 2 .. i)½] and we take ± for Imz <> O. So, a~" long as the integral 
converges ,  the f i r s t  t e r m  in (2.3!) behaves l ike  

e'(J÷½)i~(%) 
~ ~ -- 0, (2.3~) 

J---~ J~ 
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but the second behaves l ike eia(J 'k)  x (2.37), and so osci l la tes  as J -* ~o. 
Carlsqn's theorem [32] te l ls  us that if f ( J )  is a regular  functmn of J and of the 

form O(e k I J ~, where k < lr for Re(J) >~ 0, then f(J)  is uniquely determined for all 
J by its values at posit ive integer  J. This condition is sat isf ied by (2.37), but not by 
the second te rm of (2.31). To circumvent this difficult;, which is not present  in 
pctential scattering ~th only direct forces, we construct from AH(s , t) amplitudes 
of definite sig~ature, # = ~:, in the t channel, by replacing (-1) #~v with *I, where 

v = 0, ~ for physical J = integer, or half odd integer (2.38) 

$0 

ao 

. '1 f 
AHj(') = ~6-~ a 0 

dz t [Dst 1 ('% t)eJ;~{zy;kX,(z ~) + 6(-1) k-v 

X DuH(S , J t)ex.k,(zt)~k_k,(zt)  } . (2.39) 
6 

The AHj(t) coincide with the ~hysical Ai! j ( t )  va!ues for J -  v even/odd. So we can 
write 

oO 

Attt(s,t)=16~ ~ ( 2 J + l )  + + " " ( J , z ) ] ,  ( 2 . 4 0 )  [A ~ij(t)dxk, ( J , z) + A H j d k k  , 
J = M  

where we have def.ne,, 

d g  k-v J d h ~ ( J , z )  =½[ ,(z) +¢(-1)  dx.k , ( -z)]  , (2.41) 

d~,(] ,  z) vanishes for J-v  even/odd since [26] 

- -  for j 

Thus A + contains the even part  Of A in z ,  andA"  the odd part ,  though neither need 
be pur~ly even or odd. The physical J values of ! A~I3(tj, i.e. J -  v = even/odd inte- 
ger, are known as ' r igh t -s ignature '  values of J, while the odd/even values az-e 
called 'wrong signature'. 

As a result of Carlson's theorem, (2.39) gives us a unique definition of AHj for 
all J :alues for which the Froissart-Gribov projection is defined, i.e. all 
Re ,I > 5(0, ~ch may now include Re J < M. 

We have noted in section 2 that physical amplitudes must have J ~ M since for 
the brooming channel only J >~ l~t I is allowed, and for the out~ing only J >~ I "~-' !. 
Amplitudes with integer J- v and J >~ M are known as 'sense-sense' (ss) ampli- 
tude,,~. When we make the analytic continuation we may ~Iso become involved with 
amp~ itudes having integer J- v, but with N --< J < M. These are known as ' sense- 
nonsense' (sn) amplitudes, since for one of the two channels the J v~ue does not 
make physical sense. Similarly integer J- v with J < N are knnv~ as 'nonsense- 
nonsense' (nn) amplitudes. We shall irequently use this notation below, sometimes 
referring to all integer J- v, J < M as nonsense values. 

2.6. Parity 
An urdortunate complicat ion of our fo rmal i sm s tems f rom the fact that two par-  
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t ie le  helicity s ta tes  of definite J a~.d mj  a re  not par i ty  eigenstates.  Rather trader 
the pari ty operator P we find [21] 

P I J m j A l k  3) = rt 1 173(-1) J '~rt '¢3 [ JM'AI 'A  3) , (Z~3} 

where W1 arid *~3 a£e Lhe intrinsle parities ~d particles i and 3. So definite pa:'i~y 
sta~es are provided by the comblna~ion= 

[Jmj~, lk~ -=-2 "~ { I J m j X l  ~-3)±. 1 rl3('i)al+a3"v[jmj'Xl-,X3) } • (24t) 

So, assuming th~tt par i ty  is  conserved in strong interact ions,  the scattering ami~li- 
tude between such states  is, 

(~-2 A4 ]A~7(t) IX 1 k3) =- (k2X 4 IA~(t) IX1 ~,3 ) +r/~; 1 ~/3(- 1) crl+~r3"v 

where ~ = * for rmbaral/unnatural parity.  (A state b~'_ .._: parity if P = (-1)~"v 
These states are  physical  for J -  v even/odd, depending on the signature, so 

P = ~ , , , .  (~.46) 

We then define the so called 'pa2i~  conserving'  helicity ampligade [33] free o.~ ~. kin- 
ematical  s s ingular i t ies  by the rule 

~xx,(zt ) 

+ ',q," ~-~' rllrl3('l)al+~3"v(X2^41nO(s,t)!-Xl-Xa)~'.lk,(z). (2A71 

In t e rms  of part ia!-wave amplitudes th~,s is 

a o  

J=M 

d;k  , (J, z ) ) '  ,. :'~4 

d d .x,v(zt ) 
x ~ 1 ~ 3 ( - 1 ) ~ 1 + ~ 3  "~' A~:j(t) ~-x~,(t) z ' (2.4s) 

wt.ere 17 ={-X i - k ] ,  a.2, ;~4}; or, us~,r~g (2.45), 

,~71, ^6+ ,~-.~ ,~- . A;71(s,t) = 16~r ~ (2J + I )  {Aaj, t)dLv(J,z ) + A H j  (0~Xk,(O,z) }  , (2.4~,) 
J=M 

where we have defined 

~6rl .  Z) = 1 ~ k  ' ( J ' z )  1)A'+M d~AA'(J';g) 1 

SO part ial  waves of both pari t ies  contribute to the 'pa r i ty  consevving' an:i'l!- 
~udes in (2.49). But kn the lim,:t z --* ~o we find, from (2.23) 
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. . . . . . . . . . . . .  2 . . . . . . .  J . . . . . . . . . . . . . . . . . . . . .  . , -  . . . . . . . . . . . . . . . . .  - - r  [(J +~<or(J --~.O:t J + ~\,~!0: -::)!t~ 

SO to l ead ing  o r d e r  in z the d a+ domi~mtes  o v e r  the d a '  in (2.49),  and so  a s y m p t o -  
t ical ly  only A~l~,(t) c o n t r i b u t e s  to A~_i~,:s, t). It is  only in *,.his asymmtot ic  s e n s e  that  
o~tr amplita~des a r e  p a r i t y  c o n s e r v i n g  

2.7. The Somme~fetd-Watson transform 
Having c ~ m b l i s h e d  Lhe m.'~!queness of t he  ana ly t i c  ¢o i~ t lauadoa  of o ,~  signat~_.e,5, 

par i ty  c o n s e r v i n g ,  p a r t , M - w a v e  a m p l i t u d e s ,  we can  re ' .v r i te  the  p a r t i a l  wr:ve s e -  
r i e s  (2 .49)  a s  a C a u c h y  i n t e g r a l  

-.,~rt , t )  = 16~r c 2 J + l  ,~1, ^a+ . a-,3. ~ -  r 
A H (s - "~- J s Ia~r (J  +',,') {AHj(t)d-.~k'(z'-z) +AHj (t)dk~,(~, ,-.z)} d J  , :",~.. ~,.,a~ 

e I 

where  the  c o n t o u r  c 1 e n c l o s e s  the  t e a l  a x i s  fo r  J >i M, but  avo ids  any si.'.~,~fiartttes 
OfAHj , a s  shown ~n f.~g. 4. We have  u s e d  - z  so  that ,  b e c a u s e  of (2.42), the  ( -1)  J+k '  
coming  f r o m  t h e  rcs ld -ue  of rite p o l e s  of [ s i n n ( J + k ' ) ]  "1 i s  c a n c e n e d .  

if  we  open up t h e  c o n t o u r  to  c 2 a s  in f.~g, 4 we know tha t  l~ecause of (2.37) *,.he 
con t r ibu t ion  of t h e  s e m i - c i r c l e  at ~ wi l l  Canish,  but  we  p i c h  up c o n t r i b u t i o n s  f r o m  
the s~ngu la r i t i e s  of  A j ,  ~ud f r o m  t h e  s i n g u l a r i t i e s  oI [ s in  ~ , ( j+k ' ! ] "  1 for  ~, < M. 
The amp!it~.~de is  e x p e c t e d  to Lave po ie  a~d  b r a n c h  p~.~.:nl si~..gaflarities, and ff ~,e 
a s s u m e  f o r  s i m p l i c i t y  t h a t  t h e r e  i s  j u s t  one  pe!e  of t4~e f o r m  

and one b r a n c h  point at  d = ~c(t) ~ i ~  t he  cu t  d r awn  as  ~: ~g .  ~, w!ih ~::-~cor~ii .:ii,, 
A( j , / ) ,  we get  

[ 
I ! 

" W  

G ' 

C~ 

Fig. 4. The Sommerfeld--Watson trmnsform for a helicity amp'itude wi1~ ~.~ ~ ~ ~ v " 
hi the ccmptex J plans the contour cI enclose,~ th~ integer j values -~ M. When ~his co,,~u~ ', 
is opened up to c 2 we also collect  distributions f rom the Regge po~e at o.,(~, from t~',~ ~u'an~ h 
cut starUag at the branch-point  ~c(t), and f rom the integer J value~ -~ ~ J ~ ~,f 
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- t :' %) 

16~ : c(t) 2J+ 1 
- -2T sin~r(J+k')  A(J, t'd 6 + )  . ) t ~ , ( J , - z )d J  

• : , . . . .  . .  - : .  

M-1 N-1 
- ~--# " D [167r(2J+l){AH'~(t)dkk,(J,z)+AHj(t)d~A,(J,z)}]. (2,5,~ 

J=N J=v 
Using the ~ y m p t o t i c  fo rm of d ~ ( J ,  z )g iven in (2,51) we se~tI la t  the f i r s t  term 

in (2.54), ",he so called 'baCkground i n t e g r a l ' ,  goes l ike ~ (zt)'a -M, ~nd the poie 
t e r m  ltk~ ~ i(z}}:a(t)~'M. T h e  behavtour o f  the cut t e r m  depends on the behaviour of 
the discontinuity A(J,  t) at  the branch point J = ac($). If it is  finite we get 
~ (zt)°~C( t) 'M (logzt)'ll , while if A vanishes  like (d-~)5 ,  8 < 0, we:have 
~ (ztiac(t),M(logzt) (1÷5). At the sn, points  in:the four th  t ~ m :  ( J r  Jo,  w h e r e  
J -  v = integer witl~ N --< J ~< M)x d.~kk, (J, z) vanishes like ( J -  Jo)~ so this t e r m  wiI1 
van i sh  unless  Atl  J , - (J -Jo) '~ .  We shal l  d iscuss  this  possibi l i ty  fu r ther  in section 
9 trat for  the moment  we assume that thi, • t e r m  vanishes.  S imi la r ly  in the final 
t e r m  (at nn. pgints v ~ Jo <N) t~e l=ading power van ishes ,  and in fact  (see 2.23! 
d~, (z )  .~ ( z ) ' ~ ' l  so Uie ~sympfo t ic  behav iour  i s ( a t  )~v° 1-.~.~. 

• S o w e  see  ~ a t  only the  presence  of tl~e Cut and pole s i ~ a r t t i e s  of AHj  pre- 
vents  the convergence of  42'39) for  --~ < J ~< 5(t) .  It is the pr incipal  hypothesis of 
Rcgge theory. - often cal led maximal, ana ly t ic i ty  of the second kind [10, 15] - thai: i~ 

:~ c ~ = : ~ e , ~ ~ y e ,  a m p l i ~ d e s  the only s ingular ! t ies  met  a re  isolate~l 
- : , ~ ' ~ : ~ ~ = R e g g e  p ~ s ) ' ~ d  branch points (Regge curse. Thus 5(t) = c~l(t) where 
~-~-~_~,~,,: .~s the ri~htmost_ J-plane siv.g~xlarity.. And. the 'undetermined subtractions' in 
dispersion relations like (2.26) are now iden~fied as Regge poles and cu~s. We 
~ave a l ready men~o:'.ed *~-" . _ .... ~:.~e.t ~hese singx, l a r i t i e s  have a physica l  interpretat ion as 
the exchange of composi te  par t ic les .  Hence ff all the pa r t i c l e s  in s t rong "nterac- 
tion physics  a re  compo-~ite, i.e. they all cor respond to Regge poles, there  should 
be no a rb f t r a ry  p a r a m e t e r s  left in the &-matr ix.  It is on this  h3,~othesis that the 
boots t rap philosophy i s  based. (See e.g. re fs .  [10, 11, 15].) 

The re  is no special  significance about the line R e J  = -½ in (2.54); it was  chosen 
s imply because,  as  we see  from (2.23}, R coincides with the most  convergent be- 
haviour  of d~k,(z ). Mandels tam [34] has  shown how one can continue (2.54) below 
this l ine by making the replacement  [30] 

s in v(J  + ),') = cos ~'(J+ X') " cos rr(J+ A') (2.55) 

in (2.49). We define, in analogy with (2.41) and (2.50), 

÷~.,.r-,,, L ~ ,  1)).'+M -,.,. - . - .,ar~._ z) }[i+# e - - ' ' -  - ' ]  reffx'(z) eJ""(d'z~~ 
% = (z) + j 

where  we use e ~ r  I m z  <> 0, Fro/n (2.34) w~ {~ee that e~.J~.l,(z) has the asymptotic 
z beha~iour of d~Ot,(z), and that e~ , ( z )  ... z -~'.~. So we p e r f o r m  the Sommerfeld-  
Watson tr'&r~sform for  each te rm m (2.56) separa te ly ,  and displace the cow,tour to 
Red" < -k .  Then we r ep l ace  J by °J~. 1 in the second t e r m ,  and note that  the sym- 
metro] (2.3S) impl ies  that ,  f rom the projec t ion (2.39), 
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m _ ( I )  x'x' H a l " '  A H . J . I ( t )  f o r  half  ¢,dd i n t e g e r  ( J - v )  , (2.57) 

where ,,' = ~ for  v = 0 a n d  ,~' = - n  fo r  v = ½. Hence  we f ind  t ha t  the  c o n t r i b u t i o n s  
irom the po les  of [cos , ' r ( J+X' ) ]  "1 at  a l l  i n t e g e r s  -k  ,; J < M c a n c e l  r)a. ~'r~'~eo.. bo-  
tween lhe two t e r m s  in (2.56).  A s i m i l a r  canceilatioa~ o c c m - s  ~rom the t m  c¢>ntr,.- 
butioas in .¢2.54), and  we a r e  le f t  wi~h 

-d' + .  "" - Z )  ek.k,~-a t, 
H (,',t) = 16~r(2a(t)+l) [3H(t) cosrr(a÷;V) 

16 f%(t) (2J + !) a' 
a ( j , , ) ex .x , (  J 1,-z ,dJ 

+ .fixed p o l e s  + b a c k g r o u ;  ~d ~,.tegra~ , (2.5s) 

where the background integral  < O(z'k).  
The background can th~s be pushed back as far as we l ike,  ex'posing Regge poles 

and cuts, plus poss ib le  f ixed poles  wkx.h we ~hatl dit~cus~ below. 

2 . 8 . . R e s t r i c t i o n s  on R e g g e  singulari t~ ?s f r o m  un i ta r i t y  
Though t h e r e  i s  a g r e a t  dea l  of f r e  :dora in the  t y p e s  of s i n g u l a r i t i e s  w h i c h  can  

appear in the  c o m p l e x  J - p l a n e ,  t h e r e  a r e  s o m e  v e r y  i m p o r t a n t  r e s t r i c t i o n s  which  
stem ~'r~ari~ un';t~ri~y, rta.~nely the  F r o t s s a . v t  bound,  t he  a b s e n c e  of fkxed p o l e s  ex-  
cept in a s s o c i a t i o n  w i th  c u t s ,  and th,~ ezc tc l - l za t ion  of t he  p o l e  res ic luez .  We d i s -  
cuss each  of t h e s e  b r i e f l y .  

F r o i s s a r t  [35] h a s  s h o w n  that  if t he  s t r o n g ~ i a t e r a c t i o n  f o r c e s  a r e  of f in i t e  r ange  
then s -channe~ p a r t i a l - w a v e  u n i t a r i t y  i m p o s e s  the  r e s t r i c t i o n  [ 1, ¢,] 

i A H ( S , t ) [  < c o n s t a n t  x s log 2 s f o r  t : ~3 ~ :~"~ 
S - -*oo  

I~ view of the fact  t ha t  p o l e s  and cu t s  g ive  A H ( s ,  0 ~ ~ ' '~"~ 0~eg ~e~~''-, ~,-- [c~.':, > 
S _ . ~  c~ 

factorz) we see  tha t ,  f o r  a l l  t ~- 0, ~M(0 c~ l. T h i s  mem~u ~a~  . :'~ ~ '  
Rogue p,31es o r  c u t s  w i th  a(t) > 1 fo r  t < 0 they  m u s t  m o v e  wi th  t to get  u,~a~:r ~ , ~  
bound fc~r t < 0. An  e l e m e n t a r y  p a r t i c l e  of  sp in  ~7 -~v,~dd g i v e  r i s e  to a con / r  tbu~i~,~ 

02 
A H d ( t  ) . . . . .  " .~- 5 rcr (2. ~.0! 

t -  m " 
in a L a g r a n g i a n  f i e !d  t h e o r y ,  and  so  i t s  a s y m p t o t i c  behav~our  A;.i(s, ~) ~ s '~ wc, u~ ~ 
violate the  bound fo r  cr ~ 1. T h i s  i m p l i e s  the  c o m p o s i t e n e s s  of al l  p a ~ l , ,  w~t!,~ 
~>~1. 

The t - c h a n n e l  p a r t i a l - w a v e  unitaritv" c o n d i t i o n  fo r  e l a s t i c  s c a t t e r i ~ g  ~.3 -- ~3 
reads ( s ee  e.g.  r e f .  [ 15]) 

) -  ~ ) = 2i(q t 13  ) p(t) ( , , + ) . ~ j ~ , )  ~ t~ - . o  . 

1 
where p(t) -=- 2qt 13 ~'~ i s  t he  k i n e m a t i c a l  f a c t o r ,  and  we ha~'e d e £ ~ c d  

t )  -- t ) ( q  t 13 ) , , - . : . -  

where L ~s the  o r b i t a l  ar~£~tlar m o m e n t u m  at t h r e s h o l d  ~'~o ( s e e  ~.~,~ea ~ ,  ~ and  a re  
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evaluated above and below the unitary cuts, P.nd t I is the inelastic threshold. Using 
the real analyticity of B~Ij(t), i.e. [Bdj.(t+)]* = BIN(t .) (where • ~ complex conju- 
gate) we may rewrite (2.61) as 

Since the B~I J satisfy the condO*ions for Carlson's theorem so doboth sides of this 
equ~.tion, which may thus be continued in J. 

It is immediately apparent from (2.61) that there can not be a fixed J-plane pole 
of ~ "  - / / j ,  i.e. one whose posit ion is independent  of t ,  s ince  if we put Bltj{t) = 
~(J , t ) (J-Jo)  °1 we have only a single pole at Jo  on the left ,  but a double one on the 
r fght. The only way in which ~ i s  could be avoided would be if we has a J -p l ane  cut 
pass ing  through J = Jo  for  a)l t for which the unttartty equat ion holds. Then we 
would approach this cut on different s ides  in B and B*, and the pole ~ould be pres- 
ent on one side and not the other. On the other  ha~d a moving pole at J = ~(t) can 
perfect ly  well satisfy (2.63). ,~o we conclude that ia the absence  of cuts all  poles 
must be moving poles. It is mso evident that, we cannot satisfy (2.63) for real t 
with Imp(t) = 0, so a Regge pole can net cross the real J axis for real t~ 

Above the inelastic threshold, or in the presence of spin, the unitarity equation 
becomes a matrix equation [15] (the rows and columns representing the various 
open chaunels) 

where + = Hermit ian conjugate, ~r ~ j  is a diagonal ma t r i x  of k inemat ical  factore 
for the various channels.  A fixed de at Jo  on the real  axis  of the form By(t) = 
~(J, ~)(J" Jo)" 1 impl ies  ~(Jo, 0~*(Jc:  t) = 0 so ~ = 0, i.e. t he r e  is no pole. But if J0 
is off the real  axis we simply have ~(Jo,  t+)~(Jo, t-) = 0 which does not imply ~ = 0~ 
So fixed poles a re  al lowed bu~ not on the rea l  axis. 

Final:y,  we can wr i te  the unitarity equation for the many-channel  partial-wave 
S-matrb:  as 

cof(S:) S(J ,  t )S+(g *, t) = I o r  S(J, t) 

So ff we consider  a two-channel  p roces s  this  becomes  

~$21 S22 (Sl l* $22 ' 'S12" ;21") " 

Then ff 

(2.e5) 

- .-- - ~, . ~.,= v~ t~ . . .~  ux the u e n o r n l r m t o r  Of 
v,.--~, impl ies  that Lhis res idue  must  sat isfy 

~22~11 = ~12~21 , 
f rom which it follows that we can wr i te  

so the res idue  fac tor izes .  A genera l iza t ion  of this  r e su l t  to  an a rb i t ra ry  number of 
channels  was given by C~mrap and Squires  [36] (see a l so  ref .  [37]). 

The meaning of (2.6'/) is intuitively fa i r ly  obvious. If we consider  a single-parti- 
cle exchange diagram such as fig. 1 the pole  is s imply a product  of two factors,  ore 
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associa ted  with each  v e r t e x .  Note that  t h i s  r e s u l t  s e r v e s  both to r e l a t e  the r e s i -  
dues of the v a r i o u s  h e l i c i t y  amp l i t udes  fo r  a given p r o c e s s ,  aud those  of d i f f e r en t  
p rocesses .  

2,9. Fixed J-plane singularities and SCR 
The second  type  r o t a t i o n  funct ion  e ~ ,  which  we u s e d  to def ine  the p a r t i a l - w a v e  

ampli tudes  in ()-.39) h a s  the  J - p l a n e  s i n g u l a r i t i e s  exh ib i t ed  ih (2.33). Since  x!  has  a 
p c l e / o r  x = - 1, - 2 , ° . . ,  and  F is  an  e n t i r e  funct ion of J ,  we find that fo r  i n t e g e r  
J¢ - v 

JX J -  Jo ~ , < M and - M  --< J < - N  e ( z ) ~ (  N-<Jo  o 

- 1  
J o  ) < N and J < - M  (2.68) ,-- (J- -N --< Jo o ' 

and for  J < - M  for  e x a m p l e  ~ e  r e s i d u e  of the pole is lus t  d J , 'z ~ (see  e.g.  r e f s .  
[30, 31]). So we ob ta in  

J 1)x-v , O ( -  

Jo 
× u,,z/s, (2.69) 

for J ~ Jo  < -M. T h e s -  f ixed,  r e a l  ax i s  J - p l a n e  s i n g u l a r i t i e s ,  which a p p e a r  at all 
the nonsense  poin ts  o~ the  ampl i tude  (in the  nomencla~,ure of .~ =, ,~u, o~ ,~.,,v ~:~ cu::- 
flict wld, our  dXscuss: 9n In the p r e v i e u s  sec t ion ,  so we c o n c ] t d e  that in the absence  
of cuts the i n t eg ra l  (2.69) mus t  van i sh  l ike  (J 'Jo) .  This  h : t eg ra l  r e l a t i onsh ip  is 
knox~ as  a s u p e r c o n v e r g e n c e  r e l a t i o n  (SCR). The sati.~ fac t io~  of such SCR a~,~u ~ 
us to conc lude  that  A ~ j ( t )  ~ ( J - ~ o ) ~  f o r  sn  points  so the  fou r  :h t e rm  ,~!" t:.54~ ~ :~ 
be neglec ted .  H o w e v e r  A~j(t)  s t i l l  h a s  s q u a r e - r o o t  b r a n c h  pc int at a l l  N ~< J o  < M 
and - M  ~< Jo  < - N ,  and  i t - i s  of ten c o n v e n i e n t  to take  t h e s e  b r a n c h  points  to be  
joined p a i r w i s e  by cu t s  runn ing  f r o m  J = M - l - k  to -M+k: h = 0, 1 , . . .  , M - t .  In fact 
because of the u n i t a r i t y  equat ion  e a c h  h e l i c i t y  ampl i tude  wil l  inher i t  the  ~iu~ular i  - 
ties of the o t h e r s ,  so t h e s e  cuts  run  f r o m  J = ~ T "  1 to J = -~T  w h e r e  ~T = 

max {al + ~3, ~2 + ~4}- 
However, it was shown by Gr}bov and Pomeranchuk [38] that A~¢.~t) must in fact 

have a pole tt eacil verong-sigrmrure nonsense point. This is because if one calcu- 
lates the discontinuity of the partial-wave amplitude across the ieft-hand cut oae 
obt ..... s (see  e.g.  ref .  [15]) 

" - '  { ° s H ( S '  ' I m A H j  ~t) 32~_1 

- /dz ' f ;  _su. . . J . F 1 -  .~e - i= (J -u) -~  " ~2."0) XDuH(s' t ) t~.-X'(zt)dJ-k '( 'z)}  + -~21 , t [<s  ,u )e~ . ( z  t) t 2 j 

This last term involving the 'third double spectral function', p~(s, u), v~ nishes 
for physical Jvalues, i.e. at right signature points, but is finite at wrong signature 
points. The e A, thus gives rise to singularities in imAHj at these points, as d~,- 
scribed ~bove. Unlike the previous type of si l~lari t ies,  however, these Gribov- 
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Pomerancimk singularit ies can not.be made• to .disappear by an SCR, because it c ~  
be shown tl~at at least  for some t values the  integral  i s  to b e  evaluated only over 
the elasti~c double spectral  function, which is always positive. So there is no 
change of Mgn of the integraad in (2.70), and the integral can not vanish. Because 
of unitarity these Mngtflar!ties, of the form ( J ' J o )  '~ or ( J - J o )  " t ,  occur for all 

In chapter 5 we shall seehow: these  fixed:Singularities a r e  shielded by moving :~ 
c u t s -  indeed their p resence  is  one of the p r inc ipa l  arguments  for the existence of 
cuts - and shows why the, cuts depend on the presence of a third double spectral 
function. The second t e r m  of (2.70) is absent f rom potential scattering,  or  indeed 
any sca~terin~ process which lacks an exchange force. 

CHAPTER 3 

REGGE TRAJECTORIES AND RESONANCES 

3.~.. _'r" "o&cCt/On 
In the: previous chapter we showea now a scattering amplitude can be expressed 

in term.~, of its J-plane poles  and cuts. The p01es interpolate between resonant 
states o': increasing spin, and so in principle quite a lot can be learned about the 
behavio~r of t ra jector ies  f rom an examination of the part icle spectrun.,,. In fact one 

c a n  dete :mine both Re a($} and Im a(t) at the physical points for  t > 0, ~.~e evidence 
i % ~ a ~ : '  ~ ~ e ,  but  s : ~ e s t s  that all the par t ic les  lie on roughly straight 

a(0 = % + a't (S. I) 

and that the slopes a' a re  more  or less  the same for all t ra jec tor ies .  We shall see 
later  that this behaviour is ra ther  hard to understand from a theoretical point of 
view, howe ~er. 

We begin by discussing the way in which a Regge t ra jectory gives r ise  to reso- 
nances, and some of the general  propert ies  of t ra jectory functions. 

3.2. Regge poles and resonances 
From (2.54) and (2.41) we can write the contribution of a Regge pole to a heltct- 

ty amplitude as 

1 + s e iT(w'v) ] da~t) [-z~ . A~t(s,t) -- - l e #  [2a(t)+ 1]~H(t) I. 2 sin~(a(t)÷~0j -XX'" r (3.2) 

[ e'i~(a" v) ÷ s ] 
= "167r212a(t)+ 1] ~H(t) [2 s - ~ ~ .  ~ j  d~A,(zt) ,  (3.3) 

where we have used (2.42). Evidently t.hi~ expression has a pole in t whenever 
a(t) - v -- even/odd integer, depending ~n ,~ = ±. The factor [e'Tr(w'v) + ,,] is known 
as the ' s ignature  factor ' .  In the analytic_~lly continued par t ia l -wave ampljtude this 
pole takes the form (2.53) 

s ~ ~ (3.4) A~j(0 J - ~  j .  a(t)" 
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Above the t-channel threshold we expect a(t) to be complex, and so if, for some 
t = t r (say), Rea(t r) -v = Jo where Jo = even/odd integer, we get 

A.~77 /3(tr) 13(tr)/a'R 
 tjo ( t )  -" , ' i i) - t--t r (tr" ~)(aR + " iaI(tr) (/r • 

where we have used the expansion 

(3.5) 

a(t)- v ~. Jo +°t'R(t" t r )  + " "  + iaI(tr) + ia'I(t" t r)  + " "  (3.6) 

the suff ices R and I r e f e r r i n g  to the r e a l  and imag ina ry  p a r t s  of a (for r ea l  t) r e -  
spectively. If we put ~(t r = M, the r e s o n a n c e  m a s s ,  and ~ct = E ,  the cen t r e  of m a s s  
energy, (3.5) b e c o m e s  

2) 
AHJo(t) ( M - E ) -  i ai(Mb/o[ R 2M " (3.7) 

This c o r r e s p o n d s  to a B r e i t - W i g n e r  r e s o n a n c e  of m a s s  M and total  width 

r = (3.8) 

~I'hus if we find a r e s o n a n c e  of spin  Jo ,  m a s s  M, and width r ,  we know that  
Rea( M2} = Jo  and thRt I m a ( M  2) can be  found f r o m  (3.8). In sect~on 4 we sha l l  u se  
this i l f formation to p lot  the  t r a j e c t o r i e s  c o r r e s p o n d i n g  to the  knova~ r e s o n a n c e s .  
Evidently the  s igna tu re  f a c t o r  will  c ause  the  r e s o n a n c e s  on any given t r a j e c t o r y  to 
be spaced by two uni ts  of angu la r  momen tu ,n .  

If a(t) - v p a s s e s  t h rough  an  in teger  be low tlu-eshold, hn  a = 0. and so ~here is a 
bound-state pole on the  r e a l  t axis .  

3.3. Propert ies  of the trajectory fimction 
The known almlyt ic i ty  p r o p e r t i e s  of the  s c a t t e r i n g  a m p l i t u d e s  imply tha~ ce -*~ ~" 

res t r i c t ions  mus t  be s a t i s f i e d  by file t r a j e c t o r y  funct icns .  
If A[ij(t) has  a pole  a t  J = a(t) we have  

" 

t)] 1 _ 0 a s  J --, a(t) . (3.9) 

The impl ic i t  function t h e o r e m  te l l s  us  that  if [A/~/j(t)]-1 is r e g u l a r  h,. t at s o r : e  
t = t r (say) and 

Oj:[A t)] * 0  s t  a=a( tx )  t3 10) 

then a(t) is  a l so  r e g u l a r  a t  t r.  So we expec t  that  a(t)wfl l  have. cuts  o,~ly w h e r e  
A~/,I(O does .  We shal l  s e e  in the next c h a p t e r  that  Aitj~t~ has  variou.'~ k i n e m a t i c a l  
s ingular i t ies ,  but t h e s e  a r e  speci f ic  to a g iven  hel ici ty  amp l i t ude  a~td so mus t  be 
present in the r e s i d u e  of t he  pole.  The  s a m e  t r a j e c t o r y  o c c u r s  in all those hel'~city 
amplRudes which a r e  c o n n e c t e d  by un i t a r i ty .  Hence a(t) i n h e r i t s  only the d y n a m i -  
cal cuts of A/~j(t) .  T h e s e  a r e  of cov~rse a r i g h t - h a n d  cut above the t-e'~am',el 
threshold to, ~nd a l e R - h a n d  cut s t e m m i n g  f r o m  the s -  and u - c h a n n e  s i n g u l a r i t i e s  
We have s e e n  in s ec t i on  2.2 that  the po le s  of A ~ j ( t )  c o m e  f r o m  the diver~:elat be -  
havi~ur of the  i n t eg rand  in (2.39) as z t ~ ~o i .e .  s ~ ~ ,  and so  the leftoha,~d cut is 
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irrelevant in g e n e r a t i n g  the singularity [15]. Hence the only dynamical singularity 
of a(t) ~s the right cut above t o. 

The s~gnificance of the condition (3.10), however, is that this theorem breaks 
down ff t"~o traj~',~ ,~,)ries c r o s s .  Expanding  [39] [A~.Ia(t) ] I about  t .- t r we have 

[A~. ( t ) ]  " l  = ~ l [ ~ t ) ' a ( t r ) ] + a 2 [ a ( t ) ' a ( t r ) ] 2 + . . .  + b l ( t ' t r ) + b 2 ( t ' t r ) 2 ~ . . .  (3.11) 

ff t r is a regular point of A]~j(t). So the condition for a pole (3.9) reads 

b 1 
a(t~ = a(t r) - -~1 ( t "  t r )  + , . .  (3.12) 

so a(~) ia ana ly t i c  at t r a s  expec ted .  But if a I = 0, i .e .  (3.10) does  not hold,  then 

~(t) = a(tr) ~,(-bl/ag)~ (t- tr)½ +... (3.13) 

and two t r a j e c t o r i e s  c r o s s  ~.t a( t r ) .  But if b 1 - 0 ~here need  not be  a branch-p. , in t ,  
so  the fac t  tha t  two t r a j e c t o r i e s  c r o s s  max,, but  need not ,  r e s u l t  in a branch-point  
o c c u r r i n g  in  each  of the  t r a j e c t o r y  funct ions .  T h e  i m a g i n a r y  p a r t s  of the two tra-  
j e c t o r i e s  con t r i bu t i ons  to the  ampl i tude  mu~t  be  equal  and oppos i t e  so that  the am- 
p l i tude  i t s e l f  is  r ea l  fo r  : < t o, O t h e r w i s e  t h e r e  would be a v io l a t i on  of the  Mandel- 
s tare  r e p r e s e n t a t i o n .  

So we can  conc lude  tha t  9 r o v i d e d  two t r a j e c t o r i e s  do not c r o s s  the only singu- 
l a r i t i e s  of a(t) wil l  be  a r i g h t - h a n d  cut for  t > t o. We can  thus  w r i t e  a d i spe r s ion  

1 i ~ dr' . {3.14) a(t) -- -~ t' - t 
0 

But of c o u r s e  (3.14) has  only symbol ic  s£gni f icance  tmtil we know the n u m b e r  of 
s u b t r a c t i o n s  which a r e  needed .  We sha l l  s e e  that  the  e x p e r i m e n t a l  ev idence  seems 
to suppor t  a behav iou r  l ike  Re a(t) ~ c~ + c~'t so  (3.14) b e c o m e s  

~ !m ~(t') 
a(t) = a o + a' t + - ~ ~' (3. IS) r. t' - t " 

O 

r it the  i.ntegr.~l may a l so  d i v e r g e ,  in which  c a s e  it should  a l s o  be sub t r ac t ed ,  and 
~'¢e ob~aJ~r i n s t e a d  

oO 

a(t) = % + a ' t  ÷ - f - to  

Note tha t  f o r  e i t he r  (3.15) o r  (3.16) 

a(t,) d r ' .  (3.1e) 
~ -  t) 

dna - I  ; Ima ( t ' )  dr' 
t i t .  =-~- to ( ~ .  0 . .  1 ' r. > I .  (3.171 

Since we have  seen  in c h a p t e r  9 that  Im a can  not  change  s ign ,  but  mus t  r e m a i n  
pos i t ive ,  i t  i s  c t e a r  tha t  fo r  a l l  t < t o a l l  the  d e r i v a t i v e s  of ¢~(t) w211 be posi t ive .  
Thus a(t) i s  a Herg lo t z  func t ion  for  t < t o. Of c o u r s e  th i s  wi l l  not be t r u c  fo r  col-: 
liding trajectories with l~t-hand cuts. 
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There a r e  a l so  two poin ts  about the t h r e s h o l d  behaviour  of the t r a j e c t o r i e s  
~,hich d e s e r v e  a b r i e f  ,~.,entiom Above the  t h r e s h o l d  for  the e l a s t i c  p r o c e s s  
1 +3 .... 1 + 3 we have the m~itari ty r e l a t ion  ( f rom (2.61)) 

2q~ 13 (qt 2L 
- - i  . . . . .  . 

Since the pos i t ion  of the  t r a j e c t o r y  is g iven  by [B~j( t ) ]"  1 = 0 fo r  J = a(.Q, the 
threshold behaviour  of (3.18) is  r e f l e c t e d  in aCt) [40 ,41 ]  In s ec t i on  4.2 x~... ohall  
show that the orbi ta l  a n g u l a r  m o m e n t u m  at  t h r e s h o l d  is L = J -  Y13, where  Y13 
represents  the m i s - m a t c h  be twee~ J and, L,  and is given in (4.3). It is found ( see  
refs. [40,41],  or  e.g. ref .  [15]) that the r e s u l t i n g  t h r e sho ld  behav iour  of the t r a j e c -  
tory is 

• 2 ,(a(to)-'" " . _  
a(t) = a(to) + a~-q t 13 ) " 1~+~ for  a(to) - Y13 ~ ~ " (3. ~9) 

Thus both the  r ea l  and i m a g i n a r y  pa r t s  of the  t r a j ec to ry  func t ions  have the t h r e s h -  
y ~ 2 xa(to)- 13+~ old behaviour  w13~ . The g e n e r a l i z a t i o n  of this  for  any two-body t h r e s h -  

old is obvious.  However ,  it  i s  found in po ten t i a l  s ca t t e r i ng  that  such a t i~reshold 
behaviour is not impor t an t ,  and it is not ev iden t  in p a r t i c l e  p h y s i c s  e i ther .  

- - -½ The second  point [42-44] i s  that  as a( to ) -  Y13 the  equat ion  

2 J" Y13+½ co;,stant (3.20} ('qt 13) = 

is sa t is f ied by J = an for  any a n such that  

1 3  ) - i ][a - 
Y +½ = -+-~7~:~' ~o.~- 
13 

or  

4- 2?rn 
o n  . . . . . . . . .  . ............. -2 . . . . .  + Y 1 3 -  ~ . ~ 3 . 2 2  

+ ~ log (qt 13 ) 

Hence we expect  that  an inf in i te  n u m b e r  of t r a j e c t o r i e s  wil l  accumula t e  at 
J = I;13- ~ coming  in f r o m  the  complex  p lane  as  7213 -- 0. T h e s e  low- ly ing  trajec-- 
tories do not s e e m  to have  m u c h  phys ica l  s ignKicance ,  but they s e rve  as a xvar~m~g 
against m o d e l s  which have only a smal l  n u m b e r  of t r a j e c t o r i e s  in the l e f t - h ~ f  J -  
plane. 

F e r m i o n  t r a j e c t o r i e s  su f f e r  a f u r t he r  compl ica t ion .  As we shal l  d i s cus s  in the 
next caap te r ,  def in i te  p a r i t y  ampl i tudes  c o r r e s p o n d i n g  to ~hannels  with add 
fermLon n u m b e r  a r e  sub j ec t  to a cons t r a in t  a t  t = 0. It is found that v,~hc.'.~ the ~:~c- 

and there  is the r e l a t i o n  (4.4'/) 

A,~V. 1 )X-X '+ l JH-~( s  , ,rt, "" 23~ 
H - . .  

where, as  be fo re ,  ~? = + r e f e r s  to n a t u r a l / u n n a t u r a l  par lor .  Th i s  r~s~fit is a get~er- 
alization of the  ,.~'e{~ known MacDowel l  s y m m e t r y  [45] of ~N scatte~ {ng. We sha l l  
see in chap t e r  4 that  (3.23) i.s an example  of a consp i racy  re la t ion .  

In o r d e r  to sa t is fy  the  r e l a t i o n  we need  two t , -a jec tor ies  of opposi te  pariD-. 
~+(~."~) and a-(~rt) say,  whicL m e e t  at xZt: = 0 and a re  r e l a t e d  by 



• ' a * ( ¢ t ) : a ' ( - " ¢ t )  > o ,  (S,r t) 

the first contair~ing particles of spin J and parity (-l)J'~, and the second particles 
of parity (-1)J+~. Of course ff the trajectory takes the form 

a+(v~t~ = ao+a'  ~;t with ~' > 0 , (~.25) 

there ~ 1  be physica~ part iCles only on o~ + and not on a- .  But f f  the trajectory is • 

evex,~ in / t ,  such as  .. 

= % + (sJ ) 

then cP coincide, and we expect the fermions to appear as par i t y  doublets, coinci, 
dent in mass .  A mor÷ :general form such as  

: % + a' It + a.t +... 

splits the degeneracy, but gives a curved t rajectory.  
The retat ion (3,13) alSO mearmthat  the dispersion relation for  the trajectory: 

function should ~ written in t e rms  of Vrt r a the r  than t, and in unsubtracted form it 
r e a d s  

1 ~ Ima(~/t') d ( ~ t ' ) ,  1 f"~ Im(;(q't') d~/t ' ,  
"VrtO " 0 

so we need to know the in~aginary par ts  in both Fhysical regions of the trajectory. 
Subtractions may of course be needed as ~n (3.1~). 

a) Boson.~ 
The principal means that we have for classifying resonances is the SU(3) 

scheme [46, 47]. ALl the well established meson resonances can be grouped h~to 
nonets c-~lsisting of an SU(3) singlet and an octet. The best established nonets have 
j P C  valleys 0 "+, 1 " ,  and 2 ++ though there a r e  also 0 ++ I +~ and 1 +- states of less 
certain status.  Regge t ra jec tor ies  ca r ry  a given isospip I, hypercharge Y, baryon 
number B a n d  T/=~: (natural or  up~atural par i ty) ,  and produce physical particles 
spaced by two up Jts of angular  momentum. So taken alone the above states give us 
just one par t ic le  on each t ra jectory,  and do not give.much i;~.ea of how to draw the 

There a r e  however severa l  additional fea tures  which ena~le us to make a 
'Chew-Frautschi  plot' of Re ~ t )  versus t, such as fig. 5, with a certain amount of 
confidence. 

These a~v: a) For  some tr~Jectories such as  those cozrespondlng to the f,  p and 
A 2 we have a good idea ~ o m  ~its to high energy s-channel data what the value~, of 
a(t) are for  t < 0. b) Th£re exis t s  a certain number of higher mass  states which 
fall r~turallv onto straight ILn_~s ,~-n~.~r+~ H...~.....~. ~... ~ ........... 
though their spins are  not known, c) The evidence from those meson trajectories 
that we do know (and from the baryott t ra jector ies)  is t3Lat all t r ~ c t o r i e s  are 
roughly s traight  and paxaUel, d )The re  is evidence for exchange degeuer~cy i.e. 
f o r : ~ r s  of t r~ j ee t~ i e s  of ~ o s i t e  s ignat t l ;e  ~ i c h  lie essent ial ly o~,e on top o~ 
the other and.So appear' to be a single t ra jec tory  with a par t ic le  a~ eve~- integer 
value of ,J~ This memm for  example ~ e  ' l - - ~ j ~ c t o r i e s  a r e  approximately degen- 
erate with the 2 ++ ones. This deg~eneracy wilt oc :u r  ff the exchange force (the 
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Fig. 5. A Chew-Frautschi plot of Re C~(t) against t for the well established meson resonances. 

discontinui y in (2.39)) is ve ry  smal l  so that the re  is at leas t  an approximate equal- 
ity betwee,', A~j( t )  and A~/~(t). There  is  no a p r io r i  reason why ~,e effect of the u 
discontinuity should be sma l l ,  but exchange degeneracy does seem to be in accord-  
ance with the facts  a s  presented  in fig. 5. 

This f igure  contains all the  boson r e sonances  of ref. [48] whose existence and 
quantum numbe , s  a re  well  es tabl i shed (though we have ignored the fact that the A 2 
seems to be ":'~ sp,,~,. The re  a r e  however quite a lot of s ta tes  whose existence is cus-  
pected, or  which cer ta in ly  exis t  but whose quantum nmnbers  a re  undetermined.  
and if one wishes  to t ry and include these  a speculative picture  such as fig. 6 may 
result. (See also ref. [49].) 

Part of the motivation for  this figure is that, as we s: 'a:i d iscoss  in la ter  chap- 
ters, t lmre a re  theore t ica l  a rguments  ~n favour of the e-:is~ence of daughter ~ra- 

2 I 
I 

l /  / / /  ..-'y 

. 
t ~,~'I ~ 

/ ,/ 

//" 

. / / / -  < > -  
/ / / /~.." 

Fig. 6. ,i speculative Chew-Frautschi plot for the I = I resonances. ~ ~ empty circle tadt- 
cate:s that no appropriate state has been seen. 



128 P :. ~: B ~COLLINS .... 

jectories which are spaced at integer units below the leading (parent) trajectory at 
t = 3 i.e. for  the nth daughter  we have 

an(O) = ~(0) - .  n = i ,  2 . . . .  (3.2,q) 

Since 'all t r a j e c t o r i e s  have ~(0) < 1 (because of the F r o i s s a r t  bound) the daughters 
are  a lways  in the le f t -ha l f  J-plar_~ at t = 0. However,  if they r i s e  para l le l  to the 
pa ren t s  we should expect  each  par t ia l  wave to have a sequence of resonances  sepa, 
ra ted by about n(a')" i in t f rom the parent .  Note that this  equal spacing in t n~eans 
that they get c loser  and c l o s e r  together  in m a s s  (= ~/t). T h e r e  is  very  l i t t le  c~a- 
c re te  evidence for such a complex s t ruc tu re .  Th~s is not uecess~.r i ly damning be- 
cause we can not observe  ,purely bosoaic s ca t t e r i ng  p r o c e s s e s  and so all  the rcso- 
nances  have to be looked for  in production exper iments  r a t h e r  than in formation 
ones. If one r e m e m b e r s  the l a rge  number  of new baryon r e sonances  claimed by. 
the pa r t i a l -wave  ana ly s t s  in 7rN scat ter ing ,  one may expec, t that  there  a re  many 
boson s t a t e s ,  even of quite low mass ,  r ema in ing  undetected. 

The re  a r e  some notable absentees  however.  The most  s t r i k ing  perhaps  is the 
lack of a p'  r esonance  ly ing  on the daughter  of the p. Th i s  should have the rho 
quantam numbers  and a m a s s  of about 1250 MeV. Several  exper imenta  have 
sea rched  fo r  such a s ta te  without success  [50-52]. We shal l  see  in the n e ~  chapter 
that the re  i s  no good reason  why the daughte r s  should r ema ln  pa ra l l e l  to the pa r -  
eats ,  however.  

The only t r a j ec to ry  for  which there  is  a l a r g e  number  of candidates  is  the P'A2 
exchange degenera te  t r a j ec to ry .  'Miss ing  mass"  exper iments  ~53}, in which the 
recoi l  p ro ton  momentum is  measured  in r eac t ions  of the form 1r'p -* X"p have 
i d e n t i f l e d a  i a r g e  numl~er o f  n . , 'row I = 1 s t a t e s  for  X. Unfortunately bubble cham- 
b e r ~ r : l i n e n i s  h~.-:: :_*. Seen aLle to colffirm much of the s t ruc tu re  [48], but ff we 
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C' 2 4 6 
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Fig. 7. A plot  of R e ~  and I m ~  fo r  the p - A  2 exchange  degenera te  t r a j e c t o r y  as  deduced 
from the missing-mass data of ref. [53]. 
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take the s t a t e s  at t h e i r  f a ce  we  can  d r a w  an I = . t r a j e c t o r y  as  in fig. 7. S ince  the  
widths of the  s t a t e s  a r e  a l s o  rough ly  known one can deduce  the  corre:~ponding Im o 
from (3.8) Im a s e e m s  to fal l  fo r  l a r g e  t so we can expect  the  ubsubt r ; tc ted  i n t e g r a l  
(3.15) to conve rge .  In fact  the  whole con t r i bu t i on  o[ the i n t e g r a l  is  ve ry  sma l l  [54!. 
which may expla in  why the  t ra jec tory ,  s e e m s  so s t ra ight .  

I~, fig 5 t h e r e  a r e  no t r a j e c t o r i e s  with o(0) much  above J = ~, ce r t a in ly  no~e 
with ~r(0) ~ 1. Howeve r  it  is  wel l  known that  e l a s t i c  s c a t t e r i n g  c r o s s  s ec t ions  a r e  
roughly cons tan t  at h igh  e n e r g i e s ,  and we sha l l  s e e  in the next  chap te r  that  if th i s  
is to be exp la ined  by R e g g e - p o l e  exchm~ge we need  a Regge t r a j e c t o r y  with ' v a c -  
uum' quantum n u m b e r s  ( l =  Y =  B = 0 7? = + and  even  s igna tu re )  and o'(0) = 1, i .e .  
saturating the  F r o i s s a r t  bo£md. T h e  f i r s t  p a r t i c l e  on such  a t r a j e c t o r y  would ob- 
viously have spin  2, and so t he  f would s e e m  to be  a good cand ida te .  On the  o t h e r  
hand exchange d e g e n e r a c y  s e e m s  to d e m a n d  tha t  the f t r a j e c t c r y  be  d e g e n e r a t e  
~qth that of the ¢~. Th i s  i s  c o n s i s t e n t  with fig. 5, and we shal l  f ind that t h e r e  a r e  
other t h e o r e t i c a l  g rounds  f o r  such  a d e g e r e r a c y  in c h a p t e r  e. 

In fact  the  need  for  a v a c u u m  t r a j e c t o r : t  w i th  a(0) = 1 was  r e a l i z e d  be fo re  any 
2 ++ mesons  w e r e  known, and  so  such a t r a j e c t o r y ,  ca l l ed  the  P o m e r a n c h o n  (for  
reasons which  wil l  be e x p l a i n e d  in c h a p t e r  7) w a s  s imply  'inver. t~d' [55]. If such  a 
trajectory ex i s t s  and is  p a r a l l e l  to the o t h e r s  we ex] e,::t a v~cut  :n 2 ++ p a r t i c l e  with 
a mass about  1 GeV and *.here have  been  i nd i ca t i ons  tha~ such  a par~ic!c  may  ex i s t  
[S~], but th i s  is  not c e r t a i n .  T h e r e  is a l so  e v i d e n c e  f r o m  f i t s  to e l a s t i c  s c a t t e r i n g  
data {see c h a p t e r  ~) tha t  the  s lope  of t.~e P o m e r a n c h o n  (P) m a y  be  s m a l l e r  than 
other t r a j e c t o r i e s ,  in  wh ich  c a s e  ident~.ficaticn ~,ith the f is  s t i l l  poss ib le .  It could  
be so fiat,  o r  t u rn  ove r  so qu ick ly ,  that  it does  not r e a c h  J = 2, in which ca se  no 
particle wi l l  be seen;  o r  it m a y  even be that  t h e r e  is no such  t r a j e c t o r y  a:,d e l a s t i c  
scattering r e q u i r e s  s o m e t h i n g  o the r  than R ~gge poles  for  i ts  explanat ion.  We s h a h  
see in chap te r  6 that  R e , g o  cu t s  a r e  l ike ly  to bc .~mportant in e l a s t i c  s c a t t e r i n g .  
but it is h a r d  to see  how t h e r e  could be cu ts  at  J = 1 if there- w e r e  uo poles frc.m 
which to g e n e r a t e  them.  

At p r e s e n t  the n a t u r e  of th i s  P o m e r a n c h o n  pole r ema  :as s o m e t h i n g  of a mvs~e,w 

b) Fer,:ions 
Baryons come in SU(3) sir~glets, octets and df:cuplets, and, partly through par- 

tial-wave analysis, a large number of low mass states are kno~m [48]. At higher 
energies many non-strange states have been identified by observing peaks and di~s 
in the forward and backward cross sections [57,58]. Thu:~ the Chew-Frautschi 
plots shown in figs. 8 = 10 are a good deal more impressible than those for the b~ 
sons. In particular the evidence for almost straight Regge trajectories of slope 

1 GeV ~2 is v e r y  g~od. T h e r e  is a l so  s o m e  ev idence  for  exchange  dee,~n~a~ 
though t h e r e  s e e m s  to  be  a s y s t e m a t i c  d i s p l a c e m e n t  betw~een the  even and end ,;ig- 
nature oc te t s .  

In figs. 1I and 12 we have  p lo t ted  the  n a t u r a l  and unna tu ra l  p a r ! ~  ~ t r s i e c ~ o r i e s  
against t. T h e r e  is a paucity,  ~f unna tu ra l  p a r i t y  s t a t e s  which  is  in total  co~ ' l i c t  
with the MacDowel l  s y m m e t r y  r e q u i r e m e n t  {3.24). Since  the t r a j e c t o r i e s  a r e  ~.~e:~- 
in t rath~ r than 4"t we would  expec t  to find d e g e n e r a t e  par i tF  c!oublets. One ~ v  ev:: 
of this d : f f i c u l ~  is to  s u p p o s e  that  fo r  s o m e  r e a s o n  the r e~ i2ue~  of the odd ~,~:,.~y 
t r a j ec to r i e s  van i sh  when  c~ p a s s e s  t h rough  a p h y s i c a l  i n t e g e r .  In fact  we shMl s e e  
in chapker 7 tha t  t h e r e  is  s o m e  ev idence  fo r  such  a b e h a v i o u r  f r o m  fits t'~ [~ck ,~a rd  
meson b a r y o n  s c a t t e r i n g .  H o w e v e r ,  it s e e m s  imp laus ib l e  tha t  th i s  should happe:~ 
at evex T i n t e g e r ,  so h i g l m r  m a s s  s t a t e s  a r e  s t i l l  expec ted .  An a l t e r n a t i v e  x~y  out 
of this d i l e m m a  is d i s c u s s e d  in : .hapter  5. 
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SLice the widths of the baryon states are reasonably ~vell known it is possible to 
determine Im ~ using (3.8). Some examples for the d,)min~nt trajectories ar~ pre- 
.sented in fig. 13 [59]. Evidently Ima(t) is a more or less linear function of t, but 
~ith a much smaller slope than Re~. If this behaviour is substituted in (3.1~) we 
again find that the integral is very small, and the straightness of R~ a is du,~ to the 
dominance of the two subtraction terms. 

Im o(. 4 t 
I-2 

O.6" 

C).4 

. . . .  : ..... .~ ..... , ~ ----~-===.=-~,-.~ 
i 2 3 4 5 6 7 8 9 I0  

t (c v)2 
Fig. 13. A plot of Im O~ against t for the two baryon trajectories which have the greatest 

nunfl~er of established resonances. 

If we wish to find the residue of the trajectory we need to know the elasticity of 
the resonance. (Remember in (3.8) r is the total decay width to all channels, not 
the partial decay width.) If we define the elasticiW in terms of the decay width ot the 
resonance to the elastic channel rel as 

x - -  rel/r, 
the eiastic residue in 1~ -- 13 is then 

x.ft 
- - -  zr , a(t). Eel(t) 2qt 13 

$o the behaviour  of the ~-esidue depends s t rongly  on the belmviour of the elasticity 
as  one goes up a t r a j ec to ry .  The evidence fo r  baryon t r a j e c t o r i e s  is ~ha~. ~ is an 
exponential ly decreas ing  function of t which we may wri te  as  

/3el(t) ~ const. -dRew(t ) ,  
~--* oo 

where d is  a constant ~ 0.5. (See refs.  [6~), 61].) 
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4.1. In. ~ oeh~ction 
ia the previous chapter  we looked at the resomtnce in te rpre ta t ion  oi a Regge 

trajectory for  posi t ive ene rg ies .  However,  much more informat ion cm~ be ob- 
tained about a t r a j ec to ry  through its contr ibut ion to the asympto t ic  behaviour of the 
crossed-channel ampli tude,  for which we shal l  develop genera l  express ions  in th is  
chapter. 

First  we d iscuss  the kinemat ical  s ingu la r i t i e s  and ze ros  of the residue func- 
tions, which a re  requ i red  by the analyt ic  p roper t i e s  of the he l ic i ty  ampli tudes.  
There are kinemat ical  cons t r a in t s  on the hel ic i ty  ampli tudes which may requ i re  
corresponding cons t ra in t s  in the res idues  of a given t r a j e c t o r y  at the var ious  
thresholds and pseudothresholds .  The re  a r e  a l so  cons t ra in t s  a t  t = 0 between he- 
licity amplitudes of d i f fe ren t  pa r i t i e s ,  and these  may (but need not) requi re  ' con-  
s0~racies' between t r a j e c t o r i e s  of opposite par i ty .  

Then in section 4 we b r i e f ly  examine the problem of unequa ~, mass  k inemat i c s  
when the Regge pole t e r m s  have unwanted t = 0 s ingular i t ies .  These  may be can-  
celled by. 'daughter '  t r a j e c t o r i e s  which a r e  spaced at in teger  u~its  ~f angular  mo- 
mentum below the ' pa r en t ' .  The consp i racy  and daughter ideas  |.ave also been ex- 
amined by many authors  f rom a g roup- theore t ica l  viewpoint, and, although it does 
not add anything e s sen t i a l  to the ea r l i e r  d i scuss ions ,  we br ie f ly  review this  ap- 
proach in section 5. 

The requ i rements  on a Regge res idue  do not ,end w i ~  these  kinematical  consid-  
erations, however, for  t h e r e  are  a lso co,,d/tiom, o,~ the behaviour  of the res idue  
function whenever a t r a j e c t o r y  pas ses  through a nonsense value of J. These  a re  
due to the pecu l ia r i t i e s  of the F r o i s s a r t - G r i b o v  project!c,~ at these points, and 
may (but need not) r e s u l t  tn dips it, va r ious  different ial  c ro s s  sections.  Tkese  dips 
are one of the most  i n t e re s t ing  azpects  of Regge phent,menoloK-. 

Because of the complexi ty  of th~ s ingd la r i t i e s  and cons t r a in t s  in : ,,f :x "-:.ha~:c~ 
helicity amplitude, some authors  have p r e f e r r e d  to work with s-chain',el an-pl', - 
tudes, which a r e  f r e e  of them.  We der ive  an approximate express ion  R:*r ~ r-chr, n- 
nel Regge pole in an s~channel  hel ic i ty  ampli tude,  valid to f i r s t  order  in t / s ,  m sec-  
tion 7. 

With a l l  these var ious  f ac to r s  accounted for  we give a genera l  presc~' ipdcn ~or 
the contribution of a Regge trajectory,  in sec t ion  8, and d i s c u s s  some of its cha rac -  
teristic fea tures ,  and exper imen ta l  consequences .  The r e a d - r  who is  not con- 
cerned with the deta i l s  may  l ike to skip s t r a igh t  to th is  sect ion,  and re fe r  ~ c k  as 
necessary. 

4.L Kinematical singularities and Regge resichtes 

- -HJ" " ' 

where the integration contour is taken round the pole at J = a(t~. R follows frou~ 
(4.1) ~hat ~H(t) inher i t s  the t s ingtf lar i t ies  of Al l j ( t ) ,  except that (as we found for 
the t ra jec tory  function in sect ion 3,~} t~here is  no lef t -hand cut,  and ~ course  no 
pole (J- a(t))" 1. Thus t3B(t) will h):~e both the dynamic~  r igh t -hand cut ef A ,~\T~:'~. 
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beginning at th~ ~-ehanne[ thresheld, and also its kinematical t singularities. It is 
these kinematlcrJ singul~rRies which concern usin ~s section, 

There have been many papers devoted to finding these singularities [23-25, 62] 
One method, devised by tiara [82] and fully exploited by Wang [23], uses the fact 
that the o~y kiuematical ~ singularities of the ~.channel amplitudes stem from the 

t ee, ! half-angle factors ~g/~ (z s) [,~na£oi~ous to (2.20)). Hence the only other t-singularl. 
ties of a t-char~xel helicity ampIRade are those arising from the helicity crossing 
matrL~ (2.12). Alternatively generalmethods have been devised to construct iuva~,- 
iant amplitudes free of kinematical singularities (and constraints) which may theu 
be rel~ted to hellcity amplitudes [24-65]. This procedure is difficttlt for high spit 
particles, t~ough it is the usual method for ~rN ~d KN scattering, and the photo- 
production of pions. More recently a very simple and physical interpretation of 
~cse singularities has been given [9.5] and our (necessarily brief) account will ex ~ 
ploit this ~act. A good general account ~s that of ref. [64], and a good introductory 
review may be found in ref. [12]. 

For our general t-channel process 1 + 3 -" 2 + 4 there may be kinematical singu- 
larities at the thresholds t = (m I + ms) z and t = (m 2 ~ m4)z , ~md at the pseudo- 
thresholds (m I - m3)2 and (m2" m4)~, and at t = 0. We assume initially that 
m I > m 3 and m 2 > m~.. Equal masses are considered later. 

The threshold sin~laritie~ stem from the threshold behaviour of ths partial- 
wave amplitudes. For example, ff we consider the 1 +3 threshold the behaviour 
must be * 

A ~ t )  ~ (q13)Lm , (4.2} 

~X*e:  Z~:is. ' . the lowest poss ib le  orbi ta l  angula r  momentann given that J is  the total 
angular  momentum; i.e. we expect  the usual  non- re la t iv i s t i c  behaviour.  We would 
expect Lrn = J -  (or 1 +a3) except  tlmt this va.]ue may be incompat ible  with the parity 
of the strtte, in which case "vs have tc i nc rease  ,~ by 1. This  condit ion may be 
writ ten [25] 

L = j -  ÷ e3 ) + [ ! - v 1 v 3(- e l  +e3"v] - J -  Y a' ( say)  . (4.3} 

But the behavio~u- (4.2) is not automatical ly  obtained from the F ro i s sa r t -Gr ibov  
project ion (as it  wo~fld be fo r  spinless  sca t ter ing) .  Instead s ince  

2 2 2 t 2 + 2 s t - t ( m  +m2+m~+m24)+(m21-m3)(m2 m4 ) 

zt = 4t qt 13 qt 24 (4.4) 

and 

q , ! ~ =  [ t ' (m l+~ ' z3 )2]½[ t ' (ml -m3)2]½ + - ~ 1 
2 ~t~ - T . .  T.~ (2t~) - (sav~ (4.5~ 

we final that as  t - ,  (m ! + m3)2 , qt i3 -" 0 and z~ -- 0% and so in (2.39) e J , ( z t )  ~ et J ' !  

f rom (2.34), and ~;Ut,(zt) .-~ ~ I ,  and d2 t = ds (2 tq t13q t  24)- l ,  ~ q n g  

aT/ (T I3 )J -M (4.e.) At t  J (t) ~ 
qt 13 ~-'0 
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The d i sc repancy  be tween  (4,6) and (4.2) m u s t  a l r eady  be p r e s e n t  ~zs a k i n e m a t i c a l  
singularity i,.~. txi, t(s, t) and h e n c e  in Dsl/(S , t) in (2.39). S~ we need  

+ M-  ÷ 
AHt(S,  t) ~ (T13) YI3 {4. :~ 

Similar r e m a r k s  apply a t  t he  o t h e r  t h r e s h o l d s  and  the p s e u d o t h r e s h o l d s ,  excep t  
that the e f fec t ive  pa r i ty  of t h e  l i g h t e r  p a r t i c l e  (say - 3  ~ ) at  the  p s e u d o t h r e s h o l d  is  
[~5] ~3(-1)  ~'cr3, SO we end  up wi th  

+ M-r h y - r h  

be d i s c u s s e d  l a t e r .  P r e c i s e l y  : < m i l a r  c o n c l u s i o n s  hold if  tn 2 = rn 4.  And, of  
coarse, i f  m I = m 2 = ~:z3 = m 4  both p s e u d o t h r e s h o l d s  m o v e  to  t = 0. 

These  f a c t s  a l l o w  us  ~o w v i t ~  the  t h r e s h o l d  b e h a v i o u r  f o r  any m a s s e s  in the 
form 

~ 24 )J'M 

• ~%erc Kk~,( t )  i s  g iven  in t a b l e  1, and s o  f r o m  (4.1)  

,~ ,~, .. m fq ~ ~,o ~. 24~ ~ ) 
,/jv~ - "~A,k'~ , \ s. ' ~ " 

where ~ (,f) is free of sin~larities =£ the %J ,resholds and Vseudo~hre~ho[~ _:. " ~< 

scale factors o is arbitrary, but is io be m 9asured in Lh~ ~.~me units a~ ,' .~ ~:La ~, 
the units of ~H(t) can r e m a i n  cons tan t  as  ¢~(~)varies. We. ~halt d isc ,~ 's  ihi~ [ur~,-..r 
in section 8. 

Un:[ertmmtely this  does  not exhaus*, the  ~ r o b l e , ,  conne¢ted  ~ritb the : lu '~ i :o~ . :  
because there ,  a r e  a / so  c o n s t r a i n t s  be tween  the  differ~n't hel~clty ampl i tudes  at 
these points .  Th i s  is  ~ e c a u s e  a t  tAreshold  ,~,nly the lowest  a l l owed  orbi ta l  s ta te ,  
L = 0 or  1, i s  n o n - v a m s h t n g ,  so  the ~a r ious  p a r t i a b  ~ave he l i c i ty  ~m~.plitudes a r e  
related to e a c h  o the r  (at l e a s t  in  the  tchys~c,nl region)  by the C l e b s c h - G o r d a n  coef-  
ficients which  connec t  t h e m  to  th i s  £ s t a t e  '6:~ 64 2]. T h e s e  cons~rain%s mus t  ,~: ~o 
relate the r e s i d u e s  of a g iven  t r a j e c l o r y  in h e  d~t'.erent hc t i c i ty  ampl i tudes .  They  
axe impor tant  f r o m  a t h e o r e t i c a l  point of v i ew  Oecause if :z Regge  co~,trib~tion is 
written v :th the  r e s i d u e s  hav ing  the s i n g u l a r i t i e s  of (4,10) but not the cc, o~ ~int~, 
the resul~L~g d i f f e ren t i a l  c r o s s  sec t ion  (2.14) wi l l  have k i~emat i c~ l  ~'~-,~in~[avi,:ies 
We know such  s i n g u l a r i t i e s  shou ld  not o c c u r  because:  they can not p r e sen t  in (2.9~ 

pracuce ,  however ,  the  t h r e s h o l d s  ~re  u_._~_,a!!y r ~ h e r  f~," f~ ' ,~  ~:e ~-c.u~-:,~-.~:, 
physical r e g i o n  (t < 0) w h e r e  we a r e  i n t e r e s t e d  in using the fc r~ ,u lae .  :~S" p~:'a ,~i- 
ca! dfff~c~ttties only a r i s e  ia~ c a s e s  l ike r.N - - ~ A  where  the ? = (:'"A . . . . . . .  ~'~N~ ~seud,-.  
thresh old is  n e a r  to t = 0, 

These t h r e s h o l d  c o n s t r a i n t s  have  been  d e r i v e d  by sever~ t  auil o r s  [24.25,  ~3o55] 
and th~,,ir imp l i ca t i ons  fo r  Regge  Lheor9 have  been  ex lens ive ly  d i s c u s s e d  b¥ $~ckSo~', 
and Hi:e [25]. P robab ly  the  m o s t  e legant  d e r i v a t i o n  is fl~a% due to  T r u e m a n  [~4], 

~ . shsH conie~.~ which i~ rev iev:~d with s e v e r a l  useful  e x a m p l e s  in,, ref. [ 1,J H e r e  we _ 
ourselves x~n.th ~iving jus t  one i l lus t r a t ive  e x a m p l e  in deta i l ,  tt~e ,~" channel  m~pl i -  
t~(le for ~rv ~ NN. 
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T~d~le I 

The thresheht klr~matle.xl factor/(~,)~, (t), 

a) m I ¢ m2, m 3 ~ m  4 (UU scatt~rlng) 

M-Y - M-Y + M-]'.. - 
h'X~ ,(A = (TI3)  • 13(Tl:~) 131T241 ,.4~T24, 

where 

M-Y24 

T'+'~7 --' [*-(m, + ~ : rtj- ~, t~ - - " ~ 

where the ~Yi is the particle spin, ~i t l~ h~:~n~tc parity,  mad we are 
assuming m i < m-. The other c u e s  can b,, ~btaitu~d from tt by 
setting the thasses equal and lgnorh~g the l-~eBdotht~shold at t ~: 0, 
thus 

b) m l = m  2 =  m,  m 3 ¢ m  4 ( E U )  

Kk~,(t  ) = ( t -  4 . . , ~  . . .  ~ . 2 4  ~ *~,t.24 ., ,,I 

w h e r e  

c) m 1 = r n  2 = m ,  = ~ 4  = m  CEE) 

KXx,(0  = (t - 4~:,2) M - ~  . 

in the abew.  we  h a v e  a s s u m e d  tha t  ff  'hi = m.t then the ~ o  p a r t i c l e s  
have the vame spin and paxity. 

The  two hld.~pendent he l ic i~ ,  amp l i t udes  have  the k i n e m a t i c a l  sir~oxtlarities 

A++, 00(.,, t) = :~++, 00(.~, t) ( t -  4m2) '~  

A +., 00( , t) - 3 +_, 00( , t)t½ (:-  4.2)  ( i - ½,  (4. n) 

w h e r e  ± = ±½, m is the  m a s s  of the nucleon and  ~ that of the pion,  and : is f ree  of 
k i n e m a t i c a l  s i n g u l a r i t i e s .  T h e r e  is a cons t r a im:  at the NI~ t h r e s h o l d  which takes  
the f ' ) rm 

(4.1~) 

If e ach  of t h e s e  a m p l i t u d e s  is  e x p r e s s e d  ~n " .erms of a s i i ~ l e  Regge  polko ( see  .~ec- 
t ion 4 fox" the  de ta i l s )  we put  

, 1 A++, 0 0 ( 0  = ~ 1( 0 (t - 4 m 2 ) ' ~  (s/so)~t), (4.13~ 

A +.,  O0(l) = ,~2(t)[t(to 4t~")]2 ( 1 - z 2 )  ~ ( s / s o l  a(t)"  1 14.1t., 

w h e r e  ~,l(t) and  r2(t) axe k i n e m a t i c a l - s i n g u l a r i t y  f r e e  r e s i d u e s .  When we take  tt~e 
a s y m p t o t i c  f o r m  of z t fo r  l a r g e  s the l a t t e r  a m p l i t u d e  b e c o m e s ,  



REGGE TIIEOKY AND PARTICLE PHYSICS 137 

-'~ )-.~ (s/%)'.~'(0 
A + . , o o ( t )  '-~< b '2( t ) t~L~-4m, ,  , (4 .15)  

N " ' . x ' ~  

SO botll C4.131 and 14. t5) : l l ' t  ~' s ing t f l a r  al t ..: 4 i t  ,2 H¢.~wever fhc coil,~lr:,,i:~l (4< 17) 
r~,',ld,', 

)<'l(4m 2) = '~,2 ( e m  2) 2m , (4.16) 

~t:lict~ we can ens ,ire ~" putt ing 

2m ) '2( t )  ~ ) ' l ( t )  +T3( t )  [ ( 4 m  2 - t ) / 4 m 2 ) ]  , (4. ~7) 

where, ~ l(t} and  y3(t)  a r e  u n c o n s t r a i n e d  a n d  s i n g u l a r i t y  f r e e .  P u t t i n g  (4.17) in (4 .15)  
we get,  f r o m  (~.14) 

_ o  _ _  . 

dl q2x 4 m 2  } 4 m 2  
12 

whtch tins no  s i n g u l a r i t y .  
In p r i n c i p l e  such a constraint  should b e  i n c l u d e d  in any  R e g g e  po le  f i t ,  bu t  in 

p rac t i ce  h a d  we u s e d  (4 .15)  i n s t e a d  of  (4.1"/) t h e  s i n g u l a r i t y  a t  t = 4m 2 w o u l d  not  
have m a d e  m u c h  d i f f e r e n c e .  T h i s  Is f o r t u n a t e  a s  it is  v e r y  t e d i o u s  to h a v e  i nven t  
p a r a , n e t e r i z a t i c  "" w h i c h  t a k e  c a r e  of a l l  t h e  c o n . ~ r a i n t s  in p r o c e s s e s  wi th  h i g h  
~pin 

~'e c o m e  now to  tt,  e b e h a v i o u r  at t = 0 r66] ,  znd  e-~ns ider  f i r s t  the  u n e q u a l  m a s s  
c a s e i n  1 ," ,n 2 ~ m~ ~ m 4.  F r o m  (4.4) we ~ h a d t b a t  ~ s t - - - O , z  t - ' e  w h e r e ~  = ~ : l a c -  
cording a s  (m  1 - m 3 ) { ~  p - '~'~4" O. ii~ ~ac: ~he haM-- :~.~gle k-~c~or (2.20~ ha.~ ~i~e b~-,- 
h,|Vl~Jll F 

x ,v (Z t )  - t 
Z - - O  

( 4  1 9" 

and so f r o m  (2.25) 

A H t ( s  , t) -. ,'- (4.20! 

and h ' o m  the  d e f i n i t i o n  (2 .47)  

i t t t~ ,  t) : , ~ t l t ( s , t ) a : r t A . B t b ~ . l )  = t -  F l ( S , t ) ± -  q t - "  ' Y2 (s  , '  , 

where F I and F 2 are regular at t 0 Hence we conclude that ,~7 has a singular- 
= . , - H l  

ity" o[ the f o r m  

-,~ F '~ K " 
. . . . . . . . . . . . . . . . . . .  7 . . . . . .  - - - :  - : 

, t~O t ~ma"x"  ~+X'  , l ik-  ~'~ii t t  3~*: 

~ e r c  M, N a r e  d e f i n e d  in  (2 .16)  and  (2 .19) ,  a n d  F rl is  r e g u l a r  at  t : 0. Hind, e v e r  
such ;~ s i r~gular  behav i ,  m r  i s  not  p e r m i t t , ~ d  to  a s i n g l e  R e g g e  .~c'Ie, f,~r. ~f w~' ,,::,~ 

AHt(.~. f) - ~,Lx,(z ),4!it(q, t) ~ t tx-ex' [/2 1 L Fn y-Tt I (4.23~ 
t--O -2 t (M+NV2 ~ n t ( M + , v ) / , 2 ;  , , 
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the resul t  is s ingular  unless  F rl = • F "q, except  when ;t - ~, - 0. Such an equality 
of F~ and ~'-~ at t = 0 is in fact readi ly  deducible by combining t4.21) and (4.22), 
Howe-er  t~is relation can obviously o~tly be sa t i s f ied  if we hav:~ two t ra jec tor ies  of 
opposite l~ari~,. Here we a re  asaumtng that t h e r e  is o~tly one t r a j ec to ry  so we 
must  use instead of (4.22) 

F ~ F ~ 

(Note that ,'or boson-~ermten scattering N is not an integer a~d we are uot allo~,d 
to multiply by a half integer power of t. We discuss  this problem in section 3.) 

In addition to the ~lngttlarity (4.24), it Is evident from (4,~) that if we use the 
form (4.10) for/~H(t) we shall introduce a further singularity t M-~(t). We sh~l[ 
find in section 4 that the (qt 13 qt 24) a(t) behavtour of the residue will  cancel with 
that of the leading order term in the asymptotic expansion of 

4) t l qt~ ' (4.2S) 

but the t M factor remains, so combining (4. I0) w',th (4.24) we end up with 

(~/t 13 qt ~4~ a(t)'M 
fill(t) = t " (M+N) /2  Kkk,(t) \ -  -s- ° ....... / )~H(t) , (4.26) 

wher, e ~H(t)is free of kinematical singularities. Howevez even flus wilk not do for 

~lt(t) ~ t "a t ( M ' N ) / 2  (4.~'t) 
t-.O 

is not fac tor izable  between the different  h e l i c i ~  ampltt~3: s. We knox:/zorn (2.~7} 
that we must  be able to wri te  ~H as a product of the two ver¢ices independently 

The s imples t  way of sa t is /ying this  is to put B/~(t) "~ t "a  t(M+~'Q/2 so we end up 
~ t h  [66, 67, 37] 

= " " ' ( . q t  
t (M N)l~.gxx , ( t  ) So ~.~i(t), ¢,~.2~) 

where ~,H(t), the ' redaced  r e s idue ' ,  is f r ee  of k inenmtical  s ingu la r i t i e s  etc.,  but 
may have to satisfy cons t ra in ts  l ike (4.16). I 

If one pa i r  of masse s  is equal,  say m 1 = m3, then z t ~ t~, while ff m 2 --- ;~4 as 
well z t is f ini te  at t = 0, so the-~H have juat the same s ingu la r i t i e s  as the A H. 

(equivalently under  crossing)  because with one m a s s  pair  equal the cross ing matrix 
(2.12) is s ingular  at t = 0, while for both pa i r s  equ~! the Ihue t = 0 is the bounda~ 
of the s-charms1 physical  z egton where the s - channe l  ampl i tudes  must  satisfy 

A H s ( S , t )  ~ t(tt l- 1 I)/'2 I,.,.SO) 
The resu l t ing  s ingular i t ies  a re  [67] 
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n/2 
w h e r e  n [ 1 -  ( I),%+X' -~ - ] /2  for  EE , 

A l l  ~'- ~ "~1+ :  w h e r e : ~  ~ [ t - r t ( - l ) "  ~, ' ' ~,,*",~ f o r  E U .  (~. 3 ~ 

where' EE m e a n s  both m 1 = m 3 and m 2 = m4,  whi le  EU m e a n s  m 1 = m2, m 3 ¢ m 4. 
$it~ce qt i3  :in f in i te  if m 1 - m~,  and e :  24 is  if m 2 = m4,  the  t h r e s h o l d  f a c t o r  in 

(4,I0~ has the  behaytou,r  ~ ° f o r  E E  and t (~  ~): 2 fo r  ZU, so we end up with Br~ ,-- t n / 2  
i " - -  ' . . t a t  

for EE and #H "" t ( ~ ' a ) l ' ~  z i + z  f o r  EU, H o w e v e r  both f o r m s  a r e  incompat ib le  wi th  
factorization,  and if we a l s o  t ake  into a c c o u n t  the  need for  

(BEU) 2 -. ~3EE/9UU 
at t ~ O, with ~UU given by (4.29:,  we end up with  

,, (q t  13qt 24) a('t)-M (a 32)  
'~'H(t) = tSh'X'X'(t) " -  ..... ~o-  - - ]  71t(t) ' "" 

wt+,h 5 given in table  2. We d i s c u s s  a l t e r n a t i v e  f o r m s  to this  ia the  next sec t ion .  

Table 2 

different ma~s configurations the t = 0 behaviour is t5 where 

a) UU 6 = - ½ ( M - A  

where ), (1-~:~)  is the belicity change at the equal ~ass  e~<! 
in (b}. 

4,3. Covsp i rac ies  
In obta in i r~  the t = 0 b e h a v i o u r  of the  R e g g e  r e s i c u e  fum:t ion (4.32) we supposed  

thai t he re  m s  oitiy a s i d l e  Regge  t r a j e c t o r y  (of a g.ven pa r i t y ) ,  and so we w e r e  
Iorced to g ive  the r e s i d u e  the  b e h a v i o u r  (4.24) which was l e s s  s i n g u l a r  than that  ~2- 
10we:t for the ampl i tude  (-." .22). Th i s  has  t he  c o n s e q u e n c e  iha t  if we use  the r e s i d u e  
(4.32) the con t r ibu t ion  of the  Regge  pole  v a n i s h e s  at  : = 9 ~_or a l l  AH~!(s, t) with N =~ 0. 

This is b e c a u s e ,  as  is ev iden t  f r o m  (4.23), th~ def ini te  pariOy ampl i tudes  s a t i s ~  ~ 
the o:.~:~straint equa t ior  

cr~ , ,, :~-77 . . . . .  :,~\ (4 33~ 
" x ,~tH/tS,H ~ , q H t t 5  , t) = ut~ ) . . 

With ti,v behav iou r  (4.32) we say  that  the s i ng l e  Regge pole evades '  this  - ~ .q*-'~ 
,ha,,wg art e x t r a  t N f a c t o r  in i t s  r e s i d u e .  
An ~'tterna~tve so lu t ion  to  t h i s  c o n s t r a i n t ,  h o w e v e r ,  would be for  two Reg~( 

valez ~,' o p ~ s i t e  p a r t i c l e s  (a._) to  ' c o n s p i r e '  toget imx to sa t i s fy  (4.33) by having 
eqtmJ : : a l e c t o r i e s ,  a+(0) = a . ( 0 ) ,  and equal  r e s i d u e s  

+,  N) 
/ - / / 1  



with all the other quantum numbera (apart :hm 
most singular behavia?u: we have 

So for the case (4.35) A = N; and from (4.38) we find 

And in general if we apply factorization we get 

nnd +he constraint analogous to (4.34) is 

whichever is the less singular. The residues @hi\ t B,i,t and j3x2j haw ttc mrlst 
singular al_lo\%xd behaviour, but the others are less singular. 

The effect of such a conspiracy can be leoke,l at from the v%e-+vpoint of the COP 
responding s-channel Iwlicity ampZ!tudes f69, ‘JO]. We have 

and, as required by angular 3nonxWum conservation, only amplitudrtts with na n& 
helicity flip c:o not tranish in the forward dire&M. (As s -L 00~ Q = 0 becomes the 
forward direction where zS = 1.) The crossing angles xi in (3.13) behave like 

sinX1 - 
aF?q It j* 

iyr.42) 

s-* /q+etc* ’ 

axM2 4~~~ &~I~ - x1 
h-m i as x - 0; and so, since the residue (4.38) the %-channd 

(4.42) 
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whe~ he m i n i m u m  is t aken  o v e r  a l l  ~,1~,2x3~.4 h~ the  sum (2.11). S~, we end up with  

A//:~(s, t) 

Thus o,Hy a m p l i t u d e s  which  have  the s a m e  he l i e i~ ,  fli~, at ooth v e r t i c e s ,  i .e .  

l . l "  -- . 4 I  - A ( 4 . 4 5 )  

do a0t van i sh  In the  f o r w a r d  d i r e c t i o n ,  In the  c a s e  of evas ion  A = 0, and only  a m -  
p,:it~eS wi th  no net  h e l l c l t y  f l ip  a r e  f ini te  ~tt t -- 0. 

A ~)reeisely s i m i l a r  d i a e u n i o n  can b e  g iven  f o r  the EE and EU m a s s  c a s e s  ex-  
cept that now t h e r e  ave  a l s o  k i n e m a t i c a l  s i n g u l a r i t i e s  of A H ( S  , t)  of the f o r m  t" (~ 
which give us  the  m a x i m u m  a l l o w e d  s.h~xular~%- at each  ~er tex .  T h e  re su l t  is 
[~,~/0] that  the  t ,~ 0 b e h a v t o u r  of the  r e s i d u e  b e c o m e s  t 5, with 6 given b~ tab le  3 
instead of tabl~ 2~ 

~) UU 

b) EU 

e )  EE 

where ~? -:. (-I) h+l or (-i) 2¢~'''I for 2~ <> /. 

~md < (A - 2o3 = A - 2~ for A - 2c > C 

= 0 f o r  z % - 2 f f - < O .  

Table 3 

The exponent e f t  in a Regge pole residue for a Regge pole of Toller  number A. 
For :the difforont mass ¢onflgurattomm the t = 0 behaviour is t 0 where 

= t II - M+ tt  + 

6 = ,}{2 +n~ (_~)a +nff(-t)x + qh- 2~) + ~(A- ~)} 

If we we:-e to i n se r t  a m o r e  z e r o  behav iou r  than  that of ~able 3, i.~ .... ~,,,, , 
I ,  

n ,  1 , 2 , 3 . . .  then  we have  

A t t s ( S , t )  ,.. (-t)  ([A'° I g l ' ~ 2 1 + [  A- [~2"~411)/2+n , (4.46: 

which v a n i s h e s  for  a~q he l~c i t i e s .  Th i s  is  known as  t r iv ia l  e v a s i o n  [6fi]. 
For b o s o n - f e r m i o n  sca l . t e r ing  (in the t-ch~u_nel) ; and X' a r e  h a l f - o d d - i n t e g e r s .  

S0 it we w e r e  to  mut t ip ly  t h e  amp l i t ude  by t N a s  in (4.24) ~,e should  be introducAng 
a gp~urmus s q u a r e - r o o t  b r a n c h  point .  T h e  ampl i tudes ,  a r e  ana2ytic  in ft and s [?~3i. 
and or.e of the  a m p l i t u d e s  in (4.21) changes  s ign  on the r e p l a c e m e n t  ~ -~ - 4-:', s c  
we ha~ e 

Af_it~s , Vt~ = - ( - ! )  A i t~ tS  , - Vr) (4.47) 

This h'~ the gene ra l£zed  ,MacDowell  s y m m e t r y  [45] r e f e r r e d  to in chap te r  3. It 
means that  f o r  f e r m i o n s  t h e r e  has  to be  a c o n s p i r a c y  be tween  oppos i t e  pariS-  t r a -  
]ectQries such  tha t  

= ~ t . X - X '  a ' ~ ( t )  a ' ( - , ; O  and ~ H ( ~ ) = - { - . 1 )  ~3~.(-,;t).  (4.4S) 
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T~.is solution corresponds to takln@ h = } in (4..$@), which from (4..44) is obvle~mly 
necessary ~ all the s-channel amplitudes are not to vanish at t = 0. A conspiracy 
is thus essentf .I for fermion traJectorles. 

Although xn principle such conspiracies can occur in any process Involving par* 
zicles with spin there are only a few cases where thc~ ar9 likely to be import:~nt 
experimentally. The reason for tLis i~ that if an ev~slve pole ~:arx coutribxrte to .~ 
heliclty amplitude with X - X, -- 0 then its contribution to (d<r/dt) at t ~ 0 will not 

~vanish. R will thus look very similar to a t~-aJectory with Toiler number A con- 
tributing to the k = X' = A amplitude. Since there i~ usually not enough polarization 
information to determine the spin structure of a process ih deta~ it is only resl]~ 
in those processes where a particle can not couple to a non-flip amplRude ~hat a 
clear distinction can be made. The leading ~T'ajectories f, A2, p etc. are k~o~t~ to 
evade. 

There is, however, a possibility that the pion takes part ~n a conspiracy in 
~p --, ~r+n [~'I] and np -, pn [~2]. In the first case there are nc amplitudes with ~ = 0 
since ),.f = + 1 only, and ~ = 0. In the second case the plon ~ ou~les equally to only 
two s -channel  ampli tudes,  A s . .  andA s ,+,  a;~d since the Iat~er invol~es helic- 
ity flip and mus t  vanish at t = 0, so mus,  the whole plea contr ibution.  But in both 
these p r o c e s s e s  if the pion has A = 1 its contribu~:ion can zem-.~,~ finite (in the 
la t ter  case  because  the natural  par i ty  consp i ra to r  t ra jec tory  cance~ s the pies con- 
tribution to the flip ampli tude and leaves  it f ini te  in the n¢ ' - i l ip)  s ee  section "/.4, 
As we slndI d i scuss  in chapte r  ' / t h e r e  is a fo rwa~i  peak a s soc ia t ed  with the p,:on 
in these  p r o c e s s e s  which might  s e e m  to favour the conspiracy mechanism,  but 

~ ' m  to be  ~ncompatible with factori:~ation (see  r e f  [73]) quite 
that no suit:able sca lar  t r a j ec to ry  is known, and expl,~m_Uoa ~r~ 

re ly ing Regge cuts arc  now p re fe r r ed .  
There  is in  fact no evidence  that  any t r a j ec to ry  has anythin~; except the minimum 

possible To i l e r  number,  A = 0 for  bosons, and A = ½ for ferm~.c:~s 

4.4. D a u g k t e r  t ra j ec t v~ ' i e s  
If we cons ide r  the Regge pole t e rm given in (3.3) and take ~he asymptot:c f~.r::~ 

of the rok~t~on function (2.51), and the res idue  f rom (,!.32), ~,:,.~ get 

fiT,, ~?. t l.qqt24, a(t)'M [e" i~(~'v) + # ] t) :J JH , 

where 

EH(t.~ = 167r (2a(0 + 1) t~.~'~,(t)-r.H(t) ( -1 ) (X 'X" [X-X ' ] ) /2  (4.501 

and 

Then if we make the replacement 

$ 
Z t 

s -, ~ 2qt13 q t  24 
J 

we obtain 
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• s ~ o - M  '~.,.' [. ,: -- i~r(a- v) + ,,] tH(a):,Yk(zt) ( -o' (4.52) 
A///. '~, [) " -.~ ,~;($) L 2 Siii~ ['O'"t~'iJ "' 4~- " 

and wiit~ ~k~,(¢) ~" ~ M we end  up with AH~,~,:) "- ,s (~'(:~, . lhe ,,~x[,~.~t,¢~" )-, ' ,, Regg(. b~hav- 

iot~r 
I Iowover  i t  i s  e v i d e n t  f r o m  (4.4) that  t h i s  d e r i v a t i o n  g o e s  w r o n g  at  t = 0 fo r  un-  

~ 1  m a s s  k i n e m a t i c s ,  F o r  s i n c e  f r o m  (4.5) qt ~ t"~ we ha , 'e  zt  --* 1 for  al l  s ,  and  
the um~aJ a s y m p t o t i c  ~ h a v i o u r  s e e m s  to  fa i l  a t  t = 0. But t h i s  r e s u l t  is  r a t h e r  h a r d  
to ~ l i e v e  b e c a u s e  we k n o w  t h a t  t h e  s c a t t e r i n g  a m p l i t u d e  i s  not  sing~alar at t : O and  
so it shou ld  have  a u n i f o r m  a s y m p t o t i c  b e h a v i o u r .  

The p r o b l e m  Is f u r t h e r  t l h~mina t ed  if  -~e e ~ a u d  d ~ ( z / )  in p o w e r s  of s. w e  put  
(f-am (4.4)} 

where 

s 
- -  (1 + a / s )  , 

zt ~2~qt 13 q! ~4 

, ! , 2 2 2 2 
, .  = ,~, it  2 -  t Z + ( n :  1 -. m 3 ) ( m  2 -  m )] (4.53) 

~ d  expand 

~ / a - M  l(a)(zlff2)a'-M-2 (z t) -- .:(cO [(z  t, 2) + a +. . .1  , ( 4 . 5 4 )  

where al(~} is a known function. This gives 

AH:<" : "H '~) [2  s i n =  (cv- v)_ i : H  ~u) '~X.I°~'~ '} 

...... s )c~M , ; . × { ~ , . 4 .  o.. + ~ ( a ' 3 0 4 s  o ~  4 :  o) - M - ]  

S O 

Thus the t e r m  of o r d e r  (s/4So)a'M'~z has  a s i n g u l a : i t y  r n. It is trois MnKdl~ri ty ot 
the Regge pole term which destrovs the as%~ptotic behaviour at t = 0. 

Bt~t we know ~t the amplitude as a whole is analytic, so something must can -  
ce! this unwaa~ted s~ar!~-. OlLe suggestion, first broached in 1°ef. [74) ~ ' 
cussea :~n some detail in chapter 3 of ref. [ 15] is that the cancellation may come 
from Nxe back4,~round i n t e g r M  in (2.54). T h e r e  i s  a ca~mult3r ha t ha t  N~e b a c k g r o u n d  
sh0i~! be < O ( s ' ½ ) ,  but  in  r a t .  [15] it i s  s h o w n  tha t  ti~e n o n - m ~ i f o r m  a s y m p t o t i c  be -  
havic~ur o ~ t he  Regge  po l e  t e r m  can  be m a t c h e d  p rec i~  .,~-., by '~a." o~: ~ o h,~ a~ ~"~'~ ~- .,~ ,v,~,,~ 
wh!e ~ntisfies the above bound for all ! ;~ 0. q[he j-plane i,aterpretation of such ~ 
background is unclear, howe~er. 

An a l t e r n a t i v e ,  and  m u c h  m o r e  p o p u l a r  .,.<.~.~..._~.~+~-. . h.~s been  tha t  ~,~,e,.. shou ld  in ~- 
yoke f u r t h e r  R e g g e  p¢,les,  lcno~,~m as  ' d a u g h t e r s '  [75] which  have  Mngular cesi~',~; : 
which precisely cancel £] e sing~alarities px.ofl,:ced by the original, or ~ar=n~ ira- 
iector~, T h u s  the  f i r s t  d ~.ughter h a s  a t r a j e c t o r y  a l ( t )  ~a(b tha t  

 1(0) = e(o)- (4.55  
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and a residue 

t -',~ 

a ' ( a ( O )  -  04s o 
i 

+ (non-s in l~ la r  term)  : 

We need a sequence  of such daughte rs  with ak(0) ~ ~ 0 ) -  k: k ~ 1, 2, 3 . . ,  and w:fth 
re~,idues whose singttlar part~ a r e  , ietermined ~ the s ingular ! t ies  o,f ~,i,~ ,',), (Note 
that/32 has to cancel  the f i r s t  s ingular i ty  of a 1 as  ~v~lI as the ~econd te rm of (4,55}, 
etc.) The non-s ingular  par t s  of the daughter  reBldues  a re  not de te rmined ,  how- 
ever ;  and the re la t ions  (4.55) and (4.57) hold only at t : 0 and tel l  us nothing about 
the behaviour of the daughters  at other  t values.  

there  is  a conspiracy fi,e s i tuai ion ~s m o r e  complicated than this  because the 
re la t ionship between the t r a j e c t o r i e s  cf opposi te  pari ty taking p a ~  in the conspir, 
acy also has to be maintained;  and because of (2.49) a t ra jec tory  o f  unmaturM ~ r -  
i~" can contr ibute  to a natural  par i ty  ampli tude to non-leading o rde r ,  ~nd ~Ice- 
versa .  Since for  a conspiracy with Tol le r  number  A an equality of the form (4.39) 
has to be sa t i s f ied  not onty a r e  the posi t ions of the  daughter  and c o n ~ r a t o r  tra ~ 
jec tor ies  and the singular pa r t s  of the i r  r e s i n s  de te rmined  at t : 0, but also t ~  
f i rs t  (h-. 1) der iva t ives  [68]. Th~s l i m i t ,  the ~ s s t b l e  deviat ion of the daughter tri- 
jectory f rom the  position ak(f) = ~ D "  k as  we m o v e  away f rom t -- 0. 

If one pai r  of masses  is equai,  say m l = m3, m 2 ~ m4, ther~ A' = 0 in (4.57) a;xt 
so the f i r s t  t e r m  is non-s ingular ,  and only the e v e n - o r d e r  d a ~ h t e r s  are  required. 

~ : : ~ i : : ~ ~ : p a i r s  a r e  equal  the q s a re  n t s ingular  e i ther ,  and the ttaughters 
: ~ i ~ i ~ ~ e d :  Fae tor iza t ion  wil l  demand the i r  p re sence  in such reactic~ls of 
course,  but with non-s ingular  r e s idues .  

The final r esu l t  is that if there, is an infinitt, sequence of daughter  trai,~ctories 
the asymptotic behaviour A~(s ,  t) "-~ . -. is maid, rained for all ;. Howe cr at 
t = ~ the c~ in ~,k~,(zt) -~ 1 we we find tha', 

A H t t S  , 0~ ~'(0~- M ' . ' -  ' ~ ( 4 , 5 8 ~  

ra ther  than the usual behaviour  s~(0). Since we have chosen A to be the helicity 
(k = k' = A) of the t-channel ampli tude which has the normal  i<inematica! behaviour 
at t = 0 (and whose contribution to the di f ferent ia :  c ros s  sect ion,  therefore ,  ~oes 
not vanish) we have the m a x i m u m  power behaviour  A H t ( s  , O) ~ sa(0) "~A. Such a be ~ 
havmur holds only for a very  sma l l  .region round t = 0: however  (vanishingty sr~!] 
as s --" 0o), which may not include the s-char_v.el physical  region,  and at la rger  t t~ 

"S the usual behaviour  sti l l  occurs  ~ ee  ref. [25]). 
Thus an infinite sequence of daughter  t r a j e c t o r i e s  is needed each hav~ag the 

stone quantum numbers  as the parent ,  except that the odd numbered  daughters 
must  have opposite s ignature,  so that the i r  s igna ture  factors  will be Ide.~;ticat at 
t = O, i.e. we need for the kth daughter  

t .- '~k ei~a'(0)-k = 1 + ~ e ~a(0) , {4.~9) 

so ~k = ¢ (" 1) k- Since the p~ r i ty  of the daughters  must  be matural or  tmnatdra] cor- 
responding to that  of the paren t  the actual parity, o~ the odd ~iaugr~ters' p:~-t~cles 
~ !  be opposite to those of the parent .  
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We have alread3,  noted in c h a p t e r  3 that  t h e r e  is ve ry  l i t t le  e v i d e n c e  for  the ex-  
~ste:~cc ~:f suci~ d,~.ughter t r a j e c t o r , e s  at ph. s i ( 'a l  ~,.~ va ' ue s  for  l > 0, though they can  
certa!n~v ~u~. be exc luded ,  and t h e r e  is no re:~scn to expect  that (2.58) will  hold ~or 

larger ~ ,  
O~e u~v of t r y i n g  to fi~d ou ~. whai happ~.~,s for  ~ ~ 0 ,:~ l~, c~)astruct  d:i:~:amic::] 

~:;~.!,1:' ~"~" tb.e daugb.~er :va jec to i i~ :s .  F~)~" ~?x::~ple ¢>nc ;'_.~a~" solve  the Bcthc-.Sal- 
pete," equation wlt!~ unequal masses ['761, or represent the Regge poles a~ sums of 
l~dd~,r Feynn~an distains ['~71. Freedman and Wang in their original work on 
daug2~cr trajectories ['/5! noted ~hat the Bethe*Salpeter equation must produce 
daughters, but  m o r e  r e c e n t  wo~ [76] has  shown that  the t r a j e c t o r  ies  do not usuai~y 
run tx~ral.lel to  the  pa ren t ,  but g y r a t e  wildI~, in th.e reg ion  o'f the nega t ive  J - ~ x i s .  An 
exat~pte is shown in fig. 14. Tl t i s  m a k e s  one fee l  that  if they ex i s t  the  daugh te r s  
m;W we)l De r a t h e r  u n i m p o r t a n t  ob jec t s  s e r v i n g  m e r e l y  to m a i n t a i n  the s(~(t) -M be-  
h,~vlou~ at l ,~ 0 b,~t having noth:ir~g to do with phys i ca l  p a r t i c l e s .  

. / /  o.s 

Fig. t4 The Regge ~rajectorie.~ obtained in ref. {76] using the Be~h~;-Saipeter equation using 
a po~,n~ial wit~: a repuis~,e core.  The co~.tipuous and dashed curves, correspond to diffe,:'en[ 

c,m;~i~:~; strengtl'~s. The strang.~ beh~:viour of the daugi~ters will be ~',(~ted 

I~ :-:h,-,utd be. noted that if the ~ u g h t e r s  s imp!g  cance l  the sint,n~lari~ies of the 
leadi~:g l e g g e  pole  t h e r e  is  no need  ~o includ., t n e m  expl ic i t ly  in a Regge fit w h e r e  
onlh~ the l ead ing  power  is u sed .  If th(: c taugnters  have  no~:-sing~atar p a X s  to t he i r  
residue;: addizional  so(t) " I ' M  con t r ibu t ions  may  be p r e s e n l ,  but :he o ther  ca:npI:~ 
cations of the  , / -p l ane  ( s e c o n d a r y  t r a j e c t o r i e s :  cu t s  etc.)  make  then:  diff icult  to 
detec' m t.-h_e e ~ e r i m e ~ _ ~ !  ~ . t a  

4,5. ~:, ~-c, up ~-'heo~'e~icat ~ethods 
The c o n s p i r a c y  and d a u g h t e r  p r o b l e m s  ind ica t e  that  t = 0 is a d~i~:u~t po:n: :o :  

Regge theory .  Indeed  the  s i n g u l a r i t i e s  which  p r o m p t e d  the in t roductb?n o~ 
daughters s t r o n g l y  sugges t  tha t  the  ro ta t ion  f :mct ions  d~ , ( z  t) a r e  iuappr,)p: ' :a :e  
here. ~'he w~rk  of T o i l e r  [~'~] ~ud his  many  f o l l o w e r s  a t t emp t s  tc r e c t : , y  this  by" 
adop , ,~ a h e r e  g t n e r e J  poi~'~.t of v iew ~Rb r e ~ a r d  to the m e a n i n g  of a par~iai-  
~vc. ,~ composition. 
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The parti~tl wave series in the t-channel (~. 15) wlth which we begm~ our dlsc~s- 
sire of Regge theory involves R decomlm~Rion of the mmplltude in t,.r~ns of repr~ 
sentation functions of the three dimensional rotation group SO(~) {or, since wo im 
elude half-integer swns), the covering group SU{2~). This rotation ~roup is the 
'little group' of q~e inhomogeneous Lorentz group (or F¢~inca~'4 grm~p) )~ (see eg. 
ref .  [79]), i .e.  i t  i s  the group of tr  ms fo rma t ions  which !eavc~ L~wari~.t the t , . ~  
four -momentum of the incoming (or outgoing} part ic les  

The angular momentum ,/2 is of course the eigenvalue of the Casimi~ operator 
this little group. 

However, SO(3) is only the little group for E~ d ~ t > 0. Wlgner [80] showed 
that ~ere are four distinct classes of representations of ~ c|:aracte~Ized -"-~,, ,~-.~ 
ferent values of the Czsimir operator P~2. These are 

(i) Timelike t > 0 I i~ le  group S0~3) 

(ii~ Spacelike t < 0 little group S0(2 ,  I) 

(iii) L igh t l~e  t = 0 and Pp ~ 0 ; l i t t l e  group K(2) 

(iv) Null t = O a n d P ~  = 0  ; little group SO(3, I) . 

?:ii ~ e ~ r ~ s e n t a t i o n s  of 8U(2, 1) have been studied by Bargman [81], and he 
sho,,~ed ( theorem 9) that a function which is square  integrable on the group manifctd 
can be expanded in t e r m s  of the pr inc ip le  and d i s c r e t e  s e r i e s  of representat ions;  
the r ep resen ta t ion  functions be ing ~g'~_,.'n the dxJx,f~.t), but with • t ta'<il~g the unphys- 
ical va!ues appropr ia te  to t < 0. The represen ta t ion  of the s ca t t e r ing  ampiiL.de cn 
this  bas i s  has  the form [82, 83] 

1 • 

dHt(S,t) _ 16r, j" dd ~n~(J+X;) AHj(~)dx-A'x~')+ 
2i -½-i,,~ 

i.e. prec i s e ly  the  same as  (2.54) wi~out  any Regge poles or  cuts  in R e J  > -~. The 
square - in tegrabf l i ty  condition in fact  amounts to the requ i rement  that  

4Ht(S , t) = O(s -~ )  , (4.6~) 

so the absence  of such s i ngu l a r i t i e s  is obvious. It thus appears  that there  is a 
mathemat ica l  analogy between making the Sommerfeld-WatsGn t r a n s f o r m  and rep- 
resent ing  the ampli tude in t e r m s  of its l i t t le  group for  t < O. It should be nc'ed, 
however, that the $omm~.~]~-W~t~nn rep,~_se:~.~!cn is valid fer ~.J! s a~2 ~'. 
while this little group representation applies only to t < 0, so there is by no means 
a complete equivale~ :e between them. What is more there is nothir~ very specL%l 
about the iine Re J = -½ in {2.54) and we are free to move the contour as we ~dsh, 
whereas {4.61) ~.'an ordy embrace Regge singularities in the right-half J-p'ane by 
analytic contmtmtion. In non-~'elativistic potential scattering SO(3) is still the little 
group for ~e time-like reg~e;i, but for t < 0 the little group is E(2) [84] whose rep- 
resentations are quite unlike those of SO(2, I) and do not give a satisfRcto"y 3aS.S 
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lot coatlnuatlon in J [85]. S ince  we know that  the  S o m m e r f e l d - W a t s o n  t r a n s f o r m  
c~m be p e r f o r m e d  tn potent ia l  sc . t t t e r ing  tiffs is a fu r the r  indica t ion  of U~e need fo r  
caution ~:~ a s s u m i n g  the phys ica l  equ iva lence  of (254)  and (4.61). 

Beariag t h e s e  qualtflcati~,~s in mipd one ca~ ex~,~nine wha~ happens  ~ .~ 0 P.~ 
cause ,,f the .mass -she l l  condi tb 'ms {r{ -- m~, / ~ .- ~ i~ etc. ,  the f~c~ d~at 
, - , , i  , - a ,  ( , $ ~ ' 4 )  " ~ unt-u~ s d ~ t 2 ~  = 0  o m y  i i m  i ~. m 3 a n d r e  2 = m 4 .  
Thus whether  the  l i t t le  g roup  wi l l  be O(3, 1) or  E(2) d e p e n d s o n  ~ h e t h e r  or  not the 
masses a re  equal. If t h . ~  a r e  equa l  one can t ry ,  in analc M wi~h the  above,  to reF,- 
~.ese~t the a m p l l t u d e  on the  b a s i s  of $O(~, 1) r e p r e s e n t a t i o n s ,  de ~,~ted by dO.~T,(z#). 
These have b e e n  d e r i v e d  by T e l l e r  and $ c i a r r i n o  [86] ( see  a l so  ref .  [83]) and depend  
0n two C a s i m i r  o p e r a t o r s  one. of which,  the  T o i l e r  number  A, is  d i s c r e t e  (~,~king m~ 
v,~lues 0, 1, 2, ~ . . .  o r  ~, {,  ~ . . . )  and the o ther ,  ~, is  pure  i m a g i n a r y  (-,* < ia < ~). 
1his extra  C a s i m t r  o p e r a t o r  ',~ppear~ because  ' there a re  t'.vo d e ~ e e s  of f reedoru in 
satisfying P~ = 0 with equal  m a s ~ e s .  (The o the r  c o r r e s p m M s  to the  va r ia t ion  of s.} 

The pa~ltd-v:a~e expansion can be  wr i t t en  ['/8, 83] 

A ÷ T M i~  
A~. ( . .A(z  

AH~ ( s ' t = O )  = 5k~.' Z ,  ~ j d a ( A 2 - ~ ) A ~ T , X  t ) a T ~ , r , ( z t )  , (4.63) 
T T '  ~\ :: ~ 7" M - i~o 

A~r ~'here ti~e A T T ,  x a r e  s,aitably define~l ' p a r t i a l - w a v e '  ampl i tudes ,  T M ~ rain (T, T') 
and in the s u m m a t i o n  

!cr i-  ¢y2t ~ T --< a ! + o 2  arid 1¢r3- (y41 -< T' < c~3+ c~ 4 • 

The hypothesis  i~ then made  that  one can ins .rt  a To] te r  pole it, to the ~ var iab le  
j~st as one n o r m a l l y  i n s e r t s  a R e ~ e  polo in~c~ -b~ -~ !~te~r~]. ~ ¢~ ~,a~ ~ if t h  ,,~ 
is a l~ole at cr -~ a say we have 

(A2 " A H t l s ,  0 ) = (4.63) + 5~ , .  ~ gTT' - ' " "  ,.',,,:k~X~.~, " (4.85'~ 
TT 

~'i:ev,: .:., is the  T o i l e r  rmmber  oi  the pole which is  r e : t r i c~e~  by t4.64). T~:e a s y m p -  
totic behav iour  of (4.65 ~. can be  de d uced  f r o m  the  f a ~  that 

(zt  xl (4  
h g  

d T x T , ( ~ t )  ~ . , , ~ 

so we f.md 

(.: t)a- I -  i A-~ i A H t ( S ,  O) ~ 5~V ' (4.~7~. 

if we compare  th i s  with (4.58) we ~ee that it is the  s ame  as the asympto t i c  behav.- 
i0ur o¢ a Regge  pole  with ~'(0) = a -  1 and T o ! l e t  n ~a~ber h.  In f~ct _~f -~e d e c o m -  
poa.~s the S0(3, I) represemations in terms of the d~'i~,(zt)'s ~m ~- fh:d.o [~61 '~a~ the, 
single T e l l e r  po le  (4.65) c o r r e s p o n d s  to an infii~ite sequence  ~ ~l~:gge pole" wi,~h 

ak(O ) = 1 ,  k = 0 , 1 . 2  . . . .  

la fact it is c o m p l e t e l y  equ iva l en t  to a consp i r i ng  daughte r  s e q u e n c e  o.f T e l l e r  
atrmt, :r 3. Away f rom t = 0 of c o u r s e  we l o s e  the  SO(3, I) s y m ~ e t r y  so ti~ere is no 
r'.ee,~ : ,- thz. d a u g h t e r s  to be p a r a l l e l  to the p a r e n t s .  
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Uniortmmtely a similm" a rgument  can not l ~  c a r r i e d  through for  unequal u ~ ,  
because then the l i t t le  group ts  E(2), and a s  Ires a l ready  been m e n t i o ~ d  it does r~ 
seem to have much connection with Regge theory,  ~t is  thus nece~s&ry to use ar$~- 
ments based on continuation iu the m a s s e s  to lust  ~:ty the use of T o l l e r  po|e~ m tbis 
case [8'I]. 

The quest ion a r i s e s  ,as to whether  na ture  u~es  this  ~xt ra  deg ree  of freedo,m ~t 
t = 0 and contain~ conspir ing daughter  sequences ,  o r  whether i~ chooses  to t : < ~  it 
and evade the t = 0 cons t ra in ts .  Jus t  as  a s ingle  To i l e r  pole <~,e,~rresp~mds to '.~ c ~ -  
s p i r a c y  of Regge poles so a s ing le  Regge pole c o r r e s p o ~ s  to a ' com~ter-consptracy' 
of Toll  e r  poles .  The rea l  quest ion is  thus wMch one sh~ald r e g a r d  a s  prtma~y, 
.]-plane or  the Tol le r  a -p lane ,  The re  does not see:m to be any way of a n s w e r i ~  thl~ 
question a pr ior i~ but va r ious  models  have been s ~ e s t e d .  We have ~Ireaav m~n- 
tioned, in the previous section, that the B e t h e - ~ l p e t e r  equation exhibits  the 
S0(3 ,  1) s y m m e t r y  for unequal m a s s e s  [75 | ,  Of e ~ ' r s e  with unequal  m a s s e s  this 
symmet ry  is  only to be found off the m a s s  shel l .  But whether  such  a mo~el c ~  be 
taken se r ious ly  at the daughter  level  r e m e m b e r ~ g  the pec~aliar r e s u l t s  presented 
in fi~. 14 is  doubtflfl. Other  dynamical  models ,  su'ch as those based  on the N/D 
method, which continue on shel l  two-body uni ta r i ty  town to t = 0 do not ,2ossess the 
ext ra  degree  of freedom needed for  this  s y m m e t r y  

The quest ion of the s igni f icance  of ToUer  poles  c~ n of course  only finally be t~- 
solved by confrontat ion ~:ith exper iment .  We have .,.?, "eady note~ the lack d evi- 
dence for daughter  t r a j ec to r i e s ,  and the ab~,~ace o~ ~ e  par i ty  doublets  which are 
needed for  consp i rac ies ,  and un les s  a tot more  re.c;onant stat~.~ a r e  fcund one will 

: i , . t 0 : : c ~ t e  that  l i t t l e  t r ace  of the SO{3, ~.) s y m m e t r y  p e r s i s t s  lr the ~- 
: ~ e I : U ~ : ~ i e a l r e g i o n .  But a more  ~irect  t es t  is  whel~her or  not conspir ,ag tra- 
.~ectm.~s a r e  needed to fit  exper imenta l  data. We shal l  f ind in chap te r  ~/that t ~  
][eadi,~g P,  l ~' , O, o:, A 2 etc. t r a j e c t o r i e s  do not consp: re ,  and we have ah'ea&- not~,d 
~hat *.he best  t es t  of conspi racy ,  that of the pion in .~p - .  :;+~ 2,ud pn --~ np ao lo~r,~er 
seems viable, t h e r e  is thus no evidence for t ~ j e c t o r i e s  with h > ½, a~d the l)~oa- 
pects for Tolle~ soles  .~eem poor at present .  

4.6, Nottsense zeros 
We have found in sect ion (2.9) that the behaviour  of oh '  (zt) at nonsense points 

introduces va r ious  s ingu la r i t i e s  into the l :ar t ia l  wave m'nplitudes, and of course, 
f rom (4.1) ,  t hese  must  a l so  appear  in the res idue  fm~ction. 

The s to ry  so far  is  that we may ~,Tite cur  Regge pole t e r m  e i the r  wRh fir:~t ~p~ 
functions as in (2.54) or second type as in (2.58). If we take the asymptohc  z~ 
forms of these  funct:ons (e~*her (2.51) or  (2.34)), give: the res idue  the klnem~:tcal 
s ingula r i t i es  cf (4.32), :,rod use  the arguments  of sect icn  4 to r ep lace  z t by 
(~" u)/4qt 13 q~ 24 for a],l t, s --* ~,  we end up with 

s, . ( .  ,_)(X-x'- t -x' . = ~'~ *" ! 6 ~ r [ 2 a ( t )  + l l  t S K . . . ( ~ . . ( t )  
" " ~ ~ ,  . . . .  1 7 1 "  

r J q I I i 'tq 

where ~H(t) i s  a k inemat ica l  s tngular i~ ,  f r ee  r e s idue  flmction. (Note thai to obtain 
this  r e su l t  f rom (2.58) it i s  n e c e s s a r y  to use 



REGfiE THEORY AND PARTICLE PHYSICS 149 

The express ion  in b races  I t tli(a) has var ious  s ingular i t ies  whict can not be 
pl,~-~ lit ill lh l '  an~plitudc a n d  s o  we  r c q t l i r e  t h a t  ,R.;H(t ) sho t l ld  canoe , ]  t k : ,m .  Firs t ly  

el 
< ~ . , t  I o !t,'." , i,)7 

+ 1) ' 

~t'e c ~  rewrite, 

The last :{actor cancels  with that in (4.69). T h e r e  a re  poles at ~ -- -~, :} . . .  from 
the (a~ ~)I, or at a ~ - l ,  -2, -3 f rom the (a)!, depending on whether  M and N are  in- 
t~ers or half integers.  Such poles  are  not expected in the amplitude,  and in fact 
violate the Mandelstam symmetry  (2.57). so we need ~'H(t) ~ [(a+½ .-v)J]" 1 to can- 
cel them. Such a b e h a v i o ~  is in fact guaranteed by the behaviour el  e~$t,(z ~) (see 
(2.33)) m the F r o i s s a r t - G r i b o v  project ion (2.39) for A~_tj(t) (as long as if con- 
verges). Th( remaining par t  of (4.69) has the form 

s in  y ( a -  v) [ (a  + M ) ~ a -  M ) t ( a  ... . . . . . . . . . . . . . . . . . . .  -~ N) l (a ' -  N)[]}' ' 

which beha-es ,  as a -- Jo,  whe~'e J o "  v is an integer ,  liice 

(~V.jo)-1 for Jo  ~ M and t , > d  o > - N  

1 

(a -do~ '~  fa~ M >,.,o ~- ¥ ~ n d - Y  > J o ; : " - M  

f ro : to  f o r  N > J o ,  t' and ' ~ o  . i  

1 

'.'bQ branch po in t  ( a - d o ) ' ~  at the s e n s e - n o n s e n s e  (sn) pow.ts (se:~ >e, t i , ,  ¢~.~~ f.<,r- 
.kJs t, rm ino lo~5 ~) mus t  not a p p e a r  in the ;~mpl i tude,  so we n..:.:,, =~th .... 

.+ / ~ ' >  . , <~O) ~ or -- (a no):-'" The £orrner tielmviour ~-u~Ad b': exuccccd ;zon~ c:;~ 
Froissart-.Gribov project ion t~xcept that, as  desc r ibed  tn sect ion (2.9), we exVcc!: 
superconvergence re la t ion  to hold in order  to remove  h,e resu l t ing  fixed i,_finite 
sir~tflarity (neglecting the th i rd -double - spec t ra l - func t ion  effects  =" wrong-signa-  
ture points). So we end up with ~H(t) ~ (a-Jo)~,  at leas t  at righf s ignature  poh~.t.~:. 
The poles in the ss .  region Jo ~ M correspond of cours~ to the physical  par t ic le  
poles $o we should normally e.xl3ect ~H(I) finite here, Then using t~e factoriza~io ~ 
r¢~tfirement (4.28) we must  have 

/ - ¢ss  = ( sn) , 

so the: an. res idue,3 mus t  v~ni,Jh l"~e ( o - U o } .  T h i s  is knowl~ ~s ti~c ~:hoosi:..~--:-,,{:,,s. ~" 
meck.:~aJsm in that  ~h~ t r a j e c t o ~  countes to the ss a,:nplituca: a~,l c c~'<)up.t~'s ~ o ~ ;  
the ~m. ~mp~it~lde. K Lt~s b e l f r i e s "  occm 's  at  e v e r y  an. ~. . . . . .  we e:~.c~ ,.:: v _.~: ~: 

Combining this  with our e a r l i e r  r equ i rements  we can put 
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22M+1 
I 

1 ½ 

~d we obtain 

AHt( s, 0 ~ "(-  1)(X-X' 

v)t 

where the residue 7//(0 is free of all kinematical ~equirements (except possibly 
threshold constraints). 

This expression has the following behavlour at right-si~tature points 

(I) Poles (a-Jo) "I for Jo ~'~ ~'[ 

(2) Fiuite for M > Jc ~ A" 

(3) Zeros (a- Jo t for N > Jo ~ v and Jo < 0 . 

At ~'rong s ignature  points there  is  an extra  zero ,  (e -  Jo), coming f rom the s.g,~- 
~ . ~ : ~ i L s o t h e  behaviour i s  f ini te  at (1), ze ro  at (27, double zero  at (3) (if we 

• double spectral hmctlon). 

"There are however three considerations which may complicate this compara- 
tively simple pictm e: 

a) Gkost-I~llmg j~dors. I~ a trajectory passes through a right-si~re sense 
point for t < 0 the rvsicb.~,e must vanish. Otherwise for o u~. sense choosing ampli- 
tude we should have a particle pole of negative t, i.e. negative (mass) 2. Since the 
Frolssart botuld requires c~(t) < 1 for ~ < 0 this is ol~l~ a problem for even si~na- 
ttu-e trajectories, such as the P, f and A2, at ~' ~ 0. ~ uch all e>:tra zero will ~en 
also have to appear in the other amplitudes bec~t,dse ~- (4.'/1). The use of such a 
zero is sometimes called the'~hew mec "hanism' [88~. 

b) Choosing rwnsense. At any givsn nonsense point the trajectory may choose to 
satisfy (4//1) by having ~nn finite and ~ss cc (or' Jc)" Although it is hard to thi~ t~ 
a dynamical mechanism which will cause this to happez~ it is an equally good solu- 
tion [33]. We then Imve ~H(t) cc [(a- Jo)(a+ Jo+ I)]~ for N~ < Jo < Mas above, but 
~H(t) cc (a-Jo)(C~+Jo+ 1) for some sense points, say for s > Jo > M, where s-~, is 
an integer > M. So we have 

1 

instea( of (4.72). The resa l t ing  pole in the nn. a.npli tude c~-_n not cc, r respond to a 
physic:~l particle ~ course, and so it must be cancelled (or compensatea) by .~,~- 
other trajectory. However the asymptotic behaviour of e.~ i(z~) at a ~u. uoint Jo is 
~ z t ~"- not ~ z~ the compensati~g trajectory should pass through =Jo" 3" This is 
often called the 'Ge11-Mann mechanism'. 

if we ~ish t~ avoid the need for such a compensating trajectory we can insert an 
extra zero in the nn. residue. Then by ~,i.'# I) an extra =ero will also appear m the 
ss. residue. ThiP is known as the 'no compensation mechanism' 
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e) ffront~'-sih~u~tuv: fixed I~les. B e c a u s e  of the  th i rd  double  s p e c t r a l  function,  
fixed pales  (or  i ~ i a i t e  s q u ~ r e  roo t  b r anch  points)  may  be e x p e c t e d  in the s igns  ~ 
turcd ampii t ,ades at w~x)nft-signature points .  T h e s e  do not give r i s e  ¢o poles  in tbe 
physic;d a m p l i t u d e s  b~ c. use  tt~ey a r e  c a n c e l l e d  by the z e r o  c,f the aignatu:-c faci~,,r 
Howet,'r if s u c h  poles  are p r e s e n t  in the r e s i t ~ e s  of R o g g e  poles  they will c ance l  
the s ,gmma'e  l a c t o r ' s  ~ e r o  wtdci~ we a s s u m e d  above .  T h e r e  a r e  two p o i n t s  to irate 
about this~ however. Firs~ these f ~ e d  po les  m a y  s imply  be add i t iona l  to the  
Regge poles  and  so  net  p r e s e n t  tn t h e i r  r e s i d u e s  ( see  ref .  [89]}. And secondly ,  
even if they do  m u l h p l y  the r e s i d u e ,  the  fac t  a t  the  nonsen.,~e point  the r s i d u e  has  
contributions only fro':** the  t h i r d  double s p e c t r a l  function,  w h e r e a s  at all  o the r  
poi;~ts it has  contribu~ ion fro,~, a l l  t h r e e  double  s p e c t r a l  fur~ctions, m e a n s  that  one 
v~utd certainly ~ec ~ zero n e a r  to tbts point. 

The resulti~ behatrlat~r of the residue and of the amplitude at the ss., sm and ran. 
points corresponding ~o these various possibilities is summarized in table 4. 

R will I~ noted th~ for some choices a zero is expected in various heHcit3, am- 
plltudef at the nonsen::~e pc.ints. Th~ classic example of this is the differential 
cross section for ~'p -" ~r ° ' which i ~ believed to be co~trolled near the fo~ ;yard di - 
rection by the p pole. Fro~ ~ fig. 5 we see that ap(t) = 0 for t ~ -0.6 GeV ~. If we 
consider the two ~tmplitudes for r~'~ ° --" ~n given ir~ (4.!I), a = 0 is a ss. p:)i~t for 
A÷,00, but asn. point for A+_00. Hence we see from table 4 that ff the O chooses 
s~se and there is no wro~,.g signature pole, A+_00 vanishes at t = -0.6 while A++00 
remMas f in i te .  On the o t h e r  hand  ff it c h o o s e s  nonsense  both van i sh ,  while  if the 
residue c o n t a i n s  the f ixed pe.le both a r e  f in i te .  The  data  shown in fig. 15 exhibi t  a 
dip but not a z e r o .  Th i s  would  s e e m  to f avour  the  choos ing  s e n s e  mech.=nism,  
though o the r  p o s s i b i l i t i e s  can  not  be ru l ed  out.  We shal l  m e n t i o n  ~r~ a l t e r n a t i v e  ex-  
planation of t h i s  dip, involv ing  cu ts ,  in s e~ ' i on  (5.g). 

T a b l e  4 
T h e  b e h a v i o u r  o f  t h e  r e s i d u e  and  a m p l i t t M e  a~s a ~. ~ ~.,~ctory p a s s e s  

t h r o u g h  a nomqense p o i n t ,  Jo"  

R e s i d u e  an ' , p l  itu,:ie 

nn s n  s s  b l e c h a n i s m  nn sn  s s  

~" (C~ -Je} (a - t choosing .... o) " - ' 
I 

i Nonsense 1 £ ] 
i i (tr - d o  )2 :Cr - d o )  c h o o s i n g  

Right j 

signat-~re C h e w  t c e - d  ~2 Jo , -  r ~ t 
i ( ~ - d o ) ' ~  {e - Jo)'~" ( ~ - J a  "~ m e c h a n i s m  ~-~; ' o '  

e No  i ' o - - g  
:... ' -  - 0  ~ ' -  ' 0 :  ~- o '  c o m p e n s a . t i c n  ' " " :~ 

Wr,;,;~ (~  - d o } -  ~ (a' - J o )  - ~  1 F k ~ e d  po l e  I '. : 
si~m'~.mre 

In the a b o v e  w e  ha~,-  a s s u m e d  t h e  p r e s e n c e  o f  a fLxed p o l e  in t i :e  r , ' : s i d u e  ~ t the  wr,~ :z ::~:: ~ 
Pare po in t .  If  t h i s  i s  a :  ~en t  t he  r e s i d u e  b e h a v e ~  in t h e  sm~ne w -  a s  a t  t b c  c~ :*respo~d!a~ ,  ~ 
r i g h t - s i g n a t u r e  p o i n t ,  a n d  ~he m ~ p l i t u d e  i s  t he  s a m e  e x c e p t  f J r  :m e x t r a  (a - d o  ~. f r o m  the  
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Fig, 15. Data on cky/dt for ~r-p--, ~On at various energies. The lit:es are a fit with #9 and p~ 
trajectories from ref. [189]. 

4.7. Re,~ge poles b~ s-chamze~ amplitudes 
In d i scuss ing  the contr ibution of a t -channe l  pole it ]ms been essen t ia l  to work 

'with t -channe l  helicity ampl i tudes .  This  is r a t h e r  unfortmmte because ,  as we have 
seen, we a re  involved with s eve ra l  t-channe~ s ingular i t i es  and c o n s t r a i n t s  but 
when finally we combine the heIici ty ampli tudes  to give the dif3er~ntial "ro~s sec- 
tion (2.14) all these  kinemat~cRt s ingular i t ies  cancel  out. This  must  be so since we 
know that we could equally well  use  {2.9), and the  s-crmnnel  a m ~ i t u d e s  have r.3 t- 
s ingular i t ies  except  those f r o m  ~/~,(Zs) in the forwa.,"d d i rec t ion ,  ~(s,  t) - 0 Be- 
cause of this i t  is clear that there would be many ,~d~'~mt3ges in working ~t ~ the t- 
channel poles in s-clmrmel helicity z-nplitudes inst~ad [69, "/0]. In doing t~if th~ 
points we need to take care of are: 

(i} The extra t factor~ at t = 0 required by parity conservation and factori~tion. 
(~) The general factorization of the residue for different t-channel helicit~ X,X' 
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(iii) Tl~e v a r i o u s  n o n s e n s e  f a c t o r s  r e q u i r e d  by t h e / - c h a n n e l  ampl i tudes .  
It turns out that  (i) and (il) can r ead i ly  be a c c o m o d a t e d  if we work  only to i i r s t  o r -  
der li~ it >~), a;',d that the oa!y p r o b l e m  c o n c e r n s  (iii). 

One begins by wri t ing  

This has the  t 8 i ~ a r i t i e s  r e q u i r e d  by a n g u l a r - m o m e n t u m  conse rva t ion ,  and the 
requi r~  Reg~e behaviour .  Now as  s ~ 

- 1 . - .  1 .- , , '  I/2 

which is inde i~nden t  of s, a s  r e q u i r e d ,  but it does  not s a i i ,~ ,  the t - channe l  factori... 
zatio~ condition.  To obtain a p r o p e r  f ac to r i zed  f o r m  we ma'~e o se  of the r e su l t  
(4.44) for the  t = 0 behav iour  of a s - channe l  ampl i tude  clue to an evas iw.  (1, = 0) 
pole, and put 

Ans(s,O 

where YHs(t ) !s f ac to r izab!e  in t e r m s  of -~-chan le] he l ic i t i es ,  i . e  

:vi~ 1/;2P3~;4 = gl; iP3g~J2/;4 " (4.'79) 

hlthou~:,q~ we have  deduced ~4.78) using the r e s u l t  (4.44) i~. must  in iact  b~, -'~]id for 
any mass  combinat ior .s  s ince  AHs has  no t s i n g u l a r i t i e s  which depend  ,:~, ~h, ~ 
roasses. 

The f ae to r t za t i on  (4.29) in t e r m s  of s - c h a n n e l  he l ic i t ie~  s t e m s  ~ o m  the f ac to r i -  
zation of the  c r o s s i n g  m a t r i x  (2.12), but (4.'/8) is  va l id  only to f i r s t  or : ier  in t/s 
from (4.T~). Hence  one m u s t  not  ex t r apo la t e  (4.'/8) too far  f r o m  the  f o r ~ a r d  pe,~k, 
but in view of Rs s imp l i c i t y  it has  much  to r e c o m m e n d  it. 

It is not d t f f i c ~ t  to g e n e r a l i z e  the above r e s u l t  to include consp i r i ng  trajeoi:~- 
ties except tha t  one needs  to cons t ruc t  combina t ions  of s--~kannel ;~mp!itudes c o l  
responding a sympto t i ca l ly  to Oet~nite par i t7  in the  t-chan,ae! ( see  ref .  ['69]). One 
then deduces  f r o m  (4.44) the  f o r m  

iA-', , r /  *~ ~ _  [ . t X  iv  l "  3 ' , 
- .~- Ja w ~ \  ( 4 : 3 0 )  

whe, ~ t i e  'go¢~d par i ty '  a m p l i t u d e s  a re  

Afts(s,t" =A~,~i~PlP2+~,d~?2~?4('l) °4-cT2+tJ4 ~ 2 A / ; 3 -  ,, 4i,1-~; 2 14 ~ 

; M  cc,~stratnts lik,~ (2.33; hold.  Th i s  r e d u c e s  to (4.78) if h = ~. 
As we noted above the  ch ie f  p rob lem with th is  r.~ethed a r i s e s  when we c o n s i d e r  
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the nonsense factors, For suppose that in some process just  one ~-channel heli~tt~ 
amplitude AH t vanishes like (a- Jo) for t < 0. Then usir~ the crossing relation 
(2.1 I) we ded~{ce that there must be a constraint on the s-channel amplitudes of the 
form 

Hs 
which is not easy to pa rame te r i ze .  But from table 4 it can be seen that if the tra- 
jectory chooses nonsense there are no zeros in the t-channel amplitudes at the 
r~ght signature points. (Remember the nn. pole will be compensated.) Similarly 
there ~.re fixed poles in the residues at wrong-signature points there are no zeros 
in any of the amplitudes. So for these two cases there is ~o problem. The choosing 
s¢,~se, and Chew mecimnisms have zeros in some ampIRudes and not in others, 
however, and there is no alternative to using the crossing matrix as in (4.82). 

4.8. ReEge poles and asymptotic belmviour 
From the e a r l i e r  sect ions of th is  chapter we have ended up w~th a Regge pole 

asymptotic fo rm (4.74) which c~mtains the var ious  kinematical  factox ~ discussed in 
sect ions 2 and 3, (which depen¢ on the external  m a s s e s  and whether  or  not a con- 
spiracy occurs)  and which a s s u m e s  that the t r a j ec to ry  chooses  sense .  We have al- 
so mentioned var ious  al ternati : ,e  a factors  which occur  ff the tra]ectoD" ctooses 
nonsense, ff the re  are  fixed po es,  or  ghost -k i l l ing  factors,  etc. We now wish to 
disc~s the general character!~ tics of (4.74). 

for all t except for unequal mass kinematics when z -- I at ~ = 0 and there is in- 
3tead an ((s-  u)/2So)m'M behaviour as we approach t 0. But since t = 0 is outside 
the physical region thiz is not us,.,.~_!ly very important. See re" [25] r ,or a tho~ ~,~ugh 
discussion. Apart from tl'ds the pure power behaviour is characteristic of a pole. 
To non-leading order in (S/So) there ~ill be many correctio,ls, due to the non- 
leading t e r m s  il, the exp~,3iozt of d~k,(zt), and due to d a u ~ e r  t r a j e c to r i e s  and 
t r a j ec to r i e s  of opposite pari ty ,  quite apart  f rom m o r e  subtle co r r ec t i ons  ~eeded 
because a s ingle  Regge pole has the ~Tong s ingula r i t i es  i~x s (see  e.g. chapter 3 of 
ref. [ 15]). This  should warn us against  t r y ~ g  to work ~oo far  below the leading 
singulari ty in a Regge fit. With ~uch .a power behave.our ~ e predic t  fro?:~ (2.14) 

d~- ~ / s . 2~(~)- 2 
d-7 ,: .831 

. ,,So~ <,~.84) 
if ~t single t r a j ec to ry  dominates .  

b) Trajectory dominance. If t he re  a re  seve ra l  t r a j ec to r i e s  p resen t ,  t~.e leading 
t r a j e c t o ~ ,  the one with the l a rge s t  Red(t),  will be dominant asymptotical ly.  The 
value of s above which WAs occu r s  depends par t ly  on, the ra t io  of the t~'o coupl!r.~, 
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but particularly on the value o~ s o. In most Regge fits s o i~ held fixed at ~ 1 GeV 2.. 
but this is mail~ly a mat te r  oi ' fo lklore '  as we have no theoret ical  ~-,ay of:~leter- 
mining what, :it should be (see however  section (6.5)). On th ~ other hand if the cor-  
rect value '~'ere much l a rge r  than finis it would be hard to u ,derstan~ why a smoo~b. 
e~-.,~:~, heh:wiou," is observe,.! in most  ampli tudes for s ", 2-3 OeV 2 

c) C¢~mection with par'tides. The t ra jec tory  functions should of course  pass 
through p ~ S t C ~  par t i c les  f~)r t > 0 and we can obtain a good idea of what they will 
be simply ~ continuing the s t ra igh t  l ines of figs. 5-12 to t < 0. The dominant bo- 
S~a t r~ector: ies  will be those of the vector  and t ensor  nonets with in tercepts  be- 
tween about C and }, plus of cou r se  tJ~p ~ omeranchon with a(0) = I. We discuss  fits 
much more f~.tlly in chapter  '~, and tmre we will give just one i l lus t ra t ion based m 
the ~ ' p - '  r,°n data in fig. 1,5. A s imple  fit of the equation 

log(dc~/d~) .~ [2a( t )-2]  log(s )+cons tan t  I4 85) 

at dtEcrent t values  gi,,es the curve  for ~ t )  shown in fig. 16. This  extrapolates 
almost through the p par t ic le ,  though of course  the re  is nc reason  why the t r a j ec -  
tory, should be exactly s traight .  

A fixed power  behaviour,  a(t) = Jo (a constant),  woald cor respond  ei ther to a 
fixed J plane pole (which (lees not give r i se  to a t plane pole and hence is not a par-  
tide) or to a Kronecke r -de l t a  t e r m  tn the J -p l ane  

g2 (4.86) 

which would correspond to an elementa~D, p~rtiel~ of spin Jo" Except possibly in 
ph0toproduction (see chapter 7~ such fixed ~ ,)wer behaviours are not foun2. 

l # 

/ / t -~p 
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Fig. i , T h e  p t r a j e c t o r y  .as d e d u c e d  f r o m  a s i n g l e  p o l e  f i t  L¢) t h e  ~ - p  -4 :~ ,, J f f l ' c r e ~ : a l  
c r o s s  s e c t i o n  in r e f .  !1S4 t  
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tt0n, We sha l l  f ind  in c h a p t e r  7 tha t  in those  c a s e s  whe re  it has  b e e n  poss ib le  to 
test this r e l a t i o n  it is r e a s o n a b l y  well  ve r i f i ed .  It is not r e a l l y  a t e s t  of Regge pole 
d0nfina~tce howev t ' r  sin,:c it fo l lows  d i r e c t l y  f r o m  d i s p e r s i o n  r e l a t i o n s  and the 
power behav iou r  sa(t) .  F o r  exan ,  ple with a once  sub t r ac t ed  dis! : ,ersion re la t ion  wc 
b.aw' :d ftxed t 

1, i r ReA(s,t)-- s~ ~ (s'-s)s' "~ 

and ff I m A ( s ,  t) ,- sa(t) fo r  s > O, and we use  

- -o0 

P f I m A ( s ' ,  t) 
+ s }-J~H F '  : : s  s-y~ ds '  (4.901 

P [ ds'  .s ,a-1 s¢-1  
7f ' U '  " S 

o 

cot ~ 

,and 

j d s '  s' a~" I = -.~ c o s e c  ~(o'- 1) 
S' + S  

O 

the resul t  (4.89) fol lows.  T h e  s a m e  r e su l t  is found for  any n u m b e r  of sub t r ac t ions .  
Thus any success of the phase-energy relation is really just a test of the power 
bchaviour and analyticity rather th~n of Re gge pole dominance. 

The other important .fact about (4.74) is that the phase is the same for all helic- 
ity amplitudes. Since polarization phenomena depend on helicity amplitudes having 
different r~h tses (see (7, I)) a single Regge nolo cm~ not give rise to po!arizatiom 
Thus for example the fact that there is a polarization of I0-15~ in 7T-p -- 7T°n shows 
that t he re  m u s t  be some  o t h e r  exchange  b e s i d e s  the p t r a j e c t o r y  ,:,r:tributL~4 ~, de- 
spite the s u c c e s s  of the fit in fig.  16. It is  of c o u r s e  not :,'~ :Acult ,+.o tht~£~ of o ther  
con, r ibut ions which  can i n t e r f e r e  with the ? t r a j ec toD"  t,," p roduce  ~ne Fo.lari~ation 
Csce chap te r  7 )  

f) F~c¢o~'iz,~zt~on. We have a l r e a d y  noted that  a Regge r e s i d u e  tins to ~?,c~_ui:~, ~, 
(2.67), SO if only a single Regge pole is involved in a given set of processes we de- 
duce (see fig, 1) 

2 (4.~I~ 
(de b dt) 12 ---.34 = (d~r/dt) 11 - ' 3 3  (dcr/c~t)22 ~ 44 " 

Um~rtunately it is no*. easy to test this directly because ~ . r e  are not enough dif- 
ferent p r o c e s s e s  ava i l ab le  (p o r  ~: have a l w a y s  to  be used  ~t~' the  t a rge t ) .  M o r e o v e r  
it depends c r u c i a l l y  on the  d o m i n a n c e  of lus t  a s ing le  t r a j t . c to ry .  We ~4ha21 men t ion  
some t e s t s  in c h a p t e r  ~. It i s  h o w e v e r  an i m p o r t a n t  cons t r a in t  on Regime r e s i d u e s .  

Another app l i ca t ion  of f a c t o r i z a t i o n  is  tha t  s i n c e  1 * Z -- 3 + 4 h a s  the s a m e  t -  
cbarmel po les  a s  t + 4 - -  3 +2  ( i . e .  we jus t  rotg.te the  r~g; ' t -hand s~de of fig. 1) the 
ccr~tr,:bu'..ion of a g iven :pole to  t h e s e  two p r o c e s s e s  mus t  be the s a m e  apar t  f r om :~ 
pes.-~, 'e • s ign .  So if a s ing le  t r a j e c t o r y  d o m i n a t e s  these  two c i o s s  s ec t i cns  ar~ ~ 
pred~ctea o be  iden t ica l .  T h i s  i s  lcaown as  ' l i n e  r e v e r s a l  ~ s y m m e t r y ,  q'~~s :~o~" ex-. 
ample the p con t r i bu t ion  to  p~ - ,  p~ mus i  be the  s a m e  as that  f a r  pp -. pp. Th i s  a"- 
so follows f r o m  the  P o m e r a n c h u k  theo re" -  hc , e v e r  (see c h a p t e r  7). 

g) Dips. We have found tha t  Regge  pole  a m p l i t u d e s  may van i sh  at nonsense  
points ( sec t ion  6), but tha t  t h e r e  is  s o m e  ambiguity,  about th is  depend ing  on the  
presence of f.~:.ed po les ,  e tc .  We shal l  s ee  in c h a p t e r  7 that  s o m e  but by no m e a n s  
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tt0n, We sha l l  f ind  in c h a p t e r  7 tha t  in those  c a s e s  whe re  it has  b e e n  poss ib le  to 
test this r e l a t i o n  it is r e a s o n a b l y  well  ve r i f i ed .  It is not r e a l l y  a t e s t  of Regge pole 
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power behav iou r  sa(t) .  F o r  exan ,  ple with a once  sub t r ac t ed  dis! : ,ersion re la t ion  wc 
b.aw' :d ftxed t 

1, i r ReA(s,t)-- s~ ~ (s'-s)s' "~ 

and ff I m A ( s ,  t) ,- sa(t) fo r  s > O, and we use  

- -o0 

P f I m A ( s ' ,  t) 
+ s }-J~H F '  : : s  s-y~ ds '  (4.901 
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cot ~ 

,and 

j d s '  s' a~" I = -.~ c o s e c  ~(o'- 1) 
S' + S  

O 

the resul t  (4.89) fol lows.  T h e  s a m e  r e su l t  is found for  any n u m b e r  of sub t r ac t ions .  
Thus any success of the phase-energy relation is really just a test of the power 
bchaviour and analyticity rather th~n of Re gge pole dominance. 

The other important .fact about (4.74) is that the phase is the same for all helic- 
ity amplitudes. Since polarization phenomena depend on helicity amplitudes having 
different r~h tses (see (7, I)) a single Regge nolo cm~ not give rise to po!arizatiom 
Thus for example the fact that there is a polarization of I0-15~ in 7T-p -- 7T°n shows 
that t he re  m u s t  be some  o t h e r  exchange  b e s i d e s  the p t r a j e c t o r y  ,:,r:tributL~4 ~, de- 
spite the s u c c e s s  of the fit in fig.  16. It is  of c o u r s e  not :,'~ :Acult ,+.o tht~£~ of o ther  
con, r ibut ions which  can i n t e r f e r e  with the ? t r a j ec toD"  t,," p roduce  ~ne Fo.lari~ation 
Csce chap te r  7 )  

f) F~c¢o~'iz,~zt~on. We have a l r e a d y  noted that  a Regge r e s i d u e  tins to ~?,c~_ui:~, ~, 
(2.67), SO if only a single Regge pole is involved in a given set of processes we de- 
duce (see fig, 1) 

2 (4.~I~ 
(de b dt) 12 ---.34 = (d~r/dt) 11 - ' 3 3  (dcr/c~t)22 ~ 44 " 

Um~rtunately it is no*. easy to test this directly because ~ . r e  are not enough dif- 
ferent p r o c e s s e s  ava i l ab le  (p o r  ~: have a l w a y s  to  be used  ~t~' the  t a rge t ) .  M o r e o v e r  
it depends c r u c i a l l y  on the  d o m i n a n c e  of lus t  a s ing le  t r a j t . c to ry .  We ~4ha21 men t ion  
some t e s t s  in c h a p t e r  ~. It i s  h o w e v e r  an i m p o r t a n t  cons t r a in t  on Regime r e s i d u e s .  

Another app l i ca t ion  of f a c t o r i z a t i o n  is  tha t  s i n c e  1 * Z -- 3 + 4 h a s  the s a m e  t -  
cbarmel po les  a s  t + 4 - -  3 +2  ( i . e .  we jus t  rotg.te the  r~g; ' t -hand s~de of fig. 1) the 
ccr~tr,:bu'..ion of a g iven :pole to  t h e s e  two p r o c e s s e s  mus t  be the s a m e  apar t  f r om :~ 
pes.-~, 'e • s ign .  So if a s ing le  t r a j e c t o r y  d o m i n a t e s  these  two c i o s s  s ec t i cns  ar~ ~ 
pred~ctea o be  iden t ica l .  T h i s  i s  lcaown as  ' l i n e  r e v e r s a l  ~ s y m m e t r y ,  q'~~s :~o~" ex-. 
ample the p con t r i bu t ion  to  p~ - ,  p~ mus i  be the  s a m e  as that  f a r  pp -. pp. Th i s  a"- 
so follows f r o m  the  P o m e r a n c h u k  theo re" -  hc , e v e r  (see c h a p t e r  7). 

g) Dips. We have found tha t  Regge  pole  a m p l i t u d e s  may van i sh  at nonsense  
points ( sec t ion  6), but tha t  t h e r e  is  s o m e  ambiguity,  about th is  depend ing  on the  
presence of f.~:.ed po les ,  e tc .  We shal l  s ee  in c h a p t e r  7 that  s o m e  but by no m e a n s  
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all the expected dips occur. Unfortunately there are also other possible explana- 
tions of these dips involving Regge cuts, so there is some uncertainty, and thecot- 
rect e~:planation is still m~clear. 

h) t£xcha~zg¢ degeneracy. In chapte r  3 we noted .vide~ce re :  the degeneracy of 
opposite s ignature .  R is obvious f r  ,m (2.39) that th~ ide~Lt~tx/ of A~j(t) a~d ,4~i~(~) 
impl ies  that  t h e r e  i s  no e x c ~  force,  l .e,  no te-chrnnel disconti'nUity, Th is"  " " 
would mean  that  the  res idues  w e r e  identical  a s  w e l l  a s  the t r a j e c t o r i e s ,  Obviou~y 
the difference between two such exchange degene ra t e  traJe,~tory contr ibut ions is 
proport ional  to 

Ce'i~(°" v)+ 6~ [e'l~(a'v). j] ,,, 

[ 2sir,,r(  j " - (4.o2) 

which is purely real. We shall ~ee in chapter S that there are some theoretical 
grounds for expecting this so# ~. of cancellation to occur, 

Exchange degeneracy also implies the absence of fixed poles (since ther£ is no 
third double spectral function), and that the trajectories will choose nonseuse. 
~?his is because e.g. an even signature trajectory must have a ghost-kUling zere ~t 
= 0 ~n a sense amplitude, which must therefore also be present in the exchaa~ge 

degem::rate odd-signature trajectory. 
i) ~'he Re~Xe pole parameters. R is evident from the above discussion that 

there are several characteristic features of Regge pole exchange which we can 
hope to) obser~q: in the data. But there are ]natty ambiguities, ~ from the pres- 
e~,~ ~.~ondary trajectories and cuts, and from the various choices as to 

n, sense or nonsense coupling, etc. Even when ~ have de- 
~ ~  these there are the free parameters of the trajectory fm~ctlcn ,~(t~ and 
the reduced residues 7H(t ). The former can be predetermined to some extent from 
the position of the resonances, particularly" ff one is prepared to limit oneseh to 
linear trajectories, but the behaviour of TH(t> is almost wholly arbitrary. In a few 
cases  the r e s idae s  of the pa r t i c l e  pc.les are  knovna coupling constani .~, but even 
then there is no unique p r e sc r ip t i on  for mualytic continuation. It ~s .sual to adc~:t a 
hypo~,hesis of s impl ic i ty ,  and suppose flint once the essent ia l  .kinen~_:ic~ and dy- 
namical  fac to rs  have been taken ca re  of the reduced  res idue  will be e i ther  a con- 
s tant  or a slowly- vaxyin~ function. One factor  wl~ch will  g rea t ly  aff¢ct  this  t-de- 
pendence is  the choice made for  So, since va ry ing  it is  equivalent to including an 
ex t ra  exponential  t factor  in the res idue .  It is obvious that ff the r e s idue  is given 
too much a r b i t r a r y  s t ruc tu re  the fit looses  i ts  convict ion,  but how many parame,- 
t e r s  one should pe rmi t  oneself  i s  ve ry  much a m a t t e r  of t a s t e  

This  concludes  our survey  of the p roper t i e s  of Regge pole . ,  but before  we can 
confront these predictions with experiment we need to know ~ ~out the other types 
of j=plane singularities which may be present, in particular the branch cuts. 

CHAPTER 5 

REGGE CUTS 

In the preceding chapter we discussed the exchange of a Regge pole, which co: ̀= 
responds to the exchange of a single particle. The subject of this chapter is Re~e 
cuts which, speal~r,g roughly, correspond to the simultaneous excb=Inge of two c.r 
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more par t ic les .  But whe rea~  we have  been  ab le  to d e s c r i b e  the p r o p e r t i e s  of poles  
wRh some con f idence  all ,~hat one  can  say with c e r t a i n t y  about cu t s  is  that  they 
,.u~t v.~ut, a,.~d they have known pos i t ions .  

In chaptex' 2 c u t s  w e r e  invoked  to r e m o v e  the incompat ib i l i ty  of ~he Grfi~ov o 
t.*otaevauchuk f ixed  pole with the un.i¢: r i ty equat ion.  Other  ~sotutions to lh is  prff~- 
le~ have been  s u g g e s t e d ,  such  a s  tha t  the po l e s  b e c o m e  l ike e s s e n t i a l  s i n g u l a r i t i e s  
~th~n they a r e  i t e r a t e d  with  u n i t a t i t y  [9~, 94], but M1 such  s u g g e s t i o n s  r u n  into t he  
problem that ~uch  a s i n g u l a r l t y  a t  a n o n s e n s e  point  d = Jo  would l e ad  to an sJo be-  
taviour of the sca t t e rh~g  ampl ibade ,  which  is i ncompa t ib l e  with the F r o i s s a r t  
bound for Jo  > 1. A s i m p l e  po le  is  alloveed b e c a u s e  it is ca~ce l l ed  t~" the ze ro  ot 
the signature f a c t o r  and so  does  not con t r ibu te  to the  a sympto t i c  behav iou r .  

The conf idence  ttutt cu t s  can  b e  invoked to s h i e l d  the  fixed po les  rests ,  ma.inly 
0n Mande ls tam 's  a r g u m e n t  [95] wh ich  ~k, sha l l  d i s c u s s  in the next sec t ion .  This  
~mons t r a t e s  t ha t  the  s ~ m e  s o r t  of Fe~nunan d i a g r a m s  that con t r i bu t e  to the t h i rd  
d0u~fle spec t r a l  fuuct ion,  and h e n c e  to the f ixe4 p o l e s ,  a l so  give r i s e  te cuts.  
Tt~ere a r e  s t i l l  two p r o b l e m s ,  h o w e v e r .  One is tha t  t h e r e  a r e  s o m e  F e y n m a n  d ia -  
g~m~ which l i k e w i s e  a p p e a r  to p r o d u c e  cuts  (the s o - c a l l e d  Amat i -Fub in i -S tav .gLe l -  
'.~ "i, A ~ ,  cu t s  [9fl]) but whose  c a t s  a r e  known to be  cance l l ed  by o t h e r  diagram.s.  
Taey appe,~r on u n p h y s i c 2  s h e e t s  and  do sot  c o n t r i b u t e  to the a s y m p t o t i c  behaviour .  
C~e can thus so t  be  c o m p l e t e l y  s u r e  that  M a n d e l s t a m ' s  cuts  a r e  net  s i m i l a r l y  can-  
:elled, though the  f i x e d . p o l e  a r g u m e n t  g ives  good r e a s o n  to b e l i e v e  tha t  they a r e  
~0t. The o ther  p r o b l e m  is tha t  we stf lI  only know how to eva lua te  the  magni tude  of 
the cut d i scon t inu i ty  in t e r m s  of F e y m n a n  d i a g r a m  r~cdels .  S ince  few :people nex t , -  
days suppose t lmt L a g r a n g i a n  f i e ld  theory  is e v e r  l ike ly  to be  the b a s i s  of a v iable  
theory of s t r o n g  i n t e r a c t i o n s  th i s  m e a n s  that  t h e r e  is no a g r e e d  n ' .ethed to ca lcu -  
late cuts. 

ttowever, s o m e  m o d e l s  which  do p e r m i t  one at l e a s t  to ~.~ii::~a~:. {~e cuts ~i~ ev~ 
the :nput pole p a r a m e t e r s  have  been  sugges ted ,  and we s!:'~ : ,,scrl~:,~ ,~:v~d ~:or.,~- 
ment on two of t h e s e  (the a b s o r p t i o n  and e ikona l  mode l s )  :.~ s e c t i o n s  ~ a ~  5, ~ }~c~ 
we discuss s o m e  of the g e n e r a l  c h a r a c t e r i s t i c s  of cu ts  a s .  ,dica~et~ b,..u~,'", ~ c d -  
els. It, p a r t i c u l a r  we i~,troduce the  as  yet  ur, so lved  p rob lem of w h e t h e r  tt~ : ~v,.: 
~trorg enough to  i n t e r f e r e  with  the  po les  hu such  a way as  ~,o p r o d u c e  t~hc va:ic: . : .  
dips observed  in d i f f e r en t i a l  c r o s s  s ec t i ons ,  o r  w h e t h e r  these  d ips  arc,. as  dis-- 
cussed in s e c t i o n  (4.6), due to  n o n s e n s e  z e r o s .  

In addition to  t h e s e  d y n a m i c a l  Regge  cu t s  t h e r e  m a y  a l so  be f ixed cuts  wh}ch we 
give a br ief  m e n t i o n  in s e c t i o n  7. 

5.2. Rc~ge s i ~ d a . r i t i e s  mzd Fe3m:"tan diagrams 
The ca l cu l a t i on  of the a s y m p t o t i c  behav iou r  of Fey~.unan d i a g r a m s  has  b e e s  d is -  

cussed by s e v e r a l  a, u tho r s ,  m~d c o m p r e h e n s i v e l y  r e v i e w e d  in r e f s .  [97, 95~. in th is  
section we sh,~,ll ma in ly  jus t  quo te  some  of the  re levm~t r e s u l t s ,  and the r e a d e r  
who is intere~,ted in the d e t a i l s  shou ld  consul t  re f .  [97] o r  the ~r ig ina l  wt,:cks. 

We c~ns ide r  a d i a g r a m  co~lsis t ing of ~¢:al~r m e s o n  t ~ s  ~e m a s s  m us: h ve r t c×  
c0uplir~,~ cons tan t  g. The  c o n t r i b u t ! o n  of such  a diagran~ ~o the scat?e~-ing :~v~,~I~tudc 
is give~ by (neg lec t ing  n o r m a l i z a t i o n  factor 's) 

d4kl...d4  t 
A(s,  t~ l i ra  g ~'~ ) ii . . . . . . . . . . . . . . . .  ' 

c~C, 2 2 
1| (q - m + 
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where the ~r  are the four-moment.t of t h e .  internal linee; the kf are the tntertml 
loop moment~. (that Is independent linear combinations of the q~,), and there are 
vertices.  The particles in such a theory are of courme eh;mentary, and since they 
are sca lar  they contribute a Kroneker  de l t a ' s  to  the s -channe l  par t ia l  w~ve ampli- 
tudes of the form 

Aa(s) ~ ~JC s -  m ~ " ~,~i 

However if we cc~sider  an infitxite sequence of ladder  d i ag rams  such as fig. 17 it 
can be showa (ref. [99]) that the diagram with n r u ~ s  cont r ibutes  at la~'ge ,~ 

where K(t) i s  a k~mwn function (given by the box diagram).  3o, if we are  jus t t f i~  
in supposir, g that the l imit  of the sum of the d i ag rams  is the sum of the l imits ,  the 
sequence gives  

~%-g2 ~ [K(t) log s] u" I _ ~2 s ~t) 0 (5 V, 

*~= 1 

where a(t) = -1 +K(t), So the sum gives us a Regge pole ~ehaviour  with a t rajecto~ 
functions which begins at - 1 for  t --  % and which is cut trove the t threshold This 
is exactly the same as the bel-mviour of a t ra jecto~¢ in Y ~  potential scatterirg 
which it c losely r e sembles ,  and the fact that the traject~wy end point is ~t - t  is 

:due to the I / s  behaviour of (5.2). 

+ _ __7111111  
FLg. 17. An infinite -equenc¢ of ~adder diagrams which sum ~o gi~,c ~ t-channel Regge $~e. 

General  ru les  for the asymptotic behaviour of m,Jre comp}ex diagrams ha~ ~. 
been given [98]. In par t icu la r  it turns out that for  all planar  d i a g r ~ s  (i.e. dia- 
g rams  which can be drawn in a plane without c ross ing  lines} the behaviour is ~A- 
ways of the form 

s ' n ( l e g  s) m with n ;~ 1. m ~ 0 . (5.5) 

This knowledge is not much use  to use s ince,  as  we ha'~e just ~een, the R e ~ e  be- 
haviour c o m e s  from summing  infinite se ts  of diagrams,  But it does  indicate ~hat 
we were  to t rea t  Lhe s ides  of the ladders  in fig. 17 as composi te  par t ic les  we 
should st i l l  preb,~biy get a Regge pole. 

. . . . . . . .  

N rung~ 

, M r~nm t ~ t 

Fig.  18. One  of an infinite s e q u e n c e  -f  d o u b l e - l a a d e r  d i a g r a m s  which m i g h t  be ext ec te  ,~ ,'o 
g ive  r i s e  to a Regge  cut ,  but does  not,  
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The Regi~  cut~ a r e  sin')posed to s t em f r o m  the exchange  of two or  m o r e  Re.~ ge 
poles, so we might  t~-  a m o d e l  such a~ tig. 18. However  it can be shown that  eac),  
such dtagrar~ has an a s y m p t o t i c  beh,.v~,':ar ~. :.-3 log s independent  of N and M, so 

flli~ ,:h,mld a lao  be the b e h a v i o v r  o( t>e sum.  Th i s  gives us ~, f ixed-cu~ l ike beha-,:-- 
i0ur wi~h ec{t) ,: -~ for  all t. 

. . . . . .  ' .nc~, .since" if we tako ',ach of th<, 1~,,<~,,, • A~ f~rsl ,~ight ~his rcsul~ is ,ta,h~r :~urpris '  ~, ' '  
Stuns l~ i~g. i8 as  giving us  a Regge pole behav iou r ,  and then  apply e las t i c  uaitari t-y 
in ihe s-ch,~mnel to find the  d i s e o u t h m i t y  a c r o s s  the two p a r t i c l e  cut (fig. 19a), we 

[ Sl 
qs  

and X w~:, put e a c h  A t ( s ,  ~) ~ s n'i(t) tl~is g ives  

Disc  2 A ( s ,  t) .~ .~ m a ~ [ a l ( / 1 ) + ° ~ 2 ( t 2 ) ] "  1 , ( 5 . 7 )  

where ~'I m~d t 2 are sublect to the constraint 

{We shall perform this sort of calculation explicitly below, section 4.) These are 
the AFS culs. They are cancelled by the contributions of the olher unitary disse:- 
'ions which can be made through fig. 19a, such as that shox~n] i~ fig. 19b. Thus the 
on mass shell AFS cuts are cancelled by the off rnass shell parts of the Yeynman 
integration, and the cuts are spurious. 

G 

. . . . . .  l ...... [} i~:. i 
1 ............. ! ........ 

a 

Fh'. ~!;. (a~ The  t w o - p a r t i c l e  u n i t a r i t y  sec t ion  ol f ig.  18. (b) A d i f f e r en t  par t i t ion  of ti~. ls  
which involves  3 p a r t i c l e  un i t a r i ty .  

If we wish to avoid this cancellation we must turn to non-planar diagrams [951 
The simplest is shovm in fig. 20 where we have Reggeon ladders co~nect~.J by 
cros s~s a .  e a c h  end. B e c a u s e  of the c r o s s e s  t h i s  d i a g r a m  has  a th i rd  (su) double 
spec~r:d funct ion  and so i is  a l s o  involved in the t -cham~el  G r i b o v - P o m e r a ? . c h u k  
[Lxed poles. Since  it r e L m r e s  a m i n i m u m  of 4 p a r t i c l e s  in the ,~o.cham~el ii will ~:b- 
viousiv aot be p r e s e n t  in po ten t i a l  s c a t t e r i n g .  T h i s  has only Regge  poles  i~r  su i t -  
able p,,~entials l ike the Yukawa.  

in, r d e r  to d e m o n s t r a t e  m o r e  expl ic i t ly  tha~ fig. t8 aoes  net have ~ cu~ ,::',,~ 
rig. 1~) ~!oes, one can make use of the Reggcon calculus " -' ....... 

z'hich a!tawS one to w o r k  with  mixed  F e y n m a n - R e g g e  pole d i a g r a n : s . . . l ~ r c  ,~c 
shall br ie f ly  out l ine  th i s  m e t h o d  [101,102].  

Co~,sider t he  d i a g r a m  fig. 2 t  whexe R l and  R 2 a r e  Rcgge g, otc  amp i~uc.,:~ . . . .  
terms of the ]~eynman r u l e s  th i s  may be w r i t t e n  (neglec t ing  n o r m a l  iz:ai~>n L~,'iors) 
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Fig. 20. Au example of a type of diagram 
which,-when summed over all possible num- 
bers of rungs, does give rise to a Regge cut. 

A( s, 0 = ix 2 

P~g, 21. The Fvynman di tgram of flg. 20 
with the ladders replaced by Regge ~ t e s  

R 1 and R 2 

fd% dakx a4)'~al(k~ak)R2( Pl" k~, t~2- k2, ,z- k) 
. - - - : ~  , is.9) 

]2 dm 
m=1 

where d's are the deaomilmtors corresponding to the internal lines 

2 2 
d 1 = k 1 -" m + i¢ v 

d 2 = ( p l " k  1) ~ ' m  ÷ i ¢ ,  etc. 

~ ~ ~ c e  the four-vect~,rs 

- rn 2 'S P~ = t,a ( / ) 

2 
P2 = P 2 " ( m  ,/s) pi  • (5.11) 

which have the proper ty  that  

, 2 s .  (5.12) 

As usual s = (p l+P2)  2 and t - , p l - p ~ )  2 = q2, and we ca• wr i te  

t p, L,, , q=~(2-Pl) +Q {5.13) 

where Q i s  a vector  perpendic t t lar  to the p lane  containing P l  and P2' Then foUow- 
ing Sudakov [103] we wri te  each  of the in te rna l  momenta  in t e r m s  of the i r  compo- 
nent in the plane of p~ and p ' ,  2. and those perpeJadicular to it, i .e. 

--~-z - r-r I " "-j. 

k l = a l P 2 + f l l P l  + k l i ,  

(~, 14) 

We then express each of the denominators (5. I0) in terms of these var':ables: 
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d I = a'lt31s+k~x m 2 " ÷ i ~  , 

2 _ k 2 2 
d2 = (~'1- "~ /s)(i~l 1)s~ l~ - ''~ ~i~ , etc. (5.!5) 

~nd the integration volume e lements  a r e  

d4k = ½1 sl dad#d2k~ etc. (5. lq) 

We the,,t ass tmte ,  and this  is the crucial  s implif icat ion,  that Rl(klk2k ) is l a rge  on- 
ly when the energy var iab le  s 1 ~-(k 1 + k2)2 ~ 2klk 2 = ;3I a2s is l a rge  (.i.e. of o r d e r  

@, mid #.hen the momentum t r a n s f e r  k 2, and the ' m a s s e s '  k 2, k,~ a re  small  (i.e. of 
0 ~ r  r,z);  and s imi la r ly  fo r  R 2. Thus we a r e  assutaing tha t  t h e  Regge amplitude 
is peripheral ,  and that i ts f o r m  fac to rs  vanish ~ (k~)" ~ (see ref .  [95]). Hence the 
only important region ol lnteg~aLton in (5.9) is when 

2 k2 k2 2 kla.' 2x' ± .'-.m ; a,~,al,-" m2/s ; and ~1,~'2 ~ 1 .  (5.17) 

We then take a (ac tor tzed f o r m  for  the Regge ampli tudes 

R 1(} 1, }2, } ) : gl[k~ ' (k.  k 1)2 ,k 2lg 2 [/2, (k +k 2) 2 ,k2] ~jl(2hlk2)Jl(k2) , 

' kl)2 ~ o. R2(Pl-kl'P2"k2 'q ' k )  =KI((Pl" ' ( "  1 k l ' q + k ) 2 '  ( q ' k ) 2 )  
0 

2 P2"k2 +q ~J2 1 )~ k2) ' " " ~ - ~ ' ~  
× " '  ) ,l k)2 2 

- - L ~ %0. . ,(q-k)) [2(p I k , - } ~- ~s> 

• .:,~ere ~Ji are the signature factors, and we have used Ji for the positioa~ of the 
po!es (to avoid confusion with the Feynman parameters o'). %~qaen these ~re sub~ i- 
tuted in (5.9), and the r e s t r i c t i ons  (5.17) a r e  noted, the integrat ions  over e t, ~2, 
# l , 32 , a ,~ ,k l ±  and k2~ " can be ca r r i ed  out separa te ly ,  and we end up ~qth 

i f d 2 k x  .2 (5.19~ A(s,O = ,s I NjtJ2 (q,k±)sJl+J2}j1~j2 , 

where 

s2X2 , J1 ( !_ [~  ~J2 

NJ1J2 f d31 da 1 d~' glg2# ~1" 4 
ii d D~ 

m = 1 

The fi~,~ctiono NjI~2 is the Fevnrnan. integral  over the c ros s  on the left of fig. "~ ~: , 
and ~t ~ppears squared because the right-hand side gives an identical result. 

in order to determine the J-plane structure of (5.19) we must m,~ke a Frois- 
sart-Gribov projection, which for spi~lless sca%i~ring is 

oO 

Aj(t} = l  f Ds(S,t) Qj(zl). (5.21~ 
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Now frmn (5.19} 

N 2 , k , l )  s r1~'I2 
, i 

and ue, ing the fact that Q,~zf) ~ s "J" } we have 

Re {~j1 ~J2 } 

This gives us the expected cut, and i ts posi t ion is the sa~,~e as that of the A ES 
cut (5.7). 

It is fa i r ly  s t ra ightforward in principle to apply this techuique to more compli- 
cated d i ag rams  where there  a r e  l a rge r  numbers  of R e ~  pc~es cmmected by 
Feynman propagators .  One is  st i l l  left  with the  problem however  t ~ t  ~ne needs to 
be able to pe r fo rm  the Feynman integrat ion (5.20) which i n v o l v e s t h e  f o r ~  factors 
of the Reggeons,. ~ince the coupling.~ gi, ~.£.; a~'e fm~ctions of the m a s s e s  ~'~. tt is not 
possible to evaluate the cuts using just the on m a s s  shell p rope r t i e s  of the Re~,~e 
poles. 

i '  
f 

/ 
R k, k ,, 

t 
! 

\ 

• "~4.q q - k  \ \ 
%. 

e~ 

\ 

,,, , , ,  . | 

0 t 
t 
t 

/ 
J 

J 

Fig. 22. (a} The Feynman aml~litude for the left side ~f fig. 21, with two Reggeon externat 
linee. (b) The contour o~' integration along the real s I a:.is m (5.24). The co,tour may be 
closed either above or below, but in either case it era loses one of the unitar ty cuts of A t. 

The in tegral  for NJ1J2 is essent ia l ly  an integr~,| over the Feynman ampl rude 
shown in fig. 22a. If we exp re s s  it in t e r m s  of inv.,riants it becomes  

N(~ ', t~t 2) = f ~s i A~(s 1, ; t . ,  t2) ,  !~.24) 

where 

Al(Sl' ~;'~I' i" i l ( l  ,~ ~J2 lJ-~l~ (5.25) 
" "  s2)= J ~1  ~ "~1; f 4 

is the amplit-dde of fig. 22a ap~rt from the ~ s m the numera tor .  These  are  duc to 
the spins of the Reggeous and it can be sho~-n that they do not a~'ect the s i n ~ ] ~ r i ~  
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str~,ctu~-c ~.ff A t,  T h e  mt g r a l  in  (5.2,4} is  c a r r i e d  out  at f i xed  t m ,  e r s  1, and one 
ea~ a,~a s ee  why it i.~ i n : ~ o r t a n t  tha t  the  d i a g r a m  shou ld  have  a c r o s s ,  F o r  ~l~e 
i,re.taenc~' ~:f t e e  eros 'z  r "  a~s  tha t  A 1 will  h a v e  bott~ a r i g h t - h a n d  cu t  c o r r e s p o n d i n g  

, {2  " ~ * ' * "  ' S  O ' ' ~ "  _ t{tthe s l  t | , r e s h o t d s  and  't l e f t - h a n d  one t ,  ¢ , p , n d m >  to tire ;e I tt4:('shoId:: 
{s~ +":I ' : ,;4,,.~,a). S the  , ,~ tegra t ton  c o n t o u r  wil l  be as  i~ fig . . . . .  .. 

gram"- ' '""~ '" . , t o  I f o r  l a r g e ,  1, if  t h e r e  w e r e  on ly  a r i g h t - h a n d  cu t  o r  o~fly a leit-l~.and 
cut one would  be  a b l e  to e l e d e  t h e  c ' m t o u r  by a s ~ i c i r c l e  ,n t h e  u p p e r  o r  l o w e r  
~ f  plane ( r e s p e c t i v e l y )  w i t h o u t  e n c ! o s i ~  a w  s i n g u l a r i t i e s  and  s o  co~.~clude tha t  
>X = b, it is on ly  t he  f ac t  t h a t  A 1 has  both  c u t s  t h a t  g i v e s  us  a f i n i t e  m~swer .  In f a c t  
i[we d i s t o r t  t h e  c o n t o u r  to  e n c l o s e  say  the  rig~,. t-hand cut  we ge t  ( s i n c e  A 1 is r e a l  
analytic) 

oo 

= 4]m t l a A l ( S l ,  t, * ds  1 . '= " ~  N ( t ,  tlt2l, . 2t 2 • ' l ,  t2) t~ , . :~ ,  

t is now f a i r l y  obv ious  tha t  o n e  ca~  g e n e r a l i z e  t he  above  d i s c u s s i o n  and ob ta in  t h e  
ampht~ de f o r  t h e  R e g g e  cu t  in a g, a e r a l  two R e g g e o n  d i a g r a m  l i k e  f ig.  23 p r o v i d e d  
that both {he a_mpti tudes A 1 a n d  A~ h a v e  t oth l e f t -  and  r i g h t - h a n d  cu t s .  But  u a f o r -  
turatety t h e r e  is  t hen  no rea,,.mn o e x p e c t  tha t  t h e  i n t e g r a l  {5.26) will cow, v e r g e  L: 
the amplt*ude A i has Regge  beha  :tour. 

Fig. 2 3  A g e n e r a l  two Reggeon  e,,ci~ange a m p l i t u d e ,  whicb will g ive  r i s e  to a Regge cut 
provided A 1 ant A, 2 both ¢:o~ 'ain crc, sses.  as h~ fi~:. 571 

5.3. P h y s ~ c a I  i n t e r p r e : a t ~ o n  
Se ,£~r th i s  h a s  jus t  b e e n  . a a t h e m a t i c s ,  and  we  m u s t  ': -, ~W t ,  tmd~,:'stan, f ~he 

physwa, m e a n i n g  of t h e s e  r e q u i r e m e n t s  m A 1 a n a  A 2. # e  c a n  oe~ s o m e  idea a'c,:L:~ 
d e u t e r o n - d e u t e r o n  sca ; . t e rh tg .  We e x p e c t  tha t  to a good approx i r ,  a~io:- "~1:: ca:~ L,.~ 
rEpresente " ~-,, ti~= ~ atteei~ ,; of  t he  neut~ ons  and  pro te in ,  s e p a r a ~ . , y  ~; ::~: - c ~ ,  
sent cacti  oi t h e  i l l te r ;  c t i o n s  by  t h e  e x c h a n g e  o~ a s i i g l e  ~,eggec a we get  d i a g r a ~ : s  
like fig. 24. B~:~ f ig.  2, b w h e r e  two  R e g g e o n s  a r e  exchan;{e¢t b e t w e e n  the  s a m e  p a i r  
of p a r t m t e s ,  b e c o m e s  v e r y  u n l i k e l y  a t  h igh  e n e r g y  b e c a u s e  t he  two  n u c l e o n s  do not 
stay t o g e t h e r  lea:or enough .  T h i s  d i a g r a m  h a s  no  t h i r d  double  s p e c t r a l  f unc t l on  and  
does net g i v e  a cu t  ( o ~ y  a n  A F S  cut) .  On t h e  o t h e r  hand  ~ig. 24c w h e r e  the  two 
Reggeons c o m e  f r o m  d ~ e r e n t  m~cieor, s c,...n o c c u r  at. h igh e n e r g i e s ,  and t h i s  d i a -  
gram i~as p r e c i s e l y  t h e  s t r u c t u r e  of fig. 2 t .  O n e  m a y  thins c o n c l u d e  tha t  in g e n e r a l  
the e .xis tence of  a cu t  d e p e n d s  on the  s t r u c t u r e  of  the  s c a t t e r i n g  p a r t i c l e s  - t h e y  
must bremk up and  r e f o r m ,  v i r t u a l l y  [104]. 

v,_ / ,,. / \ o: 

' / ; °  .#" i \, a 
*, 4 :\  

.,. Fi=. 2~. De,ateron.deuteron seatter~mg. C a) .A single interaction b,Aween 'he nucleons rep~~. 

., se~,tcv :,y a Regge po'e exch,~nge. (b) Double Regge pole exchange between the same pa~.'.- ,,~ 
~. ,.ueLeons. (c) Double Regge pole e~'change be t~een different pa i r s  of .,.mcteons 
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There t,J obviou,~ly some relation between the above discussion and Glauber t l~ 
ory [105], but in fact the relat ion turns out to be a very complicated one. For 'eX- 
ample if one considers ~d scat ter ing,  Glauber theory gives (fig. 2~ 

A~r d = G(t)(A~p + A#N ~ + f G(P2)ATpA~tNd~P , (~.l~) 

where G is the deuteron form factor  (and represen t s  the fact that the nucleons are 
oH the m a s s  shell). The f i r s t  t e rms  are  the single scat ter ings c~ the proton ~ n d  
neutron, w~fle the second t e rm is the shadow correction,  ~nd re~resents  the flct 
that. for pa r t  of the time one nucleon is behind the other ant  so lnvit~lbl~ .o the p ~  
This must obviously make the amplitude sma l l e r  than the sum of the single scat- 
tering t e rms .  It was shown by Gell-Mann and Udgaonkar [106] that the second teem 
of (5.2"~ h=~ a cut like behaviour, and this has been analysed in g rea te r  detail b y  ~ 
Aber~ ,:~ aL [107]. However the diagTam fig. 35c does  r ~ have a real  cut, only am 
AFS cu~, ff the part icles  a re  on the mass  shell. In order  t~ get a Regge cut we 
sho~Id have to regard  the pion as a composite object too. This does not mean thai 
Glauber theory Is wrong,, at leas t  at low energies ,  only ~h~t it does not give ,~ valid 
result  a t asy.mptotlc energies.  In fact ~ne can es t /mate  I ~  it will break down 
the energy if of the order  of m~(mN/~)~ where ~ is the bindinff-energy of the det~ 
terc, n[108] .  - d / ,  

\ 

a b ¢ 

Fig. 25. Diagrams with s~n$~e an6 double sca t t e r ing  for pion-dcuterc~n s c a t ~ r m g  

The situation is further complic~ ed by the fact  that the i*.eration of t:~v pc[ential 
(the Regge pole) corresponds both to d iagrams like fig. 26a in wh:ch the potential 
acts severa l  t imes  between the same pair  of par t ic les ,  and ones like fig. 26b in 
which the ordering of the interactions is different,  ane which ~avolve multiple scat- 
tering [109, 110]. This appears  to contradict what was said abovv about the improb- 
ability of multiple scattering between the same pa i r  of p~ ' t ic les ,  but since in 
Glauber theory the energy of the incident par t ic le  is high, and any charges in it 
to scattering very .small (otherwise the deuteron would break up), we have a c~:..r- 

j l l , ~  ¸ 
t 

.~ r z 

p t 

a b 
Fig. 26. T~o examples  of diagr~tms which involve t h ree  Reggeon exchang~s,  bul which ,~,:~',e a 

d~fferent t ime order ing of the interact ions.  
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taint: i~ the en,~ v~" which i m p l i e s  an u n c e r t a i n t y  in the t ime  o r d e r i n g  of the i n t e r -  
acliot~. 5~ f~g~ 2fla and ~:'~ a r e  equ iva len t ,  and  the  Glauber  c o r r e c t i o n  a l r e a d y  ~n- 
dudes sonde of the m~fltiple ( m o r e  than two) s c a t t e r i n g  c o r r e c t i o n s ,  b~t only to ~he 
extent ~ha~ the ~. n and p can be regarded as elemental, objects incapable 02 vir- 
t ~  b r e ~  up,  G l aube r  t h e o r y  i s  thus  all e s s e n t i a l l y  low e n e r g y  a p p r o x i m a t i o n ,  and  
~ s  nt~t s e e m  t o  p r o v i d e  m u c h  of a guide  a s  to what  one should  expec t  for  Regge  
c~a, 

But at l e a s t  one  can  s e e  h~at t he  cu ts  depend  on the s c a t t e r i n g  p a r t i c l e s  having  a 
t o m ,  s i te  s t ~ c ~ e ,  Just  ~s  t he  Regge  po le  e x c h a n g e  r e f l e c t s  the  c o m p o s i t n e s s  of 
~e  exchanged ~ r t i c l e .  H o w e v e r ,  it is one th ing  to  be conv inced  of th is ,  and qui te  
~n~h~r to tu~} it into ~ m o d e l  f o r  c~ lcu la t ing  cu t s ,  p a r t i c u l a r l y  in c i r c u m s t a n c e s  
where the c o m p o s i t e  s t r u c t u r e  of the  p a r t i c l e s  is  a good dea l  l e s s  obvious than it 
tslor the deuteron. See ref. [ lOe]. 

O b ¢ 

/ -,,, 
d 

~t:~e~e.n~ed by a sum of ladders plus twisted ladders when signature is taken into accotLnt, so 
giving r i se  ~u the twisted diagrams like (di. 

One ap.oroach has  been  ~o t ake  into accoun t  ~ e  Regge pole  n a t u r e  of the s c a t t e r -  
L~ I~art~cIes by d r a w i n g  a R e g g e c n  box [104 ,111]  a s  m fig. 27a. If t hese  po les  w e r e  
~imply , - epresen ted  by l a d d e r s  a.-. n £ig. 2~'b we should  have  only a p l ana r  d i a g r a m  
a.~d ~:o cvt. But if we r e m e m b e r  L.at the Regge  pole  has  a s ig~mt~re so that  the s -  
c~a,~el po les  should  be r e p r e s e n t e d  ~ fig. 27c i .e .  the sum of a r e d d e r  and a 
t~'isted a d d e r ,  then pa r t  of what  is r e p r e s e n t e d  b v iig. 2~a is fi~ 2~d which ¢~c.es 
save a cut. T h i s  it, ~leld ~ s o m e  au tho r s  [101 ,104]  'to just i fy the  r e p l a c e m e n t  of .he  

These d~:tgrams of c o u r s e  have  only A[ S cu ts ,  and the nuthor  has  b,~e~ ~nab~c t~~ 
u nders~:md how th i s  s tep  is j u s t ~ i e d .  I~ does ,  howe~er ,  as  we sha l l  see  ~n th< r,,~'~ ",~ 

FLg. 2~ 
repres~.r.ted by the particles which lie on them, i.e. particles a 1, a 2. a~ 

re" qpC" , ' e , y .  

4- ~ 4. -4-- ......... 

~ome of th~ terms revolved in fig. 27 (a) when the two direct c'!~annct Rcc :e~ ~.x . 
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wtth e ~ e r t r a ~ t ,  , -  

80 far ~ ~ , ~  ~ . c r | b ~  ~ b ~ k a ~ i ~  ~ ~ ¢ ~  ~ ~,e  J p l ~ e ~  but of c ~ , r ~  
tlu~y C',tn :~SO be. ~|~te~l~el|t~d tn the b , ~ ,  I l l | | ,  ff t l ~  a r e  tO shie ld  the Ortbov-. 
Pon~eraachuk fixed pole~ ~'e r ~ : u i r e  that' the brash pol~ shcafld be at the leadt~. 
,~,rong-signature mm~ea~e ~x)b~t (S&), J o }  for  I ~ ~o, t h e  t-ehann,e! thres~hold, l ,e ,  
~ ( l ~  ~ J,O' T~4S ~!r e ~ m p l e  for  t~e ~¢a t t e r | :~  ~f t~'t~ htent~c~d ~l~h,h~ a ~3avt~cle~ 

point is  at J ~ -1 ,  $o ~ mu~t ~ v e  

The conditlort (5.7) for t ~  i~nttcmt l:r~eetor|~ ~ tO ( s ~  (5.87)) 

which sat isf te~ (5.~8). W~th t m ~ u a l  m ~ s e ~  t ~  ~ t  s t ruc tu re  lit m o r e  complicated 
however (see refs ,  [I13~ I14~). 

In the t p lane  we have the inve r se  fm~cli.oa [o oc(D, ~mmely ~c(J) d o f t ~  m~ch 
that 

T _., fr'om (5.28) t c ( - l )  - 4m 2. As J i~ I n c ~  {rc~ln -.1, t c move~ along the 
elastic branch cut until the .first i~wia~(ic br~nch ~i~ i I (,~ay) {s r~ach~. A~ this 

~ e ~  ~ ~ the  t.mla~tic bI'a~ci~ p<~in,t onto the ~ y s l c a l  shee~, its 
wm'k (~ preventb~g the e las t ic  unitarikv ~ t t ~  (:I.61) from g~nera:tin~I an esserr. 
t ial  stn~,,~tarity being complete  | 112], and so  at(t) b~$ a b ranch  ~ i ~  at J I ,  where, 
tc(J I) t I. Th i s  meagre t~ ~hat the cut dlsco~,~inutty h(J,t) of ,(2,54) has the in.elastic 
branc.,~ point. If the ela~t~c un~tart.ty ~ i ~ . ~ a  i~ I~ hold ~ mu$~ van,i~h a8 t .... ~c e.~. 

2h ..... L' " #cE"~J 5 - 0 . (L.3]) 

I u v e r t i ~  th i s  ,- " 

which mean~ t ~ t  t he  ~.ut di~cow~h~ui~, m:u~ t~  m ~ a r  a ~  v,a::~h at t.he e~[:i poi~ 
of m t e g ~ t i o a  it, ~,~.~), He~ce ~ e  l e ~ d ~  a~ymp~otic t~e.havioar o,f the ¢~t term 
will be. (see sect~c~ 2 

Note ~hc!t th..'L.s r e ! ~ o n  depe~d~ o-u u~it,~r~y ~ the t - c ~ n n e !  whert, as the cu~  thcm ~ 
selves  .are genera ted  by uai~aritT in the ~-cha~r~e/l. The incorpora t ion  of $--ch~.~me" 
unit.~tby requires ~tk~b'.g ~!! the i t e ra~oas  of fi.g. 21 as ~own ie fig. ~ .  In f:~c~ 
such ~ s e r i e s  is  ~ s o  s t r i c t ly  ~ecessa.~, to ~tmL, mte .the Gr ibov- -Pomeranch~  ~.~ 
gular i ty  prx)perly, a.~l the p ~ e m  of c ~ c u l a ~ i ~  s~wh a ~ ,m ~s ~ s c r f b ~  in 
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~ho sum of iterated, crossed boxes which r ' e su i t s  when l - c h a n n e l  tm~l~-ity is api, d~¢,d 
to fig. 2,t. 

5A, 7"he R~z..e.eized abso,rptio~.t m ~ i e l  
Tb,, !~,ggeized absorption model  [104; 1 t6, 117] may bc ".~ed ~c~a-.my ma:~a~,c 

reaction invol- ing the exchange of quantmn numbers .  One uses  a Regge pole to 
e~ry the quantum n u m b e r s ,  but a lso includes  the modificat ions caused by elast ic  
~c~ttering in the  tniti,'d and f inal  s tates ,  as  in fig. 30. Since the e las t ic  ampi i -  
tNes are predominant ly  imag ina ry  the effect is to reduce  the contr ibutions of the 
lower i x~rtiai w a v e s ,  which co r r e sponds  physica l ly  to the absorpt ion of the in- 
coming or outgoing pa r t i c l e s  into channels  o ther  thm~ the one being considered.  
One mat  ~ course  use the e l a s t i c  sca t te r ing  amplitude,  if it is kmowa, direct ly,  
I~t ior our purposes  it is m o r e  i l luminat ing to r ep resen t  it ~,  ~ts Regge pole, the 
l~meranchon.  Fig .  30 then loo lm l ike  a two-Reggeon cut (albei~ an AFS one). 

x ~  b 4 

b ¢ 

I 

Fig. 3o. The abaorptive correction to a single Regge pole exc~m~,e, representing (a) finul 
,~te interactions or (b) initial state interactions. (e) gives the labels us-:d for the part;~:lc.~ 

in ¢5.37~, Pl t~ing the Regge pole, and P2 the Pomermuchon exchange amplitude 

In detail the hypothesis  is that one may vnqte fer  the ~-channel partial wavo 
:~raplitude for the p rocess  channel  a (par t ic les  1 + 2) -. c!'~,mel : il,a~i~:l~,s 3 , 4) 
m the ftcm of a matr ix  -~roOuct in the space of s-ch&nr - , ,  : helici ty stat,,~ 

j b ( s  ) aa ~ j b P  1 ..hi:, ' 
~4 : ( S ,  (s))  A (s;, t5 ~ (,,)):' 

~'here A~}bPl(s) is the par t ia l  ~ v e  project ion into U~e s-cha~mel of th,~, ~-channel 
~,~gge pole ca r ry ing  the quantum numbers ,  and S aa is the p a r t i ~  ~ v e  ,.-matri:,: 
[c~- cJastic sca t t e r ing  in the incoming ehannei ,  etc. g we put 

aa aaP2(s~ ¢5 35/ 
J 

2 / s  ~ is the k inemat ica l  factor ,  and .4~ ap2 i~ the p~rtia~ )~'ave 
exchange ~ p l i t u d e  (and use a s imi la r  exr~re~s~.on for ,'.;'~'~o ,~v~:, pr0ject~m of the 

~r~,, OXi~'=~.dmg ti~e square  roo ts  

The fb:,~ t e rm represents the Reg~3e pole ~xchange ,,vh~ ettTe ~.~<,:..:',~ ~:A ~t:ir'~ .~: 
~wOi~r~ele cuts  due to the excha.,~ge of the Regge pole with a Po::ner.mchon. From 
~y t;ne ~grst ~ e  f i r s t  of these  the full cut contr~buUon is (wr~in~ ~,~ q,~. h,-~i,:i!i 
e~pt~,,~,~ - s ~  fig. 30c) 



A cut, t) Hs {s, 

= ip (s) 16~ c., ... , 
J 

where 

If we p e r f o r m  the F .rtl~i wave, projevtio~ o~ t i~  pole u~pl, l t U ~  (droiR~:,~! the 
channel  l abe l s  for  s impl ic i ty)  we get 

Cut, #, t~ 

~ U 6  J 

l 
, : A P I -  . (ll, l 1) 

tilIll#tSi~6 

where ~" = ~S ~6 and ~I ~ a~ ~re the co~ o~ the sca~t~ ~ ~,w~ 
the init~,l and intermedl~le, ~md iatelmedl~iie Rn$ flnM suite1, re~yvmly "~'hlc~ 
there.fore ~tis~- the ~ t i o n  ~rem 

where  ~b I is  the azlmutl~_l ang le  between the d l r~ t :~oes  of motlo:n L~ the InRL~! 
~nt.ermed~tte states (fig, 31}. B-t [104] 

x-, 1}d J, ,~z } ~t ~ J 2 .'-=(~} 

where 

2 2 2 
¢1 " 2 '  2~;Sal~ 

~(A) is the  step ~nction, ,~nd ~ ~imu~,h~ ar~l.es Oi ~ti.~ 

- -  

F i g ,  3i. The a~gles b e t w ~  ~ e  '.meomi~ ~n~re  ~ mass momentum .qI2, t~e i n ~ r ~ h ~  
state momentum ~, ~ d  ~ final sLa~e m o m ~ u m  q34- This l~ te r  is :aken as t ~  ~:~ 
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i~a ~ ( -~  • ,~a2 

z z  2 o,. i a ½) (~ - z ~ ) ' }  (~ - z2) "~ 

,:z~. la ~) (t- ~:~)'{~ (t- .2 -!~ 

'~ ~"(1 a 2) ~' 
-ia)(l-a (5.42) 

S0 (5~39} s t m p i i t i e a  tO 

(-*, z 2) 

(5.43) 

~ i s  gtve~ ~at~ a c¢~mplete p r e a c r i p t i ~ n  for  the cut  ampl i tude  in t e r m s  of the  pole  
ampttt~rdea. 

T h c ~  axe  ~ e v e r a l  ~ y $  of m~'proxlmating {5.43) to give s i m p l e  ana ly t ic  e x p r e s -  
~i¢~a~ for the  cuta ,  F o r  large,  s and s m a l l  t we m a y  wr i t e  fox- e~:ch z in (5.43) 

z .~ I +Ii.t's , .z 1 .~ I ÷2tlX'S , z 2 ~ 1 + 2/2,/s (5.44) 

a,M if we e .xpreas  the Re-Kge pole  t e r m s  a s  ex 'ponent ia ls  in ! we can t~se the fact  

f dt I ~ d / 2 e  '°:i  = A e ~," - 
- A  , . , 9  

~ e r c  

2 . t ~ } + 2 ( t t  1 ~ t 2 + t l t 2 ) + 4 t t l t 2 / s  (5.4~) +t  1 +~ 

a~ 

22 Ib2 z¢ A ~ [ b  +b +Z~ ]~ . (5.47) 

T~ ILrz:~t o r d e r  in t / s  thi~ ~ v e s  
e ,h lb2 t/(b l+b2) 

The i~,tr~x' Ictlon of say  a f a c t o r  t: irxt~ the iategrand of {..5.45) ~$ equivalent to dif-  
leren~:~tlv~ it wRh r e s p e c t  to ,'_ -. and .~, o '*2xe ~ntegra] is ~-at the r i gh t -hand  s ide  ~ ~f 
{5A8} dLff:erentiated w i ~  r e s p e c t  .o .: So in geneca l  ii the  i n t e g r a n d  is writ't~:~, ;~.~ 
~potyacm~iat l a m e s  a n d  e ~ e n t ~  we ,have [ t t 9 ]  

3n ~m e6152-~,'¢?.~'t ',.~2) i 
f ar~ i ° d t  2 ,..,, - ~ n ~,,~ L . . . . .  , i .  " a n m  l l  t2  n m  o I + ')2 z 
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This ts  sufficiently ~ener l i  to  emtrmce 811 tho e ~ s s  likely to be of interest exce~ 
when there  ~s a pole very  eloae t o i -  O, l n p r a c t l e e  this applies only to the pion 
- for which see ref. [I04], 

To first order in t/s, ~b I + qb~ = °~$. The dominant terms in the sum over ~5~$ 
will be those for which there  is no heliciW flip in the ¢tasUc amplitude, i.e. #.~' ~/~., 
and so do not vanish in the forw~trd direction. It ~o k~.ep Just these terms the, cos|no 
tacto~ in (5,43) becomes ~ t ~ c o s ( ~ - ~ ' ) c a - -  

H for  example we eon~ider a non'-flip amp):,itude ~ ~ ~' ffi ti" = 0 and write the 
pole t e rms  in the  form ,~ 

l i  

(where we have absorbed all  the t dependence ,ff the resld-~ into an ex)onent~l 
times a polynomial in t, but It~e Ln©luded the phise of the signat,. <~ ,actor cxpti~ 
lily) and a slmgar term for A P~, and tree a llvemr : 9roxlmatlon lot the trajecto- 
ries 

i 

ai(O = oti{O) + air (s.si) 

we find 

cut i (. s ~i(0)*"=(0)- 1 
AHs(S,t) " ,~-~o G1G 2 k'~o! 

" ma " ac~ n,m .C I 

e c I c2 6~ I +c2) -½ i~(a; (0) +~2{0)) 
x Cl +c 2 e , (5.S~0 

wt~ere 

t 

~he large s dependence of ~ i s  expression is 

cutj [ (~,~o, ac(t) log , .~,Hs" ts, t) ~ " I (s.~) 

• :~ere ~e position of the cut is 

%( ) = al(0)+~(o)- I + __---~ t. Is.~) 
al+~Z 2 

The reader may readily convince himself that this co.-responds to (5.7) i.e. 

%(~)-- mx[az(t I) +%(t))- I], <5.5~) 

where tl, ~ R~d t Rre relRter" h 7 the solid Tie condition (5.46) in the limit ~ - % 
i.e, ,~(t, t l t2)  = 0 (see (5.8)) ,or 

and wh~_n the trajectories have the linear form (5.51). 
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If the s lopea of the traJeetoriell  are the s a m e  we get 

ac(t) = a 2 ( o )  - (5.58) 

~,.~ the .~iope oi the cut is  s p ' a l l e r  than that of the pole. Since for the Pome,-a,~('hoT~ 
• re have ~2(0) = I the cu~ is 

%(0 -- + (5.59) 

so the cut coincides  with the pole at t = O, and l ies  above if for t < O. Sia('e all  
other po~es have a(O) < 1 the dominant cut in any react ion will  a lways  be that gen-  
erated by the Pomeranchon together with the pole which c a r r i e s  the quantum nmn-  
hera. 

We also  notice f rom (5.52) that the asympto t ic  phase of the amplitude is  given by 
the product of the phases  of the poles  at t = 0. This  is in a g r e e m e n t  with the r e s u l t s  
~ t b e  R ~ n  ealeulml (fi.l@), In fact  s inee  A P ° l e ( - s ,  t) = ¢AP(s,  t) from the s igna-  
tare factor, it i s  c lea r  f r o m  (5.43) that  the s:;gnature of the cut is 

Jc  = '~1 '2 • (5.60) 

This also follows from (5.19). 
This r e su l t  for the phase  i s  to be con t ras t ed  with that of the AFS cuts (5.6), 

which a r i s e  if fig, $0 ill i n t e rp r e t ed  as  a un i t a r i ty  diagram.  We then get instead of 

ACUt ab(t ) = Repaa(s) [Aaa P2(s) ] ab Ira j j .Aj Pl(s) . (5.61) 

Since the elastic amplitude is almost pure imaginary for t ~ 0 the complex conju- 
gat~oa h~ (5. ["~ c~anges ~ e  sign of the i m a g i p ~ '  pa~t of the a~pl i tude  relatix-e to 
{5,36}. This  ~iga is c l e a r l y  of great  impor tance  if we ~re obtain a dest ruct ive  in- 
terference between pelp. and cut to produce dips. The: sign (5.36) is supported by 
the Reggeoa d iagram technique.  

tf the e l a s t i c  a m p l i ~ d e  is  approximated by, the Pomer~_achoa with ~'((J~ -: i ~,.-e 
may write 

AP2"e t) iSoe~° t  ('~s----') ec2t 
H ~ '  = \So~ , (5.62) 

The:re we have used the opt ica l  theorem (2.8) to re la te  the imagh~ar7 par  +- of the 
~mplil~de to the total  c r o s s  section.  T h i s  ~ v e s ,  from (5.52), 

:~H'cut"s' t)= 16---~ -G1~t°: C_)al(0) ~ s  an--1 ~n,_~ ['clc2t/e(Cl+CP')L ci+-~2 ] e-~l~l" ~1(0 ) (5.63) 
"o n ~c 1 

This !s a ve~y, con.ven!ea~ ~ ! y ~ c  apprcJx3_mation for many purposes .  
Of rou r se  (5.43) g ives  us  the cut ampl i tude  direct ly,  tf we w~nt to know the cu: 

disccati~m~ty we can ~Tite  the Sommer~eld-W~*son t r ans fo rm (leaving out v ar~::~u~: 
factors - compare (2.54)) a s  

cut ,  ~c AtI {.s, t) = 16~ f dJ,kH(J,t)(-S/So )J (5 .64)  
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and putti~g 

in (5.43) we get 

- ~ ' : ' 1  d~l ,rf 
"i 

A P°le~ . . ,  ~') = G(t) (s/'s o 

vl(tl)os(t2} 

(S,6S) 

~(A) cos(u~l+~,¢2÷U.cp3)5(j.al(t).a2(t) ) . (5,66) 

Note th; ,~ in gen ,ral this discontinuity does not satisfy the t-channel unitarity con- 
dition (5.32). . "~ 

Although the absorption moddl has produced fo r  us a cut which has the pha ,e  
and position which we anticipated from the Re[~g~n calculus, the diagram f ~ ,  $0' 
from which we s tar ted is definitely planar,  and so the model only makes sense if 
we r emember  that the sides of fig, $0 a re  supposed to correspond to ~:he twisted 
propaga~.ors of fig. 27. The Reggeons in the direct  channel will presumably c a r ~  
other ,~articles besides the intermediate s tate 5 + 6 (as in fig. 28). In principal one 
should try a l ~  iaclude these  by adding the corresponding d i ag rams  individually, 
but a commonly employed apprcr"mation [104,116] is simply to multiply the right- 
hand side of (5.43) ~,  some number k > 1 to r ep resen t  the addition of these other 
g~.~::these other d i ag rams  have higher thresholds and it would seem that 
8 ~ ¢ ] ~ : ~  be an increas ing  function of s. If it were,  however,  this additional 
d e p ~ n ~  :~. would a l ter  the cut position (5.55). And indee¢. ~ e r e  is no reason to ex- 
pect the s u n  (5.26) to converge [I08]. 

There a r e  also other worr ies ,  such ;is the fact that ~e have to take the com- 
plete fig. 30, not just the par t  correspoI~ding to the twisted propagator  fig. 27d. 
Also since the Regge pole t e rm by itself has an i m a g i n ~  p~rt  it must alrea~- ia- 
clude some absorption (in the sense of an optical potential, see ref.  [111]). Thus 
although the absorptive prescr ipt ion has the mer i t s  of precis io~ a~d simplicity, 
with a phys ica l - seemir~  interpretat ion in t e ~ s  of Glauber resca t te r lng:  as  well 
as  giving cuts of the expected position and phase,  there does not seem to be any 
compelling reason to accept it a s  giving a rel iable  quantitative es t imate  of the 
magnitude of a cut. 

It also s u p e r s  from the d i s ~ " a n t a g e  of being suitable only for inelastic pr~.- 
ceases ,  and gives only a two l ~ o n  cut. The eikonal model of the next section 
suggests ~t way of o v e r c o m ~  both these res t r ic t ions ,  however. 

5,5. The cikonat mode! 
This model [111] makes use of the semi -c las s i ca l  impact pa rame te r  technique 

which is appropriate ~ r  elast ic  scattering p rocesses  at high energies  when large 
numbers of par t ia l  v,~aves a,  ~. involved. 

The s -channel  part~ai ~ave se r ies  

~O 

AHs(~ , t )=  16~r ~z~ ( 2 J + l ) A I , j ( s ) d J  (z } ',~o8~ 
J= M U: ~ 

may be approximated at high energies  and smal l  angles (s >> t) and large J ~" 
mak.~ng the replacement (see ref .  [121]) 
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4 J ( e )  =: ( 5 . 6 8 )  

Micro ~: , {i~- ~,~' ! and J;~i is  a Bgsse l  function Since cos~i ~ 1 ,, t,'2a2 we can :m~ 
, ~ : K ,  t' . 

~ ~ V~,q,~)~. V4e introduce t3~e impact  p a r a m e t e r  b by U]e expressioD 

J qs b - ½  • (5.69) 

Classically thi~ cor responde  to the c lo senes s  of approach of a par t ic le  wiih angular  
momenta J to the t a rge t  c e n t r e  (see fig. 32). If we then make the replacement  

E = f q'3db (5.70) 
J o 

(E 6"i') becomes 

O0 

Aus(s,t) = f 
O 

qs db 2q s bAHj (S )J t : (b  /-:-~) . (5.71) 

q~ 

Fig. 32. The impact  paramete~ ,"., at which a )a r t i c le ,  momentum qs, passes  thrcmgh Ihe 
t a rge t .  

Thea wc can w~tite the p a r t i ~  wave ampl i tudes  in ter,..,s oi the phase shift 5ji.~) 

2i s ds) 
e - I  = ............... ( 5 ~ , .  ,,:. AH, (s) :~,U,~ 

and define the eikonal phase  ) ,  i.e. the pha" e shift  for s c a t t e r i ~ i  ~.t a given impact  
parameter, by 

x(s, b 2) : 25qsb_½(s) • (5.73) 

Physi,~lly th is  means  that  we a re  supposing that  each par t  of the incident pa r t i c ! , , ' s  
wave front pas~es  s t r~g ,h t  t ic ough the s ca t t e r i ng  potential  at i ts  i-upact parame:  er ,  
ard is a l t e red  only in phase ,  uot direct ion.  Th i s  is  why the r c su i t  is only val id  :~r  
large energ ies  near  the forwazd direct ion.  

Combining (5.~/1), (5.72) an i (5F/3) we get 

.,/'s J b d b [ i -  olXCs'b2)] jp(b  (L :  . . . .  "~' AHs(S , t )  = i8~ ,s  tb. ;~! 
0 

Note that th :s  i s  not the s a m e  .~s a F o u r i e r - 8 e s s e i  t r ans fo rm since X is not ,the 
exact eikonaI phase but iz give q by (5.73). F ina l ly  we expand the exponential ia 
(5,74) in powers  of X and get  

- -  ~ [- ~ X 2 ×3 (~ ,:)n ~ __._ 

i. " . . . .  

A_s t)=S~qs'~S f ~db X +  2 3' - i  . . . . . .  "i ,i ,:~ i5 ' i  n!  j ! J  " ' 

0 
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The crucia l  step in connecting this with Regge theory is then to identity the 
Regge i=.ole exchange amplitude with the~i r s t  t e r m  of (5,75), i.e. 

OO 

A~_Is(S, t) ,~ 8wqs,.:s ,f bdb X(s,b2)J'~(b ~ ~ t) 
0 

The Fourier-Be.~sel inverse of this gives us th( e~onM phase 

tu,~6) 

x(s  b - i ' 

so X is determined by the Regge pole paxameters .  
The two part icle  exchange cut is then given by the second t e r m  of (5.75) i.e. 

~UD 

"a//s--Cvt(2)~s' O" = i47rqs~:-sSj'o bdb×2(s'b2)J~'(b~'~')'  (5.'t~) 

which when we substitute (5.77) for X becomes ( remembering the helicity mm~m~- 
~ ion ,  see (5.39)) 

0 0 oo cuS~ ,4, i ( ,--~. 
A "~(s,t}= E ½dr 1 f ½dr., f bdbJi~.~ . , , - t l )  
~ 16"qsV'$ p. - . o  -~ "~ o i I (b 

Usually fa r  elastic scat ter ing we are  interested mainly in non-flip amplitudes, 
since the~'e do not vanish in the forward direction, and we c,'m use the equivalent 
result to i5.40), viz. [104] 

2 .f bdbJo(b ~ t l ) Jo (b  v'- t2)Jo(b v~-:-it) :-~ ~ , (5.~) 
o ~a 

where 8 is defined in (5.8), so we end up with 

A (2)(s, t )  = ' ~  , dt I f dt2AP (s, t l) A (s, t2~ 0(5)~ (5.81) 
32~ q s ~' s -oo s 5½ " 

This is identical with ~he absorptive preacr ipt ton (5.43) in the l imit  15.44), s - -~  
and ,ct = ~' = t~" = 0. 

What is more  (5.75) tel ls  us  how to calculate the cut s temming from the e~,:- 
change of any number of pules. For instance for 3 poles we have 

~:t(3l(s ' 8~rqs~:s ~ ×3j~(b 
A n = -  3t f bdb ., ."E'~) , (5.8Z) 

o 

which substituting (5.81) for the ×2 part and (5.77) for ×, and u~i~ (5.60) agah~, . 
gives 

t(s)(s,0 o o  ut(2)(s, A~a =2i 1 f dt I f dt 2 ~ A tl)A s , t2 )  (5.83) 



RE .,GE FH~ CR k" b ND PAR F,IuLE PHYSICS ~ 77 

h~d this p roce s s  can obviously be repeated  for  a~\v number of poles.  Thus ,~ we 
approxm~ate tiae s ingle pole ampli tude by 

" O *  a 

with c given by (5.53) we get  for  the n - p a r t i c l e  cut 

' ( s e -~ i~ ) ,  a(o) 
t 

' , . , .  
_., !71! ' [Sws a ' ] g  e - -~ i~e( ' )  

n,i~ o . . . .  

where the p o r t i o n  of the cut i s  

c( ~' 
,~ t ) - -ha(O)  + t - n + l .  

(5.84. 

(5.s2) 

F~r the dominant  Pomeranchon  we have 

~ (  ~' 
t ) = l *  n (5.83) 

so all the P-exchange  b r a n c h  points coa lesce  at t = 0, and the cut slopes get 
smaller as  n is increased.  And using ~5.62) we get 

~cut(~:)(s, i s ~tet [_cto~n" 1 ~(c/n), ~ 
,~ - t ) .  n , !  ' -~- , - .c  (5.84~ 

so the sign of the var ious  c~ts  ,alternates. 
It is in teres t ing  to e s t ima te  the s ize of these  cuts re la t ive  to the p ~oie. For  

exanlpte in NN elas t ic  sc~t tez ing  we can take c~tGt =~ 40 nab and c ::: ~ c.~V-? ~ n;:,- 
ehi:~n energ ies ,  s~ the ra',to is 

A P : A  cut(2) = 5"1  at t = 0  

and the 3 -pa r t i c l e  cut is  only about 0.5% of the pole. Hence at t = 0 we can expect  
the pole to dominate.  But ~ e  different  t dependences  of the var ious  te. ms  means  
that the raagrdtude cf the cut is  comparable  to t~,~I of the pale  at  t ~ -0.65 GeV 2 [118]. 

If we combine the absorp t ive  idea for quantum number ~:xchange, with this  
etkonal method for mtt]ki-P~)meranchon exchange we can ca lcu la te  the cuts  due to 
the exchange of any number  of poles whether  identical  or not. Note that there  a r e  
two cut t e r m s  ~n (5 36) i .e.  f igs .  30a and 30b, and one must  add al l  the poss ib le  
p e r m u t : ~  Of ~ e  P'~_ ~nd the other Regge poles  to get cons i s ten t  resu l t s .  

Utffcrtunately the justffic~,;:ion for the eikonal  meflmd is no c ! ea r e r  than it is fo~- 
the absorption method, however .  In potent ia l  sca t t e r ing  the ehkonal phase is  given 
by inser t ing  the Born  approximat ion  for  the  pole in (5.77) [ 111]. Thus the eikonM 
method r e s t s  on the ident i f ica t ion of the Regge pole ampl i tude with a r e l a t i v i s t i c  
Born-approxtraation. It ha s  been demons t r a t ed  [122] (at l e a s t  to some approx ima-  
tion) ;~e the eikonM exparm~.on (o r re sponds ,  in a f i e ld - theore t i c  sense,  to the 
iadde~ sum of d i ag r ams  wi th  a~d without c r o s s e d  rungs ,  as  h~ fig. 33, where  the 
r~mgs ~epre~ent the Born  approximudon.  Thus  par t  of each contr ibut ion would 
seem, ~ come from u n c r o s s e d  d i ag rams  whici~ do not cont r ibute  to the cuts,  and 
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Fig. 33. The sequence o[ crossed and uncr,~ssed ".'eynman graphs which art, sumn~ed t~ ~hc 
" ,~rdlatt to re/, [ 12:~.1 eikonal approximati, m o 

should p re sumab ly  be conta ined instead in the Regge poles.  The  val idi ty of the 
identif icat ion of the Regge pole  with the Born  approximat ion  fllus s e e m s  doubt ~.A. 

5.6. General/*roperties of  Regge aas  
Even if we era not have complete confidence in the models of the previous sec- 

tions, they do permit us to draw some reasonably fi~'m conclusions about the na- 
ture of Regge cuts:  

a) Position. The posi t ion of the branch  poin': due to the exchange of n Reggeons 
ai(t) i - 1 . . . n  is  at 

Ot~/Z)(t) = rl3aX I ~ '  ~','~t~)" '~ '1  I • (~,8~ 
• ! = I  

where the t i  axe re lated by the addit ion theorem genera l izat ion o i  (5.57) 

n 
, / -  t i = ,r~-F. (5.8@ 

i = 1  

~ t h e  trajectories are identical th~s becomes 

~:(t) = n a(t/n) - n + 1 , {5 8":} 

while ff they a r e  l inear  

n 
o, ( t )  = ,~etv ~'" '-n.  1 + C--  H 

b) Pkase. The signature of the cut is the product of the signatures of the poles 
(see (5.60)) 

n 

i:1 

~d if all the poles axe identical ~he asymptotic log ~ --. ~ phase is e "½i~'t a~(i~ 
c) General form. T h e r e  is  :t logar i thmic  h c t o r  [ieg(s/sc~] "n+l for  each polc so 

that the cont r iba t tons  of the  ~ e r  o rde r  :u ts  van i sh  re la t ive  to those  of the lower 
-,~-,~=, ~,y ~ , =  ~ , ~ r  c~ log s however this factor must be ,~Tong for n -: .~ be- 
cause it violates t-channel uni}~.rlt~ (see (S.33)), but the required correcLioa 5 is 
not ka.ovn~. 

F~om th i s  we can deduce a g~n~r21 e x p r e s s i o n  for a cut cont r ibut ion  f rom n 
identical trajectories 

ACUt(n~. Hs "(s,t) = ~#u,(Zs) F(t)(~/So)aC(t) e-½iTrac(t)[log(S/So ) +d] "n+l , (5°90) 

where F(t) is  an  a r b ! t r : u y  t~mc~on f ree  of k inemat ica l  s i ngu l a r i t i e s ,  d is a cop- 
start, mud acn(t) is give,: by (5.87). 
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The mixed ei!~onal /absorpt ive p , e s c r i p t i o n  gives a specif ic  model for F(t) and d 
in terms of the pole p a r a m e t e r s  which may or may not be sa t i s fac tory .  

d) ~. ~.~ad~n~sa~:~on. We h~.ve found t lat the Pomeranchon  with cdO) = 1 genera tes  an 
ttdinite sequence of Regge cu ts  wh i r l  condense on a(0) at ~ :: 0. , !uular lv  if we ex- 
c.h2~,~,c some pe'oe a'l,,t) tot~: thor  wi*~' any number  of Pomeranchons  nil the :,ut~. ,, will  
arrf~'e at hi(O) at t - O. T h e a e  cuts  #i l l  dominate  over  o thers  due to the exchange 
of t ~  or m o ~  1o #er-lyi~v~ t ra jec tor tes~  " 

Vie ~;.oted in chapter  3 tha t  the theorem on ~he rea l i ty  of the t r a j ec to ry  function 
below threshold  b r e w s  down v'hen Regge s ingu la r i t i e s  coll ide,  and it is possib' .e 
that all t rajectories,  a r e  complex  for  t < 0 b,~cause of these cuts .  But although th i s  
l~msibiiity has  e l ic i ted some  comment in the l i t e r a tu re  [123,124] there is  no evi-. 
donee to support  it. Regge f i t s  with a(t) re~l  seem to be sa t i s f ac to ry  though of 
c0urse there is no really crucial test. 

Gribov [I{}0, 12~J,] has pointed out further d~..iculties which arise from applying 
the diagr~ tee2mique to Pomeranchor~s. Wheu Reggeon loops are calculated diver-. 
genees occur ~-~ch require renormal~ation, but th.~s is hard to achieve consist- 
ently for Pomerm~chons. So though the diagram technique gives useful insights k 
can not be L'tken too l i t e r a l l y .  

e) Ch~ts and a~ps. An impor tan t  p roper ty  of the cuts is  th,~t t he i r  fall with ia-  
c ~ t n g  It I i s  a lower than i t  i s  for  he poles  so that if a s ing le  pole behaves l ike 
e ct, the exchange cut f rom n such p r , e s  beha:~'e l ike etc/njr. When this  fact  is  
combin~ with the a l t e rna t ing  s ign f rom muU ~:ple P exchange (5.84) we see that  
though the poles  domin2~.~e at t = 0 the 2-part i~ ' le  cut is l ike ly  to be s trong enough to 
cancel the pole t e r m  at some  l a r ~ e r  l t ! .  Sin= f iar ly  the 3 -pa r t i c l e  cut will : n t e r f e re  
with these at stall l a r g e r  I t l -  The a m p : ; ~ d e s  we cony;flex, however,  and the Juter-. 
fe.~nce wfi! res~ttt in dips r a t h e r  tha~ :, vros ,  ":nd ever these  dips may be v.rashed-- 
out at very l a rge  !t t [I16].  

Wc l~ve  vlreach" noted that  there  can be dipz duc. ~o the nonsense  factors  ir~ q ~  
Regge pole ampl i tudes  provided there  a r e  no wr~.~r%-signature fixed poles in the 
resich,es. But ~:here is now the poss ibi l i ty  of an a l ternat ive  :nechan~sm ~n wh~, ~'~ ~ '  
poles do not have ze ros ,  but the ~unpl~tudes have dips due to pole-cut  i n t e r f e r e n c e  
In fact it has  be~n shown [ i ~ ,  116] that if the enhancement  fac tor  X (see sect ion 4) 
is allowed to be ~ 2 many  ~ the observed dips  can be expla ined in this  ~ y .  Since 
the i u t ~ r ~  (5.8i} is  heav i ly  we~ h ted  towards  t i ,  t 2 = 0 the s t rength  o£ the cuts.  
and hence the n e a r n e s s  of ~ s  dip, will  depend great ly  on whether  or ,~ot the pete 
terms have zeros .  If in a g iven  s -channel  amp!it,~de the pole t e r m s  hav~ no ze ros  
except for the  Idnemat ica l  one needed in the forward  di~'ection (~(I  - ~s)~ ] P"~ :  ~) 
then the dips ~ , e  found to occur  sys temat ica l / ) ,  at t ~ -0..2, -0.6 and - [.2 GeV 2 for  
amplitudes with I ;~';~' i = 0, 1 and 2 r e spec t ive ly  i t !6 ] .  The one at t = -0.6 is  obvi- 
0uAy m the r ight  .~tace to explain the dip ~n ~ ' p  -' v, ch~., ,e.g. and we shall  see in 
chapter 7 that  the o the r s  a r e  a lso  just  where  they are  needed for  some proces. ,eu.  
So fLxiag the ~rb i t ra ry  p a r a m e t e r  ), puts s eve ra l  different  dips in about t~he right 
place, though the fact that  i t  has  ~v be so : a rgo  is ra ther  wc.r~.~ying. 

Since both thc f ~ e d  po les  ax~ the cuts  come from the th i rd  double spec~va] 
function, both the n o n s e n s e - z e r o  and the po le -cu t  in :v r fe rence  explanations a r e  
equ~ly co.,mistent f rom a theore t i ca l  standpoint .  2~-~e f o r m e r  r equ i res  sma]] (or 
no) ~'Lxed poles  and sma t i  cu ts  while the l a t t e r  r equwes  strong; fLxed poles (so 
s~om~ that not even a s [zeab le  dip is  seen  Ln the pole te rm)  m~d strong cuts.  Both 
points of view have t h e i r  Drotagotdsts  - s o m e t i m e s  known as  the Argonne [126-12~] 
and h,'!i~ higan [104, i16] schools  ( respechxe~y)  - and we ~ha I ..-,~ to review some of 
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the e x p e r i m e n t a l  evidence !in cJ~s@ter "L At t im m o m e n t  ne i ther  viewi~oint seem~ to 
have overwhelming meri t ,  and it  nmy well be tha t  (all SO often) the. t ruth l ies some, 
where fin between, i,e. the poles have some wrong-s~nature zeros, and tl,e cuts 
are  of limportunce in generating some dips, and especial ly in f i l l ing in unwanted 
dips. 
~ Co~spiracies. Another important as~,ct o'~ a cut is tl~t '~ t~ ~m essent~!y s~ 

channel phenomenot~, that is to say R deper~ds on un i t a r i ty  in  ,~-channel ampl i t t~L  
This phm, the absence o / a  .factorimtUon requ i remen t  means that the onlyktnenutt t~ 

factors requi red  are  those essent ial  to angular  motnentmn conservation i .e ,  

• t )  ~ - (1- ss) - 1 .  
t 

So if we take such a cut contribution and apply, t l~ crossing r e l a to r .  (iaverse to 
(2.11)) to r e - exp res s  it in t e r m s  of b-channel hel lc l ty  ampli tudes we shall find t~_ 
the various conspiracy re la t ions  are  satisfied automatical ly,  s inee :a  out 'Is of ,~::: 
mixed t-char~tel pari ty in general .  Cuts can thus provide a natural  explzmttion of ~ 
those cases '~nere eo~mplrLng poles have been t r i ed  but found v-anting. Thus for the 
problem conc,~rnlr4: ~he pion in " ~ -  #+n and p n - .  np mentioned in section (4.3), the 
~r-P cut, which c~r:.'ahns par t s  of both even and odd pari ty and remains  finite at 
t = O, ~an p~o~ide ~t ready solution. Since ~ cut, ha~ the marne asymptotic behav- 
iour as the plon l~ l e  (apart f rom log s factors) a f i t  J u t  as  gm~d a s  with ~ + con- :~: 
splra tor  can be made [116]. It is  found that very  large cuts, with ~t ~ 3.55 are  
needt.~i, however. If conspiracies  between poles a re  ~wgarded as  implausible this 

p~ces  to try and determine the magmtude of cut effects. 

So fa r  our discussion has concentrated on moving Regge cuts, but there may al- 
so be fixed cuts, and these deserve a brief mention. 

We have already noted a kinematical source ior o~e type of fixed cut in section 
(2.9). It is found tt.at squ~re root branch points occur in each helicity ~mplitude at 
file sense-nonsense points, and so there are fixed br~mch cuts running along, the 
rea2 J axis f rom cr T - 1 to -~T where ~T ~ m~x{cr t + J~, ~ + ~4 }. Since the d.d., 
have complementary  branch-points, these cuts do not contribute to the a ~ o t ~  
behmviour of the amplitude. They could ho~,ever pern~it the existence of fixed poles: 
at nonsense points with J < ~T" I, There is no evidence that they do, but most of 
the processes which are studied have spins which are too low for o~ r - 2 t~ ~ a 
sense-nonsense point. There has been some discussion [ I~9i of the possibility ~.~t 
if one considers  high spin intermediate states., say part ic les  5 +6 with the 5 +6 
threshold below tha t  ,for 1 ÷ 2 -~ 1 + 2, then such poles  can e,'~st at nonsense points 
with J < 05 + a6"  I. But in fact  extended unl tar i ty ,  which allows one to write a 
unltari ty l lke equation for  the dlscontuinity ac ros s  the 1 + 2 threshold  branch poi:~t 
separately,  ru les  this out [ 130]. 

..~... ~ . , ~  - ~ . ~  ~p~ ~z F~-d ~ h~ s been suggested by CRrlitz 
a~id Kislinger [131] m order to remove the embarasbL~ent caused by the Mac- 
Dowell symmetry fox' ferm~ons, which we discuss~ in s ,,ctlons (3.3) and (4.3). 
They s~ggest ttmt the scattering amplitude should ha~e a flxea cut at J = as, where 
a o is the interce.]t of the ermmn trajectory at t 0. R can then be arranged tb.~i 
*he negative pat. rity trajectory moves behind this cut on an -.--.p.hys~.eR! ~ J-plane sheet 
for positive qt, so that there are no physical particles on the trajectory. 

Speci~cally, for the nucleon t~ectory in ~N -- ~N they write 
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~ a , ~  ~rt + V ( J "  ~o ,  "~2 ..... 1 . . . . .  (5.92) 
- j_ o.Q; i . . . .  , 

~ r e  as us,ml V = • {or natura~/tmnatural parity.  ~Itef. [131] uses u for t ,vlAch is 
~oZe tap,~)r<,priate for backward scatterh~.g.) This  ex~pressioa has ,~ po~e at 
J ,  eo÷a't ~ , a : f t x ~ t  square  ~ branch point at  J = a o, The constraint  (4.4'/) is 
sa,,~led ~aonW~ructlor,, However the pole in the 7/= - amplitude moves through 
the Cut onto ~ ~slcal sheet ~ ¢t increases through zero, so there are no 
polts for posRive q't. ~ (5,92) is substituted in the Sommerfeld-Watscn transform 
WeU ~t 

+ dJ'(~ + I) Tin~'(~')  (j. no. a,t)(a o. jo)½ ' 

where the contour of integrat ion is round the cut branch point, ~tnd a(t) = a o ÷ ~'t. 
This sort of e x p r e u i o n  has been used to IR backward ~rN scat ter ing with the Na 
~ { }  poles [ t31] ,  The r e s e t s  are  reasonably satisfactory in that some spurious 
~ angle ~ i ~  p ~ c e d  by the exchange poles  alpine (see chapter  '/) are removed, 
lmt an unreasonably large nucleon residue is needed because the cut discontinu*ty 
is too large near  t = 0. This  is  not really surpr is ing because the ~dinite type sin- 
gularity ( J -  ao)"~ is in confl ict  with par t ia l -wave unitarity, but giving the cut a non- 
aiagular discontinuity ruins the fit. 

CHAPTER 6 
DUALITY 

6,1. Hz~h and ~.ow energies 
In chapter 2 we. showed that the Sommerfeld-Wats~ .n t ransform provides an ex- 

act representation of the scattering arnp!itude for all s and t in terms of/-channel 
J-plRne singul~tritles. The main use which we have made of it, however, is in high 
ener~, approximations when only the leading poles and cuts are needed If we wish 
to go to lower energies we must expect more fez ins to become relevant. 

At low en~rgles it is often more convenient tc represent the scattering .~.mpli- 
rude by its partial waves in the direct- (s-) chan.ael, i.e. 

AHs(S,t ) = 16~ ~ (2Js. ! )AHJs(S)d~ , (Zs) .  (6.t) 
Js= M 

The advantage :ies in the fact that at low energies  only a ;ew partial  ",~'aves wfl] bc 
a0a-zcro, and it is often quite a reasonable approximation to represent  each part~_a] 
~ve  as a sum o f ,  esonance poles 

x-~ gr  ('¢) (6.2) 
AH J (:~ = L.J--- S 7P S . f - S  ' 
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where s r  is  the (complex) r e ~ r ,  oe position. The paxUal-wave s e r i e s  only eon.,~,, 
verges In ~t region round the s-clmnnel physical  r e ,  ton (the Lehman .ellipse) of 
Course, 

Since both (6.1) and (2.54) a re  exact representa t ions  of the amplitude it is natu- 
ral t.o wish to t ry  and understand the' relat ionship between r oproximations like ~6,~) 
and the Regge repr  =sentation. Thts is  parti~.ularly important in the tuterntcd~ate 
enerllY regton-(~ ~.1,5-3OeV) where tbe known resmmnces  seem to I~e dyin~ out ~.~ 
the amplitude ha~ not yet  set t led doom to.-:l~ ~ smooth ,a~tmptotlc behavtonr, ;- 

The f i r s t  point: to note is  tha t  t -channel  ~tegge poles and cuts do not contain ~ 
poles !~ s. This  means that a f ini te  number ot the,~, can never  give r i se  to an s- 
clmrmel resonance,  so e i ther  an infinite number t,'~ needed or  the resonances are, k 
-,,- background L~tegral. On the other hand the • -,.onance poles l ie  on unphysicaI 
sheets (except for  bound states) and one does not know how to continue the Regge 
pole t e rms  (defined on the physical  sheet) to the resonance position. The Regge 
poles ~nd cuts do not tndivid. .~ly co,train the s-channel  threshold behaviour either, 
so ~galn, s ince the representaUon (:1.54) must  c~mt~ln this b e b a ~ o ~ ,  there mm~ 
either be ~ infinite n-tuber of them, or  it must  stem from the backTround inte- 
gral,  h~wever ~ar back one may push the integration contour. 

Where an s-channel pole will appear in the t-channel J-plan~ depends on the be- 
haviour of i ts  residue g(s). If g is rea l  and constant as  s -* ~o then the 1is behav- 
ioUr of (6.1) ~ give r ise  to a fixed J - ~  pole at J = -1,  On tb,~. other hand ft. 
g(s) decreases exponenlt;~ll~ wPJI s the resonance  ~ never aplp~a'r In the J ' - p ~  
however fa r  back we pus.: the integration contour,  but will ~w~tys ~e part  o~ the 
background integral.  If there  axe many poles there  may be ~t mutual car, cella~on 

"~ .c.~ e - -,.o 

/ 1 \ ?  t, ' ! 

Fig.  34. The differential  c r o s s  s ec t i on  for  backward ~ -p  -~ ~--p sc~ik~.~intt, u h u w ~  B Lhc ~Ler- 
ference ~)~ttern and its interpretat ion in refs .  ~5~t ,~ ~8] in te~ms  of r e s o n ~ t c e s  in~erferm~, wRh 

a smooth  Regge exchsnge  backgrou~d. 
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b~tweea them t~o t h a t  e v e n  with constant g*s the asvmpfotic 0ehaviour  is ; a s te r  than 
1/s, bm if the s-charmel  po les  a r e  eve r  to give :i ~e t, ~ the asy.,..aptotic behaviour of 
a t-¢ham~el Regge pole aa irdini te number  w~I1 :Je nued~d. 

ii ~= thus n¢)t F.osstble to give a s imple  a p r io r i  answec ne questior, of how to 
0 ~  with the in te rmedia . e  enerbD,' range, because  we de ~ot know how to tone,hue 
the Re~:i~e pole and cut t e r m s  doxvn t~.,. low ene rg i e s ,  o~- the resomance pole t e rms  to 
Mlher e~ergte~. The a n s w e r  depends ca the dy:,.amics of the pa r t i cu la r  ampli tude.  

One suggest ion is that orle can simply add the  leading t r a j e c t o r i e s  and the r e s o -  
n a t e  poles [57, 58], so that 

. R e . e .  . Res. 
A H ( s , t  ) : , , i t#  ~ i s , t )  +.,i H ( s , t )  , (6.3) 
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t --: 0; f r o m  re~. [~33J  
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i.e. the Regge poles give a smooth background to the r u o n a n c e s ,  and the reso- 
r,~nces are  par t  of the L~ckground integral below the leading poles. The Regge and 
resonance amplitudes are  both complex of course,  and the resul t ing interference 
p~ttern,~ a .bumpy resonance s t r u c t u ~ : s ~ r i m p o m e d  on the R e g p  asympt~tlc ~ . .  
harlot:r, was usedbtr Larger and Cllae [$'/;:58] to identify rebo~ces,  for exa~t  
by !,o.~h~g a t  backward ~N data (see fig. 34). 

~Io ~ever this  ' in terference model', was c r l t l ¢ t ~ d  in a now c lass ic  paper by 
Dole, ~, IIorn and Schmid [133] on the grounds that the resonances may already be 
inctuded in the Regge terms,  at least  to some extent, so that double counting may 
occur, Ia par t icu lar  they found that in # 'p  ~ lr°n ff they added the known reso- 
nances to the p t rajectory obtained from a high energy fit the resul t  was much 
larger  than the amplitude (fig. 35). 

This in i tse l f  is not conclusive, however. F i r s t ly  it is not difficult to thLlk ~: 
different parameter lzat lons  of the Regge pole termS, such as [ ( s -  st)/Soil(t) ire 
s t e a d  of (s/so)a(t)  for example, which greatly reduce the magnitude of the l~gge 
term at low energy (near the arbitraxT point st) without al ter ing the asymptotic be 
haviour. Tae branch point at s = s t would be spurious of course, but then so is the 
one at s = 0 in the usual Regge term - it comes from the approximation (4.25) a~l 
is inconsistent~with the Rnalyticitv of the amplitude. " 

Secondly the size of the resonance contribution is ambiguous. The usual method 
of idemifying a resonance in partial-wave analysis is to make an Argm~d diagram 
~ ~ ~ o f  ~e.~amplitude varying with energy..~tn inelastic Brelt-Wigner 

r x,~s r 
,¢~r(s) = , (S.4) 

" "~r" s - i r / ' s  r 

(where F is the width and x the elasticity} ~'ould produce an anticlock-wise loop in 
this Argand diagram, as in fig. 3(;. :rod so the resonance parameters may be es- 
tablished by trying to fit the loop with such a I ~t~eit-Wigner for:.,aia [134]. The pa- 
rameters are chosen so as to saturate the am~lltvde at the resonance point, but 
the contribution of an inelastic resonance can ~e made much smaller by giving its 
residue a phase el~. (ReRbty of the residues is required only for elastic reso- 
nances without background [135].) Low enert~y , fairly elastic, resonances "~aally 
produce bumps in the amplitude, and their identification is not in doubt, but ia thv 

0 ~ -  A 

Fig. 36. Showing the behavto.,r of the par t ia l -wave Argand di tgran, when an inelastic : . . ~ o -  

nance occurs .  Fo r  a r,'mge of ene rg ies  near the reso~m~ce e..,er~, ~'R the  curve  f o l l o ~  :he 
circle ¢ue to the Breit-Wi~er ter.~u, but this ~ircle is smaller tha~ the tu~.itarity circie be- 
cause c ~ the inelssticRy, m,d it is ~ .:~hed over to one side and tht. phase at resonance i~ 

rota ted from ~r, by the background, 
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intermediate energy  region t he r e  can be l i t t le  c e r t a imy  about ~heir existence and 
~tre~gth. In fact ,  as we shal l  dis(:us~ below, per fec t ly  ~'ood fits to the dat:~ ca~ be 

6 made u.ing the in te r fe rence  model ( . 3 ) ,  with phases  foc the r e so rance  res idues  

1 ~ v " r  
Despite thl~ ~ere have been  seve ra l  t heore t i ca l  d e v e l ~ m e n t s  'which have led 

people to believe tha t  the double-coun:tng of the Imer t e r ence  models is s e r f -  
~S~ and it  ia  these develop.merits which form the sublect of th is  chapter .  But '.l~s~: 
~e must introduce another  tool which has been much used in recen t  Regge phenon:-  
enol~ ,  f ini te  energy sum ru l e s .  

6,2, Finite cne)'~y sum )')des 
Finite ene rgy  sum ru l e s  ( ~ S R )  a re  akin to the SCR of sect ion 2, but they di f fer  

ia ~ t  they a r e  not r ea tx ie ted  to c u e s  where  the amplitude is  convergent  at infin- 
ity [133]. It iu only n e c e s a a r y  that  the ampl i tude  shou~.d nave a known asymptot ic  
behaviour, Moat  of the appl ica t ions  have been r e s t r i c t e d  to s i tuat ions  where only 
Regge poles a r e  expected to be important  in the h~gh-energy behaviour ,  and we 
~ l  m ~ e  thi~ s impl i f ica t ion  in our presenta t ion .  The inclusion of cuts is men-- 
f iord  in the fknal seeUon. 

h ~cat ter tng ampli tude is  expected to obey a fixed ~ d i spe r s ion  re la t ion (2.26) 

- 1 ~ D s l s ' , t }  1 ? D u ( u ' , t )  
A/ . / / ( s , I ) - -g  j ~ - : s  d ' +~r u ' - u  du' . (6.5) 

O U o 

Since we a r e  supposing that t h e r e  are  pray Regge poxes we can wr i te  

e-iV(ei-~') + ~i , ~, ] e i ( i ) -M 

~?iHi(s,t ) -- ~ -  C;(t) 2 sin~(c<i-v) '..~0} 
(~.~) 

,~'here we have deqacd 

v ~ ( s -  u)/2 (6.7) 

and the res idue  Gi(t) may be found by' compar ing  with (4.74). We will sul~.pose that 
the sum (6.6) includes all  the poles  with Rea(t)  > -¢ (say). F rom (6.6~ 

Ds(S ,  t) ..... ~ ~ , - ,  ( < ' s  ) ei(:)-:~'~ (6 .s)  
S - . ~  i 

a~ 

Du~ s, t) -- ~ - ~ iGi (g ) (~ . , / so )a i ( t ) 'M( -1)  a lav  . (¢?.9) 

It~¢C W{ tnay wT:te 

where, 

o~ Ds(v '  , t)  - ~ Ci( t )  ( u ' / % )  o ' i t ) ' M  

( . . . . . . . . . . .  i . . . . . .  d~," 

i f°~ Du(v , , t  } .  (_l)M-v.i~. ~iCi(O . . . . . . . . . . . . . . . .  ( ~ , / s d ~  ~ L)-~,,! 
+ 

v t 

is the threshold  e x p r e s s e d  in t e r m s  of u. an5 tl~e inte~v~l~ wi]] c . . . .  ~:,.~c:,, 
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As 8 - - ' ~  

Regge 
~Ht(s, t ) -  ,~Ht ( s , t )  ~ l / v  k , (6,11) 

s ince all the higher  contr ibutions to the asy]nptotic behaviour  of the amplihlde are 
iaclud¢;i t r t~Regg  e, So ~ t n g  the l imi t  of (6,10) as  v . . . .  ~ we conclude t~ at th,~ (.o- 
efficient of (u) "1 on the r i gh t -ha rd  olde ~ (6 ,10)  muo:t wmlm,h, l , e ,  

¢0 

f {1) s (v ' , t ) -  Du (v ' , t )  - E l 1 -  , ,~(-1)M'v]Gi( t ) (v ' /So)at( t ) ' "v l }d,  ' = O. (6.12) 
v t i 

Now since the Regge poles ¢ontmin the asympto(lc behaviour ~ Ds(v , t) the integrand 
will vanish for  v > N say ,  ff  N is  chosen to be suff ic ient ly  linage, ~o w e  can write 

./v E ss° )(~/s°)°~(O'u* ~ 
• tPs  ( " ' , 0 "  D u ( v ' , t ) } d v '  = G3J-I (e.ii) 
vt j aj(t) - M ,  I ' 

where we trove pe, ~'ormed the Integral over the Regge pole (m~d taken Ire contri~ 
tion from the lowe]' limit ol integration r t to negligible relative to that from the 
upper limit N). It must be noted that cal¥ poles with sl~atture #j ffi (-I)M'v+I con- 

tribute to (6.13). 
This expression gives us a relation between the imaginary part of the scatteri~ 

amplitudes at low energies (< 2Q, and the Regge pole terms which fit the high enerl~" 
• mplRude (> N~. R de~nds only on the analytic prope r t i e s  of the amplitude and tM 
~ e  behavlour, and is exact to the extent that Regge pole dominance is valid. 

We Can generalize (6.13) by writing a dispersion relation for 

~AHt(s, t) - .4 Regge" L ~ )  2n , ~t ts, t)] v (6.~4) 

instead of (6.10). As lo~g as ~, < k the coefhc}ent of the 1/v te rm must vanish and 
so we have 

N 
.f 
v t 

(o s (,,,. t)- v~, (~', t)} (~:_)2. d.' ~, as o ~( t )  (,V%)=j(t) ",~:~-'~-+ 
j a f l t )  - M + 2 .  + 1 (6~ 15) 

If an odd power of O / s  o) " ,re used in (6. i4) only the pole~, with "k  = (" I) Af'v would 
contr ibute giving 

N 
.] 

ut 
(D s (~,',t).  %, 0",0} (~,:_)z,,-t d,;.' 

kSO,~ 

= ~ ~SoCk(t) (N~'s~ak(0 "M+2n 
k =k(t) - M ÷ 2n 

(~.16) 

An al ternat ive ,  and perhaps more  eleg-ant, way of der iving those r e su l t s  is to use 

I~,  " . ,  t) dv' O ,  (6 17) _, • t l t ( ~ -  , = 
C 

where c is a contour round the threshold branchpointm as shown in fig. 37. Hence 
we have 



REGGE TttEORY AND PARTICI,E PHYSICS .t~'z 

2i j {Ds(V', t) - Du(v' , t)} d," - - .] ,4nt(v', t )av '  , (6.18) 
v t e'  

where c' is  tile c i r c l e  at {t, t = N. If we thL'n r,.'.place the ampl i tude  at iv! N by 
(6.6) a,v:l p e r f o r m  *i~e i n t eg ra t i on  round th,, c i r c l e  by pt~,ting ~, :: ~,\: ei~51 a:~d take 
suitable c a r e  04 the  d i s con t inu i ty  of the Rcgge  t e r m  at the b r a n c h  cuts ,  we obtain  
the same r e , u l t  a s  (8.13). 

, 

I II I ~ %  

tY 

Fig. 37. The contour ,ff integration in the complex v plane used in (6.17). 

These  s u m  rmles  involve  only  the  imagi .nary p a r t  of the low e n e r g y  ampl i tude .  
It is poss ib le  to  include a r b i t r a r y  m i x t u r e s  of t he  rea l  and ~maginary  pa r t s  by 
writing a d i s p e r s i o n  r e l a t i o n  f o r  [ 137] 

0 

~'here .:: is a continaou~ly .,ariabl., Farameter. We tt, en get instead of (5. ]3) 
;,, ,2_ ,,2),,/2 
¢ {,-,,~t~,~/m ~mZ,~(/,~l- ~m(',,,~/~.) neA.t(.',¢>] (, S~0. d~' 

_- ic ZSo cj(O (X/So)~J(t)+~+ l ¢os-~=[~(0-~f31 
- ( 6 . 2 0 )  J ~j(t) + ~ + 1 cos  ½~ ~y(t) 

again neglectiz~tg t e r m s  of o r d e r  v t /N .  Howeve r  only in a few c a s e s  is  the r e a l  pa r t  
of an ampl i tude  known d i r e c t l y  (e .g.  f rom Cou lomb i m e r f e r e n e e ) ,  and usually the 
real par ts  a r e  d e t e r m i n e d  f r o m  d i s p e r s i o n  r e l a t i o n s ,  in which c a s e  they do not oi" 
court* ~ give indepen0ent  i n f o r m a t i o n  about the  h i g h - e n e l g y  behav iou r .  

Th~se sum r u l e s  have  had a wid~ va r i e t y  of app l i ca t ions  [138]. Fo r  example  

Regge pMe is  expec t ed  to be the  dominan t  con t r ibu t ion ,  we find (using the us ual .4" 
and !.: ~otation fo r  the  a m p l i t u d e s  - s ee  e .g.  ref .  [12] for  the r e l a t i o n  of the_; : to 
heliei*y a m p l k u d e s ) ,  s e t t i ag  s o = 1 

N ~(t)+l N 
j In-,.A'(-'(v',t, dv'=C, 1(,) e( , ) . i '  ' j v' lmB(-)(v ' , i )dv ' - -CB(t)  ~.71;~ -+I ! (6.21} 
vt vt 



Since there arc two Regge para~Mcrs cy(P) end C+(t) in each of the relations ,’ 

(6.21) they do :,lot have a unique solution. But it 0% possible to deduce c#) from the: 
ratios of diffcj*ent moment sum rules directly, Thus if we define 11331 

then, we have 

$50 a(t) can be deduced by taMng the first two n >n*vanishing mumebs, and then inl 
serted in (6,2X) to give the Gift). The trajectories obtained agree well with thhosa d 
h&h energy fits, the r&dues rather less well. The various resonance coLtrib&-’ 

.i . ‘; 
have different # dependences due to their differ@ 

.?r’ .< 

’ 

d&,(~& The result is that the integrals have MF 
x.W& various t-vahq~ It is fouixi that GA&$ changes sign at 3 fi: -0.15 GeV and 
C&b) at t m -0.6 GM. This latter point 9 of course just where we expect a non- 
sense zero in the p residue at c@) = 0. The former we shall identify in chapter 7 
as the ‘cross+ov%r’ zero of 7rN scattering, 

In principk the 1: resence of secondary trajectories can also be determined hy 
these sum rules. Thus if there is a second uy r t trajectory below the B with a tra- 
jeCt0x-y function q(t) we can deduce 

S,@) - GA (t)Pft; q(tl + 3 

W) - Q(t) +a A 
@I * f G 

--- = 
(tpp(t) q(t) + 1 * 

w4 

fn lx?: ‘qW] it is fou d that al(t) c 0.3 4.&t which is much higher than one would 
eqect, and it can not: raally be taken vev serfously because of the large errors. 

The h&her moment d’um rules weight the integral more towards the upper Xinnrt. 
of integration where the amplitudes are less well known. In fact Jf one takes Mlarge 
enfugh the ~uxn rule becomes just the same as a Regge fit at $7. The sum rule can 
>$, .rcqPY +n rrrarl*fi* +I+% k<mL 4LUSaU.M H-u bV &?* =w*Lv= O&IV rriZFjU CFXfGl. PiJ Lk* 1.1 .U.CI a- I- ~l_&Y 11L, --L.. td .7 2.c. h?CrauVS~ A$vU.i rvw GlDzX&J u*,iiz ur=y Ll IV I.3 
t&&en large enough, but if N is really in the asymptotic region a high energy fit is 
r sally just 8s @xxi. %I either Case becr,use of the limited accuracy of the data the 
r@suM obtabed wil3. depend very much on the assumptions which are made as to I, 
fie number of input trajectories etc. With data of finite accuracy there fs no post 
stiility of a unique ana&?& extra@ation. 

There is, however, one crucial advantage of the FEAR method over conven- 
tkxx$ fits, namely t%at the input amplitudes (e.g. the A’ and B nN amplitudes 
amve) are akeatay decomposed into their spin componenti whereas, the high-i?rt- 
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erg~ ( 'dr data  only enables  us  to  find }A'[ 2 and I Bl 2, and the s igns  of tho a~apli- 
tude~ can not be determined.  In fac t  in the old f i t s  of ~N sca t t e r ing  the sign of B(+) 
was opposite to the value subsequent ly  obtained f rom FESR. The FESR sign has 
recently been conf i rmed  b7 me a su r ing  sp in - ro ta t ion  p a r a m e t e r s  [I39]. 

Another in te res t ing  aspect  of ~ESR is the poss ibf l i  5: they offer  of finding D.xe4 
poles at wrong-signature  points .  These  do not contr ibute  to the asymptot ic  behav- 
i0ur, 0~ course~ and so can not be  obtained d i r ec t l y  in fits.  But if we take ampl i -  
tudes of def in i te  s ignature:  (9..39), which .~ve  *-.he d i spers ion  relatit~ns 

. . (  1 j ~ Dtts (s ' ,O ds' . ,  ~,M-v a ,~o DHu(s, , t  ~ 
= +t-~) " 'ds '  (6. '25)  A , , r S ' -  : s , - s  

S 0 u o 

and follow the p rocedure  (6.5) to  (6.I6) we find 

N I)M. v G ~ i  ~r/s xc~(~) "M~t+I  
f [DHs(V', t)+a(" DHu(U', t )](v ' /so)ndv ' ~ 2 S o " i v " " ~ / ' o ~  
v t" i a~{t) - M+ n + i .(6.26) 

These coincide with (6,15) or  (6.16) only for  a / t e rna t e  m:,ments.  The  mis take  in 
(6.26) is that  we have neglected the fLxed poles  in the s ignatured ampli tude at 
w r o n g - s i g n a ~  n0nsense  ~ i n t s ,  if there  ~¢ere no fixed poles  (6.26) ~-ould hold, 
and:to the end.ent that  they a r e  s m a l l  it may s t i l l  be approximately  valid,  but o ther -  
wise we ~med to add t h e ~  to  the  right-trend side of (6.26). Thus if we com~ider the 
aegative s igna ture  p contr ibut ion  ,a the spin-f l ip  amplib,.de B with M = 1, m~d for 
which J = 0 is :~ wrong s igna ture  point, it is found [12'3] that for  the zeroth moment  

N B(') 
vt 

where g(t) i~ " :most  independent of t. This  constant  k, .sue to the domnaaace of the 
s-channel :mcleon born t e r m  on the lef t -h  nd  s ide  of ~5.27), w:aose !/~, tail gives 
rise to the f ixed power behaviour .  It may be in te rp re ted  as a tLxed po?e at J = t) 

However, oa r  main  in t e re s t  in FESP, in th i s  chapter  is that they led D~len, 
Horn and Schmid [135] to  the conc lus ion  tha t  the inter:[erence model  commits  dou- 
ble counting. }?he point is  that  essent ia l ly  the whole o:[ hn  A' and Im B at low ene r -  
gi, s is given oy ~ e  s -channe l  poles .  Hence we have approximate ly  

N Na{t)+ 1 
f I m A ' ( ' ) P ° l e ( v ' t ) d v  = GA(fl-a:(ii-+-i etc. (6.28) 
v t 

In other words the average  of the di rect  channel  pole~ is equal to the Re~ge ~..~-'~ 
term. This  g ives  one def ini t ion of duality - so ca l led  ' average  ~uali ty '  - the reso-  
nance poles a r e  dual to the Regge poles in th is  ave r~ : e  sense.  The. authors of 
----1 r I o..~'i 

t~ti0n of the amplitude would be given by 

R e  _R ,~s , , ,  , - R e s .  ,,..,, , . . ~  ,.% (s, Att(s,  t) ~ A g g % s ,  t) +.a H ~.,, t} - 

T.'.,e ~itml t e r m  r e p r e se n t s  the aver'Lge of t2~e resonal~ce t e rms .  Whether  or not tt,~is 
is very d ~ e r e n t  f rom the in t e r f e rence  model  depends whether  the  reson~r~ces tend 
to add, as  they appear  ~ do in B( ' )  an6 A'(+), o r  c~mcel ~s they do in A'(-} and /?(*~ 
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-However, as.we ~,~ve already mentioned, the,work of ref+,[t36] indicates the! ! '  
since we do not k~mv' a pr ior i  the phase of an . l neks t i c  reSonanCe ,Contribution it IS' 
possible to make either prescription work in anyamplitude,+ But. f f  (6.~8) is a c -  + 
cepted it leads to a new sort of bootstrap-l ike principle in whlehthe direct channel 
resonm~ces determine the cross-chanvel Regge poles. It is very different of 
course from the conve~.tional form of bootstrap In which unitartty is used to gener- 
ate r e s ~ s  from the c rosEed-¢h~ne t  ~ e n t . t ~ l ,  :and In par t icu lar ,  as we ,~: 
shali  see in sect ion 5, the solut ions (~ the ~ S R  conditions a re  in  noway  un:que; : 
Because of ti'As we would prefer  to use the t e rm 'FESR consistency condition' to 
describe this duality ~dea, and prese rve  the word 'bootstrap '  with i ts former 
m~;r.dng. 

It should be noted that the resonam:es dominate the imaginary par t  of the ampli- 
tude but not the real  part (the rea l  par t  of a Brel t -Wtgner  formula vanishes at the 
resonance position). A common approximation is to represent  the imaginary part 
as a sum of delta-functions at the resonance posit ions +v:: 

Ds(S,  t) = ~ R ( s ,  t) 6 ( s  - s T) . (6.3t}) 
F 

i l i~t~e Regge  t e r m .  

The reaso,, why the FESR gives such a strong constraint  is evident f rom this ap- 
prox2mation. For  substituted in the dispersion re la t ion (6.5) the form (6.30) gives + 

A ( s , t )  = ~ R ( s r ' t ) - :  ,., _1 (6.31) 
8 ,  ...... 7" S " S 7" S ..., oo 

that A -ARegg  e < O(1/s) so the resonances must be contained 

6.3. S c h m i d  l o o p s  

The form of a Regge pole amplitude presents  us with a fur ther  possible source 
of ambiguity in identifying inelastic resonances. We have mentioned that the 
method used in phase-shift  analysis  is to look for anti-clockwise loops in the par- 
tial-wave Argand d i ag ram,  but it ~ t s  shown by Schmid [140] that the crossec:- 
chamml Regge pole term may a lso  give r ise  to such loops because of the phase 
variation given by the signature factor.  

For example in a spinless scat ter ing amplitude with the exchange of a single 
Regge t ra jectory a(t)  = a(O)+ a ' t ,  and equal mass  kinematics,  

t 2 s - 4 m  2 
z s = 1 + . . . . .  qs = 2q2s ' 4 ' (6.32) 

the phase of the s-channel par t ia l  wave projection depends cn [141] 

1 _. iTr~(t} . . . .  - iTr [aiO~- 2 a 2 a '  ] . J . .  2 
.r e " " r ~ 4 ~ s J  ~ s  = e " " - s  , ,- j f l - 2 ~ . . ' f )  

- I  

where j j ( x )  is the spherical  Bessel  function. Thus as the energy (or qs 2) increases 
the phase of the part ia l-wave amplitude rotates anti-clockwise,  knd if we ide~tffy 
the point s t ,  where .*he phase reaches  ~r/2, as a ' resonance '  pos t ion,  then tiler 
will be another ' resonance '  at 

. . . .  • + 

( ~ . ~  
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s r =- s t+  l / a '  etc.  (6.34) 

and every par t ia l  wave r e sona te s  at these same  values  of s. So the f 3 r ~  of the 
partial waves is  s im i l a r  to that for  ~. set  of t r a j ec to r ios .  The par .~nt traject~.:~r ix 
linear with s l o r e  a ' ,  with a sequence  of daughter  t ra jector ie ' s  ~vch that in each 
partial wave ~he resonances  a r e  spaced by l / a ' .  (There  are a lso  Lrajector ies  ~.bove 
the parent which we d i scuss  later .} The t dependence  o[ all the o ther  factors  ~r~ the 
Regge pole t e r m  will  obviously a l t e r  the shapes  and s izes  of the loops,  but the 
phase variat ion must  re ta in  the na t t e rn  indicated above as long as; c~(t) an.~ (t) a re  
real. The r e a s o n  for this s t r u c t u r e  is of course  that the osc i l la t ihg  phase of the 
Regge te rm m a t c h e s  the osc i l l a t ions  in z s o f  t h e  Legendre  polynomia ls  repre'~ent- 
ing the spins of the  ' r e sonances ' .  Since P l  (Zs) "" 1 as  z s - .  1 all the ' r esonances '  
add in the fo rward  d i rec t ion  c o h e s p o n d i n g  to the pe r iphera l  fo rward  peak of ~,:he 
Regge term,  

How should t h e s e  loops be i n t e r p r e t e d ? .  We know that the Regge pole t e rm is a 
smooth function of s and does not contain any po~es, but on the o ther  hand we 9~ly 
know the fo rm of the Regge t e r m  on ~he physical  shee t  and the re.sonance poles a r e  
on unphysical shee ts .  R e m e m b e r i n g  the average  duality suggeste, i by FESR a~a:~l- 
yses it s e e m e d  natural  to Schmid  [ 140] to identify the loops with a se t  of over -  
lapping re sonances .  The d i f f e rence  is that now the duality is  local  - the matching 
of the r e sonances  with the Regge pole holds at each  s point without any need of av- 
eraging. The sum of the poles  g ives  r i se  to a smooth  Regg~. behaviour  because  as 
one partial wave r eaches  its max imum a" a r e sonance  others  a re  at minima.  The 
fact that the r e sonance  has be.~a pro jec ted  fr~,m a smooth function guaran tees  this  
cooperation be tween  the par t ia l  waves.  Obviously su :h  a coopera t ion is a good deal  
less than pe r fec t  in the actual r:~ysical ar:~plitudes at low e n e ~ g ~ s  because  we see  
bumps, but it may  be supposed ~hat the smooth high e n c r ~  b e h ~  ;our re~re~q,n~ 
the onset of local  duality. 

This would mean  that at any energy  one could use  e her the s- :Lannel r e~) -  
nance p resc r ip t ion  (6.2) or the t -channel  Regge pole descr ip t ion  {~ .54). ,~t h~,r e~- 
~rgies, where  :he resonance  poles  a re  well separa ted ,  the s - c h a ~ e 1  des : : r~ :h)~  
is to be p r e f e r r e d  since a l a rge  number  of Regge poles are  needed  ~o prod ace Uhe 
bumps; while at high e n e r g i e s  the s -channel  p r e sc r ip t i on  becom~,s complicat,~d, 
requir~ug many overlapping r~sonances ,  but the t -channel  p r e sc r ip t i on  requi: :es 
0r, ly a few Regge poles.  

The fa i lure  of the s -channe l  pa r t i a l -wave  s e r i e s  outside the Lehman  e.l~.~,.,:e 
should make one cautious about p res s iug  the equal i ty  of the two de~,,criptions , ,~  
far, however. An equally good interpretation [14~] of what is hap?ening vvo~'¢~ 
seem to be that the Argand loops at high energies do not corresp~),n:l to resc~ :~aces 
at all but are simply the remit of the phase variation caused by the: cro~sed.-~:h~,-.- 
nel Regge poles. For example it is certa[nly the cas~ that if one takes a higi~ ener- 

fi~ ~o say ~'N scattering: and continues it down to lower energie,~, ~nd makes a 
part~,tl-wave project ion,  the Argand loop~ obtained a~e very s~m: l:tr to  th,~s,? ~oun~ 
ht tow energy par t i a l -wave  ana lyses  [142,143]. Th i s  obviously m:~:t be so to ~he 
extent that the  continued Regge po les  give a reasor~able fit t~o the low e~ergT ¢~ata. 
The !qops a r e  m o r e  compl ica ted  than in the d i scuss ion  above because  the ph~ se of 
the .-~plitude at any point is  the  sum of the phases  of severa l  dif:!e rent  K e g ~  
poles. And of cou r se  if one chooses  not to ~nterpret  the loops as resonance.~ fl~e 
whole case for  duality c r u m b l e s ,  and the i n t e r f e r ence  model  may be re - ins ta ted .  



19~, P.D.B. COLLINS 

The o~y. way of distinguishing.these two hypotheses:is.to try and find some cri- 
terion for the existence of inelasUc resonances, apart from Argand loops. When a 
r~'~onance produces a strong bump in some amplitude its existence is  very plausi- 
ble k~ecause a sraal l  number of Regge t e r m s  can not produce such a bump, but at: 
higher ~nergies where the amplitudes are  smooth there  does not seem to be any 
simp'~ cr i ter ion that can be applied. A resonance pole exists on an tmphysical 
sheet, and there  is no unique way of analytically continuing the e.xperiment.~l data 
f rem the real axis, 

In order to make such a ,continuation one requires dynamical model. The 
Breit-Wigner formula is one such model but it is by no means unique, and in fact,, 
ought not to be applied in situations where the resonance may have a large back- 
ground [135]. If we had ~m adequate ~mamical model for inelastic resonances 
(based for example on many channel N/D equations) one could try to confirm the 
presence of such resonances properly, but as we are still very far from having 
satisfa^tory models only the low mass resonances can be regarded as well estab- 
lished ~ present, 

There Js one other important property of a resonance pole, that it should ap-: 
pear in all communicating channels, which at first sight might seem to offer hope 
of distinguishing true resonances from Regge pole effects. Put in another way, 
since the Regge poles must factorize hl the t-channel, and the resonances must 
factorize in the s-channel, if Regge generated loops are to be interpreted as resQ- 
n:mces they must factorize in both s and t, which is hardly possible. This is only 
true £or single trajectory exchanges, however, and we shall find in the next sec-~: 
ti;'n that very often ei~er there are cancellations between different trajectories, 
or a closely related set of poles can be exchanged in the vRrious communicating 
C~!a:~,s~ ~t ~ilar circles are produced in each. This only confounds the 

~.~!~~Stence of high mass resonances, but it also means that if one 
belleves in dual models one must place various restrictions on the trajectories 
which can be exchanged which have very interesting consequences for Regge phe- 
nomenology. 

6.4. Dual models [144] 
The f i rs t  thing to note about the suggested equivaler ~e cf crossed-chrome1 Reg- 

ge poles and resouances it that it can not he made to work for the Pomerm~choa 
(P). For example, as far  a s w e  know K+p scat ter ing  does not give r i s e  to any res, 
onances. If there  were such doubly charged s t range baryons they would not fit into 
any of the SU(3) mult 'plets discussed in. chapter 3, and could not be made up from 
three quarks as  the other baryons can. For this reason  k~p is known as an "~×otic' 
channel. But, of course,  like other  elam'ic sca t te r ing  processes  K+p ~ K~p is ex- 
pected to be controUecl at high energy by the exchange of the P t ra jec tory .  We 
shall see n chapter 7 that there  have been many successful fi ts of this  kind. Since 
there  is no other t ra jectory imown which is high enough to cancel the P we wotdd 
e.xpect to find Schmid loops in K'+p scattering, but the~e would not correspond to 
resonances. 

• The most popular way out ot this  dilemma [145,146] is to suppose, not implau- 
sibly, that the 1 ) is quite unlike other Regge singtflarit ies.  We have already noted, 
in chapter 5, the condensation of cuts which resu l t s  from multiple P exchang% aud 
it may well be that the s ing~a r i t y  which has been represe,~ted by the P pole in 
Regge fits is  rea l ly  a complicated superposition of cuts. Alternat ively it can be ar- 
gued that the P may have a very  smal l  slope, so that it~ p,hase " - - ~ ' ~ ' - * ' ~  
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sl0w, and will only produce loops at high energies  if at all. In fact at one time an 
almost zero slope for  the P seemed to be favoured in Regge fits,  and the more  re -  
cent Serpukhov data seem to favour  ap 0.5 which is ~nly about half that of other  
trajecLories. Thus  the P may not give r i se  tc ~oops (or perhaps  to very  weakly 
coupled, s o m e t i m e s  exotic, ones) ,  and its main  function may be to give a p re -  
d0mmantly imaginary  back~;round to the r e sonances  produced by all the othe~ ex- 
changed t r a j ec to r i e s .  In K+p these  other exchanges  are  p, w, f and A 2, but ~ve 
have already found, that these  have roughly degenera te  t r a j ec to r i e s ,  and if ;v( sup~ 
p0s. that this  degeneracy  holds for  the r e s idues  too, these  contr ibut ions te the 
imaginary par t  of the ampli tude will  cancel  (see (4.92)) leaving o~/y the P. This 
suggestion is bo rn  out by the f l a tness  of the K'*p total  c ross  sec t ion  (see sect ion 
7.6) which can be fi t ted by the P alone. In fact qui te  general ly  the total c ros s  sec-  
tions for those p r o c e s s e s  which do contain r e s o n a n c e s ,  such as ~±p, k~'p, K-a, ~p 
and ~n, are  d e c r e a s i n g  at high e n e r g i e s  so the lower  t r a j ec to r i e s  must  contribute,  
while in p r o c e s s e s  with no known resonances ,  l ike  K+p, K+n, pp and pn, the c r o s s  
sections are  m o r e - o r - l e s s  constant  above abou~ 2 GeV (below which thresho]d ef- 
fects may be important) .  One a l so  finds that exotic  p r o c e s s e s  have smoo~h dLffer- 
ential c ross  sec t ions ,  while those  with r e sonances  exhibit dips in d(r/dt cha rac t e r -  
istic of Re~:ge pole exchanges.  

These facts  suggest  that, if one f i rs t  subt rac ts  the Pomeranchon  f rom al! the 
amplitudes to which it can contr ibute ,  it may be possible  to fit the remaining am-  
plitudes with jus t  the lower  lying t r a j ec to r i e s ,  and that these  t r a j e c t o r i e s  will be 
dual to non-exot ic  r e sonances  only. One is thus postulating a solut ion to ~.e FESR 
consistency condit ion which conta ins  only poles  (di rect  channel r e sonances  = 
crossed channel  Regge poles).  

To see how such a model  f i ts  together  we s t a r t  with y~ sca t te r ing .  When the P 
has been r e m o v e d  we are  left  with only file p and f f rom among the dominant t ra -  
jectories. The l = 2 7r+~ + and ~-~-  s tates  a re  exotic,  and if they a re  to cont~in no 
resonances xve requ i re  that the p and f exchanges shouL~ bo exchange degenera te  
and cancel each other ,  i.e..,rp(t) = ,~f(t) and ~ p ~  = ~f~g. '~he~ in ~ '~-  scat ter ing 
the sign of the 2 contrlbuti~'~n is opposite (due to charg conju :ation) and the re-  
quired reaona',~ces do occur' in the I = 0 and I = 1 channels.  Ti~.en in KK scat ter ing 
we can exo]ange  the I = 0 f and o.~, and the I = 1 p and A 2. The~ absence of r e so-  
nances it. the exotic K+IC" ~md K+K ° channels r e q u i r e s  ~f = c~,  a p : ~A2, :~!~C{ ::: 
~]~KK a,m ~pKK = ~AsKK. And in ~'K sca t ter ing ,  where  we have the exchange de- 
generate K~, K** t ra jec to ry ,  the  I = .} channel  is  exotic, and we r equ i r e  tha~ the 
and f should be exchange degene ra t e  with ;~)KK = ~fKK" 

In fact we ,.an express  al l  t he se  r e q u i r e m e n t s  in t e r m s  of oc te t -oc te t  :ca~ter- 
lag ,~'ith SU(3) s y m m e t r y  [147]. However,  +.he s y m m e t r y  can rot  be exact for we 
need ~ K K  = ~0KK, while; SU(3) gives ~-3~pKK = / ~ K K .  But if we introduce a mix-  
lag between the 4, and ¢o, so that  the physical  o~ par t ic le  is a mLx-Lure of the ccte~ 
and singlet I = 0 s ta tes ,  

- -  cos l s>+ sin01® ), 
we ca~ :,atisfy the duality r e q u i r e m e n t  with a mtxing angle cos ~. = ~o~'~'-::, ~ i.e° 
0 ~ 35 o. This  angle is the one obtsdned f rom the quark mendel ~f the ¢ co~ . s~  ~ ~:,~ ~ 
of strm.ge quarks  (= X-k) - the so cal led ' idea l '  mi:-:ing angle - and ~s ~n rough a<rc~ ~.- 
meat with the exper imen ta l  value obtained f rom the mass  spl i t t ing,  ~ ~ 40 ° [48]. 
This same angle  is needed for  f, f' mixing ff the f' is to decouple f rom =z scr+~+e~'~,r: 
so as not to spoi l  the above p ic ture ,  m~d exper imenta l ly  it is found that for L~e 2 ~ 
honer ~ ~ 30 ° [48], 
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If  we proceed to examtnv forward  meson 'ba ryon  scattering,  exactly the same ~. 
r~mtrktions a re  needed - in fact  we h a w  a l r eady  noted f lmt the  above degeneracy' 
oil p, f,  ~ and A 2 is also needed to ensure  no exotic resonances  in  K+p. . New results 
come ~'rom backward scattering however since the ~ channel t r a j ec to r i e s  c~n also 
gl.ve Schmid loops. The absence of K+p resonances requi res  a' degenerr~cy of the A~,~ 
and ~ ), trajectori .es [t.48]. (There a re  many Y* s ta tes  bu~ the o thers  are  we:&ly 
couple~, and may  presumably be  n e g l e c ~  to  s o m e  approximation.) Similarly i.~: 

Z%r" the A resonances in t h e .  ~channel (K+:~ + -~p~r +) are dual to the K', I~* K-p~'-" 
I = ~ trajectories, and there has to be a degeneracy betwe=,~ -,~ the A and Z traject0- 
ries in order to avoid I-- } K~'s, So Eeneralized to SU(3) we need a degeneracy be- 
tween the various singlet, octet and decuplet trajectories having the same (or re- 
lated) quantum numbers [ 14~]. This is partly substantiated by some of the best 
cases shown in fig. 38, but is not well satisfied in general. 

% 

%. 

I 2 3 4 5 6 7 

t (C.~v) 2 

F i~. 3S. S~me examples o~ e~ehange degenerate baryon, trajectories. These are the best ex- 
amples. T.he t~'~jectory splitting is much greater for other baryons. 

The idea of duality thus produces an impressive set of predictions - that res~i 
nances fall into singlets, octets and decuplets only with no e:mtics, that the 2 + and 
1" mesons, and the octet and decuplet baryons, are exchange degenerate, .-ud that 
the 2 + and 1- mixing angles are about 36 °. All these results may be expresses 
very simply with the 'duality d iagrams '  of H a r a r i  [149] and Rosner  [150], in which 
each external par t ic le  is represented  by lines corresponding to the quarks (p, n, ~t) 
of which i t  is composed. The quarks  m a i n ~ n  the i r  identity throughout the process, 
and this teIls one what the intermediate  s ta tes  in e i ther  channel a re .  Thus three 
quarks trav~lling in the same directions give a baryon,  while two travell ing in op- 
posite direc*inn.~ ' 
s tates a re  allowed (see fig. 39). Diagrams with crossing lines or  more  than this 
number of quar .~  a re  ' i l legal ' .  These ~'uies embody SU(3), no exotic ~tates, and 
the mixing angle. 

There a re ,  however, some ser ious  problems with this duality scheme. The 
first concerns baryon-anti-baryon scattering. IIere we have 3 quark lines in each 
direction (fig. 39) which is illegal so we predict that there are no meson reson,~ces 
in the BB channel. One night think of altering the rules to include them but it dc3~ 
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b 

X 
Fig. 39. Duality tiiagrmns for (a) meson-meson and (b) meson-baryon scattering. (~,) iz an 
qllegaP meson-baryon diagram because the quark lines cross. _(d) The diagram for baryon- 

anti-baryon scattering showing the ~our quarks in the BB intermediate state. 

not seem to, be poss ib le  to do th is  consis te~t ly  [151]. For  example  in AA sca t t e r -  
ingfl~ere 3a'e I = 0, 1, 2, 3 charamls ,  and only I = 0, 1 should contain  r e sc  ~ances. 
Imposing no exo t i c s  in I = 2, 3 in both the s and t channels  r e q u i r e s  that a~l the 
amplitudes should  vanish.  Another  p rob lem s t e m s  f rom the fact that  the 0" m e s -  
0ns do not h~r.ve the ideal  mix ing  angle,  but r a t h e r  0 ~ 10 ° [48], so t h e r e  is no con-  
sistent solution to the dualRy r e q u i r e m e n t s  for  p r o c e s s e s  in which these  t r a j ec to -  
ries c,~n be exchanged,  such as  p s e u d o s c a l m ' - s c a l a r ,  or p s e u d o s c a t a r - v e c t o r  
sczttering. And although we have fou'~d a solut ion with th ree  g roups  of degene ra t e  
trajectories ap = ace = af  = CA2, aK,  ~ ~K** and a '~ = af,, if one cons ide r s  s imul -  
taneously the t h r e e  r eac t ions  rr+p ---" v+p, 7r+p ~ K'+~ + a~d K+~ + ~ K~E *, all of 
which contain A,s in the s cham~el, but which exchange m e m b e r s  -" -';~" . . . . . . .  
greups in the t channel ,  one mus t  r equ i re  all  the t r a j e c t o r i e s  to be degene[a~ e [152 I. 
That is ~o say we need comple te  SU(3) degene racy ,  despite the fact  that we a so 
need a mixing angle.  Also the a t t empts  which have been made to f~t amplitud ~ by 
a sum of the P plus  d i r ec t  channel  r e sonances  have  not been all that impt-~ :~s~vc 
quantitatively [153,154],  and in chap te r  '/ we shal l  show ev idence  that. the exchar, ge 
Q~eneracy of r e s i d u e s  s e e m s  to be viola ted by f ac to r s  of 2 and m o r e .  

So one mus t  conclude that t h e s e  dual mode l s  involving just  poles  bea r  at best  
0nly a r a the r  pa r t i a l  r e s e m b l a n c e  to the rea l  wor ld ,  though they do seem tc, have 
several m e r i t s  as  a f i r s t  approximat ion .  But so f a r  we have only cons ide red  the 
construction of dual models  in t e r m s  of t he i r  interr .al  quantum number s .  We must  
now thirtk about the cons t ruc t ion  of functions which satisfy the r e q u i r e m e n t s  of 
duality. 

6.5. The  V e n e z i a n o  m o d e l  

l x x ~ :  ¥ ~ L x ~ . i ~ . l . i a a x u  u x ~ ; x  t . t ~ a , . , , ,  . L u v j  I ~  ~ .  ,.r.,~.,. , .p, . . . . . . . . .  j . . . . . . . . . . . . . . . . . . . . . .  "- . . . . . . .  - 

most of the r e q u i r e m e n t s  of dual i ty  in a model  involving pc, los o~.!y. 
As an example  we cons ide r  the ampli tude for  ,~'+Tr- - .  ~r+7 "" which ha ,  t~oles h~ the 

s and t channe l s ,  but the u channe l  is exotic (I = 2). Once the P contr ibut ion h~s 
been removed  we expect  the leading  conLribution to be the p- f  exchange dege~e ra t e  
trajectory Lrt both channels .  Duality. r e q u i r e s  that  the sum oi an infinite number  of 
s-cha,mel p~)les should be r e - e x p r e s s i b l e  as a sum of ~m hffinite number  of ~-chan-  
he! poles, i :  such  a way that  e i t h e r  sum gives  the complete  ampl i tude .  And the 
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asymptotic behaviour must correspond to that of the ler, ding trajectory exchanged~ 
in either channel. 

The simplest functional form wheel- has an infinite set of s channel poles lying 
on a t ra jec tory  a s ( S ) ,  with ~ e  pole~ appearing when a s = positive integer, is 
r[1- as(S)]. Since we require an Identical behavlour in the t-channel  we might try 

A(s,O = r[1-%(s)]r[l-at(O ] , (e.:s) 

but thi~ ~'ould have a double pole at  every s - t  point where beth a s and a t are inte- 
gral  [157]. (In our case a s a n d  a t a r e  t h e  same fun-tion, but in more  general am- 
plitudes this n~ed not be true.) We can easily remove  these poles by divtdic.~ by 
r [ 1  - as(S)  - a~(t)] so we end up with the Veneziano f~rmula 

r[1-%(s)l r['. -.t(O] 
V(s, t) = & r[~- %(s)- ~t( )] ' (~'~) 

where g is an arbitrary constant glving the scale of the couplings. This function 
has pole lines at  fixed s and at  fixed t ,  where the a ' s  a r e  integers ,  and lines of 
zeros  running diagonally through the Intersections of the poles,  as  shown in fig. 40. 

Its asymptotic behaviour may be obtained from Stir l ing 's  formula: 
t - X  X-½ 

: r(x) - .  (2~)  ~ e x , (e.:~) 

except along ~.e negative ~¢ axis where the poles occur. If we combine (6.37) with 
(4.70) we find that for large s, assuming a(s) is an Increasing function of s as s-,~ 

rt[as(S)] a~(t) . i ~ t ( t  ) 
V ( s ,  t) --, r [at( t)  ] sin ~rat(t ) e (6.38! 

- -  N 
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Fig. 4% The Veneziano ampli tude in tke  s -  .~ plm,e. Th~ poles  occur  w h e r e  t~(s) and ~{t) 
pass  t~rough pos i t ive  integers ,  and the l ines  o ~ z e r o s  connec t  the pole in te r sec t ionv  diago- 

mllly in o r d e r  to prevent  the re  being double poles .  
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S0 ti ast.~) is a l i nea r  function of s ,  as(s  ) -- a ( 0 ) + a ' s  we end up with Regge behav- 
Y 10ur, I (s, 0 ~ ( a ' g ) a t ( ' ) . C o m p a r i n g  tbis  with (4.74) we see that we obtain o . . . . . .  = ~ / S  O .  

We have noted that  s o is usua l ly  t"~ken to be ~-. 1 G e e  "2 which a g r e e s  with the t r a -  
)ect0ry SiOl~S~ and th is  model  p rov ides  the  only known connection between these  
two quantitieS;: In fact  i t  i s  the  only predic t ion  of s o in any theory  known to the 
author. The re  ts  a p roblem,  however ,  in that  the  asymptot ic  benaviour  does not 
hold within a wedge along the r e a l  s axis  because  of the accumulat ion  of s poles 
there. 

Since, tf c~s) = in teger  J (say)  for  some s = s r we have 

r[1- as(S)l - ( J -  1)!a'(s - s t )  (6.39) 
S-~S~. 

and t h e e x p r e s a l o n  r[1- at(t)lfr [ l-J-  at)l}" 1 can be wri t ten as  a polynomial  in 
t[- -2q~(1 - Zs) ] of o rde r  J ,  we find that the r e s idue  of the pole at  s r is 

(2qs2)J 
g(a')  J ' l  (Zs) J +O(z~ "1) (6.40) (j- 

bad if this  polynomial  in  z s i s  e x p r e s s e d  as  a sum of Legendre  polynomials  in z s 
the h~hes t  t e r m  i s  P j (z9) ,  so the  pole co r r e sponds  ~o a degenera te  sequence of 
resonances of spirts J ,  J - 1 ,  . . . ,  0 i.e. a daughter  sequence [ 1 ~ ] .  

For ~ s c a t t e r i n g  the coupling factor  g may be de te rmined  by ensur ing  that the 
residue of the  rho  meson  pole on the leading t r a j e c t o r y  at J = 1 co r responds  t~ the 
known p -- ~ decay  width. Once th i s  is  done the whole ~+~" ampl i tude  (apart  f rom 
the P) is fixed. The full 7rw ampl i tude  for  al l  i sosp ins  may then he found by. adding 
V(s,u) and V(t ,  u) t e r m s  in accordance  with the crossin~r ma t r ix  and the absence of 
t= 2 resol~'mces (see e.g. ref .  [159]). The r e su l t i ng  r ~ ~onancc spec t rum is sbcwn 
in fig. 41 with the  degenera te  daughter  t r a j e c t o r i e s  be!ow each of the parents .  Un- 
fortum'ttely mos t  of th? r equ i r ed  s ta tes  a r e  not known, as we have al ready seer. ~n 
efxapter 3. S i m i l a r  Veneziano cons t ruc t ions  can  be made for  o ther  p roces se s .  

It is c l e a r  tha t  s ince  the Veneziano model  Is an analyt ic  funct ion of s and t con- 
taining just  po les ,  and having the  co r r ec t  a~rmpto t lc  behaviour,  i t  must  provide a 
solution of the I ~ S R  cons i s t ency  condition (6.28) [155,160]. It has ,  however, a 
very se r ious  def ic iency in tha t  the  resonance  poles  all  l ie  on the r ea l  ax" ~ and have 

tmat F ~ n t  

8 o c o o 

4 o o o 

X 

J 
i f o r '  "a" "- - " 

Fig. ~'~,. The cr, io, f, g . . .  s ~ t e 8  requ i red  in the Venezi~no model for ~ s e a t t e r i n z  The 
open circles above the parent trajectory represent the positions w~erc ancestor.~ occur i~ 

complex ~ s  are used. 
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zero  width, Thi~ ~revents there  being R q ~ e  behavlour on the rea l  axis ,  and 
course it is incompatible with the ~_n!tarity condition. It also means  that it is not 
possible to compare  the formula direct ly with experiment.  

The t ra jec tor ies  should obviously have an imaginary part  above threshold gen- 
e ra te  by unitari ty,  and if this is  inser ted into (6.36) the poles a r e  moved off the 
rea t  ax ls ,  B u t  .t.ki.~. lms the undeslrable~slde-etfects ,  that all  the r e s ~ c e s  at a 
given s value (all the daughters) have the:same width fthough they have different 
residues,  and hence different elastici t ies) ,  and that the residues of the poles 
cease to be polynomials in z s and so  there are  resonances  of arbitrari ly high spin 
at  every s r  point. The t ra jec to r ies  generated in this  way which lie above the parent 
t ra lectory a r e  called ' ances tors  ~ [161] (fig. 41). (We have a l ready noted a similar 
problem with SeJunid leops.) Despite the fact  that these t ra jec tor ies  lie higher than 
the parent the asymptotic behaviour of the amplitude is still given by the parent~ 
(i.e. l~ ~ ( t ) )  by construction. This  indicates that an amplitude with ancestors  ~ 
to satisfy the conditions for Carlson~s theorem, and does not have a 8ommerfeld'  
Watson representat ion.  Even if we a re  prepared to ignore these a - ce s to r s  this 
prc, ce~ure still does not give very  good agreement  with experiment  because the re- 
sultin~: Argand diagram loops a r e  very  poorly cor re la ted  with the resonancc~ [I82I, 
and the aznplitude is very osci l latory at  i n t e r m e ~ e  energie,', and d ~ s  not a c h l ~  
a smooth Regge behaviour uz¢~il ve ry  large s (~ ~J GeV) is reached unless lm~(O 
is made to grow very  rapidly, with s.  In this case  the resonances rapidly becmne 
so wide as to disappear [ lr~2, le3],  unl ike f ig. 13. 

Although there has been a large l i te ra ture  [ 164] on more sophist icated methods 
0 f . : . ~ ~ : ~ t h e ~  .~ Veneziano model a l l  the d i f ferent  suggestions seem either to 

~ a t l c a l  defects or  to impose uni tar i ty  in such a way that the 
o r t ~  ~ i t Y . m - o p e r t i e s  of the modal get los t  in the process .  The basic  problem ts 
that the Veneziano model is  independent of the external  par t ic le  m a s s e s  whereas the 
unltar~ty cuts depend directly on these masses .  It thus seems m o r e - o r - l e s s  inevi- 
table that unitari ty must break the dtudtty between the poles, and that this sort of 
dual model will olfly provide a non-unitary f i r s t  approximation. And ~ !  attempts to 
confront dual models with experiment necessar i ly  involve approximatmns which 
destroy some of their  essential  £eatures. 

There is a lso a lot of ambiguity in the p ~ c i s e  form the V e n e z ~ o  model s h ~  
take. The par t icu la r  form (6.$6) is only one of a whole c lass  of functions satisfying 
our requirements ,  and we can wri te  more  general ly  

A(s,  t) = ~ C l n ~  Vlmn(s , t) , (6.4i) 

where the C's a re  a rb i t ra ry  expansion coefficients and 

r[ l -  %(s) +~] r [ l -  at(t) +~n} 
Vb 'm(s ' : )  - r [ i -  ~s(S) - at(t) +n] ' (6.4~) 

where l, m, ;z a re  positive integers (or zero). T e r m s  like (6.42) a r e  known as %re" 
neziano satel l i tes .  They differ f rom (6.36) in that ~:he f i r s t  pole in s l ies  at as{e)=l+l 
not 1, etc., and the asymptotic behaviour is sat(t)  +m'~z, etc. Thus (6.42) provides 
a perfectly good solutioa to the FESR constraints  ~ i c h  need to give nc relatic= 
what -so-ever  b~tween the leading singulari t ies  in ~ e  s and t channels [165, I6~]. 
Only if both sets  of leading s ingular i t ies  appear ir the same Veneziano term are 
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they correla ted.  This  so r t  of ambigui ty  highl ights  the difference between the FE3R 
consistency .'onditlon and a true bootstrap whose uniqueness depends on satisfying 
uriitarity as well as the anadyticity requirements. 

The fact that  the t r a j e c t o r i e s  all  appear in exchm~ge degenerate pales mea,~ 
that there a~c no fixed poles in the residues,  and the Regge pole ampli tudes have 
~zu~, -s~aa ture  zeros .  It a l so  me a ns  that the t r a j e c t o r i e s  decouple from the 
sense as well as  the ,,se~me ampl i tudes .  Thus  for  example in ~N sca t te r ing  the f 
trajectory mus t  decouple f rom the  sense  ampli tude at a = 0 in o r d e r  to avoid a 
g.h0sL so by exchange deli m e r s e y  the p decouples  as  well. In o ther  words the t r a -  
|ectories all  choose  nonsense in the nomencla ture  of section (4.6). The Veneziano 
amplitudes t hemse lves  cos, ra in  f ixed poles [16"/], however,  because  they contain 
(nsentially) a t h i r d  double s p e c t r a l  ikmction (e~cep~ in cases  where  the re  are  exotic 
channels with no reso~mncea). These  are  unshielded by cuts of course ,  but s ince 
Ve do not apply the ua i ta r i ty  condAtion this  does not mat ter .  

Exper tment~  appl ica t ions  ~ the  Veneziano model requi re  that  we should be 
able to deal with pa r t i c l e s  having .el)in. This  l.as not been done in a completely sa t -  
isfactory way fo r  a r b i t r a r y  sp ins ,  because the re  a re  the usual p rob lems  of the 
parits" doubling of s t ra ight  F e r m i o n  t r a j ec to r i e s ,  and the fact that the daughter se- 
¢luences in tl-e Veneziano model  do not co r respond  to those of a T o l l e r  pole means  
that in ord,.v to sa t is fy  the consp i racy  reht t ions  etc.  infinite sums of Veneziano 
terms with p~r i ty  degeneracy a r e  needed to give the Tol le r  pole behaviour.  None- 
the-less such p r o c e s s e s  as  nN and KN sca t t e r ing  have been t r ea ted  by several  
authors, who r e p r e s e n t  the A and B invar iant  ampl i tudes  by Veneziano models 
contaiaing the appropr ia te  t r a j e c t o r i e s  [168,169]. 

A comprehens ive  fit has  been a t tempted by E.erger and Fox [169], who find that 
sizeable ~atel l i te  t e r m s  a r e  needed,  so that hhe duali ty between the leading t r a j ec -  
tories in the vax~.ous chamlels is  broken. A!so the A exct~ang~ res idue  ,~,,~., "~ . . . . . . . . . .  =,~,~ ~., 
trapolate to the known 7rNA coupling constant  at the A p . ) '  12~is and other exam- 
ples would seem to prove that although the Veneztano r, ~d,~l may be a y e w  inter-  
esting toy it is not in a r~r sor t  of quanti tat ive agreement  wi~h the two-par t ic le  --- 
-. two-particle scat~ er ing data. 

One reason  fo r  i~s continuing popular i ty  is  tha~ it can readi ly  be general ized to 
processes involving many pax t ic les  [170]. Thus we may rewr i te  (6.36) as 

1 (s, t) = B4[-as(s)  -at(O ] (1-  as(S)- at(t)) , (6.'~o, 

~ e r e  

1 

o 

is the Euler  beta fl~_nction. The ~enera l iza t ion  to the five noi_nt func~ ion i.~ th~n [171! 

Bs(x l, x2, x~, x4, Xs) = 
I 1 

1 u.(1 x x u44 ,~ ;5 ,  f d U l f  d u 4 u  5 u22u~ 3 x 
O O 

(G.45) 

with u I = 1 - , 5 u 2 ,  u 2 = ! -  UlU 3 etc.  It is o ~ s i d e  the scope of this  a r t ic )e  to dis-  
cuss Regge f i t s  to many pa r t i c l e  product ion p r o c e s s e s  [ 172], but it is  evident that 
this representn t ion  provides  a convenient  way of coping with Regge behavieur  in 
amplit~,des depending on r..mny var iab les .  The re  is no reason  to expect  good quan- 
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tttative fits, with only single Veneslano t s ~  becatme we know they can not be ..... 
achieved for the 4-point function, but ~tven the very  approximate nature  of the ~ 
most of the multiple production data a few t e r m s  may  be enough, Though reason- 
ably good fits have been achieved they do not rea l ly  tell us very much about dualRy, 
or  (except in a very  crude way) about the validity of multt-Regge models. For re- 
views see refs .  [I~2, I'~ l, 

These many-partlcle models  a l so  give u s  h ~ r  insight Into how to cope with 
spin, For example ff one is in teres ted in a four-polnt  amplitude in which one of t~  
external par t ic les  has spin, one can go to the correSpondln~ f l y . p o i n t  ~ c t i o a ~  
take the residue of the pole corresponding to th!s part icle .  This res idue  gives 
requlred four-point function, which will be a sum llke (6.41) with determined c0ef, 
ficients. This has opened up exciting possibil i t ies for  dealing with multiparticle 
intermediate s ta tes  in bootstrap problems [I74],  but so far  neither the self-corr 
sim.ency of the approach no.,: the validity of the bas ic  postulates has been es tab,  .. 
fished. See ref.  [I~5]. One important  consequence, of #inch models .is that ~ctori- 
zation demands that many of the t ra jec tor ies  should be multiple {IV6]. Thus tI 
leading parent  t ra jectory is single, the f i rs t  daughter Is doubled and the second 
daughter 5 fold. These multiple t ra jec tor ies  do not necessar i ly  have multiple poles 
at the lowest spin values but they do at the higher ones. There  is of course no 
evidence for such a multiplicity of resonances except perhaps 'for the splitting 
the ~2- 

6.6. T.~e problem of d~aIity 
It will be evident from the preceding; discussion that the prec ise  s tatus o! the 

~ : ~ ~ : ' I S  ~ e a r ,  R s e e m s  to be possible t~ construct an ideal dual world 
consisting of an infinite number of paral lel  Re~qge t ra jec tor ies  with zero  width res- 
olmnces which sat isfy exchange degeneracy,  exact  SU($) symmet ry ,  and the ideal 
mixin~ angle between the singlet and octet isoslnglets ,  with no Pomeranchon. ~ut 
suc,l . . .nodel can not be compared directly with experiment beca. se among othe~- 
things it violates xm~tarity. However, if we x'elax the str ict  dua_li~, requirements 
by giving the resonances finite w/dths and ignore the ancestor  problem, pu* ia 
SU(3) breaking for ~ e  t ra jectory functions and ignore the factorizat ion prol~Icm, 
and include the P, we find a world which it can plausibly be. c la imed bears  a strong 
qualitative resemblance to the rea l  world. Indeed it provides the only 'explanation' 
of rmny facts (or seeming facts) such as the absence of exotic resonances,  the 
magnitude of the mixing angle, exchange degeneracy,  and ~' ~ 1is o. 

The agreement  with experiment is far  f rom being quantitative, but it is not clea, 
whether this is (~t) because duality is only valid to an approximation; or  (b) because we 
have not succeeded in constructing dual models for  the real  world, where unitarity 
applies, SU(3) and exchange degeneracy a re  broken, and cuts, and perhaps weak 
exotic resonances,  exist; or (c) because duality is completely false.  Obviously 
uni~u-ity must make quite a la rge  ¢ilfference because  among other  things it will in- 
ter re la te  the P with other t ra jec tor ies ,  require the presence of new tr~,Ljecto'Aes 
(such as those which appear at L ~ . s =-~,  . . . .  which we normaliy choose to ig~ore) 
and will requu-e cWs to ~ ' :e ld  the fixed poles. The fai lures  of Regge fits inv~,~vi~ 
just poles, such as  the factorizatlon problems which a r i se  with conspiracies and at 
the c ross -over  point (see chapter  '/), an,.~ the need for  cuts to explain some of the 
de/dr dips, make it obvious that ff dual models a r e  t r  have any ,,op~ of succeeding 
some way must  be found to incorporate cuts. To gi r t  just one example,  ff the ptc~ 
conspiracy explm~ation of the forward peak in )~p-- ~+n is re jected because of fac- 
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torlzatXon p r o b l e m s ,  thi~ peak mus t  be due to a cut. However in t e r m s  of the s-  
channe~ thie peak  is produced by the resonances ,  in par t i cu la r  the nucleon Born 
term [177]. $o the nucleon pole mus t  be dual to a Regge cut in th is  p rocess ,  not a 
t r a j  ec t o r y ,  

It has been sugges ted  that the Veneziano model should be regarded  as a ~o~.t of 
~orn ai}pro~it~mtion for s t rong  in te rac t ions  [ t~4] ,  and that if some ,~ort of un i ta r i ty  
iteratio~ were  applied the ph~,stcal S -ma t r i x  would resul t .  But quite apart  ! rom tl~e 
d~icul t les  of ¢&rrylntt out ~uch a unt ta r tza t ion  p r o g r a m  it is by no means c lear  
that the f inal  ampl i tudes  will  obey duali ty Just because  the i r  Born approximat ion 
does. 

Wha* is wor se  we have seen  s een  that if dual i ty  is  not accepted at t~e outset then 
the cr i ter ia  used  for  identifying r e sonances  by pa r t i a l  wave ana ly s i s  a re  inconclu- 
sive, and the ex i s tence  of a r e s o n a n c e  can only f inal ly  be decided whet, we have a 
~namical  model  (involving un i ta r t ty )  which t e l l s  us  how to continue onto the phys-  
IcM sheets. One can not te l l  by looking at expe r imen ta l  data alone,  except in the 
c u e  of very  s t rong ly  coupled e l a s t i c  resonance  l ike  the h.  Thus even if the ob- 
served ' r e s o n a n c e s '  (Argand loops) can be made to saturate  the ampli tude this  s t i l l  
does not prove that  duali ty is  t rue  because we do not know if they r ea l l y  are r e so -  
rtlt.nt e s .  

The author  i s  thus led to the somewhat  p e s s i m i s t i c  conclusion that  the duali ty 
ide~ ~i l l  only r e a l l y  become exper imenta l ly  ve r i f i ab le  if a dynamica l  model which 
incorporates it  can be cons t ruc ted .  Until then it will  r emain  a sugges t ive  but tan-  
talisingly i n p r e c i s e  idea whose meaning is unc lea r ,  and whose applicat ion to phe-  
homer.elegy i s  f raught  with ambigui t iec .  On the o ther  hand if such a dynamical  
model can be found it may well be able to ex-p!ain mos t  of wh~t we now know. or 
think we know, about s t rong in te rac t ions .  

CHAPTER 
HIGH ENERGY PHENOMENOLOGY 

?.1. Exchange models 
The pr inc ipa l  a im of Regge phenomenology is  to t ry  and identif3- the exchange 

forces which cont ro l  e l e m e n t a r y  pa r t i c l e  sca t t e r ing .  We have dxscussed the main  
features of the Regge pole and cut exchanges in chap te r s  4 and 5, tnd  in this  chap- 
ter we shall  g ive a r a t a e r  b r i e f  su rvey  of the succes se~  and f a i lu re s  of Regge 
model so 

The dominant  s ingu la r i t i e s  in any reac t ion  a r e  those --'~ich l ie  r i gh t -mos t  in the 
complex J -p l ane .  In cons t ruc t ing  exchange mode l s  one must  of course  bear  in 
mind the r~,s t r ic t ions  of charge ,  baxTon number ,  s t r angeness ,  and C-par i ty  ccn- 
ser~,,~,io~, and cbat-ge conjugation invariance, as we'l a~ the SU(2~ isospin s~m- 

~iscus~ed in chap te r  3, and the var ious  r e s idues  o~ a given poie m a s t  be re la ted b)~ 
factorization. We may also t ry  to add the addi t ional  :-estrict~,ons of SU(3) symme~:,3' 
for the r e s idues ,  and exchange degeneracy .  Though the cu~s a r e  mv,':h l e ss  re -  
~,'xicted, we have seen in chap te r  5 how the i r  p o w e :  t ehav iour  is T c!atect to th;~ .~f 
the p~Aes, and that  there  a re  va r ious  models  which c,~n be used, ;' l eas t  tenta-  
tively, to t ry  and es t imate  the r~aagnitude of the cuts .  

W~- shall see  that  some f eat~.~ . . . .  Regge model,  such as the fact that th,~ 
eaerg:~ dependence of the ampl i tudes  close to the forward  and b ' a ck~ ' rd  oLh*ec*}ons 
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should correspon¢[ to the htgh~st t ra jec tory  which can  be exchanged, ,are v e ~  -w~ 
verified. But there  is rathe~ more : f r eedom at l a r g e r  angles due to the alternative 
choices of sense or  nonsense, e~c,  the arb i t rar , tuess  in the behavlour of the resi- 
due fun£tions, and the uncertain~y in the magnitude of the cuts. , 

The experimental  information available is great ly  res t r ic ted  because the only 
h i g h ~ e n e r ~ a n ~ s  ~vafiable f ~  experiments, are:z  "±, K ~, p, p and 7, and the only 
elementary par t ic le  ta rge ts  a r e  the, p a n d  the ~a~ (The n is  sufficiently, loosly bound 
in the deuteron for  one to be a b l e  to deduce neutron scat ter ing f rom deuteron scat- 
tering w'l~ some confidence.~ Since  iS0spln ~ela tes  x+p r~ ~-n and ~-p = ~+n this 
means that ~here are  just 12 p~ssible incident channels. Fortunately there is a :  
much grea te r  var ie ty  of t w o - b o ~  final s tates  because  one can measmre resonance 
production p r0cesses  such as  ~N -~ ~rA ~ ~ N  with reasonable  a c c u r a c y .  Table 5 
contains a I ts t  of most  of the two-body p rocesses  which have been analysed, to- 
ffether with the t ra jec tor ies  whichcau  be exchanged. : i  

We an t i r~a t e  that  elast ic  scat teri~g will de dominated by the Pomeranchon, p,  
with a(0) ~" 1 (see section 4.8), but there a re  also the f (assuming this to be differ- 
ent from the t z) and the f' t ra jec tor ies .  Each of these has vacuum quantum num- 
bers,  which means  that they can a l so  be exchanged in quasi -e las t ic  processes (i.e. 
no quantum nu~ber  exchange). There  are also the I = 0 ~0 and qb t ra jec tor ies  which 
involve no exchange of i n t e r n a l q ~ t u m  numbers ,  hut which have negative G par- 
try, s o  their  coupling to p roces se s  involving mesons  i s  restricted= Bec~tuse th~ are 
so s imilar  it is usually impossible to separa te  the i r  contributions which are 
lumped together.  The neutral member s  of the I = 1 p and A 2 t r a j ec to r i e s  are als0 

~ # ~ t i  c ~ c c s s e s ,  but these t r a j ec to r i e s  also dominate ch~ge  
~ i ~ c h  demand an I = 1 exchange. The I = I pion is a mu.,h lower 

t r ~ o ~  ~ n  any of the above (see fig. 5), but because of i ts  s t rong  coupAng, and 
the nearness of the exchanged pion pole to the direct-channel  physical  region, it is 
often essential  for  explaining the data near the forward  direction. We therefore 
t reat  pion exchange processes  separately  in table 5. P rocesses  with strangeness 
exchange require  K* and K** t ra jec tor ies ,  ar.d also,  where quantum numbers al- 
low, the K. :"or baryon exchange, p rocesses  (i.e. the backward direction in meson 
baryon sca~ering) we may need ~ e  Na, N 7, a,_~d A 5 t ra jec tor ies ,  depending on the 
amount of charge exchangeci, or ,  ff s t rangeness  is  also exchanged, the A and ~; 
t ra jector ies  will b e  used. 

With this set  of leading t ra jec to r ies ,  i.e. P, f, ¢o(~b}, p, A2, ~r, I~ *, K**, K, Na., 
N~/, ~5, An, AT, ~a,  l~ ,  F_, 7 and ~5, we can hope to fit  all  the var ious  two-bo~,. , pro- 
cesses .  There  maybe  complications due to the p resence  of secondary trajector~c? 
with the same quantum number s ( r e f e r r ed  to with p r imes ,  e.g. ~ , p ' ) ,  but fig. 6 sug- 
gest~ that these a r e  all much lower than the leading t ra jec tor ies  and will no, be very 
important unless  they have very  s t rong couplings or  small  slopes. Ther~ will also be 
cuts, but the dominant cuts in any process  a re  a lways those s temming f.rom the 
highest t ra jec tory  which can be exchange$t together  with the Pomeranchon,  and 
these wiii have  the same quantum numbers (except pa r iS )  and me same intercept, 
as  the leading trajectory (see section 5.6). Other cuts produced by the exchange of 
two or more R~_ggeons o ~ e r  than the P will b w e  a lower intercept than the leading 
t rajectory and a r e  unlikely to be very  important except ~ those p roces ses  where 
no s h~gte t ra jec tory  can be exchanged. We discuss  some examples  below. Other 
%'~ectories such as the A 1 (t-- i ,  , /PC = 1++) and B (I-- 1, d t~'~ = ! +-) are some- 
t imes invoked, but they a re  likely to be ra the r  low lying. The  main reason for 

, , ~  ° 

u,,mg them in the past  has been to obtain a contribution of opposite pari%T to that 
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Process 

Charge exchange 
p rocesses  

r p  -" ff°n 

~r-p - '  ~/°n 

K-p - '  ~Op 

K+p ~ KOp 
~+p .... ~o~++ 

7r+p -, r/A ++ 

K+p --, KoA++ 

K-n - '  N.°A- 

~'N -~ ~)N 

;N-~ WA 

rrN "--' A2A 

~p -~ ~ p  

},p -- rip 

Hype r eha rge  
exchange p r o c e s s e s  

~r-p-~ K°A 

?r-p-~ K°E ° 

rr+p-_~ K+E + 

K-p-~ 7r°A 

K-n -'~ 7r-A 

K-p ~ "n'-E + 

K-n -~ rt-~ ° 

K-p--' ~-~*-(1385) 

Pseudoscalar meson 
exchange processes 

~ p - .  pN 

~Tp-" fo N 

~T p --, A2.. 

: r - -  

i) - '  fo A 

>,' ...... np 

pp~ N~ 

pp --, &A 

Tabie 5 
Regge f i ts .  

T r a j e c t o r i e s  Re fe rences  [o f:t,~ 

P 

A 2 

P+A2 } 

P + A  2 

0 

A 2 

P+ A 2 

P+A2 } 

P 

P 

P 

p + , o  

p+~o 

K* +K** 

K '~ +K** 

K* +K** 

K* +K** 

K* +K** 

K* +K** 

K* +K** 

K* +K** 

?r+A 2 + 

+A 2 

T+A.~ 
- - . I .  

/r 

~+ p~- ~',:+ A 2 

y + p + ~ + A  2 

~7+ p+u) ~A 2 

,~+p*¢0 +A2 

[ 104,182-201,206,281,357,361l  

[128,190,195,196,199,202,206,28!  -284 ,357 .36 !  } 

, [183,190,195,196,199,203,204,206,242,2S1,  

Z~'7,288,357,358,361] 

[205,206,281,289-291] 

[205,206,281,291] 

[203-206,289] 

[206,292,293] 

[216,292-294,296,326] 

[206,294] 

[123,207-210,216,294,297,299-303] 

[2C9-210,294] 

[203,204,213,281,304,357]  

[203,204,213,27 ], 2.':'.~, 3:', ; ,  ~5 :~ 

[213,281,304,357,358] 

[204,305,35 }J 

[203,213,304] 

[203,204,213,289,304,357,358] 

[213,304] 

[203,3061 

[I04,206,244,294,307] 

!2o61 
[I04:225:299,308-31',) 321:! 
[ 310 ]  

[215,217.220,246,3]t,3'.:] 

[216,218,219] 

[104, 215,217,22C,, 3l 1] 
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Process  

Table 5 (continued) . . . . . . . . .  :::::.'! 

Trajectories " References tO fits ' :  

Pseudosc~lar  meson  
exchange p roces se s  

7~P-* ~+n 

yn-~ ~-p. 

p~-. AA(~S) 

rp -" K+A (~o) 

~p _. K.+A ~o) 

Baryon exchange 
p ~ c e s s e s  

.~p ~ p~- 

7r+p -. p~+ 

K-n-~ #~- 

pp -~ ~~d 
.~= 

"yp-~ pp 

~-p--. AK o 

K+p-, pK + 

Elastic p roce s se s  
~r-p-, ~ p  

K-p ---, K-p 

K'n --* K-n 

K+p-,  K+p 

~+n--. K+n 
pp --* pp 

pn-~ pn 

~p- ~p 

pn-~ pn 

Tp -- yp 

7r + p+t¢ +A 2 

7r +p+A 2 
rr+p+A 2 

~+P+A 2 

K + K *  +K**  

K +K* +K** 

K +K* +K**  

N~+N T 

. . . .  • +~  8 
"÷'A6 1 

N~ + N~ 

N~+N~ +4 5 
A8 

Z~+ Zjg+ 2;7.+ Z5 

P + f + P  } 

P+f  - p  

P + f + p + ~ 0 + A  2 

P + f - p + w - A  2 

P +f - p -  ~0+A 2 

P + f + p - C ~ - A  2 

P + f - P - ~ + A 2  I 

P + f + p -  ~,~-A Z 

P+f-I p + ~ + A  2 

P + f - p . ~ ) - A  2 

P + f + p ~ a  +A 2 

[21'6,218,310] 

[71, I04,207,214,216,218,221,299,313-319 i" 

[218 ,  21:8,: 2 2 5 , 2 2 6 , 3 1 4 ]  

[ 7 1 , 2 0 7 , 2 2 8 , 3 1 2 , 3 1 4 ]  

[132,320,321,235,236,238,321 ~ 350] • .:.. 

[237,2s8] 

[234] 

[231,233,235,322,323] 

[235] 

[235,323] 

[324] 

[241] 

[240,325, 35o] 

[ 1 3 3 , 1 3 6 , 1 5 3 , 1 5 4 , 1 6 9 , 1 8 3 , 1 8 9 , 1 9 6 - 1 9 8 , 2 4 2 ,  

2 4 5 - 2 4 7 , 2 5 0 , 2 5 5 ,  " """ ~'~ ..... 2 5 8 , 2 h 0 ,  ~-, ,--~t4 ,~ - • 343] 

[127,153,169,183,196,242,250,254,255,  

258-260,284,  28J, 288,327,337-343] 

[ 2 2 0 , 2 4 3 , 2 5 2 , 2 5 5 , 2 6 0 , 2 6 3 , 3 4 4 - , ~ 4 9 ]  

[267,351-354] 
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Process Tra jec tor ies  

Quasi-elastic 
ptocesse$ 

7rp -" ~N* ( i 4 0 0 ) e t c .  ; 
?.p _~ pop 

~,p -~ cop 

)~p --, @p 

Exotic exchange 
processes 

., ~'p ~ K+~ - 

K-p - '  K+~" 

K'p --' K°~, "° 

~--p -~ 7r+A- 

K'p -~ ~r~- 

".,K~p _, p+E+ 

K-p -~ pK- 

K'P -* nK ° 
- 

P + f + p  

P+A2+  
P+A 2 +~r 

P+A2 +?r 

R e f e r e n c e s  to fits 

[2S8,274] 

[216,226,314,355,355] 

[216,226,314,355~ 356] 

[226,269,270, 314,355,3 56] 

(pK*) 

(pK*) 

(K'K*} 

(pp) 

( p K * )  

(OK*) 
(pK*) 
(K*A  
(K'A) 

(NA}, (N~) 

provided by the  l ead ing  t r a j e c t o r i e s ,  e s p e c i a l l y  in c, onsIoiracy m o d e l s .  Su :h  ot~- 
posite pa r i ty  c o n t r i b u t i o n s  a r e  a l s o  p r o v i d e d  by cu ts ,  howevec ,  s i n c e  th~:v dt~ :~ ,~ 
have def in i te  p a r i ~  ( thas  the  B i s  s i m i l a r  to  a p P  cut ,  a n d  the A 1 to a ~P cut) ,  and 
it is p r o b a b l e  tha t  t h e y  w i l l  not  be  n e c e s s a r y  if s t r o n g  cu t s  a r e  inc luded .  

If we a r e  to  t r y  and i s o l a t e  t he  c o n t r i b u t i o n s  of the  v a r i o u s  s ingxflar i t i~s  i~ ~s 
obviously d e s i r a b l e  t o  s t a r t  wi th  p r o c e s s e s  w h e r e  only a f ew t r a j e c t o r i e s  can be 
exchanged, and  f o r  th is  r e a s o n  we begin  o u r  d i s c u s s i o n  wi th  q u a n t m n - n  tuber  ex-  
chm~4e r e a c t i o n s  b e f o r e  p r o c e e d i n g  to  the  m o r e  c o m p l i c a t e d  e l a s t i c  ~c= t t . .  m~ 
processes .  T h i s  i s  the  r e a s o n  fo r  the  g r o u p i n g  in tab le  5. 

This t ab le  a l s o  i n c l u d e s  a r e p r e s e n t a t i v e  s e t  of r e f e r e n c e s  to s o m e  ef the m o t  
recent f i ts  s o  tha t  ~ e  r e a d e r  c a n  c o m p a r e  f o r  h i m s e l f  the v a r i o u s  R e ~ e  ~' 
From t h e s e  p a p e r s  it should: b e  p o s s i b l e  to  t r a c e  the  e a r l i e r  l i t e r a t u r e  w h e r e  nec ~ 
essaxT. We h a v e  cex ta in ly  not a t t e m p t e d  to m e n t i o n  al l  (o r  e v e n  most} <,,f ~h~' f i ts  
to a g iven p~ o c e s s  ( the a u t h o r  i s  a w a r e  of s o m e  70 p a p e r s  o~ f i t t ing  =-p . . . .  or: f,~r 
exmr ple), n o r  can  we hope to be  c o m p l e t e l y  up to date.  The  d i s c u s s i o n  wh: : ' :  fc~. - 
lows is c o n c e n t r a t e d  on wha t  we  fee l  a t e  s o m e  of the  m o s t  i n t e r e s t i n g  p r o b l c m ~ ,  
and ,re c a n  on ly  p l ead  f o r  t h e  i ndu lgence  of the  a u t h o r s  of n e g l e c t e d  p a p e r s ,  and 
rein ~ad the  r e a d e r  tha t  o t h e r  t h o r o u g h  r e v i e w s  have  been  g iven rece:~tly in r e ~ .  
[15..1"', r s-18q. 
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7.2. Charge exchar, ge processes 
a) ~ "p -, rr°n. Tah~-e 5 shows that only one of our set of Regge poles,  the P, can 

be exchanged in this process,  ~-nd because of this it has been subjected to very 
close scruliny, and fitted by many kinds cf Regge models. 

We have a l ready presented some of the data, and a simple one pole fit in fi~s. 
15 and It ~,. In fact it is possible to obtain a very good representation of the data ff 
the p chooses sense [182,185], and has a zero in the sense-nonsense amplitude 
A+.~ 00 (see section 4.6) at a = 0, i.e. there is no wror~g signature fixed pole in the 
resldue. (We use the amplitudes (4.11).) The forward dip is explained by the dom- 
inance of the spin flip amplitude, which of course has to va~.ish in the forward di- 
rection, and the dip at t ~ -0.6 is accounted for by the nonsense zero in this am- 
plitude. 

UrY,Jrtunately this nice simple p¢cture became untenable when it was discovered 
that there is a substantial polarization (shown in fig. 42). The polarization of par = 
ticle 3 normal to the scattering plane, P, is given by 

pa_~ =d~ ~ [(~3 +/~3)(~3-/13+ I)] ½ Im[</~ 3-  1/~41Ai /~I/J2></~3/~4 IA i .uI/12>*] (7.1) 

a~.d so depends on there being a phase difference between the amplitudes.  We have 
noted that a Single Regge pole gives the same phase to all  ampli tudes (assuming u 
and ,v are real) and so the single pole fit must b,: wrong. 

However it }s not difficult to think up other contributions which might interfere 
with the 9 to produce this phase difference. C,~,e possibility is interference with 
~ectchannel res0nances [186-188], though this explanation is in conflict .~th 
dualiW which requires that these poles should already be includ,~d in the Regge 
poles. The presence of another trajectory, the p', is suggested by the work of 
ref. [733] (see section 6.2), and has been used by several authors [189-192]. The 
p' so ¢.btained has quite a large intercept (~ 0 in ref. [189]) and is muoh above the 
daughter value (a o,(0) = ap(O) - 1). Another suggestion, inspired by the fact that the 
A 2 x~th which the" p may ~e exchange d~ generate is known to be split [48], and by 
the multiplicity o£ trajectories found in multi-particle dual models (see section 
6.5), is that the p trajectory is doubled. A small separation C~p,- ~p ~ 0.1 can ex- 

2C 

! 

tC 

O "  ~1 O.2 O-3 
- t {GeVtc)a 

Fig. 42. The polar izat ion in /r-p--~/r°n from Bona~y et el.,  Phys. L e t t e r s  '23 (1966) 50:. 

5.9 GeVlc 

i 11-2 GcV/¢ 
% 
3C 
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plai~ the polar izat ion [1931. Models  have a lso  been suggested in which the second-  
a~ P' t ra~ector /  is a A = I consp i ra to r  [191-192,194-195],  ~vhich has the adv,m- 
tage of explaining the zero  in the non-flip amplit ,  lde at t -~ 0.15. This  ' c r o s s - o v e r '  
zero ks not apparent  in s imple  f i ts  to the h igh-energy  cha:,-:,re-exchange dffferent~a~ 
~.r0ss sectioh because  of the dominm~ce of the flip amplitude, but is is neo, led t~ 
explain the lact  that in 7rN e!as t ic  sca t te r ing  the d i / ference  

(Tr+p) 

c.hanges sign at this  point ( see  sec t ion  6 below), and it is also demanded  in the 
charge exchange p rocess  by FE$R [133], a fact which we noted in sect ion 6.2. 
There have been many pape r s  applying FESR to de te rmine  the pole p a r a m e t e r s  
f011o~,ing the work of ref. [ 133]. 

Once one includes some such  additional contr ibut ion besides  the p pole one can 
if one wishes al low the p r e s i d u e  in ~the non-fl ip ampli tude to vanish at ~ = 0 along 
with the flip amt,: i tude without t h e r e  being a z e r o  of dc;/dt. This  means  that., e~u,~.~ -~'~-- 
good fits can be obtained with the p choosing nonsense  instead of s~nse [ i96]. This  
choice of n~,nsense is of cou r se  requ i red  ff the p is to be exchange degenera te  with 
the f. The ~nerg3r dependence  in the reg ion  of the  dip is not very. different  f rum 
other t ~,alues, however ,  so the  additional contr ibution can not be 'm~ch lower in 
the:J-plane than the p. 

An obvious way to obtain such a secondar:, c~,ntribution is of cou r se  from cu~.s. 
These can read i ly  fill in ~ e  dip with the r ight  so r t  of energy depende:,.ce, and may 
also account for  the c r o s s - o v e r  ze ro  ['.97--199], though in pract.ice it seems  to be 
difficult to get  th is  zero  in the r ight  pl ice - it tends  to ~-ant to be nea re r  to the 
pole zero, say a~ t = - 0 . 3 -  -0.4.  t~ more  radical  suggestion is that {as d iscussed  
in s~ction 5.6) the cuts a re  ve ry  strong and in t e r f e r e  wi.'b the ,,:. r ~ :  ,~ prnd~e~ ~h~ 
dip a~ t = -0.6 without the re  be ing  a zer= of the pole am:~itude: i .e. ~here is a 
stror~ fLxed pole in the p r e s idue  at cr = 0. Fi ts  of thi,: :ype _~ve beam obtained 
[',.~00], though t h e r e  is some  difficulty in fit+.ing the da~a for i~i :- 0.6 because ~he 
smaller slope of the cut tends to make the shr inkage  of the differea[ ia l  (:rose .~e,.'-- 
ti0n too smal l  at these  l a r g e r  t va lues  [ lYS]. A plot  of h~e effect ive t ra jec to~, ,  
neff, due to the sum of the cut and pole in this  model ,  waich m a k e s  this problem 
rather evident,  is p r e sen ted  in fig. 43. It will be ea s i e r  to a s s e s s  the sever i ty  of 
this problem when h i g h e r - e n e r $ ¢  da~a are  avai lable.  The ex i s t ence  of a s trong 
f~xed pole, which the re fo re  requirer~ a s t rong cut, is certzi~ly suggested b~ the 
FESR analysis  c~ ref. [133] ( see  also ref. [201]). 

This br ief  d i scuss ion  highl ights  both the s u c c e s s e s  and the fa i lu res  of Regge 
theor~. Fig. 16 is  cer ta in!y exce l len t  evidence for  the dominance of a moving Reg- 
ge si,.,.:xflarity assoc ia ted  with the p pole. But desp i te  the reasonably  good data we 
can not ,~ven be sure  whett, e r  the pole is f ini te  in both A+. 00 and A++, 00 at t =-0.'3 

4. ' " (and ~here is s t rong  cut)  or  is f ini te  in A . .  an but not A~_ An (~e.  choose~, sense'!. 
or vanishes ~n both-(cho0ses nonsense) .  A~(~ the secondary co~:'~but~on may be an 
additiv,.~ pole, the p' ,  or  a cut (s t rong or weak) or  di rect  chum:el resonances ;  fa i r -  
ty goo:, fits can be obtained with any of these  hypotheses .  Of cou r se  some additiom~i 
information car. be obtained by examining other  p r o c e s s e s  to which the p also con- 
tributes, but the  ambigui t ies  pe r s i s t .  In fact we shall  find that i~ is quite imposs~ - 
hie to :~rrive at an agreed  set  of R~=gge p a r a m e t e r s  for any p roces s ;  the pa r ame-  

'" " ,o~ Lhe fit. ters o~:,amed always depend on the model  which has been used ~ ~" 
One can of course  invoke addit ional  p r inc ip les  such as exchange degeneracy 
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0.5 1.0 t.S ~0 L ~ 

Fig. 43. The effective trajectory hz the strong cut model for lr-p--,1tOn compared with thee~ 
perimentat values, from ref. [178]. ,: 

which r equ i r e s  a l l  poles to choose  nonsense ,  o r ,  a t  the o t h e r  e x t r e m e ,  suppose 
tha t  a l l  d ips  a r e  .due~to c u t s  t n t e r f e r ~  with ~the, po le s  just  b e c a u s e : s o m e  of.the~.~:~!:!: 
d ips  predic ted  b y  the  nonsense  f a c t o r s  in po les  d o n o t  occur.  B u t  the  unbiased o~. :~ 
s e r v e r  has  to admi t  that at  the  m o m e n t  a l m o s t  a n y  of ~he above mode l s  c ~,n be 
made to give a r~aso:-,. ' .:e fit  wi th  s ~ i c i e n t  t ~ e n u i t y ,  and none h a s  'an,overwheh~ 

shalI  t h e r e f o r e  not go into m u c h  detai l  betowi 
[its but wil l  l eave  the r e a d e r  to look up those 

in  ~ he. :is. i n t e r e s t e d . .  ~ . • ~ . ,: 
b) ~ ' p - ~ / n  ~ ~ cha~,ge exct~fe.  The p r o c e s s  ~ ' p - ~  qn ~ i s  v e r y  s imi la r  to 

the above except  that the A 2 r a ~ e r  t~,an the p i s  the  on ly  pole f rom our l i s t  which 
can be exchanged.  T h e  bas ic  featur~¢ also s eem to be quite s i m i l a r  in that  the spin 
flip at~ pl i tude appea r s  to domina te  (tt~ough the  f o r w a r d  dip i s  l e s s  evident),  but 
t h e r e  is no dip at t = -0.6.  T h i s  meav~ that  the  s lope  of the t r a j e c t o r y  is  harder  t0 
determine.  

The e a r l y  f i t s  used  a r a t h e r  s m a l l  s lope [202], p r inc ipa l ly  because  they a~L- 
sumed the Chew mechan i sm (see  sec t ion  4,6) which g ives  a dip at  q = 0 d u e  to t h e  
vanishing of the  f l ip  ampli tude.  (Of c o u r s e  the  s e n s e  ampli tude r e m a i n s  finite as, 
the r e s idue  z e r o  iS cauce l ied  by the pole}. However  ff the t r a j e c t o r y  ~:hoos~ non- 
sense  both ampl i tudes  a r e  f ini te  (see table 4) and t h e e  is  no  diff iculW in f i t t ing  
with a t r a j e c t o r y  s i m i l a r  to that  of the p [185]. But  even t h i s / i s  not  conclusive,  for 
of the non-f l ip  r e s idue  i s  g iven the change of s ign  at  t ~ -0.15 sugges ted  by the 
crr,  s s - o v e r  ef fec t  a good f i t  with the, Chew m e c h a n i s m  and  a n o r m a l  slope for  ths 
A 2 is poss ib le  because  of an i n t e r f e r ence  b e t w e e n  t h e  two ampl i tudes .  If the p a~t 
A2 t r a j e c t o r i e s  a r e  exclmnge degenera te  of c o u r s e  beth  must  choose  nonsevs~. 

Since th i s  p r o c e s s  is  k i n e m a t i c a l l y  ve ry  s i m i l a r  to ~ ' p  --. ~ n  the  s t rong cut 
model would a l so  expect a dip, and  i ts  absence  has  to be explained by a smal le r  
va lue  of k [180], or  by n o n - d e g e ~ a t e  coupl ings  [361]. 

The prQTcesses K ' p  -~ ~On ~ d  K+n --4 K°p ra re  r e l a t ~ l  to the  above in that they 
requ i re  both the p and A 2 with s a m e  couplings at  the  nucleon end. In fact  ~[ one a ~  
sumes  SU(3): ,~r the r e s idues  one can p ~ d i c t  t h e m  di recUy f rom the f i t s  ~ " p - ,  ~on 
and ~n. Equal ly  good fi ts  c~n be obta ined  with e i t h e r  the sense  or  nonsense  
choosing m e c h a n i s m  so there  is  no reso lu t ion  of th~s ambigui ty  [185]. 
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These processe .s  cau a l so  p rov ide  a t e s t  of exchange degeneracy  because ff the p 
~:nd A2 are exactly exch~.nge degenerate the K+n --" .K°l~. amplRude must be purely 
real (see (4.92)) while that for K-p --~ ~P3n has the er,~(t,, and two differential 
cross sections should be exactly equal, In fact the Kdn data !~s larger than K'p at 
10W energies (< 5 GeV), but they seem to be equal at higher energies [203, 358. 380]. 
Various suggestions have been made to account for the discrepancy at low erter~ ~, 
such as a splitting of the trajectories [204] (the A 2 is heavi~.r than the f), second- 
ary trajectories [204], or cuts [358], However the leading cut (generated by the P) 
produces an effect in the wrong direction, and pole-.pole cuts must be blamed [358]. 

C) Other had~'onic cha~'ge-e~cchang¢ Processes. The remainir:g charge exchange 
processes in table 5 all involve resonance production. This fact introduces further 
ambiguities both because the data are less accurate, and because with the higher 
spins there are more residue parameters to juggle with. The set of processes 
~+p --. IroA ++, ~r+p --* r/A ++, K+p --" K°A ++ and K"n "-" I~'°A" are similar to those dis- 
cussed above in requiring/), A 2 and t)+A 2 exchanges respectively, whi~e ~N --" wN, 
~N--~A ~nd rrN ~ A2A require ord~ the p. Fits to various combinations of these 
processes have been attempted [205,206] using some of the different Wpes of 
models described above. There is of course no difficulty in fitting, but no narrow- 
tag of the range of possibilities either. 

Neutral pseudoscalar-meson photoproduction. This  is  a convenient  point at 
which to d i s cu s s  t-so photoproduct ion p r o c e s s e s  which though they do not involve 
c~rge exchange should be cont ro l led  by the non- s t r ange  vector  mesons  p and ~, 
i.e. )I)-" Ir°P and ~ --. ~p. 

The data for ~p -. ~r°p shown in f~,. 44 are in fact consistent with an effective 
trajectory which is fixed at zero [lq8], which may perhaps indicate a non-Kegge 
behaviour. But it is not too difficult to reproduce this effect (within the rather 
large: errors) by a suitable combination of singularitiev. F~_×ed poles "~re ruled ou~ 
by unRarity, but o~ course a fixed power behaviour may b~ obtained from a ~3~... 0 
term in the J-pian.~, and va r i ous  fixed power f i ts  have ~een suggested.  

The di f ferent ia l  c ro s s  sec t ion  has  a fo rward  dip foiiowed by a fu r the r  dip at 
t z -0.5, which is suggest ive  of an w or!p nonsense  zero. The dip appears  t ~ ~.~ 
filling up with energy ,  however .  C r o s s  seet-~c: ~ for  sca t te r ing  by polar ized phc,- 
tons have been met~sured, and i t  i s  fovr.a that  13~.rpendieular po la r iza t ion  domi- 
nates. This  i s  control led  a sympto t i ca l ly  by na~ u ra l  par i ty  exchange,  so it conf i rms  
the dominance of the p and oJ tra~ectori~.~, and shows that the dip is not filled in ~3y 
a negative parity object such as the B wh-ch was used in earlier fits [207~. If on~r 
makes use of the ),n -. rr°n data it is possible to make an isospin decomposition as 
well, and it is found t,hat some isovector p co:atribution is d~.finitely needed along 
with the isoscalar w. A model with co and f to,:ether with wI' and OP cuts appears 
to fR the data fairly well [208], but as usua2 it is not clear whether the cuts shou~,d 
be strong enough to produce the dip [209], or merely to fill in tc some extent the 
clip produced by the poles. 

The process yp--* r/p has exactly the same exchange, and it is rather surprising 
that there is no corresl~onding dip at ~ = -0.5. Presumably P exchange dominates. 
and it has been argued that the absence of a dip can only nahtrally be ex'plnined by 
a strong cut model [209,210], though the B traJecto-y has been invoke~I [21 I] as ~n 
a!tern~tlve way of f i t t ing it. H ighe r  energy  data s h (  fld be able to d is t inguish  be-  
tween these explanations. 

R has been noted [117,212] that the presence or absence of dips in sc.rre of these 
processes can be ex~plained ir~ terms of the rule enunc~atet~ in section 5.6e, that a 
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Fi~,. 44,  The differential c r o s s  section,  and ~eff(t)  for 7P - " ~ P  f rom ref .  [224[. 

cut-pole interference gives a dip at t = -0.6 If the domi_Tm.m amplitude has heli¢i~ 
flip ~ h -  t~1"/~3t  " 1~2" ~41 = ~: 1. The ~ coupling to NI~ is predominantly elec- 
tric,  ]/~2- ~41 = 0, w::ile the p coupling to NI~ or N :  is  predominantly magnetic, 
I ~2" ~t4i = 1. Since SU(3) predic ts  7 ~ ,  > 7p~-~,, and ~,p~.f > 7 w ~  we find the helic- 

ity flips shown in t a b l e 6 .  Those  with l~h[ = I are  the ones with dips, and the fact 
that this rule works so  wel l  must  be regarded as  good evidence for  the strong cut 
model. ' " 

Table 6 
P r o c e s s e s  with and without dips at t ~ -0.6,  

Proces s  DiD ? Exchange Ah 

7N - - '~N yes o~(p) 1 
7N ~r/N no Pt~) 0. 2 
7N ~ ~r~N no P 0, 2 

~N - - ~ N  no P 0, 2 

~-P --~ ~ <~v y e s  p 1 

~N ---. ~oA no P O, 2 

~ ~A yes  p 1 

~N --~ ON yes  9' 1 
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~/.$:, Itypercharge exchange processes 
These may conveniently be divided, as in table 5, into those processes  where 

the K can be exchanged and mose  where it can not. Where it can not the dominant 
trajectories should be the exchange degenerate (?)  K*, K**. If the degeneracy 
were exact should expect a:~ equality of the moduli of the pa i rs  of amplitvdes such 
as (~'p-" K°h,  K 'p  "-'~°A), (~'+p -*K+~ +, IC'p -'~'~+) and (K'p  -,~'Z+{1385), 
~+p --*K+2~+(1385)). The agreement  is in fact  va ry  poor [203]. The lack oJ[ eqn~tity 
can be blamed ei ther on a splitt ing of the degeneracy [204], or on cuts [3~i8], but as 
with the charge exchange p roces se s  the effect s eems  to be in the wrong di.rection. A 
detailed fit of recent  data including absorptive cuts and gU(3) res idues  has been given 
in ref. [213]. The resul ts  a r e  modera te ly  good given the ra ther  few pa ramete r s ,  but 
the data do not have any dist inctive features  (dips etc.) to constrain the fit strongly. 
Unfortunately there  does not seem to be very good agreement with such little po- 
l~zation data as a re  available.  One can hope that good polarization data will be 
available su ~n using the weak decay of the hyperon. 

7,4: Pseu&~scalar-meson exchange processes 
The gro~p of p rocesses  in table 5, in which the pion can be exchanged present a 

particular problem for Regge theory. The reason  is that many of these reactions 
~ b i t  sharp forward  spikes or  dips (see table 7), w,dch have awidth ~ my and so 
se~m quite c lea r ly  to be assoc ia ted  with the pion, and yet an evasive pion is de- 
coupled in the forward direction (see section 4.3). There are  two possible sohltions 
to this problem; either there is a pion conspiracy or  there are very  strong cuts. 

Table 7 
Processes with dips and spikes near ~ = 0 due to ~ exchange. 

P r o c e s s  Struetu :~ 

The way in which the conspiracy works in photoproduction can be understood by 
wrRing the differential cross section for small I tl hl terms of invariant amplituc~es 
which ~re free of kinematical sing~flarities and constraints [214]0 i.e. 

d= 12+ itliA41 ] , {[IA 1 +[IA 1 + [ t ! [ A 3 1 2 ] } ,  (7.2) 

~'-p --" p ° n  D. :., 

7r+n ~ pOp Dip 

~ p  --p+p Dip 

•+p --, pO A++ Spike 

v+p --* fo A "~ Spike 

?r+n ._, fOp Dip 

T P "-" Y+n Spike 

Y n --" y - p  Spike 

y p  --, ~r-A ++ Dip 

y n  --~ y+A-  Dip 

K'+'p - -  K*~p Dip 

K-p  ""  K*n Dip 

K~p -~ K *A Spike 
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where the f i r s t  t e r m  in square  b racke t s  c o r r e s p o n d  to natura l  pa r i ty ,  ~/= 1, anff 
the second to 77 = -1. At t = 0 only A 1 is f ini te  and must  contain equal  contributions 
from both pa r i t i e s .  The plon couples  only to A 2 and so van i shes  un les s  the residue 
takes the form a2/t. However A 2 can not be s i ngu l a r  so we need a conspirator  tra- 
jec tory  wi th  a s ingular  coupling A 2 ~ - a2/t. However the consp i r a to r  ha~ even 

. . . . .  t - -0  
par i ty  and so does not contribute:  to (AI + t A2), so  i t s  contr ibut ion to A 1 is finite, 
a 1 = a 2. Hence the natural  pa r i t y  A 1 ampl i tudes  i s  finite at t = 0 and has  the same 
res idue  as  the  pion. 

There  were  severa l  succes s fu l  f i ts  of p r o c e s s e s  such as  pn -- np, ~n -~ tip, 
-~ ~+n [71, 72,216,217] making  use of such a conspi racy .  Sin~e the re  i s  no 

known s c a l a r  pa r t i c l e  with the pion m a s s  it  is  gene ra l ly  a s s u m e d  that  the c onspir- 
a tor  chooses  nonse , se ,  a,~d so has  vanishing coupling at a = 0, though a very. flat: 
t r a jec to ry  is  a l so  a poss ib i l i ty .  In o rder  to get a f i t  a ve~T rap id  var ia t ion  of ~ .  
pion res idue  is  requi red  such that  it  van ishes  fo r  t ~ -m~. Th i s  r a t h e r  s trange be* 
haviour i s  found in al l  the t h r e e  reac t ions  above, and is  conf i rm.  :! by FESR. Fac- 
tor izat ion them impl ies  that  a l l  the  7rNN v e r t i c e s  mus t  vanish  at th i s  point. (Some 
authors have connected th i s  with I~CAC.) 

However it  was shown by Le  Be l l ac  [73] that  t h i s  sor t  of consp i r acy  1~ incom- 
patible with factor lzat ion.  Thus  if ~ e  cons ide r  the t-charJael ampl i tudes  for 
yp -~ NN, A x !  00 must  van i sh  l ike  t~, avd no consp i r acy  is  poss ib le .  And by fac ~ 
torization 2-~, 

/ - 0 0 , 0 0  ' 

so if the re  i s  a conspi racy  in pn -~ np and the l a t t e r  res idue  is  non-vanish ing  +.hen 
37rp--,~p 00, 00 mus t  vanish  l ike t. If we Caen look at 7rN-" pA we have 

/~rp "--'N~,~,2 ..,"rp -,~p ~N~,-"N-~ 
k ~-~,00 ) =~00 00 ;~ ~ ~ ~ 

and since the res idue  on the le f t -hand  side is  k inemat i ca l ly  f ini te it must  have a 
dynamical  z e r o  (it can not have  a t½ s ingu]ar i ty) .  Th i s  means  that  the forward 
~N -- pA c r o s s  sect ion is  p red ic t ed  to vavLsh, and so is  NI~ -- ~ , .  There  is  some 
difficulty in t e s t ing  these  p red ic t ions  bec.mse the A is  a broad  resonanc:~ (which 
' fuzzes '  the k inemat ics)  but the evidence is def in i te ly  agains t  i t  [218]. 

This  a rgument  leaves  us  with cuts as the only way of get t ing the forwar,:  7~aks. 
The rapid va r i a t ion  near  t = 0 i s  explained n a t u r a l l y  by an i n t e r f e r ence  between the 
smooth cu~ and the evasive pion pole,  and no z e r o  is  needed in the pion residue. 
Cut models  o f T p  -~ ~+n, ~rN -~pN, ~rN - -pA,  p~ -~nh, np - -pn  and p p - -  nA ++ are 
available [200,209,219,220] ,  and all  r equ i re  v e r y  s t rong cuts,  s t r o n g e r  than in 
most  other  p r o c e s s e s ;  and in p a r t i c u l a r  for  7p -- ~v+n the enhancement  factor X is 
found to be 3.55 [209]. Th i s  makes  one feel  a bi t  uneasy,  p a r t i c u l a r l y  as real ly all 
one is t ry ing  to do is to reproduce  the fo rward  peak  obtained f rom a gauge invari- 
ant Born t e r m  [221], 

A2 = eg 
(s- m2N)(t- m ~  (7.3) 

In fact as  in ~p -~ ~rOp the re  i s  some evidence in both ~p - .  ~+n and TP -- ~-A++ of an 
effective a approximate ly  cons tant ,  = 0 [178]. It ha s  been sugges ted  that ~. is  may 
be a fixed J - p l a n e  pole [222], but unless  someth ing  total ly unexpected is happening 
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this is ruled out by unitar i ty (h igher  o rde r  e l ec t romagne t i c  co r r ec t i ons  ensure  that 
the trajectory has a slope a' = 0 (r~) at least) .  In any case such a fixed pole can 
not be co r re l a t ed  with the pion (a fixed J pole does  not give a t -p lane  and so does 
not correspond to a par t ic le)  and is complete ly  at invariance with vector  domi-  
nance which r e l a t e s  the photoproduction ampl i tudes  with tbose o~ purely hadronic 
reactions involving vec tor  mesons .  

There is a fu r the r  p rob l em with the pion coupling to Vp -~ ,t+n~ namely that if 
one appl:es the usual ru les  of Reggeizat ion (chapter.~ 2 and 4) t h e r e  is no pion pole 
at all [223]. The reason  for  th i s  is  that the exchar, Lged pion is at the t -channel  r~ 
threshold, and if one i n se r t s  the usual t h re sho ld  behaviour the pole is cancel led by 
a kinematical factor .  Since the  pion mauifes t ly  is  p resen t  it is e s sen t i a l  to find 
some w~y of rect i fying this.  One possibi l i ty  is s imply to neglect  the umtar i ty  
problem and invoke a fixed pole ,  but an a l t e rna t ive  which s e e m s  pre fe rab le  in 
some ways is  to suppose that  the 7,r th resho ld  does  not give r i s e  to the usual 
threshold behaviour ,  pe rhaps  because  tlxere is no non- re la t iv i s t i c  l imi t  for photon 
processes. Normal ly  if one w e r e  to a l ter  the th resho ld  behaviour  one would intro-- 
dace a kinemat ical  s ingular i ty ,  but in this case  it does not happen because me sn. 
factor Q~(t) has  just  the f o r m  needed  to cancel  ' h e  s ingulari ty at t = m~ 2. This 
problem only a r i s e s  because  of the  identity of the external  and i n t e r m l  pions, and 
d0e$ not occur  in any o ther  p r o c e s s ,  e~:cept Compton sca t t e r ing ,  which we shah 
digcuss below. 

The very good data on yp -~ ~+n and :/n -~ ,r-p p resen t  an i m e r e s t i n g  challen[~ to 
Regge theor is t s .  As for neu t ra l  pion p~otoproduction, data with polar ized  photons 
make a comple te  exper imenta l  iso~pin '.tnd par i ty  decomposi t ion possible.  If we 
assume that an evasive ,r plus ~rP cuts gives  the ex t reme forward  peak, one still  
needs the p and A 2 to explain the l a rge r  angle data. The ~+/Tr" ra t io  fails rapidly 
from unity indicating the p r e s e n c e  of t~e pos i t ive  G-pari  b- p. U ~ k e  neutral photo- 
production t h e r e  is no dip at t = ..0.6 so one mus t  assume that the dip is filled l~y a 
wrong-signatnare fixed pole and cuts. Both the Michigan and Argonne models  s~em 
to be able to r ep roduce  this  effect .  

In ~,,p -~ 7r -A  ++ d e / d r  is of the same magnitude as 7P ~ t r+n at t : 0, the~ r i s e s  ~: 
a large max imum at t ~ -m~ 2, a f te r  wh:ich descends  to follow the ~'p -- 7r*n da~n at 
larger It l" Again a gauge inv~ariant Born t e r m  can give a good fit near  the fo,. ~a,~<l 
direction [224]. A Regge pole  model  with a pion conspiracy plus the p a~,d a,, .s 
possible, but s ince  the consp i racy  is now ru led  out one must  expect  strong Cuts to 
be present. The re la ted  p r o c e s s e s  yp-~ ~r+A °, 7 n -  ~r+h - ,  and 7 n -  ~r" ~ have also 
been studied exper imenta l ly ,  and seem to indicate the need for an I = 2 exchange as 
well as the p and A 2 [224]. If th i s  is conf i rmed  it cculd be ev idence  for a P-O cut. 
If one is to have any hope of d isentangl ing the pole  and cut co~;a:ibuti~ns one needs  
to look at s eve r a l  p r o c e s s e s  s imul taneous ly  and use the extra  constra int  provided 
by factorization. So far thi~ ~ms only been a t t empted  on any sca le  for these  pro-  

In general  whether  one ge t s  a peak or a dip f rom a ~r exchange react ion depe~ds 
on whether the hel ic i ty  ampl i tude  which domina tes  has zero  hel ici t3/f l ip or no~. 
One cm~ account for the r e s u l t s  of table 7 by supposing that the v coupling to say 
particles I mid 3 f avours  the min imum poss ib le  helici ty change [227], i.e. 
rain l~ l -k31 , though of : c u r s e  for the 1~-~ ve r t ex  we must  have i~.1 :~'3i = 1. Thus 
in rP-- n-p t h e r e  is one unit  of helictty flip in both the ~'~r and NN~r ver t i ces ,  ra~d 
hh -= i~ l -  ~'31 - 1;~2" k4t = 0 and a for~ra.rd peak  resul ts .  On the other  hand for 
~P~ ~rA ++ t h e r e  is one unit  of flip at the y~r end but none at the N~ end so we have 
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~k = 1 and ~. narrbw dip resul t s ,  while for  ~p --. pN the meson ver tex  conserves  
helicity and the baryon one does not, s o ~ h  = 1 and the re  is a forward dip. 

Most of the corresponding K exchange p rocesses  l isted in the  table do not have 
good enough data for convincing fits ~o be possible.  The photoproductton processes 
~p- .  K+A :and ~ - ~  i ' ~ ;  ° can be f i t t ed  wi th  a K conspiracy s im i l a r  to that for the 
pion [71], but because th,~ K pole is so much fur ther  from the fo rwa rd  direction 
there is a f~rward dip ra the r  t han the  peak of pion exchange processes .  Agaln cuts 
can be invo~ed instead o~ the conspiracy [228t~ 

The ~'KNh coupling rcems  to be much l a rge r  ~- ~u ~KN~;, and new data on 
Tn-~ K+L " indicates the need for I --~ exchanges as well as I = ½, This could be a 
p K* cut [224]. TheA* and Z* photoproduction proce~ses a re  very  similar .  In gen- 
eral the strange ~art icle  courl ings seem to be much ~, ~a l l e r  re la t ive  to the non- 
strange ones than one would, expect from SU(3) [224]. In p~ --. AA some forwardK 
contributio~ seems to be. needed, which aF;aln could In principle be produced bya 
conspiring p ~ e  or a cut [229]. 

7.5. ~'aryon exchange processes 
~, Near the backward direct ion of meson-nucleon scat ter ing processes  we expect 
the ~-channel  baryon exchanges~to dominate, ~o backward sca t te r ing  data c,-m give 
us insight into aqu i t e  dtHerent  s e t  of t ra jec tor ies .  This is  pa:¢ t icular ly useful as 
we already have quite a lot of information about these t r a j ec to r i e s  for z., > 0 from 
~igs. 8-12. 

:.The,.~, ~ : . ~  complication that we must expect a A = ½ conspiracy between oppo- 
site ~tmfl tyi t r i~ |~ories ,  so for  pseudosca lar -meson baryon scat ter ing the differ- 
ential c ross  section is 

• ^ -  i 7 ~ ' - ½ .  " -  ~ 'I  l'I, 
where ± correspond to n'~tural and unnatural par ,  ty poles, which satisfy (4.48). 
Thus at fixed u we have. 

d ~, (~ .) ~+ ( ,:,)+.:'( :u )- 2 
- f(u) / (7.s) 

1 

and any odd u~ termr~ ~ ~ do not contribute to ~ ~e amplitude (see (3,27)). The res- 
idues fl must take the mrm [(~-½)t]" I to kill the poles at ~ = -½, -~... provided 
there a re  no fixed poles at  the wrong-signature nonsense points. The ~±p back- 

~p ~t u = -0.15 can be explained by a nonsense zero where a~i = -½, provided the 
N~ co,~tribution is small  [230]. If the Nr were exchange degenerate  with the N~ the 
dip world be completely fi l led in. The lack of a corresponding dip in th~ ¥ p -, ~.. 
data is ~xplained by the dominance of the A 5 contribution. The trajectorie,s needed 
to fit agree well with those of figs. ~ and 9, but ~ dip is to be expected in ~ 'p ~t 
~ ,  = -~, i.e. u ~ -1.9 GeV 2. This  dip is not observed, but its absence can be ex- 
plained by a fixed pole, a cut, or by the t: a jec tory  bending so that it does not pass 
hhrough -~ within the region of a fitted ~230,231]. The res idues  a re  given t~he ~orm 
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Fig. 45, The differential c ross  sections for Ir±p --~ p,~7 e compared with the R,:zge pole fit of 
ref.  [230]. 

~](u) = [a(q-uu+M) + b ( u - M 2 ) ] e  c~: 1 ~7 0~ 
fu- 2~. 

whicil v a n i s h e s  at  ~u = - M ,  w h e r e  M is  t he  m a s s  c the e x c h a p g e d  par/m,',="~ (N ~" A'~ 
in order  to ki l l  the  f i r s t  p a r t i c l e  on the p a r i t 7  double t  t rajectory, . .  The result',-~ : 
t ra jector ies  a r  ~. a~ N = -0 .38  +0 .91u  an.:l a A = 0.21 +0.84u.  T h e  N~, r e s i d u e  :?unct~.~ 
extrapolated to 2he N po le  g i v e s  good a g r e e m e n t  with the ~NN co'opling coas ta l : t ,  
but the A8 r e s i d u e  d i s a g r e e s  wi th  the  h wid th ,  be ing  m u c h  too s m a l l .  'This sug-- 
gests that a m o r e  c o m p l e x  p a r a m e t e r i z a t i o n  i s  c a l l e d  for .  In fac t  if the A c h o o s e s  
nonsense at  aA = ½ (u ~ 0.3-5) and so c h a n g e s  s i gn  t h e r e ,  the  extrapolatio,- ,  !~ m u c h  
improved [232]. 

If we next  t u r n  our  a t t e n t i o n  to  the p h o t o p r o d u c t i o n  p r o c e s s e s  ?-p -- p~O and 
I ~p-+ n~ ~ we f ind that  t h e r e  i s  no c o r z e s p o n d i n g  dip at a N = -~ ,  and that the  r a t i o  of 

p~o to ny + i s  u dependen t  so  t he  I = } and  I = ,~ con t r i bu t i ons  m u s t  have d i f f e r en t  ~ 
dependence. In a p u r e  po le  f i t  it  i s  n e c e s s a r y  to  Lncorpora te  the  N?, l egene ra t~  
with N a in o r d e r  to  f i l l  t he  d ip  [233]. T h i s  i s  v e r y  e m b a r a s s i n g  since: J~e two t r a -  
jectories a r e  c e r t a i n l y  not d e g e n e r a t e  f o r  u > 0 ( see  fig. 8), and  it is  ha rd  to s e e  
why N t. shou ld  c o n t r i b u t e  s t r o n g l y  he:re, and not at al l  in back~-ard  ~N. T h i .  ?r,~- 

"~'-~"~ p o w e r  b e h a v -  cess a lso  shows  l i t t l e  s h r i n k a g e ,  i n / a c t  it  i s  c o n s i s t e n t  wi th  a ,-.~, 

tour at c~ = - 0 . 5  [1'18]. T h i s  c~ri be  exp l a ined  a w a y  by a A 6 c o n t r i b u t i o n  ",~fich is 
small at u = 0 and  b e c o m e s  l a r g e  at l a r g e r  t u [ ,  tIoweve,,'. 

The N a a n d  1~  t r a j e c t o r i e s  a l so  c o n t r i b u t e  to  backmard  pp ~ ~r+d arid the (so  fi~r 
rather poor)  da t a  show l i t t l e  s t n m t u r e ,  and  s o  a r e  compa t ib l e  wihh e x c h a n g e  d e g e a -  
eracy [234]. If the  c o u p l i n g s  a r e  d e g e n e r a t e  h e r e  then they  m u s t  ~dso be in vN by 
factoriL:ation, and  it b e c o m e s  i m p o s s i b l e  to exp la in  the dip by a n o n s e n s e  zeros. 

The obvious  way r o u n d  t h i s  p r o b l e m  is to a s s u m e  that  w h e r e  t h e r e  is dip s t r u c  ~- 
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tm, e it: is: ~ e  to pa te  cut l n t e ~ e r e n c e r a ~ e r  ~ n  the vanishing of the poles. A 

comprehensive fl~. of~sdl ~ e ~  ~ s s e s , : ~ h  s t r o n g c u t s  ihas been re~orted in ref. 
[235], The fit  is  :~a~ly sat isfacta t 'y  given ~ e  ra the~  few ~ral~eters, but, as would 
expected, the discrepancy is w o r ~  for the~TrN -~ N~r procesSeS w h t c h a r e  the ,nes 
best arccunt~= ,~ r by poles alone. On the other hand the A width comes out rigt,t. 
A rec ,n t  comp~,~rison [236] of all  possible Regge pole and/or  cut models for 
~N -~N~ concludes ~ a t  a l l  can be made to work with eq~.d case,  and there is no 
reason to f~vour:~my, • • 

Drago e t a l .  [237] ha~'e used K ' n  -4 A~' ,  which also has a dip a t  u = -0.2, to try 
and d i ~ n g u i s h  between the Argonn,, and Michigan cut models , but both seem to be 
equally sat is lactory.  If  pole dominance i s  accepted the Na exchange in =N -~ N~ aM 
k--n ~ A ~ "  enables one to d e t e m l n e  the ra~io of the ~NN and KNA coupling con- 
stants by ex t rap~at ing  the f i ts  to the pole. A recen t  determination [238] gives 
TKNA = 15.5~:5, ~i'dch Is  within ~ range predicted by SU(3) (unlike some other 
est imates f rom ~sper s ion  rela t ions [239]). 

Of the s t range  ~ o n  exchange processes  K+p --.pK + h~s no dip st:mcture, a 
fact which can readily be e x p l a ~  [240] by A~A~ exchan~  degeneraCy with 

= -0.7 +0.96u, while ~r'p -* AK ° requires  I; exchanges, and a fit with ~ and 
t ra jec tor ies  which a re  degenera te  in (~ (see fig, 38) but not in res idue  has been 
made [241]. It accounts weU for  the polarization. One should expect an important 
c o n t r ~ i o n  f rom the higher lying ~ ,  ~5 as  well, however. 

i 

76, 
There is  of course more  dat~ on elastic ~c ,~e r ing  t~mn other  p rocesses  but 

there ~re a lso m a r e  problems,  mainly because of the ~eed for the Pomeranchon 
: ~ : i ~ i : 1 1 ~ : : ~ e ~ , t ] y : ~ . S ~ i a t e d  with any known ~ ~icle, but s/so because of 
~ ~ b e r  e f 1 ~ r  l y i ~ : ~ a j e c t o r i e s  which contril:ute. 

Many good f i ts  u S ~  j u s t  poles  have: been  achieved  f o r  all the processes  in t a ,  
ble 5, as  well as  some which include cuts. In recen t  y e a r s  it has  become common 
to combine both high and low energy data by using FESR techniques, (see section 
6.2). However a n  of the older  fl ts  a re  in substantial  d isagreement  with the new 
high energy data on ~r'p, ~r-n (= #+p), IC'p and ~p c ross  sections cha ined  at Ser- 
pukhov. This  is not real ly s ~ i s i n g  as the new data do not extrapolate in any 
simple way f rom the old. Since the Serpukhov data  mus t :be  r eagrded  as  prelimi- 
nary, in the sense that the/-e is  a s  yet no confirmat:on f rom another  experiment,  
we shall f i r s t  discuss the p r e - S ~ o v f l t s ,  and then  go on to some of the at- 
tempts which have been made to u n d e ~ d  the newer data. 

Data on total  c ross  sections ~ e  shown in fig, 46. The signs of the contr]~.:~ng 
t ra jec tor ies  in table 5 depend p a ~  on the f ac t  that par t ic les  of even charge con- 
jugation, P , f ,  A 2 ,  c o ~ i b u t e  with the same s ign  to 1+2 and 1 +2 scat ter ing (2 is 
the antiparticle of 2~ while those of odd C, Le. p, ~,  contribute oppositely. Simi- 
larly the isovector  # and A 2 contributiorz change sign under #+ --. ~ ' ,  K + -- K- o r  
p -- n, while the i~oscal~rs a r e  unchanged. The absolute signs within a giv:n ~ ' c ~  
~¢~. p 1 ~ o s ~ s  a r e  .~.~'~ d~ermlnc-d, however. -'~ . . . . .  w© , ~  me'~" signs g~ven . . . . . . . . . . . . . .  m the r~ ,~ ,  
and we have exact  exchange degeneracy i.e. p = ~0 = f = A 2 then the exotic, channels 
(see section 6.2) K+p, and pp a r e  given solely by the P, This accounts fvr the flat- 
ness  of t he i r  c r o s s  sections: compared to the othey processes ,  But asymptotically. 
all the total c ro s s  sect ions  should be controlled by the P so we pred ic t  ~r(~r+P) : 

~=~p) = ~(pp)= ~r(pn) = ~ n )  as  s 0% in accordance 
with the I~omeranchuk theorem (discussed below). 

Similarly if we take the differences ,~(~p)=- ~(~'p) - ~ + p ) ,  A(K+p) - ~(K+n) ~ 
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Fi~:. 46.  Tho  to ta l  c r o s s  s e c t i o n s  be low S e r p u k h o v  e n e r g i e s ,  f rc ,m r e f .  [15]. 

a(K'p) - cr(K+p) " cr(K+n)+ q(K'n), and afplr) - a(pn) ---cr(pp) - o"(pp-) - m~pn) + o.~r~), these 
combinations are given solely by the p. The very small difference between o.(pp) 
and ~tpn) for example indicates the smal~ness of the pNN non-flip coupling. 

The charge exchange processes are re!atel to the elastic amplitudes by. the iso- 
spin relations 

A (,"r'p - '  ~r°n) = A (rr+p) -A (.'rr'p) 

A(IC'p --, i~°r0 = A(K'p)  - ( ICCn)  

A CK+n ~ Kp) 

A (p~ --, iin) 

= A (K+p) - ~t (K~n) 

= A xpp) -A @n) 

A(pn---np)  = A(pp)-A(pn)  (7.7) 

so it is useful  to have f i t ted  the  charge exchange p r o c e s s e s  f i r s t  i9 order  to pin 
down the p and A 2 p a r a m e t e r s  before  t ry ing  the e l a ~ t c  ampl i tudes .  

Some r ecen t  pole f i ts  have been made [189, 9.42,243] us ing seeonda~" f ' .  p' and 
~' t ra jec tor ies  in addit ion to those  of table  5. They  are  ve ry  Impres s ive  cons.~d- 
er~5 purely as  desc r ip t ions  of the ~ t ta .  In pa r t i cu l a r  the s t r u c t u r e  of the pc,I,~riza- 
~2cn~ are v e r y  well accotmted for .  The t r a j e c t o r y  p a r a m e t e r s  [189] are  
c , _ = ~ n ~ , r t  ,~ -_ r,. _- n .~a .09 t_  t~_, = a t .  = t .  T h e o c h o ~ s e s s e n s e ~ , u d i t s ' ~ p i n -  

r a n c h e s  at t ~ - 0 . 6 ,  and~Lhe f chooses  n o n s e n ~  so both its r e s idues  ~p residue " - -* ; " 
vanish at this point. The se ~ondary trajectories are needed to fit the e~ESR, :~ad 
the p' ts also required to ::it the charge exchange polarization. The cross- over 
phenomenon re~erred to '~n s :..tion 2 (i.e. the fact that 

do" (rCp) - ~ -  (rt+p) 



changes sign at t ~ -0.15 GeV 2) ~ e s  a zero of the p residue In the non-flip 
amplitude. KN zud NN show thesame cross-over, an6a corresponding zero is re 
quired in the co residue at t = ~0.15. Such a zero does not occur in other related 
processes such as ~ ~ pN z d yp --" #op, however, as it should by factorization 
[244], so this procedure can not be regarded as sRtiqfactory. But provided one 
doe.s not mind th~ s,nall P slope this cross-over zero is really the only problem 
with purely pole fits. 

Various at tempts  have been ~:~<ie to test  the hypothesis that these .9rocesses 
can be. f i~ea by a sum of a fla~ P plus the d i rec t  channel poles, as  required by 
duality [ 15~, 154,245]. Vloderately good f i ts  can be obtained, but the ambiguities in 
the resonance contributions make them unconvincing, at least  to this author. There 
have also been generally r a t he r  unsuccessful p+tempts to fit ~N ~md KN and I~T 
with Veneziauo models [169,246-248]. 

If one invokes cuts one can explain, at l eas t  in principle, both the cross-over 
zero C~. the usual pole-cut interference)~ and why the shrinkage is less  than would 
be expected f rom a P cf slope ~ I GeW "z, E a r l y  fi ts  were made with cuts gener- 
ated by a fiat  P (the so called hydrtd mod~l) [249-251] but more  recently a P o~ 
normal slope has  been used [252]. The ~ c~n not be the only vacuum trajectory, 
however, because the change of slope of d~/dt f rom the s teepness  of the pole to the 
less  steep cut should o c c ~  at lower  ~ a s  the energy increases  whereas  in fact the 
opposite occurs  [178], To  explain this  one s t ~  needs  include the secondary  f tra- 
jectory etc. The position of the c ross -ove r  ze ro  i~ hard to explain on the weak cut 
(Argonne) model (see section 5.6). The co pole gives a zero at t ~ -0.6 and it is not 
~ o s s ~  ~f9~ ~ e  c u t t 0  move it to t ~ -0.15 [252]. The Michigan strong cut m~iet 
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Fig. 47. The total cross sections at high energies, from rel. [138]. 



R E G G E  T H E O R Y  AND P A R T I C L E  PHYSICS 219 

As we h~ve ment ioned a l l  the  ca: t i ler  f i t s  fa i led  to predic t  the ,qerpukhov da~a on 
:N and hUN t ca t t e r ing  shown in fig. 47. It is  easy  to unders tand why if one note..~ the 
discontinuity of slc,~e between the old data < 30 GeV and the ~r,w Cats, 30-70 Gt~V. 
What is worse  the new K"p data  appears  ~o be runn i .~  parallel to ~ e  K~p dais 
(still omy avai lable  at low energy)  instead of meet ing  it as the Pomeranch',uk t b . ~ . o  ~ 

rein [253], and al l  s imple  Regge pole and cut models ,  require .  S imi l :~ iy  the g~p 
data are not approaching those  for  ~+p. However ,  the l a t t e r  a r e  deduced f rom vzl 
scattering b,~ ~ l a u b e r  t heo ry  (using y ' n  -= ~+p) and so are  in some doubt. 

As usut~! the re  has  been a wide var ie ty  of explanat ions m ~ e s t e d .  They fall into 
three c lasses .  The f i r s t  is  to suppose that  the e r r o r s  in the data a re  r a the r  larg_~r 
than claimed by ~ e  e x p e r i m e n t e r s ,  in which c a s e  Regge poles (with s l ight ly dtffe.r- 
eat pa ramete r s  f rom the p r ev ious  o~aes) s t i l l  f i t  [254]. Or one may accept the data 
but suppose that  despite  fig. 48 the ~±p and K'~p data will eventual ly  meet at -~:. tn 
this case the c r o s s  sec t ions  m u s t  r i s e  again above 70 GeT. A s imple  way to obtair~ 
such a r i s ing  behaviour  i s  to  u s e  cu~:s [255], s ince  we have seen  (sect ion 5.6) that 
the PP cut is  negative and d e c r e a s e s  logarithm.~.cally to leave a domiuant P pole. 
Au example of such a fit  is  shown in fig. 48, and we see that  ve ry  large asymptot ic  
cr0s:: sect ions a r e  predic ted .  
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Fig, 48. A f i t  to  the  S e r p u k h o v  d a t a  with Regge  c u t s  in which the a s y m p w t i c  c r~  .~ se¢'~ uu~s 
a re  p r e d i c t e d  to be  we l l  a b o v e  the c u r r e n t l y  m e a s u r e d  va lue s ,  f r o m  re f .  [~55~. 

The third poss ib i l i ty  is  that  the Pomeranchv.k theorem [?.53] i t se l f  is ~alse, Thi:  
states that the par t i c le  and an t i - pa r t i c l e  c r o s s  sec t ions  on a given target  n~ut~ ~-- 
come equal a t  high energ:¢, and i t s  proof depends ~m assuming  that the a.-~npl~%~de~ 
become imaginary  at high ene rgy ,  i.e. 

Im A / R e  A . . . .  ,-.~ . 

s - ~  

If instead they become dominant ly  rea l  the t beo rem breaks  dog, z, and [he par t ic le  
and aati-partic~:: c ro s s  s ec t i ons  can be d i f ferent  [25{;, 25'7]. Aa d te r~a i i~e  der~,{ ~ 
ti0n for ,~N sc~t te r ing  is  to use  (7.7) mid r e q u i r e  the vanishing (f  the inelast ic  
charge c~:chaage p roces s ,  but th i s  doe~ not work for hUN e*~c. 

It is ;,or -'oss~b!e to cons t ruc t  Regge pole mc~dels wMch viol, [e  this  theorem.  
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~,.~n~,ectt'-~ - it was just because R does satlsfy tlle,Pomeranchuk theOrem that the P0m- 
er~nchon receiv'~d its r~me [55].), The reason tot this iS thatln order to get ~ con- 
stan t asymptotic behavi0~r at oo we need ~0) = 1. But the difference 
[A(~:+p)-A'~!~p)] (s~y) ,~ given by an odd signature trajectory (by crossing sym- 
m,e1::ry) and an odd sigr~tt~e trajectory with:~ = 1 ~s purely real ar~ so does no~ 
conlribute to the total er~)ss section. 't,~dts are no Igood either because they have the 
saree signatu~e prop~ tries and vanish asymptotically. 

~'~vo ways of viola ~ing the Pomeranchuk theorem which have been suggested are 
to ilttroduce J-plane dipoles [358] or othermore complicated singularities [259] 
which can give a finite contrlbution to the imaginary part, or to make the odd si~, 
nature ~,rajectory complex [260], which produces an oseillatlng cross section. ~'he 
firs~ is unpleasant because the slng~larity hH no obvious explanation as a particle 
exc~mnge effect, andtencls to produce logarithmically increasing cross sections,,, 
-~¢hil e the second has even less intuitiPe meaning, ~ 

The pp differential cross sections continue to shrink at hi~4~ energies and are 
con~i~istent with a P slope of about 0.5 GeV,2 for -0.I < t < 0 [361]. This revives 
the idea that the P is associated with the f particle, which would reqaire a trajec- 
tory ap = 1 +0.64t. in this case the P' trajectory, presumably contains the f'(1514). 
It has been pointed out [262] that the f seems to have zero N~ fllp coupling, which 
ff ~rue for the whole t r~jectory  would explain why the ~rN heltcity flip amplitudes 
seem to be very  small. However cuts generated by a P with slope I -an reproduce 
the e~fective slope of ½ just as  well [263]. 
• i/i i ~ i ~ ! i ~ b : ~  ~ the resu l t s  of the f i r s t  Serpukhov exper iments  are  so on* 
ex~dc{~:~t: one is ~ i n g  to put too much weight on them until they are  inde- 
pendently confirmed. R will b e  a very unfortunate coincidence if nature has chosen 
to change the slopes of the total  c ross  sections just at the maximum energy of the, 
previous genc~r~_~o~ of acce le ra to rs ,  as  fig. 49 suggests.  

The fin,Al elastic process  in our list, Compton scattering,  presents  a particular 
difficulty for Regge theory [214]. One expects of course a constant cross  section 
controlled by the P, but because of the hellcity of the: photon (~, = ~: I) ~ = I is a 
wrong-signzture nonsense point. Hence the P coupling would have to vanish at 
a = I i.e. ¢ = ~, if there were not a wrong=signature fixed pole [265]. But it is 
rather peculiar that Com~.jtou scattering should be controlled by the third double 
spectral function in this way. Au alternative wry out of the dilemma [:..3] is to 
note tJ~t t = 0 is the y), threshold and [~ one is willing to ~ter the threshoi,~ ~,eh~- 
iour on the grouuds that the rhoton h~ts no non-relativistic lima (just like the )~ 
threshold in yp -. ~r+n cliscusseC above) the nonsense deco,upling factor (~t)-1) can 
tel)lace the required kinematical zero ancl leave a finite coupling. ~dso because 
this process has two ~ectromagnetic veri~ices the usual theoretn ?,~,.st the pres- 
ence of a fixed pole (which still applies in photop~-oduction) brvz~ks down [26~]. Fits 

presence cf ~t real part unconnected v,~th the Re~'ge te.~s, and of m~gnitude 
roughly equal to the Thomps)n limit (= - I/137mN) [267]. This could Le Interg: c~- 
as a fixed pole at J = 0. 

7.~. (~asi-elastic scctt¢ri~zg 
In view of our uncer t~nty  about the .~ tu re  of the P required in eiastic sc:~tte~ 

ing, it is important to ?xy and '~est whether quasl-elastlc processes (i.~. processes 
which are inelast::Lc but involve no exchange of qtmntt~ numbers) ar 9 also con- 
trolled by this tr~.jectory.-, and hence have constant cross sec~ions. 
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In fig. 49 we show the cross sections £ "r ~rp --- ~N*, where the N*'s are various 
I = ½ nucleon resonances [268]. The data are not particularly good, but clearly in- 
dicate constancy at high energy. This is to be contrasted with the decline of the 
cross sections for production of I = ~ N* resonances which are controlled by the p 
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Fig. 49. The total cross sections fox' the production of so: ,.a N* r~sonances~ from ::ef. [2rS]. 

The vec to r -meson  photoproduct ion p r o c e s s e s  also provide a .,z, cfu: test ,  and 
again the c r o s s  secttom~ seem to be compatibh;  with constancy,  at  le-~st for  the p 
,':~d ~ [224]. T h e r e  is  a l a rge  slope in the 00 c r o s s  section at low ene :g ies  which 
can be at t r ibuted to ~-exchange s ince one exp,: ~ts f rom SU{3) that  the ~v~. coupling 
vltJ be much i a r g e r  than the pity. It has  r ecen t ly  been pointed out by L~arger and 
Cli~e [~69] that  the r eac t ion  :,,p -- ~/)p may of ie r  a pa r t i cu la r ly  g~ood cb.~nce of ob- 
~srving the P t r a j ec to ry  unencumbered  by the P '  (or f?) which compt ica tes  ~ e  
analysis ot o ther  reac t ions .  The  reason  for  tbAs is Lhat because of the mix ing  angle 
{section 6.4) the ¢ is decoupled f rom non-st.~'ang~ hadrons (it is made up of 
qua~k.q) so that  in ~bN --- CN (in which o~fly I = 0 :-,1 ates can be exchanged) the c~ 
should decouple f rom the ~ leav lag  just P exchaLge. According to the vector  domi-  
nan~ce ~ypot~es!s 

dt ( ~  -" ¢17) = 4 ; ~  ~} ( ¢ t r  P -- ~P) , 
[ 

whel 2 $ t r  me~.,s a t r a n s v e r s e l y  polar ized ¢ meson,  and r $  is, the b~ coupling. 
lhe rather  :~,,or data on yp --* ¢p sut,~est a P s lope of about ½, bu* because of the 
~)sstbi!~'y that  one is  r e a l l y  obsex.,,ing a se t  of mult iple P cuts this  only relate-  
seats a .ower bo,~:.:d to the slop,:. !'n fact a cut ana lys i s  suggests  a~ ~ 1 GeV 2 
[270]. A P with such a l a rge  slope is r a t h e :  d i t [ i c d t  for the duality, hypothesis  be-  
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caue,~ it will produce Schmid loops in exotic cnpnnels, and s o  requires [}-c mtro- 
duct ion of exotic states. Also if the P is identl fled ,."" , , ,m  t h e  f ,  t h e  p fA~ e. degene r -  
acy ,  whl , 'n  , s  e s s e ~ ( i a l  t c r  po l e  dua l i ty  ( s e e  s e c t i o n  8.4),  i s  d o , t r ~ ' e . d .  

7.8. No s~nglv pa, :i~tv ~x,'/,,,nge.. _ _ .  poss ib l e  
An important tc:,t o~ .'.:e c o n s i s t e n c y  of o u r  t h e o r y  is  thnt  th,_,~e p r o c e s s e s  where 

no known t r a j e c t o r y  can  be  e x c h a n g e d  s h o u l d  :,.~', g ive  r i s e  to p romtnen~  iv; ward or 
back-ward peaks. Some ~xamples are given in table 5., none oi which have any~ .~Ig- 
nifkant structure (in ;a,.t several are too small to measure), This confirms the 
assoc_;~tiun u[ peaks  wit, t p a r t i c l e  e x c h a n g e s ,  a n d  once  tha¢ i s  grantee1, sh~v,~s that 
Lhcxe a r e  po s t r o n g l y  c o a p l e d  exo t i c  ~ ,'* ,-;," in c h a n n e l ~  t r a ~ e . , o  . . . .  a the  c o n s i d e r e d  There 
should ,  h o w e v e r ,  be c o n t r i b u t i o n s  f r o m  m u l t } p l e  t r a j e c t o r y  e x c h a n g e s ,  and the two 
Re ggeon  c u t s  which  one w o u m  e x p e c t  to  d o m i n a t e  (g iven  the  r u l e s  of s e c t i o n  5.6) 
a r e  shown in t he  table .  A d e t e r r n l n a t ~ o a  of  t h e  e n e r g y  d e p e n d e n c e  and magni t , ,des  
of t h e s e  a m p l i t u d e s  cou ld  p r o v i d e  a good  d e a l  of  i n f o r m a t i o n  a b u u t  t h e s e  cu ts .  Un- 
f o r t u n a t e l y  e x p e r l m e n t s  on ~ - p  --  r, + ( m i s s i n g  m a s s )  s h o w  no a m p l i t u d e  , ,  211 
[271], wh i l e  K - p - - p K -  s l :ows  a s t r o r g  d e c r e a s e  ~ s - 9  .,* ' .... . .  ~..... , : , , e rg i e s  (~he reso-  
nance  re~ ion)  r~v.--~ T h e r e  siao~fld b,~ ~, " "  - .'. . . . .  1" .. , ,  ,-, cu t  vAi.h a~: s -3  d e p e a d e n c e  but this is 
not seen .  A moo,el of "./'~s cu t  h a s  been  s u g g e s t e d  [273],  but  it  i s  we l l  below- the 
b--ua,,~ oi t he  p r e s e n t  h igh  e n e r g y  e x p e r i m e n t s .  R m u s t  be h o p e d  tha t  m u c h  bc~Ler 
data  on t h i s  s o ~  of p r o c e s s  wi l l  be  a v a i l a b l e  b e f o r e  t~,,, l=.~,s. 

7.9. Factar iz~ , t iw,  
The question of the faetorization of Reg~ze pe!cs deserves a more general men- 

do**. 
We have ,,sed arguments based on lactorization to decide against the existence 

of a cross-over  zero in the p and w trajectories 2', t ~- -0.]5, and against the co,~- 
spiracy expl~J~atior of ,; dominated read[ions. But one ought also to a~k whether 
there is any direct: experimentM evidence in favour of factorization. In fact it is 
very hard to ob,tain because one can not do ~he necessary experiments; e.g. one 
can Icok at ;TN and l%rN scattering but rot ~7~. One fairly direct test !274] %r th~ P 
is to test the equality- 

,.'la de; 
(NN- .NN)  ~ -  (NN--NN*) 

,4~ -' 

do" (~rN -~ ~N) ~'~ (~N -- 7rN*) 
dV 

, I 
where the N ~ is any., ~ nucleon resonance. The ,,~,.-k..~ -,, = , . ~  , . . . , , .  ~,lc~e is  2.7 at t = 0 and 
the  r ~ g h t - h a n d  s i d e  is  3.2 a n d  2.9 for  the  N * ( l a 0 0 )  and  N*(1688) r e s p e c t i v e l y  {v,'~[h 
e r r o r s  of ~= 0 .6  on e a c h )  T h i s  i s  s o m e ,  but  not  v e r y  s t r o n g ,  evidence-_ : ~  " .t::." "¢,,~ri- 
zat ioa .  B a r i  an.. ? .azmi  f2 v~l t . . . .  j h a v e  looked  at  t h e  r a t i o  

/ d o  
d__c (~rN --  ~N) " (NN -- ,rNN) 

i o r  a r a n g e  of  zrN f i n a l - s t a t e  e n e r g i e s  and  f ind  good  a g r e e m e n t  wit*- factoriza~ ~on 
a e s p i t e  t he  f ac t  tha t  t h e r e  wi l l  be t -- ~ c o n t a m i n a t i o n  ( d r o p p i n g  wi th  i n c r e a s i n g  ca- 
e r i c  of c o u r s e ) .  

T h e  a b s e n c e  of m o r e  d i r e c t  t e s t s  of f a c t o r i z a t i o ,  p e r m i t s  t h e  (?  fP, et ing) 
~hought t h a t  p e r h a p s  alI  t r a j e c t o r i . e s  :a 'e  m ~ t i p : . e ,  a s  s u g g e s t e d  by. t he  sp l i t  A 2 
:rnd mu!ti-partic~e Vei~eziano models [276]. A sraali splitting can explain several 
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of the, p r o b l c m ~  of the  s i m p l e  po~ : m o d e l  ( s u c h  ,,.s ~ ' p  .... *%: i:' L:~iization ( s e e  sec--  
~,vn z) :~,M the  c r e s ~ - o v e r  z e r o )  but  not ,he ?: C O t t ~ p l l ' : l c y .  HOW(?VC: , S~ll¢~C~ w e  k ~ l o w  

[jl;lt n,,,~ f a c l o r i z a b l e  c, .! tg h :uS~  d i d o  De 1 , r e sen t  it s e e r n s  m '  :.d :m:'. '-'~] ',, :;, .... ~,. :~,~,,~, 
",,ia ..... ~: ,.[ [ a c t ~ r i z a t i o n  ( m  ! h e m .  

C T,,-T A ~ ' 1 ~  ~ 

~ u , v s ~  CONt;LU~IONS 

The d isc tmsion .~  of  the  p r e c e d i n g  c h a p t e r s  s h o u l d  be  ~u.~f~cie;d to v i n d i c a t e  the  
el,din m a d e  in the  i n t r o d u c t i o n ,  tha t  R e g g e  ,4 , ,  . _ o . . . .  t,~t:~ry p r m  ide3  a m o s t  su¢'rCc,~ti:  at,~ 
?roach ~() h i g h - e n e r g y  ~ , ca t t e r i ng ,  and tha t  , t - p l a n e  an'~.'-_: ~-;,-,. m an e s s e n t i a l  t oo l  f o r  
,nde, a , and l  g a~rong t n t e r a c t i u n s .  

D c ~ t t e  t h e  m ~ - y  . . . . .  " " : "  . , . . .... ,.,~g'a,tms we' h a v e  b ~ n  a b l e  '~o d r a w  s o m e  r e a s o n a b l y  f i r m  
r:,a,Aumens a b o a t  F~egge p o l e s .  M o s t  t r a j e c t o r i e s  s e e m  to De . . . . .  , : . . , . ~ . . , , , . , 1 1 , .  ....... ., . . . . . .  ~ a ~ g n t ,  " 
parallel l i n e s ,  wi th  a s l o p e  "~bout 1 G e V - 2 ,  a n d  n , apy  ,~ tL~ domin~n. t  t r a j e c t ~ c ~ c s  
are a p p r o x i m a t e l y  e x c h a n g e - d e g e n e r a t e .  Wc h a v e  found no e v i d e n c e  tLat t raje, : :c~- 
ties take p a r t  in. c o n s p i r a c i e s ,  b~t  al l  s e e m  t o  h a v e  T o i l e r  n u m b e r  A .: i .  T h e r e  is  

Vrvmem w i t h  r e g a r d  to  t h e  b a r y o n s  in *h~. • ~ . . . .  c, ne d o e s  not f ind  a p p r o x i m a t e ! y  d e -  
generate p a i r s  of  opp.e$i tc  p a r i t y  t r a j e c t o r i e s .  T h i s  is  i n c o m c a t i b l e  w~i~h the  
s t ra ! izh t ,ess  of  the  b a r y o n  t r a j e c t o r i e s  "-' u , , . ,ess  t h e r e  is  s o m e  m e c h a n i s m  to  m a k e  
the r e s i d u e s  ca t f i sh  f o r  e v e r y  i n t e g e r  on t h e  odd  p a r i t y  s i d e :  n r  . . . . . . . . .  ~c.,n,~ ~.-~,,.:~.~. .... .%~:'-- 
l'~e the C a r l i t z - K i s l i n g e r  c u t  ( d i s c u s s e d  in s e c t i o n  .~ 7) Is m , o K e u .  T h e r e  is  v e r y  
little e v i d e n c e  f o r  d a u g h t e r  t r a j e c t o r i c s ,  and  it s e e m s  l i k e l y  t ha t  if they  e x i s t  t hey  
stay i~, the  l e f t - h a ! f . 7 . - p i a n c ,  s e r v i n g  m e r e l y  to  p r e s e r v e  a n a l y t i e i t y  at  t = 0, amt 
do no: ~jron.uce p h y s i c s  p a r t i c l e s .  T h e i r  s t a t u s  m a y  r~(: s ,~ ,~ ,~r  ,., ~ , d  , f  ,,.,~:. ~,,a,,, 
unim~;or~ant l o w - l y i n g  : r a j e c t o r i e s  iL p o t e n t i a l  s e a t t e r : n g ,  s a e h  t s  t h o s e  wh ich  o '  
cur at t h r e s h o l d s  at L : --~, -~ . . . .  

The n a t u r e  of  the  P o m e r a n c i ~ v n  i~ s t i l l  u n c e r t a i  . T h e  f ac t  th:~t the  F7 d;~l , c , , :  ~- 

tmue l~. b}l rmk at Serpuk.hov e n e r g i e s ,  r e q u i r e s  a movin~.~ ~i,,_..,a..~.,, ~ ' ~  . . . . .  :..~..-. .~.~" ~a:~. ~'~,~ ;::, ,  

know of a m e c h a n i s m  w h i c h  c a n  p r e p u c e  c u t s  w i t h  ac(0)  = 1 if  t h e r e  a r e  not  a l s o  
poles with c,(0) = 1; bu t  w a e t h e r  the  . '  h a s  the  s l o p e  ~ndica ted  b y  the  pp da t a  (-: 0 .5)  
and so p e r h a p s  passes  ~hrough  t he  f, o r  ha~ a s i m i l a r  s l o p e  to  o t h e r  t r a j e c t o r i , , n  
(¢ 1) but i s  p a r t i a l l y  m'.~sked b y  the  c u t s ,  r e m a i n s  u n c l e a r .  

We have  f o u n d  no e v i d e n c e  i o c  f i xed  d - p l a ~ e  s i n g u l a r i t i e s  ' -  "~-" ,~p~_~ ~ .{~-um ~he non ~ 
sense "~ ,Tong-s igna ture  f i x e d  r,~ ' ,  ,' . .  ,.:~), e x c e p t  p o s s i b l y  in s o m e  p h o t o p r c 3 u c t i o n  p r o -  
0"£sc, ~, bu~. eve : i  h e r e  ,~hc -hvld, :"cc s e e m ~  ~:o b (  ~ga~.,_;t t h e m  a t  l a r ~ e r  t~.  

Pf,]-f, eAone a r e  not  a b l e  to  ,fit the -~-~3, h o w e v e r ,  becau:- ,e i~ p a r t i c a l a r  the  
c r o s s - o v e r  z e r o  and  th3  p~on c o n s p i r a q r  a~ i n c o m p a t i b l e  w i th  f a c t e r i z a t i o n ,  an 
to ex33Aain t h e ~ e  e f f e c t s  w e  m u s t  u s e  c u t s .  ~ e k n o w  on th~n,~÷;~-~] . . . . . . . . . . . . . .  ~ v u , t u ~ -  t h a t  

cut" a r e  n e e d e d  to  e x p l a i ' :  h o w  t h e  G r i b o v - P o m e r a n c h ~ k  fk~ed p o l e s  a r e  s h i e ! d , : c d  

from ~ae u n i t a r i t y  e q u a t i o n ,  Nat u n f o r t u n a t e l 7  -,v~ do not have  ~ r e i : a b l e  mc,dcl  ~. 
calcul:~e t,he~v m a g n i t u d e s  b e c a u s e  t h e y  d e p e n d  (at  ! e a s t  in F e y n m a n  d i a g r a m  
m ~ e ! ~  on c o n t i n u i n g  t he  R e g g e a n  c o u p l i n g s  oU the  m a s u  ~ a e ~ .  ~ ne v a r i o u s  un ~ 
mass-sl~el l  ~ r e s c r ! p t i o n s , .  s u c h  a s  the  au~, , ,  p~,.  '-:-7c and m ~ o a a i  m o d e l s ,  do ,~ot ha~ ,, 
any w: W " . o m p e l l i n g  t h e o r e t i c a l  b a c k i n g ;  i n d e e d  bo th  s e e m  to  i , v o ] - e  p l a n a r  cii~ 
[Tram~ which  s h o u l d  not  g i v e  r i s e  ~e c u t s .  

: " u d e s  is the  e r i n c i p a l  Th~ a b s e n c e  of a r e l i a b l e  m e t h ~  of  e~tiT-. _.,,n.g c , t  m a g ~ i  ~ 
,~,~,~:.~. of R e g g e  p h e n o m e , o t o g y  ;:t~ pre,c~nt.. . It h a s  no[ s o  f a r  e e e n  ,~oss ib le  to di~ 

tingut,~h e x p e r ~ m e n t a I l y  be* , e % :  t t e  s o  c a i t e d  s t r o n g  (or  M i c h i g a n )  cut  r ~.:;.~I i~. 
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which pole-,cut interterenca i~ rerpOnmible for the vazious dips in the differentia} 
cros~ sec t ions ,  and the weak (or A ~ n n e )  model  in which the Oole~ themRelvcs 
have ze ros  at wrong-s igna tu re  nonsense  points ,  and the cuts  s~ rve  mere ly  t~ mov~ 
or fill  in these  zeros.  But is s e e m s  l ikely that be t t e r  data, p a r t i c u l a r l y  ou p~L~rt- 
zations may enable a choice tc be made. It must be born In ~T,i~u!. however. :~t 
since ne i the r  mode) has  a ve ry  sound theo re t i ca l  s ta tus  it is  quite  pus~ibie ti~t 
nei ther  will  be found to work ~n al l  p r o c e s s e s .  At present  )~p -, ~+n seems  to r~- 
quire  very  s x o n g  cuts (even by the s t anda rds  of the Michigan model) white 
1r'p -" ~On w~:~uld be quite happy with a lmos t  n e g l i ~ b l e  ones, 

The plea  for be t ter  data i s  of course  p e r r e n n l a l  among t h e o r i s t s ,  but so m~tch 
has been l ea rned  by f i t t ing two body p r o c e s s e s  that  one fee ls  jus t i f i ed  is ~sk[~g for 
more  data ou resonance  product ion  p r o c e s s e s  so  that t e s t s  of ~c tor iT~t i~n  c ~  b~ 
made; more  high energy polaz ~,y ~tion m e a s u r e m e n t s  so ttmt the spin structur~ o~ 
ampl i tudes  can be determineei  ")~Ith g r e a t e r  confidence;  avd of course  the more 
dp.~a the re  t:~ on any p r o c e s s  at  l a rge  s m~d t the bet ter ,  s ince  the  different  pole 
and cut mode l s  become more  read i ly  d i s t inguishab le  at h igher  ene rg ies  and ~qder 
angles.  It s e e m s  tlmt more  is l ikely to be l e a r n e d  in the uear  fu ture  from qt~s~ 
t,~o-body p rc f~c t ion  e x p e r i m e n t s  th~u f rom more  complex final  s t a t e s  ~ t c h  ~re 
so much ha ~er to ana lyse .  

Dual mocic~ls, which have enjoyed such a vogue in recent  y e a r s ,  pose scrne very 
difficult  t heo re t i ca l  p rob lems .  We have seen  An chapter  fl that  ~he ideal duai ~ r l d  
where eve ry  ampli tude is  s a tu r a t ed  by na: ' row re sonances  whlch f;t~i into non-c~- 
otic. SU(3) mul t ip le t s  with exchange degenera te  t r a j e c t o r i e s  bear,,~ ,)~y ~ partial ,  
a n d ~  ,no ~ . ~ . m  quanti tat ive,  re la t ion  to na ture .  Once one at ter , ,pts  'o make cor- 
~ | b ~  fo r  un i ta r i ty ,  SU(3) breaking,  et? . ,  the whole edif ice s e e m s  to erv:,~bk,. 
The model  becomes  too i m p r e c i s e  ~'o t e s t  because  there  .~re so many 4mbtg~tities 
in de t e rmin ing  the exis tence  and magnitude of ine las t ic  r e sonances ,  a~d in how to 
continue a R~.gg, e pole term to low energies. One can not decide what is meant 
'broken duality' until one has a clear idea of ~at exact duali~ means (ff any! ,lag) 
outside a wc>rld of narrow resonances. R seems to the author that little if any 
progress can be expected ur, less and until some fairly precise pz cscrip~ion can be 
g~ven for constructing dual models with reso~ces of flare ~dth, ~.~o that there is 
a ~efinite prescription for continuing the amplRude onto the unphysi.:~d sheets to 
the pole~. The Veneziano models provides no help in this, and not s~rprising',y |t 
does not fR two-body processes at all well. 

Most of the problems really stem from the Lact that duality is tot v.~tc ~o bc 
~ndamental principle itself, and yet it is hard tc. see from what more oa~;: con- 
cept an approximate duality could derive. At the moment At is a purely ad hoc ~o- 
rich. Probably the chief current interest in dual models is that they provide ,~ cc.~- 
venient framework for constructing many-particle amplitudes which ha~e the c.e- 
qulred poles and multi-R~:gge behaviour, rather than in duality itself. 

Though Regge phenomenology has made great progress in the la,,~t few yea~-~ the 
same can not be said for our understanding of the basic dynamical principles on 
which this success presumably depends. In particular both the straightness of the 
trajectcries, and exchange d~geueracy, are completely unexpected, and seem quite 
~tt variance with the potential scattering ideas which motivated 'he introduction of 
Regge poles into particle physics. In potential scattering [4, 5, 14] the leading tra- 
jectories satisfy dispersion relations of the form 
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~; tl ~ t '  - : 

thr:,5'~,,!d whe.'] h!~o, become~a s i z e  d~,ie, a:~, ; h e ,  ~utu ,h: ,<:  agai~t. Exit ,art ,go ki~.~,c,, 
er~te t r a jec to - i ' l e~  o e - u r  ~nly  in the  a b s e n c e  of  an  e x c h a n g e  (Ma. jo raa~)  t o r c e .  

Nmm of t h e  a t t e m p t s  w h i c h  h a w ,  b e e n  r ~ade to  c a l c u l a t e  R e g g e  t r a j e c t o r i e s  f r o m  
'equlval. ,nt  ~}otent ta ts '  [ I5 ~'7'/] h a r e  b e e n  a b l e  to  r e p r o d u c e  s u c h  s t r a i g h t ,  ~ e g e n -  
crate l r a j e e t o r t e s .  T h e  l a c ~  of  c u r v a t u r e  i s  in f ac t  s t ro~,g evtd~ n e e  tha t  the  c h a n -  
ne!s which  c~mt re l  the  d ; , n a m i c s  a r e  of v e r y  h i g h  m a s s  [278].  Th~s  is  c l e a r  f r o m  
{~.!} h~ t h a t  if the  t h r e s h o l d ,  t o ,  ii~ (8. t}  is  v e l T  fa~ away we ¢:a~ a p p r o x i m a t e  ~h~. 

,.t(t) ~ a ( ~ ) , R / ( t p -  t) f o r  it i ~- t o , {~.2) 

Mlere tp ,, t o . T h e n  ~ ' (0)  = / ~ / t ~  and  a" (0 i  = 2 R / t ~  ~:. we get  c~' ~, o" ( p r i m e  d / d / )  
aM ,'by t r a j e c t o r y  i n e a r l y  s t r a i g h t  f o r  s m a l l  t ,  

T~':: d o m i n a n c e  e~ s u c h  a h i g h  m a s s  c h a n n e l  i s  st~ ongly  s a g g e s t i v o  of thc~ h e a v y  
quark m , ~ e l  of c o u r s e ,  a n d  t h i s  c a n  a l s o  e x p l a i n  why the  t r a j e c t o r i e s  a r e  e x c h a n g  
degene ra t e  in t ba t  t h e r e  ~ t t l  b e  no p a r t i c t e - e x c h m i g e  f o r c e s  in t h e  exo t i c  qq u c h a r -  
nel, ;,~:: oPJy In the  qft ? c h a n n e l .  But ,  it shc~a!d be  no te  z t ha t  t h e  o b s e r v e d  r e t ; i due : ;  
wilt no~ ~,+~ . . .  ha.  ge d < : g e n e r a t e  in t h i s  m o d e l ,  for what  we s e e  a r e  the  c o u p ] b i g s  t o  
lmv re: . . . . . .  '.,=,~ ~ ' , ; ,  and  ~ i s  on ly  ]n t he  " m o b s e r v e d  qq c h a n n e l  tha t  the  r e s i 6 u e s  
~'lll D: deg , ene : ' a t e  [Z 19]. ] ' h e r e  i s  a aKI i c t f l t y  wi th  t h i s  q u a r k  mod: .q  h o w e v e r  [2~8] ,  
for ff the t r a j ? ~ c , ~ v  is  t o  . ' .bey (8.2) wi th  G(0) = -~ and  a ' (9)  = l G e V  "2,  we, h a v e  

I a(~)  = - ~ - t p G e V - 2  

Now }~j is  a b o v e  th<!. qq t h r e s h o l d  at  4ran 2, s o  .ff t he  - a r k s  il~,v~, m, -..qe~ .5 ai~m~ i,q 
cert. say. t h e n  o,(~) ~ - 4 0 0 .  In po, t e n t i , q  ~ c a t t e r i n g  (be,:. f o r  a Yuk ; , v : ,  ~;~.,<~,.'~i~',., . . . . . .  
t(r) X e - x r , ' r )  the  l e a d i n g  t r ~ e c t o r i e s  h a v e  c~(~,) =: -1 b e c a u s e ,  t > ;  ~ A c a t : a l  :3c,~,. 
term ,~ ) ( s -  X~) c o r r e s ~ n d ~  t o  a f ' - ,~a p o : e  in  t h e  t - c h a n n e l  J - p l a r m  a t  -1 .  T e  r e -  
m0vv th i s  p o l e  we  m u s t  r e q u i r e  t h a t  t h e  , ;~otential  obey  S C R  ( l i k e  s e c t i o n  2.9).  In 
c o r f ! ~ r a t t o h  s p a c e  t h e s e  S C R  c o r r e . ~ p m M  to  z e r o s  in the  p o t e n t i a l  at t he  o r i g i n ,  
s.~ Y(r) :~ g r n e - x r ,  a n d  we  r e . q m r  • - -~ 400 .  It i s  h a r d  to  s e e  how s u c h  a p o t e n -  
tia~ can be  s t r o n g  e n o u g h  t o  p r o d u c e  hi~,h!y b o u n d  s t a t e s  ( t h o u g h  of cc '~ r se  the  a n a l -  
0 ~  ~ i th  p o t e n t i a l  s c a t t e r i n g  c o u l d  b r e a k  d e w ,  c o m p l e t e l y ) .  V e r y  s i m i l a r  r e m ~ r k  ~ 
apply e v e n  il  we d o  no t  r e  l u i r e  t h e  e x i s t e n c e  of r e a l  q . a r k s  r u t  s i m p l y  u s e  th¢?m t~, 
s imula te  t h e  c o u p l i n g  to  r a a n y - p a r t i c l e  c h a n n e l s .  I:~ a ' :v ~-.c~ m o d e l  the  t r a j e c t o -  
r ies a r e  C DD t r a j e c t o r ! e s  a s  f a r  a s  the  l o w  m a s s  chacmels ,  a r e  c o n c e r ~ e d ,  arid i! 
is h a r d  to  s e e  how R e  ;he  b e h a , ~ i o u r  c a n  h o l d  f o r  s << n~4). 

±~.~ a l t e r n a t i v e  p o s s i b i l i t 3 ,  i s  tha~" ~he t r a j e c t o r y  obey,<.': t he  ~ ,vice ..u,~ .... t~ ~..,1 di~;- 
persi,;:~ r e l a t i o n  (3 .15) .  We h a v e  s e e  ~ t h a t  U~is is  in go~ d ace  ~,<! with t~<..,~;::;.~.-v-.<i 
beha, , ,our  of  Imp. ,  a t  l e a s t  f o r  m e s c ~ a .  B u t  in  thhs ca,<;e c: :s ,:)t d c t c : m i :  by 
unitar~ty a t  a l l  ( ~ h i c h  s i m p l y  d e t e r ~ , , , n e s  I m  a'), a , ,  ~- t he  two  s~ ,b t r a .~ ,  ~ p ~ r a r n e t e r s  
e(~) and a '  a r e  a r b i t r a r y .  T h e  t r a j e e : c . r ~ e s  a x e  now (~DD {cai,~r ' : ~ " " '~, ' 
Since :n f a c t  a '  i s  o b s e r v e d  to  ~e a p p r o x i m a t e l y  thr~ s a m e  f o r  a l l  t r a j e c , ~ , r i e s  wc 
can sT , -cu la te  tha t  it r e p r e s e n t s  a f u n c h m e n t a :  const ,~nt  o :  " : t rong  i n t e r a c H o n s ,  a . ]  
that ~ : , i t a r iW (v ia  l i n e )  s i m p l y  de ter r r ,  m e s  t he  s ~ l l  ~e,:ia~i, n of  o: f r o m  t h i s  urn;- 
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v e r d i  value in iadlvidtm/tra$ectories. However, this ~ k e s  us so far from I oten- 
tial scattering that it b e c o m u  hard t, s~e why there should t:. any appltcattoa of 
Regt-e theory to particle physics  at all. 

We conclude therefore  that  the s t r a igh tnes s  of Regge t r a j e c t o r i e s  is one of th~ 
most  baffling, and most  impor tant ,  p rob lems  of e lementa ry  pa r t i c l e  theory.  But i! 
it can be solved then we sha l l  probably be we~l on the way to a complete  und~,r- 
s~anding of stro,~g ! . t e r a c t i o n  dynamics .  
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