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1. Introduction
1.1. Regge poles in hadron dynamics

Regge in 1959 [116,117] observed that eigensolutions of the Schrodinger equation of different
angular momentum could be grouped into families, each family being connected by a single pole
in the complex angular momentum plane that moved through the integers in angular momentum
as the total energy was increased. These Regge poles, as they came to be called, are connected with
the asymptotic behavior of the scattering amplitude as the cosine of the f-channel scattering angle
cos 0 in the four-particle amplitude (fig. 1.1) becomes infinite (section 1.2). Because cos@ is linearly
related to the invariant s = ( p, + py)?, the amplitude for the crossed reaction ab - a’b’ has the
high energy behavior

A, ~ v (1.
§— oo

It is natural to try to generalize the idea of Regge behavior to multi-Regge asymptotic behavior
of multiparticle amplitudes [94,130,115,63,34,148,13,150]. These extensions were guesses motivated
from Regge behavior of four-particle amplitudes and did not attempt to reflect a detailed under-
standing of the phase and singularity structure of the multiparticle amplitudes.

Let us review the difficulties briefly. Consider the process ac > a'b'c’ of fig. 2.1. Suppose we
were interested in studying a double-Regge asymptotic limit

Sy Sy Sy ™ % 1y fixed. (1.2)

The expected result is
Ay~ s (s 1,5, /5,5, (1.3)

The difficulties in formulating a rigorous derivation of such a result center around the notion of
the helicity of the reggeons a; and «,. The kinematic analysis of section 2 below shows that it isin-
deed possible to identify an angle, namely the Toller angle w,, whose Fourier components are
the helicities of both a; and «, (both, because helicity is not changed by the scalar particle b").
In the limit (1.2) the angle is given by

pa \S_/ pb

Fig. 1.1. Four-particle amplitude.
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= s 2 2
$12/815, = {2V 1ty cosw, — b —t+mp Y [Nt ), mE), (1.4)

Na, b, c)=a?+b2+c%—2ab — 2bc — 2ac . (1.5)

It is necessary to fix the helicities of the reggeons in the limit (1.2), i.e. to fix 51,/ 5, , and so the
residue v in (1.3) becomes a function of this ratio.

The amplitude 4 can have a rather complicated dependence on the ratio sy, /s; s,, if we con-
sider that it has poles and branch points in all three invariants. This leads in general to an infinite
spectrum in helicities for the reggeons, so that

oo

= 2 v, exp(ilwy,), (1.6)

A=— oo

where the series must diverge at values of w;, corresponding through (1.4) to singularities in
S12/815,.

Apart from the technical problems of finding a rigorous derivation of (1.3), there is the prac-
tical problem of how one should go about introducing signature into (1.3) in view of the fact that
v must have a phase associated with singularities in s, /s; s,. In order to deal with all of these
problems, one must first understand what asymptotic singularities in A as a function of sy, s,
and sy, might be permitted on general grounds and how these singularities enter into y. A con-
venient vehicle for studying this question is the generalization of helicity to complex values. It
is necessary to consider poles in complex helicity in analogy to poles in complex angular mo-
mentum. The existence of complex helicity poles is intimately related to the asymptotic sin-
gularity structure of multiparticle amplitudes. An understanding of the consequences of Regge
behavior for multiparticle amplitudes cannot be complete without taking them into account. This
is a feature unique to multiparticle amplitudes and never appears at the four-particle level.

Progress has been made in recent years towards developing a detailed understanding of multi-
Regge behavior, and it is the purpose of this report to describe what we know now. The story is
far from complete and is a rich area for further research.

Our present discussion is devoted mainly to the asymptotic behavior produced by Regge poles,
since relatively little is known about the role of cuts in the asymptotic behavior of multiparticle
amplitudes. We explore the problems in making Regge asymptotic behavior compatible with some-
fundamental assumptions about the asymptotic singularity structure of amplitudes and show that
a theory of multi-Regge behavior can be formulated consistent with a restricted set of asymptotic
singularities, namely those arising from normal threshold branch points. Simple Regge poles can-
not tell the whole story. We know from unitarity that if there are poles in the J plane then there
must be cuts. Our attitude toward J-plane cuts is that they should be understood as being gener-
ated from combinations of poles through unitarity. This principle has been suggested previously
for cuts and poles in the energy plane (see ref. [37]) under the title “maximal analyticity of the
first degree”. In keeping with this principle, it is apparent that one must first understand the
properties of pole-dominated amplitudes before attempting to understand the properties of Regge
cuts.

Apart from the deeper questions relating to the foundations of Regge theory there are other
reasons for studying the asymptotic structure of multiparticle amplitudes. We list a few applications:



262 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

(i) Phenomenology of inclusive cross sections. Here we need to know how to take the discon-
tinuity of multiparticle amplitudes in a particular channel. What does multi-Regge behavior say
about inclusive reactions? Do the Regge-pole contributions factor in the discontinuity, if they do
so in the amplitude? How much do we learn about the full amplitude by measuring the discon-
tinuity?

(ii) Phenomenology of exclusive multiparticle production. What is the asymptotic phase of a
multiparticle production amplitude? What can be said about the dependence on the Toller angle?
What does the presence of a helicity pole have to do with the asymptotic behavior of multipar-
ticle amplitudes?

(iii) Reggeon scattering amplitudes. Can reggeon amplitudes be defined which have properties
similar to particle amplitudes (i.e. unitarity, analyticity), so that we can write dispersion relations,
finite energy sum rules, etc., for them?

(iv) Theorems about decoupling of the pomeron. If the pomeron is a simple pole in angular
momentum, what can one say about its couplings?

For the reader interested in the basic theoretical ideas, we suggest he reads sections 1.2—1.4,
2.1.—-2.2,and 3.1-3.5. This allows the reader to complete the analysis of the simplest multi-Regge
vertex, namely, the two-reggeon, one-particle vertex. The article as a whole can be viewed as fol-
lows. We study the basic three-point reggeon vertices (fig. 1.2) for one reggeon (trivial case, sec-
tion 1.2), for two reggeons (section 3) and three reggeons (section 4). We discuss the analytic
structure in the helicity angle (sections 3.5, 4.2). Then we show that factorized products of these
basic vertices occur in general multi-Regge limits (section 5). These ideas are then applied to the
inclusive process, where we encounter four- and five-point vertices (section 6). Having discussed the
behavior of amplitudes dominated by Regge poles, we turn briefly to unitarization problems. As an
illustration, from direct (s) channel unitarity we find bounds on diffractive production (section 7)
and from crossed (#) channel unitarity, the two-reggeons cuts (section 8). Clearly these applications
represent only the first small steps in an iterative approach to the generation of all /-plane singularities.

We have included an appendix which illustrates the general discussion in the main body of the
text by giving the explicit forms in the dual resonance model, since it is the simplest model ex-
hibiting all the- Regge pole properties discussed here. The reader may find it useful to refer to the
appendix for comparison from time to time.

1.2. Regge poles — Review

In order to motivate our approach to multi-Regge behavior, we begin by reviewing Regge the-
ory for the four-particle amplitude. (For extensive reviews, see Collins and Squires [45] and
Collins [44].)

A Regge pole is a pole in the complex angular momentum plane of a partial wave amplitude.
Its presence has implications for the asymptotic behavior of a scattering amplitude as the cosine
of a scattering angle (and therefore certain channel invariants) become infinite.

-

Fig. 1.2. Three-point vertices.
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For a scalar 2-to-2 amplitude (fig. 1.1) in the physical region for aa’ - bb’, the partial wave am-
plitudes are defined in the f-channel center-of-momentum frame by the usual Legendre series

oo

Az, )= 22 QI+DP(D)alJ, 1), (1.7)
J=0

where t = (p,+p,)? is the square of the total energy and z = cos 8 is the cosine of the scattering
angle in that frame*.

Using the method of Froissart and Gribov, the partial wave amplitudes a(J, t) may be continued
into the complex J plane. It is necessary to define separate continuations for even and odd J, and
this is done by introducing the signatured amplitudes A7(z, ¢), 7 = +1, which have only right-hand
cuts in z and are related to A(z, t) as follows:

Az, )= A%z, H+AN (—z, D1+ [A @, ) —A (~z, )] . (1.8)

The asymptotic behavior due to a J-plane pole or cut is obtained from the Sommerfeld—Wat-
son representation of (1.7):
R
1 dJ
2i . sirmd

1
_i—lm

A'(z,8) =~ QJ+1) P (—z)a"(J, 1) . (1.9)

The contour stands to the right of poles in the signatured partial wave amplitude a"(J, ¢) but to
the left of J = 0. We recall that in order to be able to push the contour to the left of ReJ = —}
we need to use Mandelstam’s trick, which effectively replaces

P,(—=2z)/sinmJ by -—Q_J_l(—z)/cost. (1.10)

Furthermore, since we are chiefly interested in the leading asymptotic behavior, we replace
_VAL(=J)
(—J+3)

If we express only the manifest singularity in Jin I'(—J) in (1.11) and absorb inessential factors
in a redefinition of a”(J, #) we are led to

Q__J__l(_z) (‘—22)1. (1.11)

A"(z, t)=2i1rifdJ T(-J)(~2)’a"(J, 1), (1.12)

where the contour separates poles in I'(—J) from dynamical singularities in @7(J, £). A rightmost
factorizable pole at J = a(¢) in @"(J, t) leads to an asymptotic behavior of the signatured ampli-
tude

A(z,t) ~ B2 () PP (0) (—2)*OT(~a(?)) . (1.13)

Z—> oo
This familiar result expresses not just the fact that the amplitude has power behavior in z. It also

* We use the convention that all momentum labels refer to incoming particles. Thus for any antiparticles Py = —Pp, etc.
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carries information about the presence in A7(z, ¢) of a discontinuity in z. For non-integral «(#)
the asymptotic expression appears to have a branch point at z = e, This is a reflection of the ac-
cumulation at infinity of right-hand branch points in z in the signatured amplitude. Since they
originate from branch points in the crossed channel invariants s = (p,+py)? and v = (p,+py)?,
which are linearly related to z, e.g.,

s=A)z + B(1),

A maz, ma,z] N[ m%, mb’2]

A(t)=2 —
) N1 N1

>

B(t)= ma,2 +m

2 2 2 .2
[+ma, ma) (t+mb, mb)
b )

NI WT
Na, b, c)=a*+b*+c2—2ab — 2bc — 2ac, (1.14)

?+2(

it is natural to rewrite (1.13) in terms of channel invariants alone:

AT(s, 1)~ B2(1) P (r) (=) O T[—a(D)], (1.15)
where
B(1) =B (D[ A(1)]*D12 (1.16)

For special values of ¢, the coefficient A(¢) in eq. (1.14) is singular. These singularities do not cor-
respond to actual singularities in ¢ and s in A7(s, #) and so are called kinematical singularities.
Therefore, they must also appear in §(¢) in eq. (1.13) but not in f(¢) in (1.15). Thus eq. (1.15) is
a more natural way to express what the presence of a Regge pole implies for the asymptotic be-
havior of the amplitude. In fact it is also well-suited for analytic continuation in ¢ to the physical
region for the s-channel process ab—> a'b’.

We may also re-express the “leading behavior” of the Sommerfeld—Watson transform (1.9) in
terms of channel invariants:

A7(s, z)=§—17H fdJ LD (=) a(J 1), (1.17)
where
a(J, =140 a0 . (1.18)

This expression contains all the essential features of the Sommerfeld—Watson transform: the par-
tial wave series is obtained as a polynomial in s by closing the contour to the right; for integral
a(t) the Regge pole residue is a polynomial of order J = «(?).

Although (1.17) was derived only for the leading s behavior, it is possible to interpret it as an
exact expression. It is a Mellin transform representation of the amplitude. Such representations
in terms of the invariants were first discussed by Khuri [93]. There is a one-to-one correspondence
between the leading member of a family (integrally spaced) of poles in the Mellin variable J at
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J=a(?), a(t) —1, ... and a pole in the true angular momentum at J = «a(¢). Since we are chiefly
concerned with the analytic structure manifested by cuts in the asymptotic behavior in s, a struc-
ture which is unaffected by additional inverse powers of s, we shall refer loosely to the Mellin
variable J in (1.17) as “‘angular momentum”’.

For a pole of definite signature we have, from (1.8)

A(s, 1)~ B0 B(f) (= a(N[(—5)* D+ 7520 | (1.19)

§— o0

where left- and right-hand cuts in s are shown explicitly. As long as the singularities in s accumulate
on the positive and negative axis at infinity, it is conventional to expect that eq. (1.19) gives a
valid representation of the asymptotic behavior of the amplitude for the cut complex s plane

w > arg s > 0, 2w > arg s > m. Real analyticity requires 3(¢) to be real. The point is that the phase
of eq. (1.19) and the range of validity in s depend on prior knowledge of the locations of the
singularities at very large s. This knowledge is provided by unitarity and is built into the Froissart—
Gribov amplitudes in part through their asymptotic properties for Re J - . Suppose, instead,
there had been a series of branch points which accumulated along the ray arg s = o, but that the
power behavior was otherwise the same. These branch points could be represented by an expres-
sion just like eq. (1.15), except that the expression would be valid for 27 — ¢ > arg s > ¢ and the
phase of 3(¢) would need to be adjusted according to the available information in that case. These
observations will prove useful in discussing the asymptotic behavior of multiparticle amplitudes.

1.3. Method of attack

The methods which we have outlined for the four-point amplitude in section 1.2 above are the
ones we shall adopt in the study of multiparticle amplitudes. The outline of the procedure is as
follows: )

(i) O(3) partial wave analysis. Identify scattering angles, angular momenta, and helicities. Define
the asymptotic limit in terms of the scattering angles and express the asymptotic behavior of the
amplitude in terms of the angles, as in (cos 8)e, etc. We motivate this step from our understanding
of the four-particle amplitude (1.13).

(ii) Analytic expression in terms of channel invariants. Relate the angles to the channel invariants.
Re-define the limit and re-express the asymptotic behavior in terms of channel invariants (1.15).
These are the variables in which the analytic structure of the amplitude is most simply expressed.
At this stage we inject our assumptions about the allowed singularity structure.

(iii) Mellin representation. As a matter of convenience we then rewrite the asymptotic behavior
in terms of a Mellin transform in the J planes and complex helicity planes (1.17). This provides a
succinct representation of the amplitude and facilitates the discussion of helicity singularities.

Apart from the relatively uncontroversial generalization of the four-particle Regge behavior at
step (i), the only point where a dynamical assumption is necessary is in step (ii). This is, in fact,
the heart of our analysis and is so crucially important to our conclusions that it deserves amplifi-
cation, which we provide in the following subsection.



266 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

1.4. Assumptions

We summarize our assumptions about the asymptotic analytic structure for the Regge-pole con-
tribution:

(A) Uniformity. Multiple asymptotic limits can be reached in any order.

(B) Only normal threshold branch points in any channel invariant affect the asymptotic be-
havior due to Regge poles.

(C) Complex J-plane poles are moving so that they produce an asymptotic behavior, e.g. (—s)2,
giving a discontinuity in s. '

Only assumption (B) requires special comment. It is the very strong assumption that the only
singularities in asymptotic invariants affecting the asymptotic behavior are normal threshold
branch points*. The essentially useful feature of normal threshold singularities as contrasted with
higher order Landau singularities is their independence [107]. For in taking multi-Regge asymp-
totic limits we will be faced with the necessity of interpreting expressions of the form
(—54)*A(—s55)*B where s, and sy refer to two channel invariants of a multiparticle amplitude. If
the evident cuts in 5, and sg in such an expression were independent, we would be safe in inter-
preting such an expression as representing a product of two functions each cut on the positive real
axis. If they were not independent, the cuts in sz might move in a complicated way as s, varied.
Such an expression would not then be suitable for a straightforward interpolation between various
boundary values above and below cuts in s, and sy.

Fig. 1.3. Diagram for n-to-m scattering amplitude showing (a) overlapping channels, (b) non-overlapping channels.

Another useful consequence of the independence of normal threshold singularities is that many
combinations of cuts can be ruled out, thereby vastly simplifying the asymptotic structure. To
see this, consider an arbitrary n-to-m scattering amplitude as shown in fig. 1.3, It is useful to in-
troduce the notion of overlapping channels. In the figure, the dotted line labeled A (B) separates
the momenta of channel A (B). When these lines intersect as in fig. 1.3a we say the channels
“overlap”. If not, as in fig. 1.3b, they do not. A property of normal threshold singularities is that
their discontinuity is free of normal threshold singularities in.overlapping channels. Such overlap-
ping double discontinuities appear only when higher order Landau singularities are considered.
However, normal threshold singularities do occur simultaneously in non-overlapping channels.
Therefore, we can rule out asymptotic terms of the form (—s,)*A (—s5)°B, when s, and sp refer
to overlapping invariants.

As a corollary to (B) we therefore have:

* The single-Regge limit of the four-particle amplitude st )ﬁ(t) has a simultaneous discontinuity in s and ¢ reflecting a higher
order Landau singularity. We are not excluding them. We are concerned with singularities appearing jointly in two or more
asymptotic invariants.
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(D) No overlapping channel discontinuities: Discontinuities as revealed in (C) do not occur
simultaneously in two overlapping channel invariants.

To restrict ourselves to normal thresholds, although we are safe in doing so, may be overly pes-
simistic. What we know in S-matrix theory about locations of singularities in channel invariants
comes from unitarity. Our present understanding of the asymptotic structure of amplitudes in the
presence of higher order Landau singularities is far from complete. What we want to emphasize is
not so much a particular assumption about the asymptotic singularity structure, as the importance
of making some statement or assumption and the relationship between the assumed structure and
the Regge asymptotic behavior. We believe that further research will indicate in what way our as-
sumptions have been stated too strongly and in what way they would need to be modified so as to
make our conclusions more broadly applicable. We remark that all explicit models for multi-Regge
amplitudes studied thus far (e.g. ladder model, dual resonance model) satisfy our assumptions.
For a possible limitation on these assumptions, see DeGrand and DeTar [153].

As an example of the possibility that our assumptions may be relaxed in some cases, we refer
totthe Steinmann relations. These follow from axiomatic field theory and there is good reason to
suspect that they will eventually be found to be valid in axiomatic S-matrix theory as well [127,9,
126,29,30] . The Steinmann relation [127] states that (D) is valid for any multiparticle amplitude
regardless of whether the cuts are due to normal threshold branch points or higher order Landau
singularities, provided only that the discontinuitjes are taken in the physical region of some scat-
tering process*. We occasionally require (D) outside physical regions as well, but on the other hand,
only in certain asymptotic regions. Perhaps the Steinmann relations can be extended to these re-
gions as well. This is certainly a subject deserving futther study.

1.5. Other approaches

1.5.4. Sommerfeld—Watson approach

We conclude this section with some discussion of the relationship between the approach to
multi-Regge behavior taken here and that taken by others. The direct and conventional approach
to multi-Regge behavior is to generalize the treatment of the four-particle amplitude:

(i) Specify the analytic structure of the amplitude.

(ii) Define the Froissart—Gribov continuation of the O(3) partial wave amplitudes. Assumption
(i) affects the continuation.

(iii) Write the generalized Sommerfeld—-Watson transform.

(iv) Assume poles in complex angular momentum. Obtain the Regge asymptotic behavior.

Although this method is almost the reverse of ours, since the assumptions are identical, we of
course expect identical conclusions. Specifically, the Regge behavior must be conform to the assump-
tions (i), although the manner in which the information from (i) is translated into the Froissart—
Gribov continuation may be quite subtle. It is for this and pedagogical reasons that we have
adopted a more heuristic approach in which the connection between the assumed analytic struc-
ture and Regge behavior is more transparent. Indeed the technical difficulties in carrying out this
conventional approach are quite awesome, and it may be that our heuristic approach can serve as
a useful guide.

* To apply the Steinmann relations as we apply (D) one must assume that (—s A)O‘A(—sB)"‘B represents independent cuts in s A
and sg. Higher order Landau singularities do not always have this property (see refs. [111,112]).
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We feel that a rigorous development of the conventional approach would be quite valuable. Ac-
tually a good deal of progress has been made in this direction recently by Goddard and White {67]
and White [144,147] and we shall refer to these results from time to time for more rigorous sup-
port of our analysis. 1t is interesting to note that technical difficulties have forced a restriction of
a detailed treatment to normal threshold singularities, so the conclusions from both approaches
should be comparable.

1.5.2. Group theoretic approach

The O(2,1) [and O(3,1)] approach to multi-Regge behavior [ 13,136,89,90], which is a gener-
alization of Sertorio and Toller’s treatment [ 123,132] of the four-particle amplitude, has also
been quite fashionable. It has the advantage of directly treating the amplitude in the physical
scattering region of interest. However, the expansion of the amplitude in terms of O(2,1) repre-
sentations by itself does not give any information. It is only by identifying the O(2,1) repre-
sentation label with the crossed channel angular momentum, using the equivalence to the O(3)
Sommerfeld—Watson-analysis [ 20,133,108,67] that one knows what representations are expected
to be present. Thus in the end one must return to the conventional approach. In any case, again
at some stage, information on the singularity structure of the amplitude must be introduced. We
shall not discuss the O(2,1) partial wave analysis here, but we shall occasionally use the O(2,1)
method to treat physical region kinematics, since it is particularly conveniént and elegant.

The proper little group for a momentum transfers changes discontinuously as ¢ varies [O(2,1)
for t < 0, O(3,1) or E(2) for ¢t = 0, and O(3) for ¢t > 0]. However, the full amplitude is smooth at
t = 0 so this complication can be avoided if we express the amplitude in terms of the invariants
instead of the group variables as in step (ii).

2. Regge limits for multiparticle amplitudes

In this section we begin applying the method outlined in section 1.3 to multiparticle amplitudes.
Here we present the notation and kinematical analysis, defining angles and asymptotic limits. In
subsequent sections we investigate the analytic structure.

2.1. Definition of scattering angles

Before defining the scattering angles for a multiparticle amplitude, it is necessary to decide in
which channels and in which c.m. frames the partial wave projection is desired. To illustrate the
procedure, let us consider the amplitude for the process aa’ > b’cC’ shown in fig. 2.1. (All particles
have spin and parity J¥ = 0*.) The particle labels are taken by convention to refer to incoming
particles, and the momenta are p,, p,', py' = — Py'» Do = —Ps > P’ = —Pg » respectively where the
bars denote antiparticles. The channel invariants ¢; = Q% = (pa+pa,)2 and 1, = Q5= (p, +pc,)2. We
have also indicated for future reference the parameters «; and a, of the leading Regge trajec-
tories in the (aa') and (cc') channels respectively, and the invariants s; = s, = (py +0p)?,
$9 = Sy = (Pt P23 812 = Sy = (Pa T p)? . Our convention for labeling the channel invariants is
that the letters a, b, ¢, ... always refer to the particles in the channel. This provides a unique no-
tation for each channel. Among all the channel invariants overlapping one or more momentum
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Fig. 2.1. Five-particle diagram showing notation.
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Fig. 2.2. Alternative coupling schemes for the five-particle amplitude.

transfers Q;, we single out one, as shown in fig. 2.1, and give it a numerical subscript, correspond-
ing to the momentum transfer(s) which it overlaps.

We intend to define the scattering angles appropriate to the partial wave decomposition in the
rest frame of Q; and in the rest frame of Q,. This stipulation defines a *“‘coupling scheme” for the
multiparticle amplitude. Each coupling scheme is associated with a unique kinematical diagram.
There are % - 5! = 60 unique possibilities or, excluding those related to others by reversing c.m.
momenta, 15 for the five particle amplitude of which a few are shown in fig. 2.2. Each of the cou-
pling schemes leads to a particular configuration of scattering angles, angular momenta, and heli-
cities for the five-particle amplitude.

To illustrate the definition of the angles, we refer to the coupling scheme of fig. 2.1. First,
treating (CC') as a single particle of momentum Q,, we define 8, to be the usual c.m. scattering
angle for the process aa’ - b'(T¢"). Second, in the rest frame of (timelike) Q,, let 6, and w;, be
the polar and azimuthal angles of the three-momentum p;', when p, is in the x-z plane and py is
along the positive z axis (fig. 2.3). The angle w), is the helicity angle or Toller angle [13]. Its

|
|
X l
P
UJ‘z;' e \
y

Fig. 2.3. Alignment of three-momenta in the rest frame of Q, showing the definition of angles 8, and w 3.
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Fig. 2.4. Six-particle amplitude.

Fourier components-give the Jacob—Wick [86] helicity of the quasi-particle (¢¢') in the rest frame
of Q;. It also happens to give the helicity of the quasi-particle (aa’) in the rest frame of Q,, since
the spinless particle b’ does not change the helicity at the vertex.

Having understood the five-particle kinematics, the six-particle function presents no new diffi-
culties, since it can be treated as a five-particle amplitude if we lump two of its particles together.
Consider the coupling scheme shown in fig. 2.4. Lumping (cC’), we follow the procedure for the
five-particle amplitude described above, and define scattering angles 8, and 8, and Toller angle
w1y . Lumping (bb’) together, we define angles 8, and 5 and Toller angle* (— wj3;). This gives five
angles, which together with the invariants ¢, #, and 75 give the eight Lorentz invariants needed to
describe the amplitude. Within a particular coupling scheme, the Toller angle is always associated
with a particular pair of momentum transfers at a vertex.

We could make the assignment of variables symmetrical by introducing a third Toller angle wj3.
This angle is related to the two other by the constraint

w12+w23+w31=0. (2.1)

Because of the greater complexity of the three-point vertex in this coupling scheme, the rela-
tionship between the w;; and helicities is more subtle. In order to define helicity, it is necessary
to have a point of reference to which rotations about the z axis are compared. If we always let
D, define the x-z plane as we have in the above and in fig. 2.3, then w, is the Fourier transform
of A,, the helicity carried into the vertex by thé line @5, and (—w,3) is the Fourier transform of
A3 . Since helicity is conserved at the vertex, the helicity carried in by O, is A and

A HA, TR, =0. (2.2)

The analysis can be made more symmetrical by choosing instead of p, some arbitrary direction
for the x-z plane in fig. 2.3. Then if we say that ¢, gives the polar angle of p,- and ¢,, the polar
angle of pg- (in place of wq,), etc, and if we define

* The minus sign is chosen to make subsequent expressions symmetric.
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Fig. 2.5. Six-particle amplitude.

W =0y~ by W3 =6~ by W= P3¢y (2.3)

then A;, A\, and A; are the Fourier components of ¢, ¢, and ¢3. Because of helicity conservation,
the amplitude never depends on our arbitrary choice of the x-z plane — nor do the w;;, of course
— so we could just as well have put ¢; = 0, as we did in fig. 2.3, and defined A using eq. (2.2).

A second coupling scheme is shown in fig. 2.5. We consider the reaction aa’ > b'c’d’'d. We then
proceed to define the scattering angles 8, and 6, appropriate to the rest frames of ¢, and Q,,
respectively, and the Toller angle w;,. We then shift one link to the right and, lumping (aa’) in
the rest frame of Q5, we construct a diagram analogous to fig. 2.3 (see fig. 2.6a,b), thereby de-
fining 63 and w,3 as the polar and azimuthal angles of py-.

The generalization to arbitrary amplitudes with arbitrary coupling schemes should be obvious.
A systematic procedure is described in section 2.3.

z z
(a) Frame (2) (b) Frame(3)
_.Q| = PB' .F->:|/ _.Qz = Pa’ PSI
Pe’ P4’
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1 | [
| | :
x | 1 s ] h
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y y
0, bl <:/ d/ ! t ! d/

Fig. 2.6. Orientation of three momenta in various frames of reference showing definitions of angles for the six-particle amplitude.
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2.2. Definition of asymptotic limits

2.2.1. Definition in terms of angles

We shall consider three types of limits.

(i) Regge asymptotic limit. In this limit the cosine of one of the c.m. scattering angles cos 0,

is taken to infinity with all other angles and channel invariants ¢; held fixed.

(ii) Helicity asymptotic limit. In this limit the cosine of one of the Toller angles cos w;; is taken
to infinity with all other angles and channel invariants /; fixed.

(iii) Multiple limits. We shall also consider multiple limits found by taking combinations of the
above. We always assume a uniformity in the amplitude that permits limits to be reached uniquely
in any order.

2.2.2. Single-Regge limit in terms of channel invariants

How are these asymptotic limits expressed in terms of channel invariants? Let us consider the
limit cos 6; - o in the five-particle amplitude of fig. 2.1. It is useful to distinguish two classes of
invariants: those that overlap the channel of momentum transfer ¢, i.e. the Regge line o, and
those that do not. The six invariants

Sab Sab Saier Sac” Sa'er Sac 2 (2.4)
all overlap, whereas the four invariants
Ly by Spen Spe s (2.5)

do not.

All invariants overlapping #; have in common the property that they are linear in cos 6, and in
sin §; with coefficients in the linear expression depending on non-overlapping invariants and on
wqy. For example, it is straightforward to show that

s,b,—sl—m2+m - 2E, E(1)+2p p(l)cosﬁl,

2 2) _ (2)
Syt = S, = my +mC +2E EY — 2p py cosb,

Spe =512 = mg + mg — 2E_E, coshq,+2p E_ sinhq, cosf, —2p E sinhg,, cosf,

+2p,p_ coshq, cosf, cosf, —2p p_sinb, sinb, cosw,, ,

E,. =t +m2 —m})2\/T], E = (t;+m2—m2)/ T,
EP =t +mkl—1,)/2V/71], E@ = (1, —m—1,)/2VT,,
E,=(t,+m:—md/2v1,, E = (t2+m§—m§,)/2\/?;,
p, =N (¢, m3 m2)[2N/E] pP= N, 1, mE)2N/T ], p@ =Nt 1, m)2VT,,

p, = Ni(t, m2, m2)/2VE, coshq,, = (t, +1,— mI)2VT VT, ; (2.62)
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_ 2 2 2 - < 2 2 2
Say = —81— tl +t2 +mb. +ma'+ma R Spie 5y ’2 +z‘1+mb,+mc,+mc R

— - 2 2 2 - e _ 2 2 2
Sacr = 7512 t2+s1+ma+mc+mc,, S)e 519 t1+s2+mc+ma+ma,,

= _ ¢ 2 2 2
Sye Sy =Sy sy tmy tmy tm?, . (2.6b)

Since s, does not overlap 7, cosf, depends only on non-overlapping invariants. Therefore, the
dependence on the overlapping invariants is as described.

Thus, as cos§; - o, all overlapping invariants tend to infinity with fixed ratios. All the non-
overlapping invariants stay fixed. To fix wy, in this limit, it suffices to fix

sac/sa,b, =5,,/5y=Ccosw, +D, 2.7)

and this ratio can be used in place of the variable wy,.

Generalizing from this example, we define:

(i) Regge asymptotic limit: Take to infinity all channel invariants that overlap the Regge line,
but fix the ratios between them. Fix, also, the channel invariants that do not overlap the Regge
line.

We find that choosing a particular coupling scheme, defining the scattering angles in that
scheme, and taking an asymptotic limit on the angles leads to a well-defined limit on the channel
invariants. Had we chosen a second coupling scheme and taken an asymptotic limit on the angles
appropriate to the second scheme, we might have obtained a different limit on the channel in-
variants. Suppose we turn the procedure around. Does a particular asymptotic limit on the chan-
nel invariants single out a unique coupling scheme? Not always. Consider the single-Regge limit
just discussed in which the invariants (2.4) become asymptotic, while the invariants (2.5) remain
fixed. There are actually three coupling schemes in which the invariants (2.4) overlap a Regge
line whereas the invariants (2.5) do not. Those are shown in fig. 2.1 and fig. 2.2a, b, correspond-
ing to whether we pair (c¢’), (b'¢’) or (b'¢). The others are ruled out. Any of these three
coupling schemes is suitable for analyzing the single-Regge limit.

2.2.3. Helicity asymptotic limit in terms of channel invariants

To illustrate the helicity asymptotic limit we consider, once again, the five-particle amplitude.
From (2.6) as cos wj, becomes asymptotic, the only asymptotic channel invariants are those
overlapping both lines oy and a;, namely,

Sac T ST TSae T TSy (2.8)
All other invariants remain fixed.

Generalizing from this example, we define:

(ii) Helicity limit: Take to infinity all channel invariants that overlap both lines connected by
the Toller angle. Fix their ratios. Fix all other channel invariants.

We remark that in taking the helicity asymptotic limit of the six-particle amplitude of fig. 2.4
one must be careful to respect the constraint (2.1), which requires that at least two cos wij’s be-
come asymptotic together.

Specifying the helicity asymptotic limit for the five-particle amplitude in this way singles out a
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unique coupling scheme, since there is only one in which the four asymptotic invariants (2.8)
overlap two Regge lines and the others do not. For the six-particle amplitude, the correspondence
is not unique for isolated values of the invariants, but holds otherwise [110]. We shall avoid these
special configurations in our discussion.

2.2.4. Multi-Regge limit in terms of channel invariants

Let us now consider the effect upon the channel invariants of taking two Regge asymptotic
limits at the same time (double-Regge limit). For the five-particle amplitude, we see from (2.6)
that as cos 6, and cos 6, become asymptotic all invariants overlapping a; grow like cos 8, all
those overlapping a5, like cos 6,, and all those overlapping both, like the product cos 8, cos8,,

$1= Syp ™ S, € €080 > o0 S5 = Syt ™~ — Sy € €080, > oo

512 = Spe ™ Syor™ TS, — 8y, < C0s,cos, > . (2.9)

In particular the Toller angle is found from the (fixed) ratio*
312/5152 =n, =11 +m§,+ 2\/71\/ I, COsw, )/7\([1, Ly, mﬁ,) . (2.10)

Thus we write:

(iii) Multi-Regge limits: Group the channel invariants according to the Regge lines which they
overlap. Ratios of invariants in each group are fixed. Invariants which overlap several lines tend to
infinity as the product of invariants overlapping each of the individual lines alone. All invariants
not overlapping any asymptotic Regge line are fixed.

Note that for the five-particle amplitude, specifying the double-Regge limit in terms of the
channel invariants singles out a unique coupling scheme (fig. 2.1).

An additional complication arises in discussing limits for amplitudes with six or more particles.
Consider the coupling scheme of fig. 2.5. If we follow the prescription (iii) above, the triple-Regge
limit is

sl—> oo S, > o 53 > oo

Ity tys M2 =512/5155 T3 = 53/5,53 Mg = 5123/515, 85 fixed . (2.11)

Since the six-particle amplitude depends on only eight Lorentz invariants and not the nine listed
here, there must be a constraint. Indeed, when we consider that the angles 8; can each be replaced
by s; and the angles w;;, each by 7;;, as in (2.10), we see that the fixed ratio n;53 must depend on
the other fixed variables. It is straightforward to show that, in fact,

M2z = MipMy3 OF S1235; = 512553 - (2.12)
In the coupling scheme of fig. 2.4 we would define the triple-Regge limit as

5,7 o 5y o0 557>,

tty, ty, Ny = 512/515, > Ny = S93/5555 N3 = S13/5,5; fixed . (2.13)

* The Cambridge notation for ny; is the inverse of ours {55].
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In this case the n;;’s are related to the w;;’s through expressions like (2.10), and the constraint
(2.1) reduces the nine variables to eight.

2.3. Kinematics for general multi-Regge limits

In this subsection we describe a systematic procedure for defining the scattering angles and
working out their connection to the channel invariants for an arbitrary coupling scheme. This is
the elegant group-theoretical procedure due to Toller [ 136] and Bali, Chew and Pignotti [13].

The idea is actually quite simple and is best illustrated by considering the six-particle ampli-
tude in the coupling scheme of fig. 2.5. We recall that to define the.angles 6, and w;,, we con-
sidered a particular orientation of the three-momenta of particles a’, b’ and ' in the rest frame
of Q,, shown in fig. 2.6a. Then to define the angles 63 and w,3, we considered the analogous
orientation of the three-momenta of particles b’, ¢’ and d’ in the rest frame of Q5, which we
show in fig. 2.6b. The key idea of the Toller analysis is that these frames are related by a simple
combination of rotations and Lorentz boosts, and the rotation angles are precisely the same as
are necessary for the partial wave analysis. In particular, we see that if we started with the mo-
menta as in fig. 2.6a, we could put them in the configuration of fig. 2.6b by the following se-
quence of operations: rotate about z by (—w,); rotate about y by (—0,); boost along the z axisso
as to make Q3 = 0. The magnitude of the boost is determined completely by ¢,, ¢, and (m)?2.
Let us call the Lorentz frame of fig. 2.6a, frame (2) and that of fig. 2.6b, frame (3). Then using
superscripts to denote the frame in which the momenta are expressed, we have, in going from
frame (3) to frame (2):

PP =R, (@) R, 0,)B,[gP"P1p® (2.14)

for any four-momentum p. The R’s denote four-by-four rotation matrices, the B’s boost matrices,
and ¢P~@ a boost angle. Since

Q,=0;+p;, 0P = (/7,,0,0,0), 0y = (/1;,0,0,0),
ng) = (/7 cosh qg)—»(z), VT sin 6, cos w,, sinh g~
V', sin 6, sin w,, sinh qg?)"(z),\/t; cos 6, sinh qff,)"’(z)) , (2.15)
we find*
cosh qg?)_’(z) =(ty +t3 — myD) 20N,
sinhg@P~@ = N[, t,, m 2] /25T (2.16)

The result eqgs. (2.15) and (2.16) is the same as what we would have obtained had we been con-
sidering the decay of a resonance of mass /¢, to a resonance of mass+/#; and a particle of mass
M.

* The boost q(ljc)_)(l) quite generally transforms from the rest frame of p]. to that of p; with pj the third momentum at the vertex.
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Fig. 2.7. Diagram showing the sequence of Lorentz transformations in the Toller analysis of the six-particle amplitude.

We are led naturally to a sequence of Lorentz frames for describing the orientation of the mo-
menta of the six-particle amplitude. We can indicate the relationship among the frames by draw-
ing the coupling scheme for the six-particle amplitude and letting a position of the diagram be as-
sociated with a frame. Thus the frames (2) and (3) are located with an asterisk on the diagrams in
fig. 2.6 and the relationship among the frames is summarized in fig. 2.7. One can also define z
boosts qnga?, etc., to transform to the rest frame of p_, etc. These are also shown in fig. 2.7.

In this way it is possible to follow a path through diagrams of arbitrary complexity by a se-
quence of z boosts and rotations. The various channel invariants can be defined in a straightfor-
ward manner — for example, for s,y reading the transformations from the rest frame of b’ to
the rest frame of a’ from fig. 2.7, we have

Sab T (’,na')2 + (mb')z - 2pa" Py
Py Py = memy (B, 1g"" IR (0B, ¢~ DV11 (2.17)

where { }y; denotes the time-time component of the four-by-four Lorentz transtformation ma-
trix. Thus

oy = (m ) +(my)? — 2 m,my [cosh qgl)”(a/) cosh ng')”“) +sinh qgl)ﬁ(al) sinh q(zb')”(l) cos0,].
(2.18)

In this manner the expressions of eq. (2.6) can be calculated.

As a further illustration, we show the rotations and boosts for another coupling scheme of the
six-point function in fig. 2.8. Note in particular the closed loop of transformations about the
middle vertex. Since z boosts commute with z rotations, it follows that

Wiy + Wy + Wyy = 0, q(13)"(2) + qu)—’(l)+ q(zl)—’(3)___ 0. (2.19)

Thus there are only two independent w,-]-’s at a vertex with three Q’s.

Let us count variables to see if the set of (¢;, 6;, w;;) gives the correct number of Lorentz-in-
variant degrees of freedom. Consider a general coupling scheme with N external lines p; and there-
fore N — 3 momentum transfers Q; and N — 2 vertices. Such an amplitude has 3N — 10 Lorentz
invariant degrees of freedom.

If we define
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Fig. 2.8. Diagram showing the sequence of Lorentz transformations in the Toller analysis of the six-particle amplitude.

T = number of vertices with three Q’s,

D = number of vertices with two Q’s and one p,

S = number of vertices with one Q and two p’s.
Then counting p’s and vertices, we have

1D+2S=N, T+D+S=N-2. (2.20)

Therefore, since there are two w,-]-’s for each T and one for each D, there are 2T+ D =N — 4 of
the w;;’s. With the addition of N — 3 each of #; and 6; there are 3N — 10 altogether, as required.

If we consider the foregoing definition of angles in more abstract terms, we are led to a gener-
alization. The rotations through angles 6; and w;; are carried out in the rest frame of Q;. The
reason we chose to rotate was simply that a rotation kept us in the rest frame of @, i.e. the little
group of @; is O(3) for this case. The most general rotation depends on three Euler angles, say
(&, 6;, v;), where y; and v; refer to z rotations. Had we used this full rotation in place of (w;;. 6;)
in the sequence of fig. 2.7, we see that each of the ¢{)~(") 7 boosts would have been preceded by
a z rotation of u; and followed by a z rotation of »;. Since z boosts commute with z rotations, the
channel invariants would actually depend only on the sum »; + K; = w;;. So our choice of angles is
completely general.

We are generally interested in performing the above analysis for timelike Q]-. The partial wave
analysis on the rotation R, (i) R, (6;) R, (v;) then gives the angular momentum in the #; channel
and a Regge pole is naturally supposed to lead to the behavior (cos Gj)“f . However, the real beauty
of the Toller analysis is that it can be performed for any Q]-. In general, in place of the rotation
Rz(u]-) R y(()]-) RZ(V]-), there should appear a transformation in the little group of Q]-. Thus, for
spacelike Q]-, instead of the rest frame, we could work in the Breit frame for which

Q]=(0’ O’ O’V—t]‘), (2.21)

and the rotation would be replaced by the O(2,1) transformation Rz(u]-) B, (§']~) Rz(vj), which pre-
serves Qj..Thg:se are the variables used by Bali, Chew and Pignotti [13]. Of course the vertex z
boosts q,(c’ =) would need modification in some cases, since some of them would relate Breit
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frames to rest frames. From time to time we will refer to the O(2,1) analysis since it gives a con-
venient means of obtaining a convenient set of independent variables in the physical region
t; < 0.

Whether one begins with an O(3) or O(2,1) parametrization, as long as the Regge limit is de-
fined as cos 6; > e or cosh fj — o the channel invariant prescription for the Regge limit is the
same.

2.4. Rapidity variables

It is well known that the major contribution to cross sections for particle production
a+b-c;... +c, in the (ab) c.m. system is confined to small transverse momentum (|p,| < 0.5
GeV). Since the multi-Regge limits for the 2 — »n process also respect this restriction, it is con-
venient to choose p, and p,, along the z axis and parametrize the momenta by their rapidity y and
transverse momenta p, = (py, p,)

p; = (w; coshy;, Prp Py @ sinh y;) (2.22)
where i=a,b, I,..., n for p,, py,, p., = p;. The transverse energy wj is given by
wl.2=ml.2+pfi . (2.23)

In rapidity variables, the Lorentz invariant volume element is
dBp/E=d*p dy, (2.24)

and a Lorentz boost along the z axis is a translation y; - y; + const. Sometimes it is convenient to
pick the lab frame for target a:

p,=(m;0,0,0), Py = (mb cosh Y, 0,0, m, sinhY), (2.25)
where the total rapidity ¥ - = as s — oo,
s=(pa+pb)2=m§+m§+2mamb cosh ¥ ~m m, et . (2.26)

As s - o the longitudinal phase space for the outgoing particles (¢;) extends from y; =~ y, = 0, to
yi~ yy, = Y [47]. Now we may define Regge limits fora+b-c;+...+¢c,.

b

Fig. 2.9. General single-Regge diagram.
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Fig. 2.10. Rapidity plot for the limit of fig. 2.9.

For simplicity consider first the single-Regge limit a + b - A + B where A is the group of par-
ticles (¢, ¢y, ... ¢y ) on the left (see fig. 2.9) and B is the group on the right (c,,+1, ..., ¢, ). Accord-
ing to the rule (i) in section 2.2.2.above, all channel invariants overlapping the line @« must become
asymptotic. All others remain fixed. Since

S = (pl.+p].)2 = ml2 + m].2 —2p; Pt ww; cosh(y,— ;) (2.27)

we see that the cluster A must be separated from cluster B by a large gap in rapidity which grows
like ¥ as shown in fig. 2.10. Moreover, the relative spacing of particles within a cluster is fixed.
It is readily verified that all overlapping invariants must grow with fixed ratios.

Fig. 2.11. General multi-Regge limit of the chain type.

The generalization to multi-Regge limits of the chain type shown in fig. 2.11 is obvious. There
is a large rapidity gap separating each cluster. The rapidity plot is not so useful for describing
helicity asymptotic limits or branching multi-Regge limits as in fig. 2.4. However, it is extremely
useful for inclusive processes (section 6).

3. The five-particle amplitude

We proceed with a systematic analysis of the five-particle amplitude. It is the simplest of the
multiparticle amplitudes, yet illustrates almost all of the essential complications.

3. 1. Single-Regge limit

Consider the amplitude of fig. 3.1. In the physical region for aa’ > b'C<T’ the partial-wave ex-
pansion in the #; channel is

M_&

= J :
A t, 8, w,. 0, :2)—J§0 L dgy (cos0)exp (hwy)al/y M0y 1y 1) (3.1)

1
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Fig. 3.1. Diagram for five-particle amplitude.

This resembles the partial wave expansion of a four-particle amplitude with one external particle
(the quasi-particle €C') with a spectrum of helicities A. So let us suppose for the moment that the
discussion of section 1.2 carries through, and a factorizable pole in complex J; at a;(#{) leads to
the asymptotic behavior

oo

A5 ~ F[—al(tl)] El(tl) (cos 91)"“(’1) E exp(iAwyy) ﬁ)\(ﬂz, ty 1‘2) , (3.2)

A== oo
or equivalently
Ag ~ Tl—oy(2})] El(tl) (cos Ol)al(tl)ﬁ(wu, 0, 1.1, (3.3)

where INQ}\ is the Fourier transform ofﬁ(wlz).

We can then proceed to write the asymptotic behavior (3.3) in terms of the invariants just as
we did with the four-point function.

From (2.6) we see that as cos §; - o

Il

S Sgy ™ T Sy & COS 01—> oo (3.4)

1

S1p = Sp0 ™~ T Sy ™ S0 ™ Sy & COS 0, o, Sy by ly, sl/slz fixed . (3.5)

We then rewrite (3.3) as

Ag ~ T=a (1 )] B,(t) (s )W R (s /515,55, 11, 1,) (3.6)
where we have chosen as independent variables

Sp Sy 31/512' t,and ¢, . (3.7)

Had we chosen to replace cos 8; with some overlapping invariant besides s, the result would have
been merely a redefinition of R. If we analytically continue in ¢; and 7, until they are sufficiently
negative, the limit (3.5) is physical for the process ac ~ a'b'C’.

When we then proceed to study the phase of (3.6), a complication arises. The real axis singula-
rities of s, = 51, are mapped into the s; plane and the (s{/s,) plane through the constraint that
w1,, and therefore s;/s;,, be fixed. Furthermore, the asymptotic singularities due to s;, can move
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arg(s,/s;

Fig. 3.2. Location of asymptotic singularities in 5, when s,/51, is fixed. The channels contributing the singularities are indicated.

off the real axis in s, as s{/sy, is varied. If we consider all the singularities in the various channel
invariants, we find that they produce two classes of singularities in s; [see (3.5)]. One class re-
mains on the real axis in the asymptotic region. The channels which produce these are

Sab” sa'b' ’ (38)

i.e. all invariants that grow like s, and so overlap only the line «; in fig. 3.1. The other class lies
asymptotically on a line intersecting the origin in s}, inclined at an angle to the real axis given by
arg (s,/s1,) (see fig. 3.2). Channels producing these are

3.9

Sacr Sac” Sa'c’ Sact s
i.e. all invariants that grow like s, , and so overlap both lines &y and «; in fig. 3.1. Therefore, for
an arbitrary choice of arg(s;/s;,) there is a discontinuity in the asymptotic phase associated with
each of the four rays in fig. 3.2. From the single-Regge expression alone, it is not possible to di-
vide the phase discontinuity into contributions from each of the two classes of singularities. Even
for arg (s;/s;5) = O the phase of (3.6) is not given by the simple signature factor
&, = exp (—ima;) + 7, for s; just above its cut because generally there is a phase arising from the
§1p cut, i.e. singularities in 51/s1,.

The troublesome singularities in s, /s{, in R(s;/s1,, 5, ?}, 3), which do not permit a complete
specification of the phase of (3.6), correspond to singularities in cos wj, in (3.3). These clearly
arise from a divergence of the helicity sum in (3.2). In retrospect we see that our analogy between
(3.1) and the partial wave expansion of a four-particle amplitude with a particle of helicity A is
really suspect. When J; becomes complex, one must deal with an infinite helicity sum, which we
have seen is divergent. This was a serious impediment to early attempts to generalize the Regge
analysis to multiparticle amplitudes [109,10,54]. It now seems that the way to overcome it is to
perform a Sommerfeld--Watson transform in the helicity A before performing Sommerfeld—
Watson transforms in angular momentum [67]. Using this technique, White [144,146,147] has
recently made considerable progress in the rigorous treatment of Regge behavior of multiparticle
amplitudes.

We expect from the above discussion that the singularities in s,/s, in R(s;/s1,. S5, £}, 1) are
determined by the singularities in the complex helicity plane. In section 3.5 this will be verified.
However, we first wish to discuss the simpler case of the double-Regge limit of A5, since the
analysis can be carried considerably further without explicitly introducing complex helicity.
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3.2. Double-Regge limit

The double-Regge limit is obtained by taking cos 6, and cos 8, to infinity, fixing wj,, ¢;, and #,.
Using the notation of section 3.1 and referring to (2.9), we find that this limit corresponds to
taking

$1= Sy ™~ S,y X C0S0, > oo Sy = Sprer ™ T S & €080, > o0, (3.10)

S12 = 80e ™ TS0 ™ TS, ™ Sy & COs 0, COs 0, > o0, ty by, My = 81,/5, 5, fixed , (3.1
where

Ny = IV VT, cosw , — 1= 1, +mi} Nty t,, mP) . (3.12)

As for the partial wave analysis, carrying the projection (3.1) one step further, we get
Aty 61. Wiy 62, 1,)= 2 Z; dé‘x(cos 6,) exp (ikwlz)dizo (cos 62)a(J1, Jy N5ty 15).(3.13)
Jidy NI L0,

As usual we suppose the Sommerfeld—Watson transformation carries through and factorizable
poles at J; = a (1), J, = a,(?,) give the “double-Regge” asymptotic behavior

A~ Tl—a (¢ D] B(1) (cos 0% 27 R, (¢, 1,) exp (1A ) (€08 0,)42 D[~ e, (1,)] By(1,) -

A= oo

(3.14)

Re-expressing (3.13) in terms of channel invariants with the replacements cos 01 =5, COs 62 > Sy,
we have

Ag~ B, (1) Tl—ay(r)] sUVR(, 15m15) 5321 D=y (1)1 8,(2,) - (3.15)

With 7 and ¢, sufficiently negative, this double-Regge expression is valid in the physical region for
the process ac > a'b'C’. The asymptotic phase of the amplitude is again determined by knowing
where the singularities appear in the channel invariants. Qualitatively speaking, the structure is

the same as in the single Regge limit. However, as we shall see in the next section, we can now
specify the phase discontinuities across all cuts in fig. 3.2!

3.3. Singularities, signature and phases

It is rather surprising that with the relatively few assumptions listed in section 1.4, it is possible
to put strong restrictions on the form of the double-Regge vertex in the five-line amplitude [51,
76]1. As noted in section 3.1, there are two classes of asymptotic singularities in s;, and by the
same token, there are two classes in s,. These are shown in fig. 3.3. We invoke assumption (D) and
require that the discontinuity across the singularity due to channel a'b’, disc, 45, not have itself
a discontinuity across the singularities due to channels b’'c or b’c’, since these channels overlap the
channel a’b’. It may have a discontinuity due to channels ac or ac’, however, since these do not
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Fig. 3.3. Complex planes of s, and s, showing locations of asymptotic singularities contributed by channels indicated.

overlap the channel a'b’. So the part of the amplitude with a right-hand cut in s; may not have
cuts in s, but may have cuts 5;,. We can get this part of the amplitude from (3.15) by requiring
R(n,,) to have a term with a factor (n,,)*? which cancels the s, cuts and replaces them by allowed
515 cuts. So we can write the part of A5 that contributes to discyyAs as

(=5 (=5,)27 MV () + (=)™ 5537 Vo(ny,) (3.16)

where V, and V, have no-discontinuities in 7, as 1, is rotated about its origin*. The singularities
of the expression (3.16) are clearly contained in the set shown in fig. 3.3, if we draw the cuts of
(—s51)*17 % and (—s51,)* to the right in 5; and sy, . If we choose the phase to be real and positive
when s, and s;, are negative, real analyticity for these terms then requires ¥, and V5 to be real
functions of n;,, for ¢, 7, below their thresholds. In the physical region for ac - a'b't’ the phase
of this term is given by the factors (—s,)*2 = exp (—imay)s(3 and (—sp)*1" %2 =

exp {—im(a; —ay)}s§1~*2. To get the part of A5 that contributes to disc,,4s one merely replaces
(—s7) by s; in the above expression and writes different ¥’s. Since ab’ and a’'b’ are overlapping
channels, this additive separation of left- and right-hand cuts in s; is required. To get the parts that
contribute to discy A5 or discy A5, one interchanges 1 and 2 in the above expressions. The whole
amplitude is the sum of these parts. The sets of allowable singularities in 45 can be neatly sum-
marized by means of the tree diagrams shown in fig. 3.4. This exhaust all the possibilities, since

for general values of a;(¢;) and a,(#,) it is not possible to construct an asymptotic term consistent
with (3.15) that has neither the ab, a'b, b’c nor b’c’ discontinuity. (A term of the form (—s;,)° =
(—51)% (—5,)% (—n1,)® might be considered, but then a(#,) = a,(#,), which is not true for moving
trajectories.)

* This form of the amplitude must be modified for the case that there are an odd number of pseudo-scalar particles in the five-particle
process, since the amplitude‘is analytic in the channel invariants only after removing a factor €uvpoPay Pa'vPb'pPc's-

Fig. 3.4. Tree diagrams representing possible simultaneous discontinuities in asymptotic variables in the five-particle amplitude.
Each heavy line can refer to a right-hand or left-hand cut.
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c al C

Fig. 3.5. Five-line amplitudes related by crossing.

If we introduce the assumption that Regge trajectories have definite signature, we reduce the
number of independent vertex functions V¥, V', since signature implies a symmetry under inter-
changing a and a’ and ¢ and ¢'. How do we define signature for multiparticle amplitudes? Let us
consider the trajectory a;. We want the asymptotic amplitudes for the two processes shown in
fig. 3.5 to be equal (opposite in sign) if the trajectory has positive (negative) signature. The two
physical amplitudes are related by crossing, which is accomplished by continuing the amplitudes
from the physical region of the first process to the physical region of the second. All channel in-
variants overlapping the Regge line change signs during the continuation. It is simplest to follow
this continuation by examining the asymptotic form for 4 as we have done above, term by term,
and performing the appropriate change of phase in each term.

In the physical region for the process on the left in fig. 3.5, the invariants s,., sy, Sy and sy
are all above their positive real axis cuts. Therefore, 5,, 5; and s, are above their right-hand cuts.
In the physical region for the process on the right, the invariants s,-¢, 5,., S, and sy are all above
their positive real axis cuts. Therefore 51, and s; are below their left-hand cuts and s, remains un-
changed.

These considerations, applied to the decomposition of A5 described above for Regge trajectories
with signatures 7, = + 1, 7, = + |, result in the following expression for the double-Regge asymp-
totic amplitude*:

Ag~ By()) By(ty) T ) D= a) L1(=5,)% % (=507 V(1) + (=502 (=5,,)%2 V(1)

7, [(=5,)%2 1§V, (0y,) 53702522V, (my)] + 7, (5327152 Vy(0,5) + (=50 %2522 Vy ()]

+ 7,7y (532791 (—5,)% V() +5% 92 (—5,,)% V()] - (3.17)

Introducing signature has reduced the number of independent discontinuity-free functions ¥ from
eight to two. This expression can represented diagrammatically as in fig. 3.6. The first diagram cor-
responds to the first two terms of (3.17) with only right-hand cuts. The correspondence between
diagrams with crosses and the other terms of (3.17) can be found by associating terms multiplied
by 74, 7, and 7, 7,. A cross on a line indicates that all invariants overlapping that line have right-
hand cuts changed to left-hand cuts and vice-versa.

Traditionally signature for multi-Regge amplitudes has been discussed by assuming that a gener-
alization of (1.8) exists, that expresses the full amplitude as a sum over signatured amplitudes,
which like A7(s, £) in (1.13) have only the right-hand cuts in the energy variables. In the case of the

* We have suppressed the ¢ and ¢, arguments of ay, ap, ¥ and V.
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Fig. 3.6. Diagram for reconstructing 45 from the signatured amplitude.

five-particle amplitude, there are three energy invariants, s;, s, and sy, which can have either right-
hand or left-hand cuts, making altogether 23 = 8 possible combinations. However, simultaneous
discontinuities in all three invariants are excluded by our assumptions, thereby reducing the pos-
sible combinations to the four discussed above. Nevertheless, in addition to the signatures 7; and
T, associated with the angular momenta J; and J,, it is possible to associate a third signature 7,
with the helicity A (equivalently 1;,) [67]. Thus the generalization of (1.8) is (written in a form
appropriate for large energies)

A(sy, 8y nppsty 1)) = 2 (LAY 50, Mps 1) 1))+ T AJTT (=8, 80, 0538, 1)

Ty, T2 Tp=21
TIT2T . T1T2T12(— - ; —

Comparing this expression with (3.17) we see that we should associate the Regge behavior of
the signatured amplitude with the first two terms of (3.17), which also have only right-hand cuts

AT~ B (1)) B, (1) D(—ay) T(=a,)[(—5,)% @1(—5 )% Vy(,,) + (=5 ) %2 (—s,)%2V, ()] -
(3.19)

Then (3.18) and (3.19) lead to (3.17), where the introduction of vertex signature has only the
effect of replacing V; by

Vi) = Vi) + 17, V=) (3.20)

Thus, requiring a definite vertex signature has the trivial effect of making V; even odd or in n,.
Although the unitary equation for A is diagonal in 7,, [145], we do not know if vertex sig-
nature remains a good quantum number when all unitarity equations are considered. Actually
models do not usually produce Regge poles with a definite vertex signature. For example, in the
ordinary dual-resonance model, there are only right-hand cuts in 7, whereas in Mandelstam’s
[100] nonplanar dual model, there are only left-hand cuts [119]. In what follows, we shall often
use the traditional signature language and suppress the vertex signature. We will, however, discuss
its role in the Sommerfeld—Watson transform in section 3.4.3.

Due to the complicated singularity structure of fig. 3.3 the phase of (3.17) cannot in general
be factored into pieces associated with the Regge propagators and vertices. However, when all
energy invariants are real, as in the physical region ac > 3'b'c’ we may rewrite (3.17) as*

* In all of these expressions the ¢, and ¢, arguments have been suppressed in oy (£1), a2 (22), £1(t1), £2(£2), 51’/’ (ty, £2).



286 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

A~ By(1) YT el 8y V(1) 1531 + 6, €M Vo (1, 13m0 (= 0y) 5326,(2)) - (3.21)
where

;= exp(—~ime;) + 7, , £ . =exp {—in(ai—a].)}JrTiT-.

ij ]
We have used the relation (—s) - s exp (—im) above the right-hand cut. Also applicable in the
physical region is the expression

Ag ~ Byt ) sTT(—a))exp (—ima,) exp (—i ma,) Ve, 1My, —i€) t 7 exp(—ima )V (r,, 15iM, —1€)
+exp (—ima ) 7, V(2. LNy, =€)+ 7,7, V(1 tim, +ie)][T(—a,) s‘2‘262(t2) , (3.22)
where
V(. tyimy) = (=np) Vi 1im) + (n )2 Vo, 1m,)

In order to compare with the Regge behavior of A, it is useful to extract the Regge propagators
§'(—a,)si from (3.21)

Ag~ Bt TE T (=) s RS (1), £:m ) [, T(—ay) 5521 B,(2,) (3.23)
so that
b’ ) = el . -1 )
ROt tympp) =& §niy Vil imyy) + &7 £1,m3 V() £imyy)

The double-Regge residue R is, of course, not real. The extraction of the signature factors &, &,
is therefore purely a convention.

The singularity structure (3.17) of the double-Regge vertex was first found in a large class of
models by Drummond [55] and Drummond, Landshoff and Zakrewski [56]. The proper treat-
ment of signature leading to the above expressions was first obtained by Drummond, Landshoff
and Zakrewski [57]. White [147] has demonstrated the factorization of the Regge pole residues,
which allows us to factor out the single-Regge couplings 8;(¢;) and $,(¢,) in (3.17).

3.4. Mellin representation

3.4.1. Description and properties of the Mellin representation

The aim of this section is to obtain a Mellin representation of the five-particle amplitude anal-
ogous to the representation (1.17) of the four-particle amplitude. This representation will provide
a compact summary of the properties of the five-particle amplitude obtained above and also a
convenient language for discussing a number of additional properties.

We first discuss the representation and its properties [141] and then discuss its connection to
the usual Sommerfeld—Watson transform. The representation for the signatured amplitude is*

* Vertex signature is suppressed. We deliberately use the same notation for the Mellin transform parameters as angular momentum
and helicity. Even though they are not precisely the same, they serve the same function to leading order in asymptotic expansions.
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Fig. 3.7. Integration contours for the Mellin representation.

ATz = (E:T_l) 3 fd)\ fdJl fd-/z INCRNBACN RN N Gt A

X (s M s, YN (s Man T (U, Ty Nt 1) (3.24)

The integration contours are shown in fig. 3.7. Let us disregard the fixed poles for the moment.
The contours are such that the poles in the I" functions, which are necessary for the recovery of
the partial wave series, lie to the right, whereas all the other singularities lie to the left. Thus
closing the A contour to the right and then the J; contours to the right yields

(3.25)

oo o0 oo T .
Spon @t (I, Sy Nty 1)
Ang2= Z; Z) E S‘lllng ( 12) ! 2 2 .
A=0 Ji=A J=A

5155 AN =N)!(J,—\)!
Recalling (2.6), this is easily seen to agree with the partial wave expansion where a term of given
J1, J5, Nin (3.25) contributes to angular momenta and helicity equal to or less than that value*.
Equation (3.25) can also be obtained by first closing J; contours to the right. The poles in
I’'(— J;+ ) pinch the helicity contour against the poles in I'(—A) and produce the poles for integer
Ji.

We now compare the double-Regge behavior obtained from the Mellin representation (3.24)
with that deduced in sections 3.2 and 3.3. Suppose the partial wave amplitude has the behavior

a2~ BN 1 8T — e (8] [T, — ay ()] (3.26)
Shifting the J; contours to the left and collecting the residues of these poles, we obtain

T 1 X1— Oy —
A~ 57 JANT(N) D +0) T, +0) (=5 M (—=s,) M (=5, B 1 1),
, (3.27)

* The representation (3.24) is valid only for an amplitude with all external particles scalar (JP =0") since the polynomial (3.25)
is an even function of ;. For amplitudes with an odd number of pseudoscalar particles, it is necessary to multiply by an over-
all factor €uvpoPauPa’vPboPc'o which is odd in ws.
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Comparing with section 3.3, we find

1

Vit tyimg,) = T(—ap) [(~a,)

or fd?\I‘( M (—a t M) D= ay#N) (0 N B L, 1,) . (3.28)

If the behavior of B as | A| - e is less than | A {* | the N\ contour can be closed to the left, yielding
in complete agreement with (3.21), where

1

V. ; —_—
l(tl’tZ’nl2) r'(— Oll)F( 0[2)

LoD T oyt n Bl =4ty

1
M(—a) T(~a,) ;

? 1' D(—ay+i) T(~ayta,—)A7d Bla,— ity 1)) - (3.30)

Vyltptyingy) =
We could have obtained the expressions (3.30) for the double-Regge vertex functions by di-
rect arguments, rather than relying on the Mellin transform [51]. The arguments are based on the

following requirements that are satisfied by (3.30):

(i) At the poles in the full five-particle amplitude corresponding to the physical recurrences
ay(ty) = Jy and a,y(f,) = J,, the residue must be a polynomial in 1y, of degree min(J;, J,), since
the powers of n;, determine the helicity content of the residue through (3.12). It is straightfor-
ward to verify that the I function arguments in (3.30) must be as shown in order to obtain this
result.

(ii) The residue at the physical recurrences a(f1) = J; and a,(t,) =J, must be the same, re-
gardless of the direction in #; and ¢, the pole is approached. This condition also guarantees that
the “‘spurious” poles at a; — a5 = integer but «; # integer cancel between each other in (3.29) in
analogy with the identity

1 1 1
= - + E )
ajay  oqlar,—ay)  aj(ag—ay)

(3.31)

(iii) The discontinuity of the full five-particle amplitude in §; must hot have poles in ¢, since
that invariant overlaps s;. Since cuts in s; come from the term

(—s)%% (=5,)? D(—a;) [(~a,) V, , (3.32)

taking the discontinuity introduces a factor sinm(a;—a,), which nicely removes poles in #; from
V,.

The beauty of (3.24) is that it is a succinct expression of so many necessary features!

From (3.28) we see that the singularities in n;, of the double-Regge vertex are directly related
to presence of singularities in the complex helicity A. The two term structure (3.29) arises from
helicity poles associated with the two reggeons a; and a, [67]. Further singularities in A



R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes 289

would give a double-Regge vertex inconsistent with our general arguments in section 3.3.

The absence of such singularities in (3.28) is traced back to our assumption that the only sin-
gularities in A in (3.24) are those explicitly exhibited by the gamma functions, i.e. there are
no “dynamical’ helicity singularities in a™72.* We believe this is a general property of a”1"2
and not just the part which has a double-Regge pole. This will be discussed further in section 3.5
below. Here we remark only that the integrand of (3.24) behaves like

(=s )72 (=5 )27 (s M (3.33)

If the A contour can be closed to the left, only contributions for J; —A =0, 1,2, ... will lead to an
amplitude free of forbidden simultaneous discontinuities in 5; and s,.**On the other hand, extra
singularities in A to the right of the contour other than the fixed poles in fig. 3.7 would spoil the
partial wave series.

3.4.2. Fixed poles

The above discussion has ignored fixed poles. In the four-particle amplitude these can exist at
nonsense-wrong-signature angular momenta

J=N for N=-1,-2,-3,.. withr= (¥ (3.34)

They have the interesting effect that if they occur multiplicatively with Regge poles, they remove
nonsense-wrong-signature zeros. Thus

AGs, ) ~ B(1) T[—a()] (e™ 1™ +7)s* (3.35)
normally vanishes for « satisfying (3.34), but if
a'(J, t) = BOY/1J —a()](J-N), (3.36)

eq. (3.35) is replaced by

B(t) I[—a(r)]
a(t) — N
which is finite at a(z) = N.
Analogous fixed poles are expected in the five-particle amplitude. Combining (3.21) and (3.30)
we see contributions to the double-Regge limit proportional to

A(s, 1) ~ (e” 1" +7)s* | (3.37)

(exp(—ima ) +7 ) [(—a)lexp {~imla, —a )} +7,7) | (—a, +a ) Bla,; 1), 1)) (3.38)
and
(exp(—ima,) + 7)) I'(~a)[exp {—im(a; —a)} + 7,7, IT(—a,ta, ) Blayit, t,) . (3.39)

Each of these terms exhibits two sets of nonsense-wrong-signature zeros analogous to those in
(3.35). We thus expect fixed poles at

* Aside from the fixed pole singularities discussed below.
** Contributions for Ji—A=-1,-2,...are excluded since terms 57 Si_z’ should be interpreted as asymptotic representations of cuts
for finite values of s;. Such helicity singularities are called “nonsense” singularities, since they correspond to helicity greater than
angular momentum.

1
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J=N, for N =-1,-2,-3, .. withr =(-)M*
J=A+N; for N =-1,-2 -3, . withr7,=(=-)"1*, (3.40)

and similarly for J,. These two sets of fixed poles are naturally interpreted as being at nonsense
angular momenta with respect to the vertices on either end (the former associated with the two
external particles with helicity zero and the latter, with the central vertex with helicity A).

The possibility of nonsense-wrong-signature fixed poles in the four-particle amplitude is tied to
the existence of cuts in angular momentum, which shield them to keep them from violating uni-
tarity. We anticipate a similar connection in the five-particle amplitude. However, the analysis of
the five-particle amplitude is not yet sufficiently developed to allow us to investigate these ques-
tions and so eqs. (3.40) are conjectural at present. Some support can be obtained from the study
of models — we refer the reader to Weis [141] for a discussion.

Let us consider the effect of multiplicative fixed poles in more detail. Suppose

ax BN, £ =N (= a) (= a,y) | (3.41)
then
1
AQT ~ 7 (Tap) Tlay—ay) (=)™ (—5)) 7% Blayity. 1)

1 1
+ F(*az) F(azw 0‘1) (*512)0‘2 (_Sl)oc1~012 6(a2;t1r tz)
~T(-N) TNV~ ay) (=5, V1 (=527 MBWNV 524, )

—I(-a,) ey — NP (—54,)% (—sl)Nl’ *2 B(ay;ty, 1))} + terms of lower order in n, , (3.42)

whereas if
a"t" ~ BNt 8- A=NDU e )y~ ay) (3.43)
L) P(-o) _ o oy — N ) )Nl -
A5 ~ . 7, [F(azﬂal) (_S12) (=sy —I(— 1)(*S12) (=571 Blays g, 12)
F(?al) F(CY 1-(!2) o ar—ay ] .
+ N (—512) (_Sz) B(al,tl, tz) + terms of lower orderin 7, . (3.44)

1

These behaviors are seen to have the desired effect of removing the nonsense-wrong-signatures
zeros, and furthermore the parts of (3.42) and (3.44) with fixed power behavior in the energies -
drop out in the full amplitude.

3.4.3. Relationship to the Sommerfeld—Watson transform

We now discuss the relationship of the simplified Mellin representation (3.24) to the Sommer-
feld—Watson transform. Our dicussion of the Sommerfeld—Watson transform follows Goddard
and White [67] and White [145,147]. We refer the reader to these papers for further details.
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The double partial-wave expansion for the signatured amplitude is (re-introducing the vertex
signature)
AT = A_Z; | %l sz (2J+ 1)(2J,+1)dy, (cos 0,)d32 (cos 0,) exp (iNw ,)a™ ™" 2(J,, ], Nst, ).
= — o 1= 2 =
(3.45)
The Sommerfeld—Watson transform proceeds in two steps. First the helicity A is transformed. We

have, suppressing irrelevant labels,
-1

LN D S
A=0

A4() = z
a> ) (— A a< ) (— A
- L EWE 1 g EWCT (3.46)
2i 2> sin A 2i o< Sin TA
where z = el and the contours are shown in fig. 3.8. A dispersion relation in sy, , equivalently z,
has been assumed
1-¢ oo
ImA(z' ImA(Z’
A= [ mAE) oy f A G0 (3.47)
Z'—z z'—z
0 1te
which gives
ZM=J @) ImAe) dz (3.48a)
1+e
and
ImXx
b
C >
¢ ¢
% X% 3, % % *
-3 2 1 o L — ReXx

Fig. 3.8. Integration contours in the complex helicity plane.
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1-¢

<M= [ @) ImAG) dz (3.48b)
0

Right-hand cutsin s, normally map onto positive z and left-hand cuts, onto negative z. An amplitude
with definite vertex signature has only right-hand cuts and so permits the integral (3.48) to range
only over positive z". This is crucial for obtaining good behavior as A - <o just as in the well-known
case of the Sommerfeld—Watson transform of 44. The amplitudes ¢~ () and a<(A) have good
asymptotic behaviors in the right-half and left-half A planes respectively. We may thus write (see

fig. 3.8)

1 a” W) +a<(\
A= -1 EQEE®) o (3.49)
2i ¢ sin TA
In the second step Sommerfeld—Watson transforms in J; and J, are performed on the
a= (X, 51,59, 1), 1). The correct complete set of functions is the dég\ (cos8;) [equivalently the
Jacobi polynomials PJQ‘;"))\(COS 0,)]. Then
1

az=(\) = J?\ JZ_)}\ (24, +1) (2J2+1)dg;\(cos 61) d}{é(cos 02) az(Jl, J2, }\;tl, t2) , (3.50)
1~ 27

which becomes

dl1(—cos0.)d’2(—cosb,)
1\2 oA V%20 2
"= (- (LT, Nt L) 3.5]
() ( 2i) fdJl fsz sinw(J;—\) sin w(J,—\) Uy Iy Nty ty) ( )

The definition of Froissart—Gribov continuations of the a=(J;, Jy, N\ity, £,) to complex Jy and J,
presents considerable difficulty. White [ 145] has been able to obtain a satisfactory continuation
for one angular momentum and'the helicity, but not for J;, J, and A simultaneously. (His treat-
ment for the most part considered only normal thresholds and thus parallels our assumptions.)
We shall however assume that such a continuation exists in the following.

It is clear that there is a close correspondence between (3.49) and (3.51) and the Mellin repre-
sentation (3.24). In (3.24) when 7, is taken to infinity the A contour should be moved to the
left and only singularities at A=J; + n; (n;=0,—1,-2,...) are picked up. In (3.49) n;, > e cor-
responds to z - o or z = 0. In either case, one appears to get contributions for integral A from
the sin wA as well. However, White [ 147] has argued that the symmetry

a”(I)=—a~(=1) (3.52)
holds for integer [ so that these poles actually cancel. Taking also into account the symmetry
a” (I =a~(-1), (3.53)

which follows from the fact that 45 is a function of cos w = j(z +z~1), we see that the represen-
tation
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1
A= = [ANTEN) () a() (3.54)
seems to exhibit all the essential features of (3.49). The variable X in (3.54) is (to leading order)
the absolute value of the helicity. Eq. (3.51) can be rewritten as*

a(\) = (2—;—1) P [ds, [dd, DT AN L) (s (s Yeally Ty Nty ty), (3.55)

in the same way that (1.9) was rewritten as (1.17). We have thus obtained the Mellin representation
(3.24). A considerable reordering of series is of course involved in this process and one does not
know a priori that if one representation is good, the other one is also. The fact that the Mellin re-
presentation is consistent with results of models is perhaps our greatest source of confidence in it.

3.5. Helicity limits

All of the limits discussed so far refer to asymptotic limits in the cosine of the angle which is
conjugate to the angular momentum. One might ask, what happens if we take one of the helicity
angles to infinity instead? We consider the five-point function. When cos wj, - = with cos 8, and
cos 8, fixed, we recall from (2.8) that

S12 = Sac’ Sac" Sa'c’ Syer T % (3.56&)
with
$1= Sy Sap S5 = Spren Spie L by fixed . (3.56b)

Let us refer to the Mellin representation (3.24) to see what we can say about the helicity limit
if we know that there are leading Regge poles at J; = a; and J, = «,. Shifting the J; and J, con-
tours to the left to isolate these poles, we have

1
A7 = — [dAT(A—a;) T\ — a,)) T(=A) (=5 M (=5 )M =s,)2 28 100+ [[[
2mi Background

(357

The background integral must be kept since we are not taking s, or s, large. To obtain the large
§1, behavior, we shift the A contour to the left. The A singularities are given explicitly in the I'
functions and we obtain the leading behaviors (—s;,)* and (—s,)*2. To take proper account of
the background contribution, we look back at (3.24). The singularities in A are seen to arise from
the pinching of the J, and J, contours between the “kinematic” poles in I'(—J;+X) ['(—J,+ )
and the ““dynamical” Regge poles in a™™. Thus if ™1™ has the Regge pole singularities

* The partial wave amplitude a(Jy, Jo, A; 1y, £,) is of course redefined and there is a one-to-one correspondence of J; and J, with
angular momenta only in leading order.
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@~ R(J, Nt 1)~ @) (3.58a)
and
a1~ R(Jl, A tht, )/(J2~ az) , (3.58b)

we have [6,141]

T. [e3 1 -
AT~ F(—al)(—slz)l%fszF(—J2+al)(vsz)"3 R(Jy ity ty)

Sy~ 0

1
+F(wa2) (—Slz)az % fdJl F(VJ1+O£2) (A.S'l)‘llfa2 R(Jl,az;l‘l,lz). (3.59)

We see that the behavior in the helicity limit is determined completely by the angular momentum
singularities. This follows from our assertion that there are no dynamical helicity poles but only
helicity poles in the *‘kinematic” factors I'(—J{+\) I'(—J, +X). These kinematic factors tie the
helicity to the two angular momenta J; and J, at the vertex. Both J; and J, are involved because
the z component of angular momentum is conserved at the vertex, i.e., the helicity is the same on
both sides.

The reason why no dynamical helicity singularities can appear in our treatment is easy to trace
to our discussion of (3.27) and the absence of simultaneous discontinuities in overlapping channels.
Thus the two terms in (3.59) correspond to the two possible sets of simultaneous discontinuities.
(see fig. 3.4) — the first term has discontinuities in s, and sy, and the second in s; and s,.

The helicity limit is not in the physical region for the five-particle amplitude (clearly one of the
final state sub-energies must grow if the total energy s;, grows) so we must assume simultaneous
discontinuities in overlapping variables are forbidden even in the unphysical region of this limit.

In the absence of rigorous axiomatic support for such an assumption (see section 1.4) we seek
further backing for the absence of dynamical helicity singularities. We mention the following
arguments:

(i) Intuitive: Since helicity is not a Casimir operator of the Poincare group, as are spin and mass,
one does not classify particles according to their helicities. Since ‘“dynamical” poles usually cor-
respond to particles, there should be no dynamical helicity poles. Neither do the residues of
kinematical helicity poles necessarily factor as do Regge pole residues, nor does it make any sense
to draw a vertex with a helicity pole dangling out one side.

(ii) Contribution to discontinuities: Consider the discontinuity in s,(sy) of the five-particle
amplitude in fig. 3.9. Each term in the sum over intermediate states has the Regge behavior shown
for sy, - o= thus, we expect

disc,, A, s ~ s‘l"lzf(sl/slz, Syt ty) (3.60)

1277
where fis a polynomial in s /s, for a state in the s, channel of finite spin. The leading term in the
polynomial gives the first term in (3.59) for sy, /s; > °°. Similarly disc,yA s gives the second term.
Unfortunately this argument is not rigorous. Since s;,/s; = * is not inside the physical region, the
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Si2

Fig. 3.9. A.discontinuity of 4s.

sum over intermediates states could conceivably diverge giving a behavior different from (3.60). For

the six-particle amplitude, helicity limits can be taken inside the physical region and this argument
can be used [49] (see section 4).

(iii) Models: The behavior (3.59) holds in the dual resonance model (see the Appendix, eq.
(A.14)).

(iv) For further discussion and arguments we refer the reader to Abarbanel and Schwimmer
[{6] and Brower, Einhorn, Green, Patrascioiu and Weis [23].

Complex helicity is interesting for reasons other than obtaining the asymptotic behavior in the
helicity limit. Indeed it seems first to have been introduced in the study of Regge cuts [75]. We
shall return to this application in section 8. Representations of O(2,1) in a complex helicity basis
have found use in the study of the multiperipheral integral equation [43,42,105]. For group the-
oretical expansions of the scattering amplitude in the physical region, e.g. O(2,1), involving com-
plex helicity, we refer to Goddard and White [(67] and Jones, Low and Young [89-92].

3.6. Reggeon scattering amplitudes
In section 3.1 we discussed briefly the single-Regge limit of the five-particle amplitude — see

fig. 3.5. By factoring off the Regge residue ﬁii'(tl) and propagator & I'(— «;)s{?, we can define
a scattering amplitude with one external reggeon — see fig. 3.10. It is very interesting to study the

a (1))
S2

' \_/ c 1
tz
Fig. 3.10. Scattering amplitude with one external reggeon.
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analytic structure and unitarity properties of such amplitudes and see how they differ from those
of the ordinary four-particle amplitude.

The essential complication of the reggeon amplitude as opposed to the four-particle amplitude
is its dependence on the helicity variable s, /s,,. We study this dependence using the Mellin repre-
sentation (3.24) which gives*

w {112 _a (512
As ~ (=s )™ (2—7“) SN [d7, D=0 T(=a +3) T(—/,+2) (—5,)"2 7 (s—l) R(Jy Nt ty)
> o

3.61)

In the physical region for the process ac > a'b'c’ where 0 < 5,/5,,< 1 we expect to be able to
close the A contour to the left since (s;,/s{)* vanishes rapidly. We then obtain

N - F(—a1+i) 1
et B

i Jo—ay+i .
Z o )fd.12 Pyt a—0) (s, Y R, @ ict, tz):l

y (—S_l)i'+ (i)al_az Ii}o _F(—a2+;)(fi:)c;1!+a2—i) ﬁ(az-i;tl,[z) (ﬁ)l} | .62

512 512 512

where R and f are defined by (3.58a) and (3.26) respectively. In the second sum of (3.62) only
the contribution of one Regge pole at J, = a, has been explicitly written; actually the infinite
sum over all Regge poles in J, should be included.

Each term in the first sum in (3.62) has the structure of a four-particle amplitude — compare
with (1.12). However the ¢, -channel singularities are shifted since J, + J, — a +i. Thus a singula-
rity in R at J, = a, produces poles at a; — e+ i =N rather than at a, = N. Since the second sum
is a series in §,, all the physical singularities in s, appear in the first sum and are represented in
(3.62) by the cuts (—s,)”> 71 *"_The first sum thus has simultaneous discontinuities in s, and s,
and the second term in s; and 54, .

Since (3.62) is rather complicated it is useful to have at hand the explicit form in the dual re-
sonance model (DRM) for comparison. From eq. (A.7) we have

o D(—ay+i) [I(—ayta;— i) T[—als,)+ilq 51\
z (o)

By~ I'(—a)(=s,)" (i=0 T(—a))i! L Fl—alsy) +a;—a;] s12

S12

. (j) - 5 LC(—ay+D) [F(—a1+a2—i) I[—a(s)) ta;—ay+i] } (_ il_)l } (3.63)
512 i=o TCapit IM—a(sy) +ta;—aj] s12) ) '

Each of the sums in (3.63) is proportional to a hypergeometric function of argument s, /s;, and

* Throughout this subsection we consider for simplicity an amplitude with only right-hand cuts. Also for convenience we discuss
the properties of the full amplitude 45 in the limit which exposes the Regge pole a;, rather than factoring out the residue and
propagator to get the four-point amplitude.
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|52'=N

Sth

Fig. 3.11. Integration contour for FESR.

thus is singular for s;/s;, > 1. When s,/s;, > 1 we can be in the physical region for the crossed
process a'b’ - acc’. The appropriate convergent expansion then has the roles of s, and ¢, ex-
changed.

We first discuss analyticity in 5s,. Suppose ¢, and s;/s;, (and, of course, #;) are held fixed.
Then as discussed above all the physical singularities in 5, occur in the square brackets in the first sum in
(3.62) or (3.63). We cannot write a dispersion relation in s, since the second sum clearly repre-
sents an infinite number of subtractions. In the case of (3.63) the discontinuity in 5, can be seen
to have the behavior exp [5,5;/s15 ] as s, > +c. The analyticity can be exploited, however, with
finite energy sum rules (FESR). Integrating A5 along the contour of fig. 3.11 gives*

N

- Mo o o -
I dsy dise, ADGs,5.5,5:00.1,)
Sth

- T(—a+i) Blay— ity ty) N s\
= 2i(—s,) NGt T s Ml (=) (3.64)
S12

i=0 F(l—a1+a2+z)(a2—alﬂﬂ)i!

where the superscript (1) indicates the first sum in (3.61). FESR are often used to determine the
Regge pole parameters (in this case double-Regge vertex) from the low energy data. Eq. (3.64)
is probably not too useful from this point of view since the cutoff (V) dependence is not just the
simple Regge power No2~1*l

Instead of fixing s,/s;,, we can fix 7, = 5,, /51 5,. Both sums now have singularities in s, . To
isolate as much as possible the singularities in s, due to intermediate states in the s, channel we
consider the first sum in (3.62) or (3.63). The asymptotic behavior is 5§52~ % so a dispersion rela-
tion can be written. However, in addition to the singularities in s, arising from the term in brackets,
there are singularities for 5;/s;, > 1, i.e., 0 < s, < 1/n;, which must be included in the dispersion
integral. These are outside the physical region for the process ac - a’b'c’ and are a reflection of
the existence of the second sum [in the DRM the discontinuity for 0 < s, < 1/n,, cancels between
the two sums since the full amplitude does not have this discontinuity;see (A.5) and (A.6)] and

* Fixed poles in J; [(3.39) and (3.40)] also contribute to the right-hand side. These have been omitted for simplicity.
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t)

(: 5 ) s (:5 - ) 5
s|2< Y52 = <+

e

Fig. 3.12. Unitarity equation for 45 giving discontinuity across two-body threshold in s,.

of the crossed process a'b’ > acc'.* For the FESR we have [82] neglecting fixed poles

N C m
r (1) ' Ch ey = P dien A4(1) ' )
f ds2 dlscs,2A5 (sl, Sy Myasty t2) f ds2 dlscs,zAs (sl, S5 Mypsty t2)
Sth 0
o ay—ag+l 5 [(—ay+i) F(—a2+a1fi) . ;
+ 2isinw(a,—a ) (—s5,,)™ el - Bla,— 8, 8,) M, (3.65)
ay—ay i=0 1.

Another possibility is to consider the coefficient of each power (sl/slz)" in the first sum rather
than the full sum. These amplitudes are essentially amplitudes of definte 7, channel helicity and
bear the greatest resemblance to ordinary four-body amplitudes. They have only physical dis-
continuities in s, and the asymptotic behavior 552~ @1*’ Dispersion relations for larger i thus re-
quire more subtractions.

The above discussion has indicated how the s,/s;, dependence of the reggeon amplitudes com-
plicates the analyticity properties in s,. Neither fixed s;/s;, nor fixed ny, is completely satisfac-
tory. The former does not allow a dispersion relation to be writteri whereas the latter necessitates
the inclusion of unphysical singularities or the contributions of singularities in sy and s, in ad-
dition to those in s,. For practical applications of FESR it appears that (3.65) is the most useful.
We refer the reader to Hoyer and Kwiecinski [82] for further discussion. They note that in the
unphysical limit 7|, - o the unphysical region contribution vanishes. Then eqgs. (3.64), (3.65)
and a FESR for the coefficient of (s;/s;,)0 are all equivalent.

We now discuss unitarity in the s, channel. The natural way to obtain an unitarity relation for
the reggeon amplitude of fig. 3.10 is to take the Regge limit of the unitarity equation in fig. 3.12.
When the Regge propagator (including the signature factor exp(—ima;) + 1) is factored off, the
discontinuity on the left-hand side is purely imaginary. The phase of the reggeon amplitude below
the three-body threshold must then be the same as that of the elastic amplitude [149].

We note that only the first sum in (3.62) contributes to the left-hand side. Both sums can in
principle contribute to the right-hand side. Therefore we cannot obtain a linear unitarity equation
for one of the sums alone. Thus, if, as discussed above, dispersion relations are written for the
coefficients of the powers (sl/slz)", information about the other sum will still be necessary to
evaluate the discontinuity. The first sum is a series in s,/s;,. Since

mb' ’ . . ") —
§./51,~ — [cosh qg?)"’(s?) — {tanh ¢4~ cos 6 + sin 6 cos ¢} sinh qgl?) (2)] (3.66)
2

* If a dispersion relation is written for the full amplitude, there is no.unphysical discontinuity but a discontinuity arises from the
second sum in (3.61) due to thresholds in s and sy,.
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Fig. 3.13. Analytic structure of right-hand side of unitarity equation due to second sum in eq. (3.61).

where 6 and ¢ are the polar angles of ¢’ in the 5, center of mass with a, a’ and c in the x-z plane
and the boosts g are given by (2.16), this is equivalent to a series in cos ¢. It is convenient to re-
write the first sum as a series in [exp (1A;¢) + exp (—iA;¢)] since the unitarity equation is diagonal
in the s, helicity A conjugate to ¢. This sum has 7, channel helicity A, = X\ (conjugate to the
Toller angle w) equal to ay, a; — 1, a; — 2, ... . The diagonalized equation will thus relate linear
combinations of 7, channel helicity amplitudes of helicities «;,ay — 1, ... . The second sum in
(3.62) gives an analytic structure of the right-hand side of the unitarity equation described by
fig. 3.13 due to the singularity in s, . Such a diagram has anomalous threshold and box singula-
rities in s} and s,. We do not know if it survives in the Regge limit and if so how its structure
matches with that of the left-hand side — for further comments see section 8.2. It is amusing to
note that in the special case of only narrow resonance singularities in s,, to leading order in re-
sonance widths only the first sum contributes on the right-hand side of fig. 3.12.* The unitarity
equation is then linear in this sum, e.g. in a sum of amplitudes with A, =ay, a; —1, ...

Finally we discuss briefly the structure in r,. The first sum in (3.62) has shifted singularities in
t, as discussed above. The physical singularities are contained entirely in the second sum. We can-
not discuss unitarity in ¢, as we did above for s, since (3.62) does not converge in the physical
region for £, > 14, (a'b’ > acc’). Nevertheless White [147] has argued that the amplitudes of de-
finite ¢, channel helicity ay, a; —1, «) —2, ... (e.g., linear combinations of the coefficients of
(51/512)*1 ! in the first sum) satisfy a linear #,-channel unitarity equation. This remarkable result is
obtained at the cost of having a contribution to the right-hand side which cannot be written as a sum
over intermediate states in addition to the usual intermediate state sum. In the special case where the
only singularities are narrow resonances, to leading order in resonance widths only the non-inter-
mediate state piece contributes — in the reggeon amplitude the ¢, channel singularities are at
oy =N +a; whereas in the four particle amplitude they are at «; = N so there is no overlap.

Much remains to be understood concerning the analyticity and unitarity of reggeon amplitudes.
An intimately related problem is the nature of the crossing relation between the s, and ¢, chan-
nels. The non-integral spin of the reggeon is a non-trivial complication. For further discussion
and a somewhat different point of view, we refer the reader to White [ 147]. See also Hoyer and
Trueman [149].

4. The six-particle amplitude
In this section we extend the type of analysis given in section 3 to the six-particle amplitude.

We discuss here the triple-Regge limit of fig. 4.1 and related helicity asymptotic limits. The linear
triple-Regge limit of fig. 2.5 will be discussed in section 5.

* This can be verified for the DRM amplitude (3.63) using the interpretation of Di Giacomo, Fubini, Sertorio and Veneziano [53].
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Fig. 4.1. Triple-Regge limit of six-particle amplitude.

4.1. Triple-Regge limit and the triple-Regge vertex

According to the general definitions of section 2.2, the triple-Regge limit shown in fig. 4.1 is
[96,101,66]

Sy Sy 830 5120 5930 5317 % (4.1a)
with

) by B My Maye My, fixed . (4.1b)
Each n;; is given by

.y tp— f;— t;+ 2/1; 1 cos Wy 4o

M = S/ 545; NG, 1, 1) ’ 42
with the Toller angles satisfying

Wyt Wy twy = 0. (4.3)

Eq. (4.3) gives a complicated nonlinear constraint between the n;; which reduces the total num-
ber of independent invariants to eight. For reasons which will seon become clear we will generally
write the amplitude as a function of all three 7;;, however.

In the Regge limit (4.1) we expect the behavior

Ag ~ Bt E T~ ay) 53] By(1) 5,1~ ay) 5520 By (1) £, T(— ) SPT R (1) £, 13 Ty ).
4.4)
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Fig. 4.2. Tree diagrams representing possible simultaneous discontinuities in energy invariants in triple-Regge limit.

However, this form does not exhibit the singularity structure of the amplitude and does not give
the phase of the amplitude (R,3, like the double-Regge vertex, is not real). To treat these questions
correctly we need to perform an analysis analogous to that of section 3.3.

In order to reduce the singularities in the channel invariants to a manageable number, let us
consider the signatured amplitude which has only right-hand cuts in the six energy invariants
(4.1a). We argued in section 3.3 that our assumption of the independence of overlapping channel
singularities permits an additive separation of right- and left-hand cuts and allows the definition
of a signatured amplitude. The only sets of simultaneous discontinuities allowed in the signatured
amplitude are easily seen to be those of fig. 4.2. Thus, if we write the signatured amplitude as*

AQTZT; ~ 61(t1) F(_al) F(_sl)al 62(t2) F(_az) (_Sz)az B3(t3) F(-—Ol3) (_S3)a3 V(tll t2, l‘3;7712, 7?23, 7731),

4.5)
consistency with fig. 4.2 requires that the vertex has the structure [51]

V(tp by 13310 Moy M3y) = (=03 )™ (=093) Vip(8y, 1y 135715 Tp3 M)
F(M12)%2 (3 )% Vi (14 1y 1331y Mgy M3y) +(=1193)"3 (=)™ V(8 1 133015 3 3y)
+ (= nyy)Crrem D2 (g Yestea—a)2 (g Nesta—l2y (4, 130 Mgy Nap) (4.6)

where the Vj; and Vj;; introduce no further cuts. Combining (4.5) and (4.6) we see the signatured
amplitude has the form

A21T2Ta ~ 61(t1) F(—Oll) 62(t2) F(_az) B3(t3) F("’a3) {(_53)043—0(1—&2 (_s31)a1 (_523)a2 V12
F s )T BT (=5 1p)" (=530 Vg +(=5)%7 57N (=5p5) " (=51)™ ¥y
+ (_slz)(al+a2—a3)/2 (_Sza)(a2+a3— a)/2 (_SBI)(a3+a1—a2)/2 V123} . 4.7)

* We again assume all external particles have JP = 0% 50 all internal trajectories have natural parity and the amplitude is only a
function of the channel invariants.
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One could, if he wished, choose one of the ny; to be a dependent variable and eliminate it from
the above expressions. The singularities which arise from normal thresholds in Sij would then oc-
cur in the other variables as a result of the nonlinear constraint (4.3). Clearly, in order to exclude
simultaneous singularities in overlapping channels properly we have to know the origin of the
various singularities in the independent variables as thresholds in specific channels. Using the over-
complete set of variables makes this explicit; thus a complicated singularity in the independent
variables arising from a term of the form ( —nij)” is to be interpreted as arising from thresholds in
Sij (and s; and s;), and continuing around such a singularity is to be done in such a way that n;; is
continued around its singularity.

The contribution of the triple-Regge behavior (4.5) to the full amplitude can now be straight-
forwardly obtained. The full amplitude is the sum of eight terms analogous to fig. 3.6. For all 5;
and s;; positive and above their cuts we obtain*

. Cely T e 1y
Ryt timiasyy M3 =83 &3 Vip P8 Ei Vs t 65 655V

(4.8)
+ El_l Egléglexp {—zim(a o, ot (147 exp(ima,) + 71, exp (ima,) + 75 exp (imay)) Vinz

where**

17 PN 7 A 7

Vi =iV

_ i itag— a2 (@ tai— a2

Vl']'k =n§]¢'x,+o¢] ak)/Zn;z]+ak apf nkO;k aj—aj Vl-]-k (4.9)
and

£ = exp{—im(o;—o;— ) + 7,17, (4.10)

The structure of the vertex parts V;; and Vj;; will be discussed in section 4.2. We should remark
that there actually is no physical region in which all six energy invariants are positive. This is
easily seen from fig. 4.1; there is no way to put arrows on the lines such that each momentum
transfer is formed from lines with arrows in opposite directions and each energy is formed from
lines with arrows in the same direction.

The relation (4.2) of the n;; to the Toller angle w;; is only meaningful for Ay, 15,£3) > 0
[101,66]. When,all three #; have the same sign it is possible to have A(¢}, ¢,,#3) < 0. If all three ¢;
are negative, the vertex transformations q,(ci)"(f7, eq. (2.16), become rotations about the x axis and
the convenient O(2,1) little group transformations become R, (;) B, (§;) B, (A;).*** We then have

tk— ti - tl' + 2\/ — ti\/ — t,' COShaﬁ

o~ : 4.11
ij A £ 1) (4.11)

* Vertex signatures are neglected throughout this section. They cause no essential modification of the following expressions
just as in the case of the double-Regge vertex.
** Actually we shall see later that V;;; has some square-root singularities in the njj which causes a slight modification of the re-
lation of Vijk to Vijk; see (4.21) and fig. S.8.
*** The standard forms are Q;=(0,0,0, \/——t,-) .
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where 6,7 =N - A; and the analog to (4.3) is
81+ 0p3+63,=0. (4.12)

Eq. (4.11) is particularly interesting because it means the helicity limit n;; > e can be inside the
physical region in this case as it is just the boost 6,-]- - oo, We return to helicity limits in section
4.3.

4.2. Mellin representation

In this subsection we discuss a proposal for a Mellin representation for the six-particle ampli-
tude associated with the coupling scheme of fig. 4.1 [41]. This representation is a recasting of the
multiple Sommerfeld—Watson transform which exhibits its essential features.

The triple partial wave analysis of the signatured amplitude corresponding to fig. 4.1 is

Aghn = 2 ) exp (X, ¢,) exp (iX,p,) exp (iX;p;)

}\lz_w }\2=—~oo

oo oo oo

x|z = Z (2J+1) (2J,+1) (2J,+1)d]L (cos8))dp2 (cos,)dy3 (cosb,)
Lsi=ind 2= ina =1 1 ’ ’

Xa(Jy, Jy J3s N Ny, Ayt 1y, 1) 1, (4.13)
where
T (4.14)
and
WS¢ T

The z component of angular momentum conservation constraint (4.14) means that (4.13) can be
written in terms of the wj;j as was done in section 4.1. As we stressed there, in order to exhibit the
singularities in all six energy channels clearly, it is useful to use an overcomplete set of variables,
namely all three w;;. This can be done by introducing the variables >\,~]~ defined by

A=A Ay, A= R — A A= — Ay, (4.15)

since then
exp (i)\lnpl) exp (iA,p,) exp (i>\3§03) = exp (i?\lzwu) exp (i>\23w23) exp (i)\31w31) .

Furthermore the amplitude must be an even function of the A;;, since it is a function only of the
njz and thus is even in the w;;. (This is a consequence of the assumption that all six particles have
JP =0%.) We can therefore rewrite (4.13) as
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A= 2 ) exp (X, ;) exp (ih,9,) exp (iAyp;) a(Ay, N, A5)

}\15*00 A2=7oc

- E 2 Z (exp (iAjyw ) texp (— 1)\120)12))

X (exp (iAy3w,y3) Hexp (—ihy3w,3)) (exp (IAg; wy;) Hexp (—idg  wy)) a(N ) Ay Ayy), (4.16)

where a represents the quantity in large brackets in (4.13). In this form with A;j = 0 we see that
a(Aqy, Ay3, A3p) contributes to helicities A; = +A;, £A3;, etc. Because sense values of the helicities
are J; = \;, for each value of the ?\if in (4.16) we must have

VS TRRTE JyZ Ayt A, J3Z Nt A, “4.17)
Thus collecting the essential gamma-functions from the d({’;\i and sweeping inessential factors into
the partial wave amplitude, we obtain the representation

717273 .
ARy, 89 53 My My My Ly 1y 1)

) (27r1) Jang, fany fany fas; fdd, [dI; TN ,) D=2 D20 T 40,40
X F(—J2+?\23+)\12) F(—J3+?\31+7\23) (“81)11 (_52)J2 (—S3)‘]3 (_nlz)klz (_nZS))\N (‘"31)}‘3‘

X a2 (J Sy, Iy Ay A (4.18)

12 M3 Mgty By, 1)

The above discussion should only be regarded as a plausibility argument for the representation
(4.18) since converting a standard Sommerfeld—Watson transform of (4.13) to this form requires
reordering infinite sums, etc.* However, as we now discuss, this representation expresses in a com-
pact form the essential behaviors of A¢; e.g. the partial wave expansion (4.13) and the singularity
structure (4.6) of the triple-Regge vertex. This latter feature of (4.18) is indeed one of the strong-
est motivations for it. Furthermore this form for the triple-Regge vertex is found in models studied
thus far; this can be shown for the hybrid Gribov model, the ordinary dual resonance model and
a large class of related models** [96] using the results of DeTar and Weis [51] and was shown
for the nonlinear dual model [12] by Sukhatme [128].

Let us consider the contribution of a triple-Regge pole to (4.18),

A B(1) By (1)) By (13) B g g Myi g, 1y 1)IC — ) (Fy— @) (J3— ) - (4-.19)

We find comparing with (4.7),

* For the standard Sommerfeld—Watson transformation see White [144]} and Abarbanel and Schwimmer [6].
** For further discussion of these models see section 5.3.



R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes 305

1 ( 1 )3
; = — dA dA dA
V(ty £y 13315 Moz M3y) F(—ap) T(—a,) [(—ay) \27i Jan,, J 23 J 31
X T(=A ) T(=2p5) T(= A5 T(—a R )+ Ag)) D=yt Ayst X)) (= ag+ A5+ 2,5)

X (=) (1) (=)™ BN Ay N3 8y £ 13) - (4.20)

This is analogous to the representation (3.28) for the double-Regge vertex and clearly reduces to
it at a3 = 0, where we must also have A3;= Ay3 = 0. In order to extract the singularities in the n;;
we essentially close the A;; contours to the left.* This calculation is involved and we will not go
into the details here but refer the reader to DeTar and Weis [51] for further discussion. We in-
deed obtain just the four terms of (4.6) with the following explicit forms for the V,-]- and V,-]-k:

oo

1
V., = i 27 T(~a,+m+p)T(—a,+n+p)T(~a,*+a +a,—m—n—2p)
7 T(~e) T(=a;) T(—ag) mnp=0 : 7 ke
1 LIS
-m,, —n Y - .
i " m,-) Blp oymn=pre;=m=pity lp 1),

1
V™ 3 a) F(—a) T(—ay)

X 2 Tlley—0;~ap—m+n+p)ITle oy —an+p+m)] Tlile—a,—a;—p+m+n)]
m,n,p=0

X (=)™ exp{—jim(m +n+p)} (ﬂkf’?if)‘"’/z ("if"ik)“"/z (nfk"?ki)_p/z
Pt Nik ki Nij
X ﬁ[%(ai+a].~ak—m—n+p),§(aj+ak—al.—n~p+m), %(ak+ai-aj—p—m+n);ti, t}.,z‘(l1 .21)

The functions V;; can be seen to have the expected behavior for «; integral. For example, Vijis
nonvanishing for «; and o; integral. The triple-pole arises since then the factor

I'(—agta; +a; — m—n—2p) can also be singular. Furthermore, the particular ratios of n;;’S pre-
sent are just the ones needed to give a polynomial residue at poles. The V,-]-k term plays a peculiar
but essential role. It does not contribute for any «; integral but allows cancellation of the spurious
singularities in the Vi; terms for integral a;— o; — a;.

In addition to Regge pole singularities like (4.19) in the angular momenta we expect fixed pole
singularities of two types: fixed poles of the form (3.39) corresponding to nonsense with respect
to the external lines and fixed poles corresponding to nonsense at the central vertex which are
extensions of the singularities in T'(— J; +A;; + A;) but lie on the opposite side of the integration
contour, €.g.

* For some contributions we actually close contours to right. The correct direction is always that for which the contour at infinity
vanishes, assuming at most exponential behavior for g.
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a"Ts ~ B/ {J ~ N~ Ny = N1, (4.22)
with
Ny=-1,-2,-3, .. and T,7,7, = (=D

The wrong-signature rule is a natural generalization of the usual one to spinning particles and
assures that there is no fixed power behavior in the full amplitude. We shall not work out in detail
here the contributions of additive or multiplicative fixed poles of the form (3.39) or (4.22) since
they are straightforward generalizations of the results of section 3.4. As yet only a few model
studies have been made of fixed poles [69], for further discussion see Weis [141]. While the re-
sults are completely in agreement with the discussion given here it would clearly be of interest

to study further models to gain further confidence in the above proposals.

4.3. Helicity asymptotic limits

There are clearly a large number of helicity asymptotic limits of the six-particle amplitude
analogous to those of section 3.5 which can be studied. There is one essential difference from the
five-particle amplitude, however. For A(¢;, 7,, £3) < O helicity asymptotic limits of the six-particle
amplitude can be in the physical region as we noted at the end of section 4.1%*.

We shall discuss here only one helicity limit, namely the one which is directly accessible in in-
clusive cross sections [49]. Here we discuss the general form of the amplitude in this limit; the
application will be discussed in detail in section 6.3. The limit of interest is actually a mixed
Regge-helicity limit since it is

Sy > (Regge) , N3 My3 ™ @ (Helicity) , (4.23)

with 51, 82, M2y tl’ tz, t3 fixed.
From (4.12) we note that n3; and 70,3 actually must grow at the same rate. Fronr(4.18) we
obtain four terms analogous to the case of the triple-Regge vertex

AP~ (—5,) 7N (=5 )M (=53)? T(—agta ta,) N(—a) I'(—a,)
+ (4523)"‘3 Uz(sz, Sia5tp by z‘3) + (—531)("‘3J“"1_"‘2)/2 (_323)(az+aa—a1)/2 Ulz(sl, Sy S193tps Ly t3) }

The functions U are analogous to the coefficients of the asymptotic powers in the helicity limit
(3.59). In section 6.3 we shall give several independent arguments for the behavior of the form
(4.24) and discuss its structure in some detail.

We close this section with a technical remark [110]. The limit (4.23) does not always uniquely
define the coupling scheme of fig. 4.1. The diagram with a and c interchanged is equally good for
certain isolated values of the invariants — for example the *“‘forward” configuration py, = —py,
Pa= —Pe Py = —D - This nonuniqueness of coupling schemes is a complication to be generally

* This point is emphasized by Abarbanel and Schwimmer [6].
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expected in helicity limits of amplitudes with more than five particles. It means there are contri-
butions not explicitly exhibited in (4.18), i.e. ¢"1™"3 has singularities in helicity or, alternatively,
there are other contributions to 4§™" not of this form. These further contributions are not ex-
pected to have a discontinuity in s3 = (py+p,+ py)? (which will interest us in section 6.3) but to
have a discontinuity in (py+ p,+ p.)2.

For the O(2,1) analysis of these limits, see Jones, Low and Young [90—92] and Mak [98]. For
the O(3) Sommerfeld—Watson analysis, see also Abarbanel and Schwimmer [6].

5. Multi-Regge amplitudes

We discuss general multi-Regge asymptotic limits. The problém of reconciling the factorizability
of Regge pole contributions with the analytic structure of the amplitude is stressed.

5.1. Introduction

In section 2 we have defined the general multi-Regge limit by studying the muitiple O(3) partial
wave analysis. Thus, for example, the multi-Regge limit of fig. 5.1 is all the single-reggeon energies,
s;, going to infinity with the energies across several reggeons growing like

Sij k& S5 g (5.1)
As a complete set of independent variables we choose the ¢;, the s; and
My = S;05;5; - (5.2)

We have verified in section 2 that this is precisely a complete set after application of the constraint
reducing the three n;; at a triple-Regge vertex to two.

The essential complication of amplitudes containing more than one double- or triple-Regge
vertex concerns the energies across more than two reggeons. As discussed in section 2 these can be
expressed in terms of the s; and n;; in the Regge limit since

sij...klsj...k/sij...ksj...kl =1. (5.3)

Normal thresholds in the channels corresponding to the s; _; produce singularities which occur in
the independent variables by virtue of these nonlinear constraints. The singularity structure in the
independent variables is thus quite complicated since it must reflect the thresholds (as well as other
singularities) in several channels. Therefore one doesnot expect that the singularity structure of
multi-particle amplitudes can be represented simply as a product of Regge propagators (with cuts
in the s;) and Regge vertices (with cuts in the Mij)-

On the other hand, the physical picture of a reggeon as an exchanged object in a well-defined
state leads naturally to the idea of factorization of reggeon couplings. Thus a multi-Regge exchange
amplitude should be somehow expressible in terms of the basic single-, double-, and triple-Regge
vertices. In order to focus on this apparent conflict, we recall the situation for the four-particle
and five-particle amplitudes.
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S1256789

Sq2

Fig. 5.1. Example of multi-Regge amplitude.

The fundamental statement of factorization is that the residue of the Regge pole at J = «(¢) in
the signatured partial-wave amplitude should factor,

a’(J, 1) ~ () (1) /1T — a()} (5.4)

where the particles are labeled as in fig. 1.1. In the case of the four-particle amplitude factoriza-
tion can be proven from f-channel unitarity. The Regge-pole contribution to the signatured am-
plitude then has the factorized form [see eq. (1.15)],

AL(s, 1) ~ B(1) T(— ) (—5)* B (1) . (5.5)
The full amplitude also factorizes
A (s, 1) ~ B¥(1) [£(1) T(— ) s*1 (1) . (5.6)

Therefore factorization of the Regge-pole residue implies factorization of the Regge-pole contri-
bution to the signatured and full amplitudes*. Furthermore the phase of the amplitude is entirely

* If the external particles have spin, eq. (5.5) becomes

A7 6~8  OF . 03 z)
Aaha's ApAb (8 1) ~ By o D By (D € P

where A =&, — Ay, A= Ap — Ay’ In general this is not a factorized form, but to leading order in z,(s),
e N z) ~ VAIPA - @) T(- A @) TV~ ) I(~A'—e)] H/T (=) T(— e+ )} (= 22)°,

and thus, A;\axa’é Aphy & )~ Baa, (D T - Brphp -
Thus the spin correlation carried by the exchanged reggeon does not spoil factorization to leading order in s. Similarly, for many-

particle amplitudes factorization can only be expected in leading order since the reggeon transmits information about the relative
orientation of the groups of particles between which it is exchanged.
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Fig. 5.2. A double discontinuity of a multi-Regge amplitude.

associated with the Regge propagator, £(¢) I'(—a) s*, and the factorized form can be continued

throughout the first sheet of the complex s-plane if care is taken to interpret correctly

£(H) s* = (—s)* + 75 as representing right-hand and left-hand cuts as described in section 1.2.
Factorization of the double-Regge residue in the five particle amplitude (fig. 3.1),

a2 (Jy, Ty Nty 1)~ () BY (N, 1) B (1) (= 0 ) (T~ ay) (5.7)
leads to the asymptotic behavior (3.19),
AR5y 55,8153 65) ~ BH() T a) (=)™ V(L 153m15) T(-a,) (—5,)7 B°(,) (5.8)

The phase of the amplitude cannot be factored into separate pieces associated with the Regge
propagators and double-Regge vertex because it does not represent independent cuts in s, s, and
N1, but rather cuts in sy, 5, and s, in eq. (3.19). Thus the requirement that s, s, and sy, be on
their first sheets restricts the range of application of (5.8) in s, (for fixed 0, and s,) to

—7 < arg(—s;) < m —arg(1/ny,5,) [for arg(1/ny,55) = 0] — see fig. 3.3 — which is a nonfactorized
restriction. Due to this complication we were content in section 3 to give a factorized expression
for the full amplitude only for physical 5;, s, and s, (i.e. positive and above their cuts),

A(s) 5581580 1,) ~ B3 ) [E D (—a)s1] RY, (), £5m,) 16, T(—a,) 5521 B°°(2,) - (5.9)

The consequences of factorization of Regge-pole residues for the asymptotic behavior of ampli-
tudes are therefore weaker for the five-particle amplitude than for the four-particle amplitude.

In the discussion of the factorization properties of multi-Regge exchange amplitudes the com-
plication of singularities in dependent variables (5.3) plays an essential role. Indeed, contrary to
one’s first expectations discussed above, it is precisely this complication which allows a general-
ization of the physical region factorization (5.9). More remarkably, any discontinuity or mul-
tiple discontinuity of the amplitude (see fig. 5.2) also factors in the physical region.
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Si23

Fig. 5.3. Lincar triple-Regge limit of six-particle amplitude.

In section 5.2 we discuss in detail the simplest nontrivial case — the linear triple-Regge limit of
the six-particle amplitude of fig. 5.3. The form of the signatured amplitude required by the singu-
larity structure of the amplitude described in section 1.3 is established. Then its intimate connec-
tion to the factorization of the full amplitude and its discontinuities is elucidated. The discussion
follows the treatment of Weis [140,142]

In section 5.3 we give the rules for writing down an arbitrary multi-Regge amplitude or dis-
continuity {142,143]. These rules are natural generalizations of the results for the six-particle
amplitude and have been proven in certain models.

5.2, Factorization and the six-particle amplitude

Here we discuss in detail the linear triple-Regge limit of the amplitude for six scalar particles
shown in fig. 5.3. We first want to demonstrate that in the physical region the six-particle ampli-
tude has the factorized form

A6 ~ Baa,(t]) [glr("al) S?I]Rll)yz(tl» tz;nlz) [22 F(“az) SCZ)Q] R§’3(t2’ [3;7723) [53 F(_a?,) sgl:;] 6dd’(t3)-
(5.10)

Since a detailed study of the Mellin or Sommerfeld —Watson transform of the six-particle ampli-
tude has not yet been given, we do not know the appropriate statement of factorization of Regge-
pole residues in partial wave amplitudes, so we discuss directly the full amplitude.

We begin by considering the contribution to (5.10) representing right-hand cuts in the energy
variables. Equivalently, we assume the existence of a signatured amplitude* with only right-hand
cuts in the energy variables of fig. 5.3. One might first believe that factorization of Regge-pole re-
sidues would lead to the behavior

* Vertex signatures are neglected.
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Si23

Fig. 5.4. Allowable simultaneous discontinuities in linear triple-Regge limit.

A21T213~ ﬁ(tl) P(—Oll) (_Sl)al V(il’ f2;7712) F("az)(_sz)az V(tzr f3;’f?23) F(_a?,) (_33)0‘3 6([3) .
(5.11)

As it stands, (5.11) is obviously inconsistent with the required analytic structure of 4 discussed
in section 1.3. It has simultaneous discontinuities in overlapping channel invariants. The only al-
lowable sets of simultaneous singularities are shown in fig. 5.4. For each of the terms in the figure
the nature of the singularity in each of the energies is uniquely determined by consistency with
the asymptotic behavior s{* 532553 and the constraints

S127 5152 5237525373 $123 = 515253 M2 M3 - (5.12)

For example, the first term has the behavior

(_Sl)a (“Slz)b (‘“8123)6‘
where

a+b+c=a1, b+c=a2, c=a;y.

We thus find instead of (5.11) the correct structure,

A£112T3~ F(‘*OLI) F(‘“az) F(_a3){(_sl)al_a2 (_Slz)az_a3(_‘5123)a3 W233
T8y TN ()M (= 5) W + (=570 (5y)5 7% (s, 5) 2 W
(5% (g )TN (1) W+ (—83)™7 %2 (—53)% % (51" Wy} (5.13)

The functions W,-’;(tl, 1y, t3;M15, Mp3) are free of cuts in Ny, and 7,3.

The natural choice of independent energy variables for the factorized expression (5.10) is the
set sy, 5,5, 83, M and 7n,3. However, the constraints (5.12) complicate the singularity structure of
the amplitude in terms of these invariants. In particular with all other variables fixed, the cuts in
sy are those shown in fig. 5.5. Comparing with fig. 3.3, one notes the presence of an additional set
of singularities arising from the dependent energy s,,3. A factorized expression like (5.11) is inca-
pable of representing the intricate structure of fig. 5.5 and formula (5.13). Factorization implies
that the amplitude is an independent function of ;, and 7,3, whereas the singularities in 5,3 are
mapped into the s, plane (and other complex energy planes) in a way which depends on both
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ab’c'd’ L5

ab'c

ab a'b’

Fig. 5.5. Complex s; plane showing locations of asymptotic singularities contributed by channels indicated for fixed s,, s3, ny2,
n23.

N2 and n,3. In the special configuration,

Ims =Ims,=Ims;=Ims,,=Ims,;=Ims;,,=0, (5.14)

all cuts coalesce on the real axis, simplifying the analytic structure considerably. All physical re-
gions are included in this configuration. So we are led to look for a restricted form of factoriza-
tion holding for (5.14).

We first consider the signatured amplitude for all the energies negative. Since we are away from
the cuts we expect no effects of the complicated singularity structure (5.13). We therefore might
expect that factorization of Regge-pole residues would lead to (5.11) in this region. Then we ten-
tatively have, using (5.12),

W§3 = B(tl) V2([1’ [2;’)712) V3(t2: f3;7?23) B(t:;) >
Wi, = B(t) V(1) 15m1) Vy(ty 135my5) B(13)
Wiy = B(t) V,(t timp0) Vyty tyingg) B(E;)

W133 + Wi:; = B([l) Vl(tl’ tz;nlz) V3(t2» f3;7223) ﬁ([:;) s (5.15)

where the V; are the parts of the double-Regge vertices defined by (3.19).

We now consider whether the structure (5.13) is compatible with factorization (5.10) of the full
amplitude which is given by a sum of eight terms analogous to fig. 3.6. We shall find that it is,
given (5.15) and one further condition which determines uniquely the W3; and W{;. Let us work
in the physical region for ad - a'b'c'd’ s0 5y, 5,, 53, S12, S53 and 5193 are above their right-hand
cuts.

The eight terms in the full amplitude arising from the W§3 term in (5.13) are
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[(—5 %792 (=557 %3 (=5 15y)*3 4+ 7 s %2 579 50 + 7, (s PN 5755 573,
+ 7y (= )7 (=5 )T Sy T Ty ST (8 )) T (g SR T TS TSR N (8 )™
7y Ty ()M S0 (s ) Ty Ty Ty ST ()T O s 1 W (5.16)

As usual we start with all the energies negative and continue the asymptotic form in large semi-
circles [(—s) = e as we go above/below the cut].* The phase of (5.16) is therefore

lexp(—ima ) +7,+7,exp{—im(a;— ay)} + 7y exp{—im(a;— ay)}+ 7 Tyexp{—imay}
+ 7, T,exp{—ima,} + 7, Tyexp{~im(a;—a, o)k + 77,7, exp {—im(a,— a3)}l . (5.17)

Since W35 « V(1. t5:m15) V3(t,, t3;1,3) this phase should be the same as that multiplying

ELETE G618, 08, (5.18)

Eqgs. (5.17) and (5.18) are indeed equal. The same procedure can be applied to the other terms in
(5.13). The only complication arises for the contributions proportional to V;(¢y, 15;115) X
V3(¢,, t3;m,3). In addition to (5.15), the condition

. . 1
exp{im(a;— a,— a3)} Wi°’3 texp{im(—a,— a2+a3)} W}3 = m
X [exp{im(a;— 20, tay)} texp{im(—a;— a;z)} —exp{im(—«a Fag)l —explim(a,—aj3)}

X Bl V(1) 1y3my) Valty t35my3) B(E3) (5.19)
must hold to obtain factorization. Eqgs. (5.15) and (5.19) can be solved to determine W133 and W{3,

sinm(ay—a3) sinmoy

3 . .
= tYV.(¢,,t,; Va.(t,, ts, t),
B Sinma, sinm(a;—og) B2 Vit tyimyy) Vilty, £33my3) B(25)
sinm(oy—aq) sinmas
T BV (ttyimy,) Valty tyimy ) BES) - (5.20)

sinma, sinmw(o;—aq)

Several remarks should be made about the above discussion: (i) Factorization holds in all the
physical regions of all crossed processes. The computation in each physical region is identical to
that above with a permutation of the terms. (ii) Factorization cannot be imposed if the correct
singularity structure (5.13) is not taken into account. The form (5.11) which neglects the cuts

* This is most simply implemented by choosing for each term in (5.13) a set of independent variables containing the energies with
singularities — each singularity then occurs in only one independent variable. For example, in this term we choose s}, §3, 512, $23
and §)53. Then as, say, $y,3 varies with the:others fixed, s, will vary but, since there are no singularities in s, in this term, the only
phase comes from the singularity in §;,3.



314 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

in 5153 does not yield (5.10) [46]. Therefore the complicated singularity structure allows
factorization of the amplitude rather than spoiling it [76,139,140]. (iii) The signaturization of
the center reggeon «, is essential. If either of the end reggeons is unsignatured, the amplitude still
factorizes. However, it is essential that the combination of right-hand cut in s, plus 7, times left-
hand cut in 5, be formed since it is only this combination which give factorization of the terms
in A¢ proportional to 7,73. In other words, when a reggeon couples two states each with more
than two particles it must be signaturized to give a factorized contribution. (iv) Finally, we re-
emphasize the restricted validity of (5.10). It cannot be used for continuing the amplitude be-
tween physical regions. Doing so gives the wrong phases. The proper formula for continuation is
the non-factorizable expression (5.16) (plus the other four similar expressions according to (5.13)).

In a physical region discontinuity of A4, the energy variables also satisfy (5.14). We now show
that these discontinuities have the remarkable property that they also factorize.

We first identify the basic elements by computing the discontinuities of the four-particle and
five-particle amplitudes. From disc,44 we find

—f PR = ____27ri s, =B() (5.21)
t MNa+1) " ° t ) ’

Taking the discontinuity of A5 in s, = (p,+p.)? we find from (3.18) and (3.19),
‘xfliscs12 Ag=2i0(—a ) st {exp{im(a,— ay)} sinm(—a,) iV, texplim(ay—a )t sinm(—a,) n3V,}
X T(—a,) s52 B (£1)By(13)

and hence from (5.21)

exp{im(a;— exp{im(as—ay)}
t t :"M]_Mn%lfl_ . 3V, - (5.22)
1 2

2isinmo, 2isinmo

Similarly from disc; A5 we obtain

s sinm(a;—a,)
—M»L\//V‘ =_—1___2_ nﬂ‘z V (523)

b ta sinma, 1272

Now consider the discontinuity in §;53 = ( p,+p4)? of A¢ as shown in fig. 5.6(a). Only the first
term of the eight forming the full amplitude has singularities in this channel and using (5.13) we
obtain

diSCs123A6 ~ 2il(—a,) s‘fl [(—a,) sg‘2 [(—a;) s‘§‘3 {exp{im(—a,;+ay)}sinm(—a;) ni3n33 W§’3
+exp {im(—a,*ay)}sin m(—a;) N7 N5 W133 +exp{im(—a,+ 20,—a,)} sinm(—a,) n731% W222

«

+exp{im(a,—a,)}sinm(—a,) n7in53 Wi3 +exp{im(a;— a;)}sinm(—a,) 03} ngg W}z}. (5.24)
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Fig. 5.6. Examples of discontinuities of 44: (a) discontinuity in §y,3, (b) discontinuity in 54, (c) double discontinuity in §,33 and
§3, (d) triple discontinuity in §123, 12 and s3.

Using (5.15), (5.20) and the identity
exp{im(—a,*tay)}sinm(a,— a3) — exp{im(a;~a,)}sinm(a,—a,) = exp{im(a;—2a,+a,)} sinm(a;—ay),
to combine the W133 and W113 terms, we have

discSmA6 ~ 2ip(¢)) sinw(—a ) '(—a ) sT*

[ exp{im(a;—ay)} oy exp{im(a,—ay)} o p ] in( VI ) 5
— — sinm(—a —a
sinma, 2" sinmra; 2" 2 2772
exp{im(ay— az)} exp {im(azs— ay)}
— 2V, — bR inm(— I'(— “38(t,). (5.25
[ sinma; 372 sinma, 23 3Jsm (Fag) Pmey) 552(13) - (5:25)

The discontinuity clearly factorizes into the product of the appropriate propagators and vertices
(5.21) and (5.22). The factorization of the other single discontinuities of A4 can similarly be
easily checked. (One should note that four terms out of the eight contribute to the discontinuity
in fig. 5.6(b), for example.)

This rather remarkable factorization also extends to multiple discontinuities such as those
shown in fig. 5.6(c) and (d). We must first identify the basic double-Regge vertex with two dis-

continuities taken through it. From discsl discsle5 we easily find

sinm(a;— a,)
=qnx,lu<:w- = i 3V, - (5.26)
ta

t sin 7T011

For fig. 5.6(c) we find, using formula (5.13),
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1 i ~ —_ a _ 2 — a3
dlscs2 dls(:SmA6 I'( ozl)s1 I'( ozz)s2 I'( 013)53
X (21)% {exp {im(—a+ay)} sinm(o,— a,) sinmay W3

+exp{im(e;— asy)} sinw(a;—a,) sinma, Wh} ,

and then (5.20),
R . 3 . . Sinﬂ'(azfozl) o
d1scs2 dlSCs123A6 ~ (217 Bz ) sinm(—a ) T'(—a,) 59 [—M-— iV,

Sin'fr(a2f (¥3)

X sinm(—a,) ['(—a,) s3? |: 773‘% 1/3] sinw(—ay) I'(—ay) s336(25) ,

Sinma,

which has the required factorized form. The factorization of the other multiple discontinuities
is similarly checked with the rule that further cutting of a propagator or vertex does not change
it — see fig. 5.7.

The above discussion has shown how intimately the factorization of multi-Regge amplitudes
and their discontinuities is related to the singularity structure of the amplititde. Without the
somewhat complicated structure of (5.13), there would be little hope of obtaining factorization.
We have seen that this structure, constrained by the requirement of factorization of the signatured
and full amplitudes with energies above their cuts, implies the factorization of all discontinuities.
One feels that the factorization of the signatured and full amplitudes is a natural consequence of
the definition of a Regge-pole as a simple pole in the complex angular momentum plane and
should be provable from ¢-channel unitarity*. The factorization of discontinuities then appears to
be a somewhat mysterious consequence of the singularity structure of the amplitude.

On the other hand, the above argument could have been made in the reverse direction. The fac-
torization of all single discontinuities implies the basic relations (5.15) and (5.20) and thus factori-
zation of the full amplitude. At least within the context of the multiperipheral model there is a
close connection between factorization of discontinuities and s-channel unitarity (see Halliday
[76]). In this model the discontinuity is expressed as a sum over (s-channel) intermediate states of

* For example, White [147}] has proven the factorization of the double-Regge exchange in the five-particle amplitude in this way.

AR RF-= QAR RS n BERATE T oo

w,i‘;:,_z M = mLé;==...

Fig. 5.7. Equality of propagator and vertices under several identical cuttings.
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peripheral nature. Factorization of the “output” Regge exchanges follows because they are
generated by an infinite number of peripheral links which essentially decouple the two ends of
the Regge exchange. Therefore the s-channel picture of reggeons makes the factorization of
discontinuities seem natural and the factorization of the full amplitude appears to be a mysterious
consequence of the singularity structure.

The above discussion hints at the existence of a deeper reason for the validity of the factori-
zation properties discussed above and a deeper connection with unitarity which, of course, is ex-
pected to imply the singularity structure exploited here. It may be that at least a partial deeper
understanding of these factorization properties can arise from deriving them as a consequence of
factorization of amplitudes of definite (complex) helicity as suggested by White [147]*.

In conclusion, we note that the general properties discussed above have indeed been found in
explicit- models. Factorization of the full amplitude has been shown in Gribov’s hybrid model
{31], the ladder model {76], and the dual resonance model [139]. Factorization of total energy
discontinuity appropriate for inclusive cross sections has been shown in the ladder and Gribov
model [77] and the dual-resonance model [80,83,84,87,120,139]. For an example of factori-
zation for amplitudes involving pseudoscalar particles, see Moen, Montonen and Zakrzewski [102].
In this case the analysis leading to (5.13) must be applied to appropriate invariant amplitudes.

5.3. Rules for multi-Regge amplitudes

One naturally expects that the discussion of the preceding subsection can be generalized to an
arbitrary multi-Regge amplitude or discontinuity thereof — see figs. 5.1 and 5.2. Thus these am-
plitudes should be expressible as products of the basic uncut and cut propagators and vertices.

In fig. 5.8 we show these basic objects. The propagators and single- and double-Regge vertices have
been discussed above. The triple-Regge vertices can easily be obtained from the results of section
4.1. For completeness we also collect here the expressions for the vertex parts of definite helicity:

—m

1 .
V.= m?ol"( a;+m) ['(— a+a—m)—~[3(a mit, 1),

oo

1
V.= Z; F(*a+m+p)F(~a+n+p)F(_a +a_+a.__m_n___2p)
7 T(—a;) l"(—a].) T(—a}) m,mp=0 i i Tt
___l_ m n (nkinfk)_ o _ s
minip! ki Tk 0 B(p, a;—n—p,a;=m—pit, t, 4),

oo

V., = : 2
Uk 2D(=a) T(=e) T(~ep) m,n,p=0

X Tli(og—0;—a;—ptm+n)] (—l)mmwi? tlﬂzl 2 (nldnij)—m/2 (li]ﬁ?jk)_n/z (njknki)_p/z
Tk i

m!in!p!
XB[%(ai+a —o—m— n+p),2(o¢ +o—a;—n—ptm), o ta —a;—p— m+n),tl,t L1, (5.27)

P[%(ai_ o —m +n+p)l F[v%(aj—ak_a,'— n+p+m)]

Mgi

* Note that discontinuities tend to extract amplitudes of definite helicity. For example, the discontinuity in (5.23) extracts the am-
plitudes of helicity A=a; - N (N=0,1,2,...).
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a) i VUV = g rag)s

. - 27 &
b) § aAis = i

c) fmj< = By
d) t wm< = B
et'mlm.m-= Gneo = Bt 0w e T
) 4 t; Reegegingg) = &7 6,0 v 670, 0
//
sinm(a,-a,)
f) i = — v,
s1nTo . ]
1
) t , eiﬂ(ai—aj) } eiw(aj—ai) }
g’y %L\‘f"l = 2Tstnm, Vi T onstwa; Y
ﬂﬂlé;:—
sinm(a,-0o,)
. . - 1 e
h) ti ' tJ = sinmo; Vj
Fig. 5.8. Basic propagators and vertices; E, = exp {4na,}+ 7y, £ = exp {—im(o; - ])}+rlr], Eijk = exp {~17r(a,—o< ~ak)}+rlr Tk
The dependence of the functions V V V ”kl "/k yV,], etc, on the 7; and njj has been suppressed. ln the expansion
(5.27) for Vl]k the followmg factors must be mserted
for (i), [1+(—~ nm T T; Tk]

for (k), [sin E1r(oz,+az]—«:xk—m—nﬂv)/sin§1'r(ozl-+oz]-—ozk)] ;
for (n), [sin %n(ai+aj— o —m—n+p) sin %n(ak+ai~a]~dp—m+n)/sin %"("‘i”‘j”"‘k) sin Jm(og +oy— Wk
for (0), [sin %w(ai+aj—ak~m —n+p) sin %n(aj+ak—ai—nrp+m) sin in(ak+ai—aj—p—m+n)/sin %n(ai+aj—ak)

X sin %n(aj+ak~ai) sin %n(ozk+ozl~—a]-)] .

where the real functions § have no singularities in their arguments below thresholds in the ¢; in
the absence of multiplicative fixed poles.

Factorization of arbitrary multi-Regge amplitudes has thus far been shown only in certain
models as we discuss below. However it is expected to hold on the same general grounds as the
discussion in the preceding subsection. We note that this requires the existence of signatured am-
plitudes with singularities in a complete set of planar channels (channels formed from several ad-
jacent lines for a fixed ordering of the external lines — see fig. 5.1). It is expected that Regge
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Fig. 5.8. For caption see last page.
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ijk

behaved nonplanar amplitudes can be decomposed into such signatured amplitudes with only the
added complication of the introduction of multiplicative nonsense wrong-signature fixed poles
(see sections 3.4 and 4.2). This type of analysis also requires the simple singularity structure as-
sumed in (D) of section 1.4. For some discussion of the possible effects of more complicated
singularities, see the end of section 8.2.

Finally we also note that the specific forms of the vertices given in fig. 5.8 and eq. (5.27) are
appropriate for amplitudes with all scalar particles and thus all trajectories of natural parity. They
also have the behavior at ¢ = 0 corresponding to nondegenerate, e.g. Toller quantum number
M = 0, trajectories. To treat other cases the analysis should be applied to appropriate invariant
amplitudes.
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Most of the factorization results embodied in the rules stated above have been proven in the
dual resonance model — for discussion, see Weis [ 143]. These results can be extended to a large
class of models which are essentially integrals over the dual-resonance model of the form

AN ~ }V} fdzl']' l'—If(ti’ t]” tk;zl‘]” ij’ Zki) BN({O‘i}’ {Si}’ {Zi]-n,v/-}, {d)l] l}) ) (528)

where ¢;; , is the ratio in (5.3) and there is one smearing function f* for each vertex*. As long as
the z;; integrals do not create any further singularities in the n;; or ¢;; _, the results for the dual-
resonance model carry over directly. Representations of this form were originally introduced by
the Cambridge group [56,96]. They found that all models they studied had double- and triple-
Regge vertices of this form. We believe that (5.28) may be the most general form consistent with
the singularity structure assumed here and factorization of the full amplitude.

Finally, we note that in this section we have discussed multi-Regge amplitudes with only ver-
tices with three lines. Amplitudes involving reggeon couplings with more than three lines are also
of interest, particularly in inclusive cross sections as discussed in section 6 (see fig. 6.2). We ex-
pect the factorization properties discussed above to generalize to these more complicated ampli-
tudes as is the case in models studied thus far (see the end of section 5.2). It should also. be em-
phasized that the rules given above are for all 5;; ;> 0; to treat the case of some s;; ;< 0 (as
is the case in inclusive cross sections) an analysis like that of section 5.2 must be carried out.

6. Applications to inclusive cross sections

The multi-Regge limits of particular exclusive processes,e.g.a+b—> ¢, +..+¢c, (see fig. 2.11),
give small cross sections in restricted regions of phase space and are therefore difficult to confront
with experiment. Consequently, interest in multi-Regge theory for a long time was confined to a
small band of devotees. However, Mueller [104] realized that the theory could be applied to the
larger inclusive cross sections for a +b - ¢, + ... + ¢, + X, where X is any (undetected) state. For
no detected particles (# = 0) this is just the familiar total cross section. Unitarity relates the sum
over X to the s discontinuity of the elastic amplitude A4 3"(5, t = 0) (optical theorem). Regge be-
havior of Aﬁb then gives a Regge expansion for the total cross section (see fig. 6.1).

* We have given the form for triple-Regge vertices. Double-Regge vertices have factors f(z;, t]-;zi]-).

t=0
2 a B (0) a
a
S ab _ Z X ~ Z s< a, (0
Tot X . i . )
)

Fig. 6.1. The Regge limit for the totally inclusive reaction a + b — X (i.e. total cross section) as a discontinuity (dashed line) of the
forward (¢ = 0) elastic amplitude fora+b—»>a+b.
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Fig. 6.2. Notation for vertices encountered i m smgle-partlcle inclusive cross sections,a +b —c+ X: f* ’b—jb . kij F and G con-
tribute to the phase space regions with M= const., M2/s - 0,0 < M?/s < 1, and M?/s - 1, respecnvely, as
§ = (p,+Pp)? — . The dashed line indicates:a discontinuity in M2= (Pa+Pp— D)2

In section 6.1 we generalize the optical theorem to express the inclusive cross sections for
a+b-c +..+c, +Xas appropriate discontinuities of the forwarda+b +c;+... t¢,
- a+b+c,+..+c, amplitudes. Then in sections 6.2 and 6.3 we apply multi-Regge theory to
obtain Regge expansions of the cross sections in various regions of phase space. Some of the
Regge couplings involved are shown in fig. 6.2. In section 6.4 we return to the unitarity equations
to- give sum rules relating different inclusive cross sections (e.g. different Regge couplings).

We restrict ourselves to those aspects of inclusive Regge theory which illustrate the basic con-
cepts of multi-Regge theory. For reviews of the vast literature on inclusive phenomenology we
refer the reader to Frazer et al. [64], Roberts [118], and Slansky [125].

6.1. Generalized optical theorems

For the total cross section(a + b - X), the unitarity equation,*

SOV O il ()l i 0= 6.1)

for p, = p,, Py = Py, converts the cross section

oo = ﬁ 22 X . ,f l"l dp,(2m)* 8% (p, 4P, — ZP) 14, (P, DYDY, DI (6.2)
n t

into the optical theorem

* In this section we use a mixed convention for momenta since it is more convenient than the all-incoming convention used else-
where in this work.
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1 1
o3y = T 7 dise,4 (s, 0). (6.3)
In the above, s = (p,+py)?, A= N(s, m2 mi), dp; = dp; [2E;(2m)?, and 1/n,! is the statistical
factor for n, identical particles of type .
We would like to use a similar unitarity equation to relate the inclusive cross section for
atb->c+X,

3 .ab = n
1 1
3 = [T— [T] 44
(2m)"2E, ap, 2 }\anl ron! fi=1 dp,(2m)* 8% (p,+py—p.— Zp))
X 1A, 3Py PP Dy DI, (6.4)

to the forward six-particle amplitude. The appropriate equation is (for p, = p,, py = Py, Pe=Pe’)

a - c a . c

+ =
o - T TNy ©3
c’ a c - a’

We define s = (p,+py)2, t = (p,— p)? u=(py—p)? and M2 = (p,+p, — p.)? = m%. The dashed
line in (6.5) indicates a discontinuity in M2 so the generalized optical theorem is

1
(2m)* 2E_d30®®/d3p, :\TX -21—1 discyz A2~ (s, 1, M?) . (6.6)

The definition of the discontinuity in (6.5) involves some subtle points which are not present
in (6.1) [126,113,129,29,30]. The signs inside the bubble on the left-hand side give the location of the
subenergy invariants on each side of the discontinuity with respect to their cuts; most importantly,
Sap= (P, TPpp)? is above its cut and s, = (py +pb,)2 is below its cut [the reason for this is clearly seen
from the right-hand side of (6.5)]. One might believe that for variables which overlap the discontinuity
the location relative to their cuts should also be specified. In particular, the variable (p,+ p,, + pcr)2 is
above its threshold (and linearly related to M 2). However, the Steinmann relations discussed in section
1.4 guarantee that the discontinuity is independent of the locations of these overlapping variables
so they need not be specified. We should remark, howewver, that there are anomalous thresholds
present in M2 in general in addition to the usual normal thresholds [113,129,111]. If we assume
the simplified singularity structure discussed in section 1.4 as we have in preceding sections, none
of these subtle points arise, of course.

The above optical theorems can be generalized with no more difficulty to the n-particle in-
clusive reaction, a+ b - ¢y + ... + ¢, +X,

d” g2 1 1

o, dp. TR 3 I A P Poibeg ) 6.7
n

where M? = (palﬂz)b—pcl —pcn)z.



R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes 323
c [ [ ¢, C,

L

¥5=0 Yo=Y
Fig. 6.3. Rapidity plot for a particular event in the reaction a+ b — ¢ + ... + ¢5 + X, with 7 particles in state X.

[
r

6.2. Mueller—Regge limits

We wish to consider the high energy or Regge limits of the inclusive processa + b
- c; +... +¢, + X [104]. The central lesson of experiment is that particle production is
confined to a region of phase space where p; (i = ¢;, ..., ¢,) have small transverse momentum
(I p;1~ 0.5 GeV) relative to the longitudinal momentum along p, and p,. Consequently, we use
the rapidity y; and the transverse momentum p,; variables introduced in section 2.4. Fig. 6.3
gives the rapidity plot fo; a typical final state c; + ... + ¢, + X in the rest frame of particle b
(y,=0,y,=Y ~ Ins).

6.2.1. Single particle inclusive cross section

First we consider the Regge limits for the single particle inclusive reaction, a + b ~» ¢ + X, where
we use the total rapidity Y, the rapidity (y = y.) of c, and the transverse momentum (p, =p, )
of ¢ to replace s, t, M2 invariants in (6.6). As Y - «, the physical region is the interval
Ymin S Y < Ymax» Where

Ymin ™ Vo~ In0mp/w) Ymax ™ Yot In0m/00) . (6.8)

This interval can be divided up into a number of regions as shown in fig. 6.4. These regions, to be
discussed in sequence below, are for p, fixed and ¥ — oo:

Fixed M? Y= Ymin™ ymax—y—>0

Triple-Regge Y= Ymin~ = Ymax — ¥V <1

Fragmentation of aintoc(a—»>clb) y — Yomin =~ %5 Vmax — Y finite

Central (alclb) Y =Yin™ % S

Fragmentation of binto ¢ (ajc=b) vy — Y i finite; Vmax — Y =

Triple-Regge Y= Vmin < 1; Vmax — Y =

Fixed M? Y= Yom~> 05 Vmax — YV > = - (6.9)

The slash in (a - c|b), etc., indicates the large rapidity gap.
In the fragmentation region it is sometimes convenient to use Feynman’s x variable,

x =255 A5, (6.10)
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Fig. 6.4. Phase space regions in rapidity for the single-particle inclusive reactiona + b — ¢ + X.

which is the fractional longitudinal momentum of ¢ (p§™) in the center of mass of a and b. In
this variable the fragmentation region of a(b)is 1 = x > 0 (—1 < x < 0), and the invariant volume

element is
&Pp/E=d?p, dy =d*p dx/N/x*+4w?l/s~ d*p dx/x. (6.11)

For the fragmentation region (a —» c|b) or x > 0, we have the connection to the invariants

s~mambey, M*~s(1—e ™)~ s(1-x), t~maz+mg—m§e‘5y‘wgeay, (6.12)
where
6y=ymax_y'

Just at the phase space boundary 8y = y ., — ¥ > 0 there is a fixed M? region. Since only a
fixed set of states occur in the sum over X

1
Po/dp dy ~ < 25 147X, (6.13)
X

presumably we may take the s » oo limit inside the sum. Each exclusive channel may be analyzed
by Regge pole exchange in the r = (p,— p.J? channel [fig. 6.5(a,b)]

4ab—ceX > Ei B?E(t) $40 Vibi’ (6.14)
i

a) b) <)

Fig. 6.5. Regge limit of inclusive reaction a + b — ¢ + X for (b) fixed M?and (c)s > M2 > 1.
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to obtain the inclusive cross section:
. 1 - - . ) o
d*o/d’p dy ~ - 27 g, £ BS(r) B(e) s OO fiO =IO (M2, 1) (6.15)
ij

The function £ ~/2(M2 ¢) can be interpreted as the absorptive part of a reggeoni + b
- reggeon j + b scattering amplitude in the forward direction #,5 = 0.
As we move further away from the phase space boundary, M2 becomes large and

Oy~ T R(0) (MO OO (0,1,0). (6.16)
M¢—>~ k

This is the so-called triple-Regge behavior [see fig. 6.5(c)] valid for s > M2> 1 (x~ 1). The deri-
vation of (6.16) and its relation to (6.15) through finite energy sum rules will be discussed in de-
tail in section 6.3. Combining (6.16) and (6.15) gives

d3o/d2pldy~ = 2o g £ B B (s OO £ (0,1, 1) (MPRO BEP(0) (6.17)
5, j k

Moving away from x = 1, we enter the fragmentation region (a - c|b). (Since p_ is finite in the
rest frame of a, ¢ may be thought of as a “fragment of a”.) From (6.12) we can see that this limit
corresponds.to the single-Regge limit on A4 shown in fig. 6.6. Labelling the particles as in (6.5)
we have from section 2.2:

Ag~ Z) B () £ D(—0) (M2)k R, (5,00 Sz foz Suzens Syner tepriSan /M2 Sy/MP) . (6.18)

ac’ aa’’ “ad'c” "aac’

One easily sees that all the arguments of R, are fixed in the fragmentation limit as required. In or-
der to obtain the inclusive cross section using the optical theorem (6.6) we must take the M2 dis-
continuity of (6.18). This cannot be done without a detailed knowledge of the singularity structure
of Ry in s,,/M? and s,y /M2. We shall assume that the analogous analysis for 4 5 (see section 3) can
be generalized and the discontinuity taken, although this has not yet been carried out by anyone.
Furthermore we assume the discontinuity factorizes; the analysis of section 5 makes it clear that
this is not a trivial result although at the same time it is very plausible.

Therefore in the fragmentation region (a > c|b), we can write (see fig. 6.7)

Fig. 6.6. Single-Regge limit of the six-particle amplitude 4.
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2 Fi o x,p))
a c a 1 a
2 ~2
[
X X k a, (0
e b b
e (0)

Fig. 6.7. Single-Regge limit (a — c|b) for the inclusive process a + b — ¢ + X in the fragmentation region of a.

d3¢ d¢ 1

~

X _
d2p dy d2p,dy S

%) BP(0) sk Fa=C(x, p ) . (6.19)

The function £7~ € is the fragmentation vertex coupling the reggeon a; to the four particles
ac - ac.

The fragmentation region for F,E’”C(x, p,) is handled in exactly the same way except a < b and
—1<x <0, ory — yy fixed. The two regions x < 0 and x > 0 are separated by an infinite rapidity
gapas Y - «, s0 F2~¢(x) does not analytically continue into Fb—¢ as x is continued through
x=0.

The central region, which lies between the two fragmentation regions at x = 0, has two large
rapidity gaps v, — ¥ and y — yy,. Again we should do a careful double-Regge analysis of 44 for
abc » a'b’c’, where there are three clusters of particles (aa’, cc’ and bb’). The result of this analysis
is the double-Regge formula fqr the central region (fig. 6.8):

3o 1 = SacS -
T DO SEO (—8—3) 5% 13(0) . (6.20)
p,ay ki ab

By the general rules of section 2.2, the only variable in the forward direction (p,=p,, p =D, .
p.= p.) that is held fixed is

- 2 _ .2
sacscb/sab pitmi=w: . (6.21)

We may re-express the formula (6.20) in rapidity variables as

. 8° (0)
2 ! a
) a c a, (0)
2 :& e
kL c
b X ' dk(o) le (px)
>t P

Fig. 6.8. Double-Regge limit (alcib) for the inclusive reaction a + b — ¢ + X in the central region.
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Bo 15y
2, 4y s ? By explo, (¥ — y N Ge(p]) exploy(y,— )} B7, (6.22)
p,dy
where
Br=m1® B 0) G (P = k@10 £ (pl+ m) .

Consistency with triple-Regge and double-Regge limits puts boundary conditions on
Fg7%x, p))atx =1 and x = 0, respectively (fig. 6.4). The triple-Regge condition is

FE™e(x,p) ~ 20 B0 £ BE(0) £(0, 1,0 (1—x)*k OO0, (6.23)
S

asx > 1, where 1 = (p,— pc)2 ~ —pf. The triple-Regge behavior (6.17) is therefore the behavior
necessary to provide a smooth connection between the fragmentation region (6.19) and the fixed
M? region (6.15) {40,32,60,124]. The double-Regge boundary condition [24] is

F2%x,p) ~ IE B3(0) [m exp(y,— MM O~ kO G (p2) (6.24)

as x ~ exp(y —»,) > 0. These boundary conditions assume uniformity in the interchange of Regge
limits. Often the first term in the boundary conditions
1) p(O=er© (6.25)

(1 — k0= 2ap® ~
Fo~ (1 —x)*k©= 2ep0), F, (;

accounts for the qualitative structure of the fragmentation vertex function F,(x, pf).

6.2.2. General Regge limits of inclusive reactions*

Fora+b- ¢, +... +¢, + X there are as many Regge limits as we can group a, b, ¢, ..., ¢,
into clusters in the rapidity space**. With the bar denoting a large rapidity gap, the single inclu-
sive Regge limits are designated (a—clb), (alc|b) and (alc < b). For n = 2, there are three limits
replacing ¢ by C1Cys which are analyzed as in the n = 1 example, as well as the limits
(a~ ¢ lc, < b) and (alcy|c,|b).

The Regge formulae are easily “‘guessed”. For example, for ¥ >0, (a>cjcylb) is

d%o 1 =
EE, —— _ ~_23 0 s*OF =% (x,p . x,.0,,) (6.26)
d3p,d3p, S &

the two-particle fragmentation formula. This involves a new vertex F?7 12 for a reggeon and six
particles (see fig. 6.9(a)). We have

* See, for example, Abarbanel [1].
** The exclusive channel a+b->cy +... + , has the same number of multi-peripheral Regge limits (section 2.4).
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X;~ exp(—8y;), i=1,2, (6.27)

where Syi = Voax — Vi

The limits (a - ¢4]c, < b) and (alc;lc,|b) involve only vertices defined for # = 1. Therefore we
must make certain that our formulae are consistent with the assumed factorization of the Regge
residues. The correct expression for double fragmentation (a - c;lc, « b) is (see fig. 6.9(b))

EF

dbo 1 . .
E, ~ =2 PR, p ) st OFY e (e p L) (6.28)

3 3 Ky
d’p,d°p, k
Factorization has important consequences for the correlation function C defined as

E\E, d%c dd0 EE, db
Civ-oe, o 21E2 o do L1y &% (6.29)

(o2 d¥p, d3py ol d3p,dp,

For a leading factorized pole (usually taken to be the pomeron atJ = ap(0) = 1), correlations .
vanish

cib-ac: o, as s~ A% (6.30)

>

where Aq is the spacing between the leading pole and the next singularity. For a leading pole at
J=ap(0) and a secondary set (p, w, A,, f0) at a(0) ~ 3, the correlations to leading order are

1 AF s Ao b b B b—
(20 2 Cab arca _Sk_pEA BF T BEET ) B ET BT (6.31)
=0,W, A
and factorize. Some crude efforts have been made to check this factorization [22].
The Regge limit (alcylc,|b) in fig. 6.9(c) becomes

¢ 1 - -
T~ = T Brexplag(y,— y)} G (P2 exp{o,(y—y I GE2(pL)expla, (¥, -y} B

EE, ———
d3p1d3p2 S klm

172

(6.32)

a (= a
A= a a | a ]
< 0 < G <
Cz <, S < c, <, & &
Cy C, N
b : b b |
b | b d b b I b
a) b) ) 4

Fig. 6.9. Examples of Regge limits for the inclusive reaction a + b — ¢, + ¢, + X: (a) diparticle fragmentation of a, (a — c;c,ib);
(b) single fragmentation of a and b, {(a— cjlc; < b); (c) all large rapidity gaps (alcqlca|b); (d) cq in triple-Regge region and ¢, in
central region.
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Again factorization has simple consequences for C. For pomerons on the ends (or y,— y; = o,
Y3 — Yp = ), we have

C2 a2~ 25 G exp{—(a)0) —a)(0) AY} G2, (6.33)
]

where Ay =|y;— y,|. This gives a correlation length ~ 1/Aa ~ 2.

The rules for writing a general Regge limit of a + b > ¢, + ... + ¢, + X are quite simple:

(1) Pick a clustering of the particles [e.g. (a > ¢lcyc3lc4|b)] and for each cluster introduce a
vertex G,:l as a function of each particle c;, each transverse momenta p 1¢; and all the rapidity dif-
ferences in the cluster.

(2) For each reggeon introduce the Regge power exp{a;(y,—y;)} where y;(y,) is a standard choice
in the left (right) hand cluster.

(3) The clusters at the ends are given special symbols

6:{ - (ma)ai 6'aa: F?—>cl, esy Cm = (ma)ai F;}—»CI, ...,Cm

because the factors of masses are needed to convert exp {(y, — y) «;} into s in the simple cases.
For example (a » cjlc,cslcylb) is

d —
ﬂ E, —~— o~ L F}=(y,= vy pyy) explay(y,—»,))
i=1 d3 Sijk

X G;:]?ca(pJ.Z’yZ_yS’ pl3)exp{aj(y2_y4)} G (pl4)exp{ak(y4 yb)} ﬁk (6.34)

These rules exhaust the multi-Regge formulae for the inclusive reactiona+b-~c¢,+..+¢c, +X
except for the triple-Regge limits (see, e.g., fig. 6.9(d)), the simplest of which is to be discussed
in the next subsection. The rules incorporate the assumed factorization properties of Regge poles.

6.3. Triple-Regge behavior

Here we wish to derive the ““triple-Regge’ contribution (6.17) for the iriclusive reaction,
d2o
dtd(M?/s)

from the triple-Regge and helicity limits of the six-particle amplitude of section 4 [49,91,51]*. If
we return to the labelling of the energies of fig. 4.1 (note the labelling of the external lines is dif-
ferent), we have

L s\ altrtaqx() a30) ]
~SEERORO () F31200, 1, HM2*p3(0) (6.35)

53 =M2?, $31 =5, Sp3 = 5%,

S1 =8y =my, 312=0, t3=0, t1=f2=f, (636)

* Here we follow the discussion of the last authors.



330 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

and thus
S30 T3> 317 = -

Since s, and s, remain finite this is certainly not a triple-Regge limit, but instead the mixed Regge-
helicity limit discussed in section 4.3. From (4.24) we see that the signatured amplitude has the
form

Ag17273 ~ (—Mz)‘“(o)*"‘1(’)“"2(’)(—‘S)°‘1(")(—5*)"2(’)F(4a3(0)+a1(t)+a2(t))F(~a1(t)) F(—az(l‘))
X B5(0) B,(1) B,(1) B0, ay (1), a,(1); 1,2,0) + ()P U(1) . (6.37)

Only the first term in (6.37) has a discontinuity in M2 and thus contributes to the inclusive cross
section,

d3o 1

. s 5\ e+t N
B i sy A = B0 (70 () B,(6) B, (D ()T (—a (NI [E (T (=ay ()]
X {sinm(—a;(0)+ oy (1) +ay (1)) Dl—ar3 (0)+ o, (1) + 0ty (1) B0, ey (1), (1): 1,1, 0)] (6.38)

where the signature factors arise from forming the full amplitude.

Although the limit under consideration is not a triple-Regge limit, the contribution to the dis-
continuity is precisely the same as the triple-Regge contribution. The triple-Regge form for the
amplitude is given in (4.7). Only the first term contributes to the M2 = s5 discontinuity. The ver-
tex part V', is given by (4.21), from which we see that, for n3;, 1,3, 1/11; = o, only the leading
term contributes, yielding precisely (6.38). Thus one can legitimately speak of the (6.35) as “triple-
Regge behavior” of the inclusive cross section.

Comparing (6.35) and (6.38), we find

T (—a (1) T'(—a, (1))
(e, (0) +1— ay() —ay(1)

Fi,00,6.0) = B(O, a,y(1), a,(8); 1,1, 0) . (6.39)

The denominator is a generalized nonsense wrong-signature zero and will cause f to vanish at
nonsense angular momenta in the absence of multiplicative fixed poles. The nonsense points are

a3(0) = o,(1) + a, (1) + N, , Ny=-1,-2,-3,.. and  77,1,=(-1)". (6.40)

These are shifted from the negative integers since the trajectories in the ¢, = ¢, = f channels have
helicities a(¢) and a,(¢) of opposite sign* yielding a total ¢5-channel helicity a(¢) + a,(¢). The
multiplicative fixed poles which remove these zeros are those of (4.22) which give singularities

1
a3(0) — oy (2) — az(t) — N3

(6.41)

¥ These are helicities in a frame where ¢, £, and #3are collinear. Thus pomeron trajectories at ¢ = 0 carry helicity one. This is per-
fectly consistent with their having helicity zero in the s-channel center-of-mass as is appropriate for a Toller M = 0 trajectory.
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M2
Triple-Regge Region
—
M§| le s
T“Efb_.c*x “I‘ T a+b+C—=X
M2, v8§-m.”?  (Eem,V

Fig. 6.10. Kinematic regions in M2.

in 8. As usual the fixed powers in the full amplitude which would arise from such fixed poles
cancel due to the restriction T ToT3= (—1)"3. However in the signatured amplitude the fixed pole
(4.22) leads to a contribution

A‘g,r2r3 ~ (__MZ)N3 (_s)al(t)+ aZ(t)RN3(t) , (6.42)

where
Ry, = (@3(0) —ay(t) —ay() = N;) 7"

Due to the singularities (6.41), the first term in (6.37) can in general have spurious singularities
at a3(0) — ay(#) — a,(#) = I (I any positive or negative integer). The singularities for / > 0O are
cancelled by the second term in (6.37) and the singularities for / < 0 by contributions of the form
(6.42). These contributions which compensate the spurious singularities can be seen to arise in a
very natural manner along the lines of Low (private communication)* and Iwasaki and Yazaki
[85]. In fig. 6.10 we show some of the cuts in M? in the signatured amplitude. In the triple-Regge
region we know the discontinuity so we can compute the contribution A of this region to the
full amplitude using a dispersion relation

~ 1 ¥ dm’? ~
AN = _ f — (M'2)013(0)—a1(t)—042(t) sa1(t)+az(t)f(t) (6.43)
T M2 M2
M
where

~

F (0= 85(0) B,(0) B,(8) £11,(0, £, 0) .

The full amplitude has contributions from integrals on the remaining cuts, but (6.43) alone al-
ready reveals the compensation mechanism for the spurious singularities since it is not singular
for a3(0) — a(#) — a,(¢) = 1. The integral can be rewritten as

My
0

and the three pieces separately evaluated,

s

€S

ogut\a o)

* See also Chang, Gordon, Low-and Treiman [35].
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/Iglrﬁ = (—MP)*3m - @ gute ]?(t)/sinﬂ'(-a3+al+a2)

oo

a3— oy — ap—1 2 (M )0‘3 og—ay—1
+1 Z)e_-—___f(t) (M) saa~i E 0 f(t)( MY st (6.44)

7r]=0 a3—al—a2 7T[=_1 a3_a1_

Thus the second term in (6.37) and the cancellation of spurious singularities for / > 0 is associated
with contributions for M2 > es, while the fixed poles (6.40) and the cancellation of spurious sin-
gularities for / < 0 is associated with contributions for M? < M%. When the dispersion contributions
for the remaining cuts are added to (6.44) to obtain Ag1™"s, the precise form of the second two
terms is modified but the general mechanism for cancellation of spurious singularities is expected
to be preserved.

Finally we remark that finite energy sum rules (FESR) can presumably be written for the reg-
geon-particle scattering amplitude of fig. 6.5(b) which connect the low M2 behavior to the triple-
Regge behavior. The prototypal FESR obtained by integrating along the right-hand cut-in M2
and around a circle of radius M2 = N in fig. 6.10 is

sinm(o;—a;— o)
! ! Nak"‘l—ai—aj

f am? (I 20 = 2 B0 Fyy (0,40

2 aptl—a;—a;
My k i

7

+7R_ (DB BT, (6.45)

where R N, is the fixed pole residue (6.42). We refer the reader to Einhorn, Ellis and Finkelstein
[59], Kwiecinski [95], and Sanda {121] for further details. We note that in this case we do not
expect the complications discussed in section 3.6 for the reggeon and three-particle amplitude.
This is because the relevant n;; - o (see (6.36) and (4.21)), so that only the leading term in l/ni]-
in the amplitude contributes.

6.4. Inclusive sum rules

Here we consider some consequences of direct channel unitarity for the discontinuities that
enter into the above expressions for inclusive reactions. Although we present the results in pre-
paration for applications to Regge theory of the pomeron (section 7), they are entirely general
and exact consequences of unitarity. .

Unitarity for the 2—2 matrix element (see (6.1) to (6.3)) ofA‘j“b”"‘b =(p, 0| TP Dy is

1 ..
Edlsc(papbl Tp,py? =

~ 1
Z_)n— fap,...dp, 2m* 84(p + Py~ 20 Dyl TH 1Dy DY Py N TIDgyd s (6.46)

N\
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where we have assumed all identical particles. This is a complicated nonlinear relation between

the 2 - n amplitude for n > 2. However, suppose we consider the Mueller discontinuity (see
(6.4) to (6.6))

o v 1
574isC, PPy TIPypyp) =5 24 fdp, . dp,2m)* 8*(p,+ py—p —~Zp))

XAp P TPy PP Dy Py T1DyDyY - (6.47)

If we set p = p_. and integrate over dp_, we almost get the 2—2 discontinuity. Only the statistical
factor 1 /(n —1)' is incorrect. Instead we multiply by p% and then integrate. Since the amplitudes
are symmetric in 1, 2, ..., n (¢ =1), this can be replaced by

M
be~

Z p} t=Lipp, (6.48)

using energy-momentum conservation. We thus obtain the exact unitarity sum rule [48;1371]

(gt py)disc, (ppy I TIppy) = 20 [dppidisea(p,pypl TIPPyPL (6.49)

where for generality a sum over (nonidentical) particle types ¢ is included. This is a remarkably
simple expression. Instead of a non-linear relation to the 2 — n amplitudes, we relate the 2 » 2
amplitude linearly to the 3 - 3 amplitude. If, as is the case for Regge theory, one has an ansatz
for the two discontinuities this relation is nontrivial to satisfy.

In the forward direction (p,=p,., p,=p,,), we can rewrite (6.49) using (6.3) and (6.6) to ob-
tain [41],

ab

by P o= T fap pt g

(6.50)

In terms of cross sections the sum rule is a trivial consequence of conservation of energy. Its interpreta-
tion is very simple. An event with n particles of type c contributes delta functions to the inclusive
cross section at n points in phase space. If we integrate over d p, multiplying by p¥ we obtain the total
momentum times the probability of the event. Summing over events gives the total cross section.
Only if we theoretically relate the cross sections by unitarity to discontinuities do they constrain
the expressions allowed for the four- and six-body amplitudes.

If we do not insert an energy factor p¥, each event contributes n_ times its probability. We
then obtain the particle number sum rule

doﬂb
(npo® = [dp TN (6.51)

for the average number of particles (n ).
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The particle number (6.51) and the conservation of energy (6.50) sum rules have been known
for some time. However, recently it has been realized that there are an infinite class of sum rules
like these. We may look at the discontinuity expression involving amplitudes for
atb-c .. +tc +X

1
57 57 discy 2 (p 2PoPey c;IITIpa,pb!pcl...pcn)

oo o

1
=L T L fap,,.dpntstp p, - Z?p 2 p)
2iy 1 n: i=1 I=n+
X {p, by T+|pcl.‘. Pe Pust PP APe Dot Dy pITIpp, . (6.52)

Multiplying by any & momentum factors p’c‘ and integrating gives sum rules relating discontinuities
of 2(2 +n) particle amplitudes to dlSCOIltlanty of 2(2 +n — k) particle amplitudes. For elegant
formulations, see Brown [28] and Predazzi and Veneziano [114]. The constraints implied by the
complete set of these linear sum rules are equivalent to the usual unitarity equations [137].

As an example, consider n = 2 [48]. One factor of p‘c‘2 gives*®

(p,+py—p, ) disc 2 (p,p DN TIDyPyD
= 2im(p oy — P, W 20 S(M2—m2 )P py| TP, PP P TIPgPy)
€2

+ 20 fdp02 p‘gz discﬁjl2<papbpclpc2l Tlpa,pb,pclpcz> , (6.53)

€2

where
1772 = 2
M*=(p,*p,—p, —P,)

For the inclusive cross section (pa= Dyr Py= Py P, = pc,l), eq. (6.53) becomes

doab
(p,*p,— P p 4 ) e — (6.54)
b Cy dPCI © J Cat Cy dﬁ;dpc2

Integrating over p, and combining with the earlier sum rules (6.50) and (6.51) we obtain the
mixed momentum-conservation number-average sum rule,

doab
(p.+p, (E<n)—l) o= Y [dp_dp pr 2% (6.55
parp (2 (g Cmf Pe 3P, g5 )

* The first term on the right is necessary to give the two-particle discontinuity on the left.
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or, multiplying by p{ then integrating, we get the second energy-momentum sum rule

(PP (Pt ) 0y = 2 fdpcp‘c‘pzd—(jo;—b + 2 [dp, dp, Pt Pl d—’%- (6.56)
¢ c Cy5C2 €y €2
If we contract the u, v indices, we get the Lorentz invariant equation
50 =20 mXn o+ 20 fdp dp..p.- D, iab——. (6.57)
Tot - c ' c crics €1 Ctey ey d—p;(-l-pc2

In addition to energy momentum conservation, we may use any discrete additive quantum num-
ber such as charge, baryon number, etc. For example, multiplying (6.47) by the charge of ¢, @,
and integrating, we get

Q,t0,= 2 (n> Q. , (6.58)

or from an expression like (6.53), we get

(Q,+Qy)n, )= %2) Q. (n.n). (6.59)
Similar equations also hold for the isospin /. Various relations can be obtained by contracting with
different fixed isospin vectors. For further discussion, see Di Giacomo [52].

The inclusive sum rules clearly constrain the Regge couplings of fig. 6.2 and section 6.2 which
enter in the Regge analysis of inclusive cross sections. They are examples of direct (s) channel
unitarity constraints on the crossed (#) channel Regge exchanges. Clearly a complete Regge theory
should satisfy these constraints. While Regge exchanges are constructed to satisfy the require-
ments of f-channel unitarity, for the most part, we can at present only enforce s-channel unitarity
by hand in a piecemeal manner. In section 7 we shall investigate some particularly striking con-
sequences of these constraints.

7. Applications to pomeron Regge pole

In this section we apply the general analysis of the preceding sections to the study of the prop-
erties of a pomeron Regge pole with unit intercept, ap(0) = 1. This is done to provide a pedagog-
ical example and also to illustrate the importance of the further constraints on Regge pole prop-
erties imposed by s-channel unitarity.

7.1. Introduction

The fundamental property of Regge poles (and Regge cuts) is that they are believed to satisfy
completely the requirements of t-channel unitarity. So far we have concerned ourselves here with



336 R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes

investigating the constraints imposed on them by s-channel analyticity. But we know that the
Regge expansion should also satisfy s-channel unitarity. Indeed, it is well known that s-channel
unitarity gives further constraints. The celebrated Froissart [65] bound for s » o
ab 2142
a‘j‘TDt < w/m;In®s (7.1)
follows from s-channel unitarity and f-channel analyticity in the neighborhood of £ = 0. Any
Regge pole contribution
ab . pa bb -1
0o~ B2(0) 7°(0) s (7.2)
must therefore have a(0) < 1.

The Regge saturation of (7.1) gives the standard pomeron Regge pole model for diffractive
scattering® (ap(0) = 1) and

ab  const. (7.3)

However, there are even further s-channel unitarity constraints on an isolated pomeron pole with
ap(0) = 1. We shall see that such a pomeron pole must essentially decouple from all processes.
This raises the possibility that even a stronger bound than (7.1) or (7.3) exists (Chew, private
communication), namely, ap(0) < 1, or, as s - o,

b o
ot ~ 0, (7.4)

Since the Froissart bound uses only a small part of the full content of unitarity and analyticity,
the existence of such stronger bounds would not be surprising. However, while the full exploi-
tation of f-channel unitarity may indeed require only Regge pole and cut contributions and thus
a strengthening of (7.1), we believe that it is likely that Regge cuts play a crucial, and, as yet, not
fully understood role which would circumvent (7.4) and allow constant cross sections (7.3). Cuts
which accomplish this would have a number of rather unconventional properties in addition to
the usual ones of allowing 0‘}1& to increase to its asymptotic value and giving long-range correla-
tions.**

This section will be devoted to a discussion of the constraints on an isolated pomeron pole with
ap(0) = 1.** We ignore cuts by invoking the popular ““soft” cut ansatz that all cuts at J = 1 are
damped by logarithmic factors relative to the pole. In section 7.2 we apply the unitarity sum
rules of section 6.4 to the Regge expansions for inclusive reactions (sections 6.2 and 6.3). We be-
gin by showing that the triple-pomeron coupling vanishes for £ = 0 (e.g. fppp(0, 0, 0) = 0 as de-
fined in fig. 6.2(b)). From this a large number of further decouplings can be deduced. Then in
section 7.3 we show these results can be extended using the analytic properties of reggeon coupl-
ings (section 3) to the vanishing of the elastic coupling, e.g. ¢q. (7.4). Finally, in section 7.4 we
give alternative derivations of weaker forms of the decoupling theorems of section 7.2 which in-
volve discontinuities of vertices and do not conflict with (7.3). In view of the poorly understood
role of cuts, which may destroy some or all of these decoupling results, this section may only turn

* For a review of diffractive scattering, see Horn and Zachariasen [81].
** For a more detailed discussion we refer the reader to Brower and Weis [27] and White [146].
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out to be a pedagogical exercise in applying the results of the preceding sections in a too ideal-
ized situation. On the other hand, however, it also illustrates the power of the s-channel unitar-
ity constraints which must be reckoned with in any theory of diffractive scattering.

7.2. Inclusive sum rule decoupling theorems

In the inclusive approach to the decoupling theorems all the results follow from the vanishing
of the *“‘triple-pomeron” vertex. This condition, which was first discovered by Gribov and Migdal
[74] is fundamental to the iterative approach to diffractive cuts in the Gribov calculus and the
multiperipheral bootstrap [74,3].

7.2.1. Triple-pomeron zero

We consider the inclusive process a + b - ¢ + X studied in section 6 in the triple-Regge limit
s> M?> 1, where s = (pa+pb)2 and M? = (p,tpy— pc)2 (see fig. 6.5 and eq. (6.35)). The leading
pomeron term (a3(0) = ap(0)) gives that portion of diffractive production (al(l‘) = az(z‘) = ap(?))
that contributes to scaling

d*o wo(—1 { S\ 20p(1)~ap(®)
Ec a?_ = GP(t)S P(O) 1 (ﬁi) P P ’ (75)
P,
where
Gp(t) = 1 £, BN 12 fopp (0, 1, 1) 25(0) .
We now ask whether the factor
(S/MZ)ZOLP(I)-- ap(0) = (1/(1_x))2a't+ap(0)’ (76)

which is singular at the phase-space boundary x = 1, is consistent with unitarity and constant cross
sections. The conservation of energy sum rule (6.50) is

(P, P 0% () = E [dpp* do®/dp, , (7.7)

where the sum is over all particle types c. Adding the energy and longitudinal momentum compo-
nents of eq. (7.7) in the center of mass, we have the exact unitarity sum rule for s » oo

w0 1
[ 3 .ab
oaTt(’)t(s)=1r 2 f dpf fdx (Ecd 9 ) (7.8)
c 9 0 'd3pc

Restricting ourselves to the channel (¢ = a) and the phase-space region dominated by the triple
pomeron, we have an inequality
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c 1-M/s q
X .

o (5)> m f dp? f (-0 G0, (7.9)
where p{ = —r+1¢_. (s x). Let us look at the leading term coming from the singularity at x = 1.
Since s > M2, ¢ min = 0 and by integrating by parts in pl we obtain

7Gp(0) j~M0/s
+ . :
2 [—x “n(1—x) o™ (7.10)

[

and after performing the integral over —d(In(1—x))

Gp(0)

ab
Tot = > 2a’

o In In (s/M}) . (7.11)
Consequently a nonvanishing triple-pomeron coupling at ¢ = 0 gives a term in violation of 0,,,~ const.
Consistency requires

fppp(0,2,6)=0 for t=0, (7.12)

and analyticity requires it to be a zero at least linear in ¢.

From eq. (6.39) we see tRat such a zero can arise from a nonsense wrong-signature zero [51].
However, such a zero is probably not how eq. (7.12) is satisfied in a realistic theory* including
Regge cuts [21,68,156—159].

7.2.2. Stronger consequences

By a further application of the unitarity sum rules [ 88] additional decoupling theorems are ob-
tained. Here we use the sum rule (6.54) relating the double inclusive (a+b— ¢+ d +X) to the single
inclusive (a +b - ¢+ X) cross section.

Introducing the Feynman variables x_ = 2p, . /V/s, X, = 2p,4/+/s in the center of mass of p +p,,
the energy plus longitudinal momentum component gives

1

4o S/ e mf d_xd ( d"ab). (7.13)

dpc 202m )3 X, \dp.dp,

In the limit 1 — x _< 1, this becomes an inequality for the triple-pomeron vertex

opp0. 2003 [[d?p [dy(1—y)**O Bt 7,3, 7). (7.14)

The quantity B is essentially the Mueller vertex (fig. 6.2 (c)) for the process pomeron )+
b-d+X. We have y = 1 — M2 /M? , where M2 = (p TPy P~ pd)z t=(p,—p, pd)
=(pp—0p d)2 The dependence on the additional Toller angle-hke variable n = b/s M? arises

from the helicity of the pomeron (¢).

* A more serious attempt at studying the triple-pom‘eron zero in the presence of thie infinite number of multispomeron cuts has
been recently made using renormalization group techniques [156—-159].
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For ¢ = 0, the integral gives a lower bound on fp,p (0, 0, 0) and must therefore vanish from eq.
(7.12). The integral is a positive definite phase space integral so that
d d
0 0

B(0,Tym)= P P =0
(7.15)

identically for p, in the physical region. This is an extremely strong result with many consequences.
In particular, if we consider the limit y - 1 (e.g. s> M%> M?> 1), we may pick out the Regge pole
in the pomeron + d-channel, which gives

B~ (1—yy 2or0) p o (0, 5,1) 1§, T(—ap) REL(0,751) £ T(—ap)?= 0, (7.16)

or representing this diagrammatically we have

=0. (7.17)

Since the PRR vertex is easily shown to be non-zero because of the elastic poles at 7 = m?, we

have
R$(0,7;m=1/(m*~1))=0 (7.18)

for all 7 < 0. From the expression (3.12) we see that = 1» m? — ¢ as ¢ - 0 for physical (i.e. real)
w. This lack of w dependence as ¢t » 0 is a consequence of the required analyticity of the ampli-
tude in the channel invariants.*

By considering inclusive processes with more particles, one can obtain an infinte number of

similar decoupling theorems with d replaced by a cluster of particles (X')

X!

(7.19)

* This is true for Toller M =0 trajectories. For M # 0, there is w dependence arising from a pair of trajectories with opposite parity.
The trajectories have compensating singularities in ¢ which are not allowed in the full amplitude.
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a

<

Fig. 7.1. Pomeron three-particle coupling in the five-particle amplitude A 5.

Other regions of phase space for B can also be considered. For example, with p4 in the central re-
gion, we get

R =0. (7.20)

7.3. Elastic decoupling

Here we consider further decoupling theorems that can be obtained by analytically continuing
the results of section 7.2 from the physical regions where they were originally obtained. Before
discussing these results in detail, we give a simple example which illustrates some of the technical
difficulties in such analytic continuation {26,731].

Suppose it has been possible to analytically continue the pomeron—reggeon two-particle ver-
tex (7.19) to the particle pole to obtain the decoupling of the pomeron from three particles (see
fig. 7.1). We would like to know whether it is possible to make a further continuation to an inter-
nal particle pole to obtain the vanishing of the pomeron-particle—particle coupling (and thus total
cross-sections); i.e. a continuation to, say, Seer = mg,.

The pomeron three-particle coupling generally has the form (3.6)

R(sa,br/sac, Sy Ipr Seet) (7.21)

where s, + Sy + S = m2 +mi +ml + ty,and £, = (p,+ p,)*. However, the vanishing of (7.21)
is only known in the physical region for fp = 0. In this case there are further constraints among
the variables (seee.g. [27])

Sac _ Sae _ Say (7.22)

— —m2
mss.— My

It is clear we cannot continue to the pole ats_ . = m%, without simultaneously going on top of

the poles at s, = mg and s, = mz To get a rough idea of what happens, let us consider a simple
model for R — just the sum of these three poles
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s 8 S+ 8 S 8%
. acSc a'c'st a’b'®hb
Ag =~ ig, [ t—— 2] 8ot s (7.23)

—572 —
Spret MG Sye — mz, Seer — My

where g; is the coupling of the pomeron to particle i at 7, = 0. Using (7.22) and 5, .~ —s5,.., etc.,
the vanishing of (7.23) implies only

8. — 8y & =0 (7.24a)

and not the vanishing of the individual elastic couplings g;.
We can also consider the reactions obtained by crossing pairs of particles and obtain

—gé' + gc!_ gB' =0 (724b)

and

—8:— 8 +t&,=0. (7.24¢)
Since the couplings of the pomeron to particle and antiparticle are equal,

8 =8> (7.25)
eqs. (7.24) clearly give

8.~8,=8,=0. (7.26)

Therefore, in this simple model the vanishing of elastic couplings is obtained but it requires a
knowledge of the crossing (or signature) properties of the pomeron (7.25). This input is non-
trivial since for exchanges of opposite signature like the photon we do not obtain decoupling. In-
deed for the proton

e, =g, e;=—e;, (7.27)

]
and all three eqgs. (7.24) reduce to the same charge-conservation equation
e.te,te, =0. (7.28)

For a rigorous derivation {26}, we consider the implications of the vanishing of the pomeron—
reggeon particle vertex (7.18)

Rpp(tp=0,15;n=1/(m*—15))=0. (7.29)

To get to the pomeron—particle—particle coupling, we need to analytically continue in 'R from
tp < 0 where (7.29) is known to the mass of the particle at ¢ = m?. To accomplish this we need
to use the detailed analytic properties of the two-reggeon vertex derived in section 3.

Taking o, = «, the pomeron, and a,=ap the reggeon in eq. (3.23), we have

EpbpRpp = Epkppn P Vplip, tpsm) + EgEpp RV (45, 1557 (7.30)

2

where V3, Vp are polynomials in n~L. Since we are continuing to tp~ 0, tp~ m*” and
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nl=m? - g = 0, we can approximate V|, and VR by the first few terms in the expansions of
eq. (3.30)
T12 T12 =1
[(~ap) [(—ap) V, = av"_l (a —11;1(01 n_a Ty (7.31)
P P R™ Y%
pT2
P(~ap) (—ap) Vg = : (7.32)

aplag—ap+1) )

We have exhibited the vertex signature Ty explicitly in (7.31) and (7.32) since in general both
signatures can be present. Inserting these expressions in {7.29) we have

explimag)—1 5 {exp(fizﬂaR)—l[

L
0=~ o nv512(1+112)+a—RvllZ(I—le)}

7=l

L.
M LX—R v112(1+712):|}w 20it. (7.33)

In general the contributions of Vo and VR occur in V. with different phases so they must in-
dividually vanish. For ap = 0, the contribution of V', is purely imaginary and vanishes so it gives no
constraint on vy and vy, but the contribution of Vg is real and only vanishes if

bil=0. (7.34)
However, returning to (7.29) we see that

Bp(0) = tLi:noRPR(tP, tg=m%m) = 2vtt. (7.35)
Therefore, the vanishing of pomeron—reggeon—particle vertex implies the vanishing of the pom-
eron—particle—particle elastic coupling (7.35).

We would naw like to make a number of comments on this result. As we noted above, the
signature of the pomeron plays an essential role. In (7.33) there is a term 1 which, due to the
kinematic constraint, is 1/(m?— tR) and looks like the particle pole. However, it is multiplied by
the factor &g, which is a wrong signature factor for ap = 1 and therefore cannot compensate the
particle pole in V. The harmlessness of this potentially dangerous kinematic singularity is thus
a result of the positive signature for the pomeron. For the photon, on the other hand, only V}
contributes and current conservation requires that the kinematic n singularity exactly cancel the
particle pole.

Signature plays a crucial role in another amusing way. Consider a Regge trajectory of negative
signature, so ay = 0 is a wrong signature point. Such a trajectory, if it has the same ag(¢g) as the
positive signature trajectory, surprisingly has the same behavior as (7.33) near ag = 0. In this case
from (7.30), (7.31) and (7.32), we have
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1 2 1
= A —— _ T12(1 + — T12(1 —
RPR(O, ] —~ —l‘R) g E {[ nug2(1+7,,) ava (1 712)]

vyl (7.36)

R R

1 4 4
’ [a“ b= T”)D ~ TR S
The signature factor £gp is now right signature so the n kinematic singularity contributes.

Equation (7.36) immediately suggests a mechanism for avoiding the vanishing of the elastic
coupling. If the negative signature trajectory is exactly degenerate with the positive signature
trajectory for g < O (exchange degeneracy), then the decoupling theorems will apply only to
the sum of both their contributions since they cannot be separated by their asymptotic behavior.
If the negative signature trajectory also has aR(mz) = (0, then its contribution will cancel the par-
ticle pole if v (rg = —1) = v]!(rg = +1). The source of this cancellation can be seen to arise direct-
ly from the absence of a left-hand cut in the amplitude A5 in sR.

Unfortunately this exchange degeneracy mechanism for circumventing the vanishing of total
cross sections is not physically reasonable. The pion’s exchange degenerate partner would have the
quantum numbers of the A; meson. Such a trajectory could very well exist. However, there is no
evidence for a trajectory with /¢ = 1" and J¥ = 0* approximately exchange degenerate with the p.
While decoupling of the p might be tolerated by some people, the absence of such a trajectory
also requires the pion to decouple. This can be shown by considering the pomeron —nr—7—p Regge
vertex which should vanish by (7.19) (see fig. 7.2).

While the exchange degenerate mA | eliminate the left-hand cuts in s,,, this is not sufficient to
cause the coefficient of a ! to vanish at tp = 0. The reason is basically that, as we discussed in
section 5.2, a single Regge trajectory of definite signature gives a factorizable contribution to the
amplitude, whereas the contribution of a Regge exchange without definite signature (e.g. an ex-
change degenerate pair) does not factorize. Thus the P—w—(mr, A;) “vertex” occurring in the 2> 3
amplitude vanishing is not the same P—n— (m, A;) “vertex” occurring in the 2 > 4 amplitude, so
the vanishing does not propagate to more complicated amplitudes.

In conclusion, we should remark that essentially all the decoupling results discussed in sections
7.2 and 7.3 have been known for a long time in the context of the multiperipheral model as
plausible extensions of the Finkelstein—Kajantie [61] decoupling theorem.

7.4. Schwartz inequalities

Several authors have suggested that cuts enter into the unitarity sum rules of section 7.2

Fig. 7.2. A six-particle amplitude with P, (m, A1), and p exchanges.
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[33,78] or into the analytic continuation of section 7.3 [73], just so as to cancel the pole contribu-
tion and avoid decoupling the pomeron in g,. If this is the case, might any of the decoupling
theorems be expected to hold? Yes, without the use of sum rules, Gribov and Migdal [74] argue
that the triple-pomeron zero (7.12) may be required to avoid moving the pole from ap(0) = 1 by
multi-pomeron interactions. .

Therefore, it is interesting to point out that with the use of Schwartz inequalities [4,5,97], the
triple-pomeron zero implies a weaker class of decoupling theorems for discontinuities of pomeron
vertices that do not lead to decoupling in the total cross section [103]. These zeros could thus
still be present in a theory satisfying (7.3). It is also amusing to note that these zeros occur in a
dual model as a consequence of an underlying gauge symmetry [27]. The dual model studied in
the appendix thus exhibits these zeros.

The Schwartz inequality results start from the ordinary Schwartz inequality

[(alb)|? < (alay(blb). (7.37)

We choose |a) and | b) to be certain multiparticle states and the inner product to be a sum over a
complete set of intermediate states:

(7.38)

As long as these represent multiparticle processes inside the physical region, unitarity can be used
to replace the sum over intermediate states by a discontinuity in M 2. Thus again s-channel uni-
tarity plays a central role. Taking M? and s/M? large, the leading term on the right-hand.side is the
triple-pomeron:

(7.39)

For ty = 0 we can compare the coefficient of (s/M*)2P©® (12)*PO on both sides of (7.39) and
use fppp (0, £, £) = 0 to obtain

X (7.40)
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for any state X. If pomeron cuts are weak, this can be obtained for arbitrary ¢; of the lower pom-
eron. It should be carefully noted that one pomeron has a discontinuity taken through it.

Clearly from (7.40) one can obtain an endless variety of decoupling theorems. Two particularly
interesting ones are obtained by taking X to be a two-particle state. A further Regge limit can be
taken in either of two ways giving:

(7.41)

or

=0 . (7.42)

Let us discuss the implications of these results. From section 5 we know that (7.41) factorizes
into the product of the upper and lower vertices and the cut Regge propagator. The upper vertex
is from fig. 5.8 and (7.31)

sinm(ag—ap) 1 .
TﬂaR-n Py~ TZIEEE [—(ag—aptDog2(1+7,) +avi2(1—7,)]. (7.43)

Thus (7.41) implies

+1

vila ot (7.44)

at ag = 0 and gives no constraint on the elastic coupling v‘l“l. Hence, it is satisfied without elastic
decoupling [103].

In (7.42) it is important to realize that the constraint is on the full triple-Regge vertex and not
on the amplitude with maximum helicity for the cut pomeron. This is because (7.42) must be
obtained by taking the triple-Regge limit and not the helicity limit of inclusive reactions (section
6.3). The basic equation (7.40) is derived only inside the physical region, and as discussed in
section 4.1 the helicity limit is inside the physical region for A (¢, ¢,, £3) < 0 which is not the case
here. Thus all helicities of the cut pomeron contribute. From (4.2) we have (keeping #3 # O for
the moment)

1 2\/t2t3 cosw23—t2—t3
t_.T 3 n23= N (7.45)

so the dependence on 7,, gives the dependence on the helicity of the cut pomeron.

M3 =~ My~
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From fig. 5.8 we have that (7.42) is

sinm(oz— oy— ay)

sinma, Ui 1M Moy M3 (7.46)

where V}, is given by (5.27). Using (7.45), we see that for arbitrary 75 eq. (7.42) gives a relation-
ship between the functions §,

Maz+1) M'(~ay+n) | ayn -
T(as— ag+n+1) [(—ay) 131723 [Cay—ay=m) By o= Ua=13)B1 0t By 111 =0 (7.47)

by equating powers of 153, where
Bnp =B ay—n—p o —m—pit 1) 15).

This condition cannot be satisfied by a nonsense zero as (7.12) can be. It, as well as (7.44), can be
interpreted as the condition that the pomeron couples like a conserved vector current at £ = 0[27].

8. Regge cuts
8.1. General discussion

Just as poles in the energy plane generate cuts through unitarity, Regge poles give rise to Regge
cuts. One might ask, how would Regge cuts modify the multi-Regge asymptotic behavior we have
found so far? One way to approach this problem would be to apply directly the analysis outlined
here for poles, reconciling the expected Regge-cut asymptotic behavior with the desired analytic
structure. This is the approach one would be forced to take, if he thought that his Regge cuts had
an origin independent of Regge poles (e.g. the eikonal cut for the pomeron in the Cheng and Wu
model [36] or the self-consistent cut of the Finkelstein, Zachariasen model [62] or the model of
Auerbach, Aviv, Blankenbecler and Sugar [11]). However, for those Regge cuts generated from
Regge poles through unitarity, the analytic structure of Regge-cut dominated amplitudes is con-
nected through unitarity to the structure of Regge-pole dominated amplitudes. In order to under-
stand this connection, let us first see how cuts are generated from poles. For a more comprehensive
review of Regge cuts, see Collins [44].

Regge cuts were first found in a calculation of the absorptive part of an elastic amplitude from
a production model which involved the exchange of Regge poles [ 16,8]. We can easily see that
cuts should appear by considering in the s channel at large s the contribution to the imaginary
part of the elastic amplitude due to the elastic intermediate state (fig. 8.1). At large s the contri-
bution from the elastic channelis

dtde, )
Im A(s, t)0< = 1A(S,t YA (s, t,) . (8.1)
xi{ (=A@ £y, 1)) 2

The region of integration over ¢, and ¢, is the interior of a hyperbola given by the zeros of A, as
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o
Im >t = / + Inelastic terms
tg\

Fig. 8.1. Unitarity for the s-channel.

shown in fig. 8.2. If we assume that the elastic amplitude is dominated by a single Regge pole, so
that

Als, 6y~ s* Uy (e, (8.2)
then
dede .
ImAG 0~ [ —— (1) (1) 2 a1, (8.3)

Ao (=Xt )]

We see that the asymptotic behavior of this contribution to ImA(s, £) is bounded by a power, but it is
not a pure power behavior (unless the Regge pole is fixed, i.e. a(#) = const.). The behavior (8.3) is in
fact characteristic of a cut and can be written

au()
ImA(Gs, t) ~ f da 5%, (1), (8.4)

where a.(¢) is the maximum power of s in the integral over ¢; and ¢,. It is therefore the trajectory
of a branch point in the complex angular momentum of the ¢-channel. If the trajectory is mono-
tonically increasing, it is not hard to show (see fig. 8.2) that the maximum occurs when

t; =ty=1t/4, so that

o (1) = 2a(f/4) 1. (8.5)

Whether the Regge cut is actually present in the full elastic amplitude cannot be determined until
we add up the contributions from the inelastic channels as well. This has been done in various
models, e.g. the multi-Regge model [39,97] where a J-plane cut was found with the same trajec-
tory (8.5).

|t

Fig. 8.2. Region of integration over ¢, and z,.
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0O

Fig. 8.3. Archetypical multi-Regge model generating a Regge cut.

A striking property of the cuts obtained in these models is that when ¢ = 0, they necessarily
contribute a positive definite piece to the total cross section. This property can be seen most di-
rectly by considering a model for particle production sketched in fig. 8.3 due to Abarbanel [2],
where the clusters are assumed not to have a Regge-cut behavior at large cluster masses (i.e. they
are two-reggeon irreducible). In these models the exchange of a leading Regge trajectory is asso-
ciated with the presence of a phase space (rapidity) separation of the particles into clusters some-
what like fireballs. Each term is thus a phenomenologically distinct contribution to the cross sectior
hence positive. The positivity of the cut contribution can then be shown to follow essentially from
the positivity of each term.

By contrast, calculations in perturbation theory have always yielded a sign for the cut contri-
bution that depended on the trajectories. In the case of the pomeron—pomeron (PP) cut this sign
is exactly opposite the one calculated from the multi-Regge model.

~ An example of such a calculation is the familiar one due to Mandelstam [99]. The ladders in
fig. 8.4 add up to give Regge trajectories «(¢,) and a,(¢,). The diagram produces a cut at the same
position as the elastic unitarity calculation (8.5), but with opposite sign for the PP cut. The op-
posite sign here comes from the fact that the signature factor for the pomeron on the bottom
multiplies the factor on the top to produce i X i = —1, whereas in the multi-Regge calculation, the
factor on the bottom is multiplied by the complex conjugate of the one on top to produce
iX (—i)=+1.

So where did the multiperipheral argument go wrong? The answer can be found by taking the
s-channel discontinuity of the Mandelstam graph. The total discontinuity is the sum of the dis-
continuities corresponding to the various Cutkosky slicings of the graph and are enumerated by
Abromovskii, Gribov and Kancheli [ 7], the important classes of which are indicated in fig. 8.4.

La Lc

(a)

Fig. 8.4. Two equivalent orientations of the Mandelstam graph showing slicings associated with s-channel discontinuities.
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Fig. 8.5. Fragments of the Mandelstam graph generated by cuts L,. Ly, L. and Ly , respectively.

Also shown in fig. 8.4 is the planar form of the Mandelstam graph, which makes it easier to
visualize the topology of the slicings. There are three classes of slicings: those which avoid the
ladders or cut only a few rungs asin L, and L;, those which cut one of the ladders completely as
in L. and those which cut both as in Ly. The resulting fragments of the respective slicings are
shown in fig. 8.5. These fragments represent multiple production amplitudes which, inserted into
the unitarity formula for the discontinuity of the four-particle amplitude, reproduce the integrals
implied by the Cutkosky slicings (plus some extra integrals corresponding to orders in perturbation
theory different from the graph of fig. 8.4 and not apparently associated with the two-reggeon cut).

Comparing the terms in fig. 8.5 with terms in fig. 8.3 we see that those of fig. 8.5, a and b, may
be grouped naturally into the single-pomeron-exchange amplitudes in the second term of fig. 8.3,
whereas those of fig. 8.5, ¢ and d, must be grouped into the first term of fig. 8.3, since they have
small rapidity gaps. But when the amplitudes are summed and squared to form the total cross sec-
tion, the interference between the graphs of fig. 8.5¢ produces a PP cut behavior contrary to the
irreducibility assumption that the clusters are free of such behavior. The interference term is in
fact negative [7,78] and overwhelms the contributions from the other slicings.

Therefore, it could be argued that too much was assumed in the construction of the blobs in
fig. 8.3 — that separating the pomerons in the manner shown was incompatible with the notion
of “two-pomeron irreducibility” of the clusters.

The weighting of the various discontinuities of the Mandelstam two-reggeon graph is a subject
of recent controversy and provides an interesting application of the principles outlined in this
review. At first sight it would appear that all Cutkosky slicings of fig. 8.4 produce contributions
to the total discontinuity with an asymptotic behavior characteristic of the two-reggeon cut [7,
78). However, on second thought, should the graph conform to the assumptions of section 1.4,

diswﬂ)‘ = :GHD: ~

N
S

Fig. 8.6. Unitarity for the four-body #-channel cut, showing the pp cut in the ¢~channel.
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Fig. 8.7. Definition of variables and Regge trajectories that control the helicity asymptotic limit.

one would expect that it would not [152]. The argument follows the same line of reasoning as

the proof that the AFS diagram does not have the two-reggeon-cut asymptotic behavior [154].
The essential point is that in order for a particular graph to have two-reggeon asymptotic be-
havior, both of the two-reggeon—two-particle amplitudes contained in it should have third double
spectral functions. That is why there it a twist in the boxes on the right and left of the Mandelstam
graph (see fig. 8.4a). However, the slicing Ly changes the analytic structure of the graph. This can
be seen by considering the internal six-point function of fig. 8.4b corresponding to the process
1+a+2->3+a +4. The channels in which the desired third double spectral singularity is required
are the channels (a 1 3) and (a 2 4). However, they both overlap the channel (1a 2) whose discon-
tinuity is taken in the slicing Ly. According to the assumptions listed in section 1.4, there should
therefore be no discontinuities at all in the channels (a 1 3) and (a 2 4), let alone any associated
with a third double spectral singularity. Thus one would expect the only contributions to the
two-reggeon cut come from: the slicings of the type L,, L and L.. A detailed analysis of the graph
[152,153], however, shows that it does not conform to the assumptions of section 1.4 to the ex-
tent that anomalous singularities are present which allow the slicings Ly to have a bonafide two-
reggeon cut, although not with the same strength as proposed by less detailed analyses [7,78]. This
result is interesting in itself because the slicing L4 corresponds to a physical double-scattering cross
section and its presence or absence at high energies would be a direct physical consequence of the
validity of a particular application of the assumptions of section 1.4.

One’s preference for the sign of the cut need not be based on which model, multi-Regge, or
Feynman graphs, one is more comfortable with. It turns out that the sign of the cut is determined
by methods that are essentially model independent. This was first suggested in the pioneering
work of Gribov, Pomeranchuk and Ter-Martirosyan [75] and demonstrated more recently with
more rigour by White [145]. In fact cuts can be shown to come about as a consequence of Regge
poles and unitarity. To deduce the presence of cuts, one begins with the discontinuity formula in
the t-channel for the four-particle cut, as shown in fig. 8.6. Now this may sound like a very un-
likely place to begin, but it is precisely the same starting point for demonstrating, for example,

(a) (b)

Fig. 8.8. Examples of Feynman graphs used by Gribov [72] to obtain the two-reggeon cut. The bubbles represent elementary scat-
tering amplitudes with Regge-pole asymptotic behavior. The graph (b) contains a Regge pole in addition to the cut.
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the existence of a complex branch point in ¢ due to the production of a pair of p mesons in the
t-channel. In that case we would look at the four-particle-discontinuity equation and then per-
form a continuation of the equation in ¢. The integration over the subenergies of the pairs of par-
ticles, say #; and ¢, is constrained by conservation of energy so that /1> /t; +v/ 1. As ¢
is varied into the complex plane the #; and ¢, contours are pinched at the upper end point
against the complex poles at ¢, = mg, = mg. This produces a branch point at ¢ = 4m§ in the in-
tegration. One can even derive a discontinuity formula for the pp cut that looks exactly like an
ordinary two-body discontinuity, except that the intermediate moments are on a complex mass
shell. (See Eden, Landshoff, Olive and Polkinghorne [58].)

By the same token, to get to the Regge cuts from unitarity, it is necessary to consider a channel
which couples to the cut; the four-body channel is the simplest. The actual proof that Regge cuts
are generated from Regge poles in the £; and ¢, channels is too involved to present here (see
White [ 145]). It is amusing, however, that in the proof it is necessary to take into account all of
the features of Regge asymptotic behavior which we have discussed the foregoing sections. In
particular it is necessary to know that the six-point amplitude which enters into the integration
in the middle term of fig. 8.6 has the asymptotic helicity behavior which we discussed in
section 6, eq. (6.37), namely, that

AP~ F(M2 1,1, 1) (—s a0 @2 4 (s O U1, 1,) (8.6)

where the variables are defined in fig. 8.7. The first term, it turns out, is the only one that contri-
butes to the Regge cut, as suggested by the power of 5.

It is possible to derive a discontinuity formula in the J plane for the discontinuity across the
two-reggeon cut:

dt d¢
diSCG(J,l‘)“f———_)\%‘:’Tz)N(’:tpfz)N*(ﬁf1"2)51(1‘1)52(12)5[J—a1(f1)—az(f2)+1], (8.7)

where N(¢, ¢y, t,) is the coefficient of (M?)~! in the asymptotic behavior of F in the case that
7=+1;and &, and &, are signature factors. In the forward direction N(0,¢,, £, =¢;) can be calcu-
lated directly from the inclusive cross section described by disc,, 4 6 with some assumptions, thus
providing a phenomenological determination of the strength of the cut [106].

The result (8.7) is the statement of a sort of J-plane unitarity condition. Its importance in un-
derstanding the singularity structure of the J-plane is as profound as the importance of conventi-
tional unitarity in understanding the singularity structure of the energy plane.

The negative sign of the contribution of the PP cut to the total cross section is then found by
inserting the expression for the discontinuity (8.7) into the Sommerfeld —Watson transform. It is
completely determined by the dynamical quantities in eq. (8.7).

We have seen that there are basically three ways of generating Regge cuts from Regge poles.
The first is through s-channel unitarity which, as we have seen, is not sufficient in and of itself to
describe such crucial features as the contributions of the cuts te total cross sections. The second
is through Feynman graphs such as that of fig. 8.4, which describe the Regge cuts adequately, but
which by themselves fail to provide a unitary S matrix theory. The third is through ¢-channel
unitarity, which is capable of a rigorous treatment of the discontinuity of the two-reggeon cut,
but which is technically so cumbersome that it has not been applied to the rigorous study of higher
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cuts or to multi-particle amplitudes. There is yet a fourth approach, called the reggeon calculus,
developed by Gribov and others [72,156—159], which combines features of the second and third
methods. As originally formulated, the calculus was simply a systematic procedure for calculating
the asymptotic behavior of certain Feynman graphs, constructed from elementary amplitudes
possessing Regge behavior. Thus the two-reggeon cut was obtained from graphs of which two ex-
amples are given in fig. 8.8. In subsequent work the calculus developed into a sort of perturbation
theory for reggeons. A Lagrangian field theory for reggeons was developed [74], which provided
an explicit perturbative solution to the J-plane discontinuity formulae described above. Its re-
lationship to J-plane unitarity can be compared to the relationship of Feynman perturbation theory
to ordinary energy-plane unitarity. And so it can be used as a laboratory for investigating the way
J-plane unitarity requires J-plane singularities to proliferate in much the same way that one uses
Feynman perturbation theory to learn about singularities required by conventional unitarity
[156—-159].

The reggeon calculus can be thought of as the ultimate statement of the consequences of ¢-chan-
nel unitarity for the proliferation of J-plane singularities which arise from Regge poles. It would be
desirable, of course to have a theory which incorporates s-channel! unitarity as well. To the extent
that Feynman perturbation theory satisfies both s- and #-channel unitarity, one would think that
if the reggeon calculus could be reformulated as a systematic procedure for summing Feynman
graphs in a particular order at asymptotic values of s, one would then be in the possession of a
theory capable of incorporating constraints of both s- and r-channel unitarity at once. Some work
in this direction has been attempted by DeTar [154].

8.2. Regge cuts in multiparticle amplitudes

Through the work of Gribov, Pomeranchuk and Ter-Martirosyan [75] and White [145] we now
understand Regge cuts in four-particle amplitudes fairly well. However, as soon as we start com-
bining cuts with multi-Regge asymptotic limits, we reach an area where much less is understood.
No one has yet attempted a thoroughgoing analysis of the energy-plane singularity structure of
amplitudes with multiple Regge cuts, at least at the level of rigor that we have outlined here for
the single-Regge limit.

As an example, let us consider the contribution of Regge cuts to the five-particle amplitude in
the double-Regge limit. These can be studied from the s-channel point of view [76,111,112].
However, we expect that, as with the four-particle amplitude, to study the full J-plane singular-
ity, it is necessary to approach the problem from the s-channel point of view. In that case we
would have to begin by considering the simultaneous discontinuity across the four-particle cuts
in both ¢, and ¢, as shown in fig. 8.9. By analogy with the discussion of the four-particle ampli-

v i

\ ! S/
t tz =

4 4

b= - = ox

Fig. 8.9 Discontinuity across four-particle cuts in ¢ and 7, from unitarity.
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Fig. 8.10. Two-types of multi-Regge cuts in the five-particle amplitude.

tude, we might expect two types of cuts to be generated by the unitarity equation (see fig. 8.10).
The second contribution, fig. 8.10b, would appear to have a structure very much like that of the
double-Regge limit of Regge poles. However, the first contribution, fig. 8.10a, which arises from
the disconnected piece of the central blob in fig. 8.9, has a rather different structure. As yet no
one has derived a general formula for the simultaneous discontinuity across the cuts in the J
planes of the #; and ¢, channels.

The “‘reggeon-triangle’ graph of fig. 8.10a has been studied by Drummond [55] using the
reggeon calculus. The behavior for large 5;, was found to be

A5 ~ S'{Stl’tZ’nn)/ln S12 S (8.8)

which is indeed quite different from the behavior of double-Regge exchange and has no analog

in the four-particle amplitude. Evidently there is a hierachy of J-plane *‘Landau singularities”
just as in the energy plane. For further applications to production amplitudes, we refer the reader
to Campbell [31] and for applications to inclusive cross sections to Abramovskii, Gribov and
Kancheli [7], Botke [19] and Cardy and White [33].

One of the intriguing questions about Regge cuts in multiparticle amplitudes is the question of
what singularities they represent asymptotically. In our analysis of Regge poles, we assumed they
asymptotically represented thresholds in energy channels; and this allowed us to analyze the struc-
ture of multi-Regge exchange amplitudes in some detail. Before a similar analysis can be performed
for multi-Regge cut amplitudes, we need to know what energy-plane Landau singularities they re-
present asymptotically. It is quite possible that a knowledge of the energy-plane singularities of
Regge-pole dominated amplitudes alone is sufficient to deduce via unitarity the energy-plane
singularity structure of Regge-cut dominated amplitudes. Present approaches to this problem,
however, have relied instead on analysis of various Feynman graphs or specific s-channel discon-
tinuities containing Regge cuts in order to investigate the nature of the asymptotic singularities.
For example, it has been remarked that the reggeon-triangle graph appears to reflect a Landau
singularity in 515, §; and s, of an order higher than normal thresholds [71]. Some discussion of
these very fundamental questions has also been given by Patrascioiu [111,112].

We have stressed above that a knowledge of the structure of multi-Regge amplitudes is neces-
sary for understanding Regge cuts. Conversely, the structure of Regge cut amplitudes is not with-
out influence on the behavior of Regge pole contributions. For example, in general one expects
collisions between Regge poles and Regge cuts in the same channel, since their trajectories have
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t tz

Fig. 8.11. Contribution to the five-particle amplitude with a collision between Regge poles and the reggeon triangle singularity.

different slopes. In the four-particle amplitude Regge poles and cuts might occur multiplicatively
as*

a(J, ) = (:) f )da B("‘ i) (8.9)
The residue of the pole is then given by
% ) 1
a0~ s [w 20 e~ " T—am e —al0], (8.10)

which gives a singularity in the Regge-pole contribution at a(#) = a(¢), which is not present in the
full amplitude and thus was excluded in our analysis of Regge-pole contributions. The sum of all
contributions to the asymptotic behavior must have the correct analytic structure, but when two
contributions have the same asymptotic behavior, the individual contributions need not respect
the analytic structure that the sum must.

Similar phenomena are to be expected in multiparticle amplitudes. As an example, the reggeon-
triangle graph can occur multiplicatively with Regge poles in the #; and ¢, channels (fig. 8.11).
The behavior of this amplitude has been studied by Green [71]. He found that the double-Regge
vertex has an extra singularity [n, — 52) -2, where n(s) is a particular value of 1y, actually in-
side the physical region, multiplying the form d1scussed in section 3.

9. Conclusion and discussion

We could summarize our approach to the Regge behavior of multiparticle amplitudes in the
following way: It is necessary to take account of the interplay between analyticity and unitarity
in the ¢ and s channels. We began by assuming a simple property of unitarity in the ¢ channel,
namely the presence of a family of factorizable poles linked by a Regge-pole trajectory. We pro-
ceeded to investigate the compatibility of this ansatz with simple ““s-channel” analyticity, in par-
ticular assuming asymptotic singularities behaved like normal thresholds. This was the basis of
the major part of this review. We found that it was indeed possible to construct amplitudes com-
patible with these properties. Further application of unitarity led to the consideration of Regge
cuts generated by Regge poles. These in turn could be associated with more complicated s-channel

* An example of such a structure arises from the triple-Regge contribution to the inclusive sum rule in the non-forward case,
discussed in section 7.2. At a(0) = «(0) = 1 it is more singular than a simple pole, giving ¢ ~ In1Ins.
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singularities. Of course, we are at the moment only beginning to understand how the various s-
channel Landau singularities are represented asymptotically.

We speculated in section 1.1 on a parallel between the generation of higher order Landau sin-
gularities in the energy plane and in the J plane, and suggested a maximal analyticity of the J-
plane analogous to first-degree analyticity of the energy plane in which all singularities are built
up from poles through unitarity. In the energy plane this iterative picture of the generation of
higher order Landau singularities made perturbation theory a relevant “laboratory” for investi-
gating the nature and locations of singularities [58]. By the same token an iterative approach to
J-plane singularities makes the reggeon calculus a useful tool. As it is presently formulated how-
ever, the reggeon calculus does not attempt a careful treatment of asymptotic singularities in the en-
ergy plane [154]. We emphasize that an understanding of the generation of these energy-plane singu-
larities in parallel with J-plane singularities is necessary for a rigorous approach to the reggeon
calculus. In view of the complexities of a completely unitary theory, one may in the end have to
resort to a perturbative approach along the lines of the reggeon calculus for approximating actual
amplitudes.

A simple analytic structure for the Regge pole dominated amplitudes would greatly facilitate
such an iterative approach to the generation of higher order singularities. We have treated the re-
striction to normal threshold singularities as a working hypothesis. It entered into our arguments
in two ways:

(i) Interpretation of asymptotic expressions. A term of the form (—s,)*A (—s5)*B corresponds
to a product of two functions, one cut for args, = 0, the other, for argsg = 0. If the cuts were
not due to normal threshold singularities, it is quite possible that cuts in s, could move as sg
varied, or even that the asymptotic expression would be valid only on top of the cuts and that
entirely different expressions were needed on other sides of the cuts.

(ii) Independence of overlapping channel singularities. We ruled out terms of the form
(—s5)*A(—sp)*B, when s, and sz were overlapping channels. As a corollary we required that left-
and right-hand cuts be additively separable, thereby permitting us to construct signatured ampli-
tudes.

In support of this point of view, we noted in section 1.4 the lack of models generating simple
Regge poles which violate these properties — models which nevertheless appear to have higher
order Landau singularities at least nonasymptotically. In further support we mentioned that the
Steinmann relations provide that (ii) is true in the physical region. Unfortunately, we require
property (i) in order to implement (ii) and we often require (ii) outside the physical region.

Nevertheless, even if our assumptions prove to be illfounded, we hope that our approach to
the subject will serve as a guide to future work. In particular we would emphasize the following
subjects for further research:

(i) The Sommerfeld -Watson representation for multiparticle amplitudes.

(ii) Properties of scattering amplitudes involving reggeons (unitarity and analyticity).

(iii) An understanding of the role of energy plane singularities in the derivation of the reggeon
calculus.

(iv) Rigorous J-plane unitarity expressions for singularities of higher order than two-reggeon
branch points.

(v) The asymptotic structure of amplitudes containing higher order Landau singularities and
their relationship to Regge cuts.
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Appendix. Multi-Regge behavior in the dual resonance model

We illustrate the general discussion in the main body of the text by computing the Regge and
helicity asymptotic limits in the dual resonance model*. This is the simplest known model for
multi-Regge behavior. The reader may find it useful to compare the general discussion with the
specific forms in the dual model at each stage. Dual resonance amplitudes have right-hand singu-
larities in a planar set of channels. They are therefore analogous to signatured amplitudes.

A. 1. The five-particle amplitude

The channels are defined as usual (see fig. 3.1). The Bardakci—Ruegg representation for the
dual amplitude is

1 1

B, = f dx, fdxz xl—ax—l(l —xl)_“(sl)‘lx;"‘rl(l—xz)_a(sl’)‘l (1_xlxz)—a(s1z)+a(sl)+a(h) (A.1)
0 0

where a(s) = s + ag, ay = a(t]) = £] + «y, etc. Starting from (A.1) we compute the various asymp-
totic limits studied in section 3.

A.1.1. Single-Regge limit

Since (A.1) is only defined for negative o, we first take sy, s;0 > —o° (5, /54, fixed) and then
continue in s; and $;,. In this limit the region x;~ 0 dominates in the integral. We make the usual
change of variables

X1= yl/(—sl)
and use
(1+z/s)"% ~ e ¢ (A.2)
§— o
to obtain

) 1
512
BS ~ (__sl)ou f dyl fdxz yl—al-lxgaz—l(l_xz)—a(sz)—lexp[—yl(l—xz)—ylxz —S—] .
0 0 !

A simple change of variables gives

* For recent reviews of the dual resonance model, see for example, Schwarz [122] and Veneziano {1511.
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o 1

alf f ~a;—1,.—ay-1 —a(sy)tag—1 *2 12 A3
By~ (=sy) dy, J dx, »] X (1—x,)~% exp [—y;—¥, ;)5 (A.3)
0 0

The integral in (A.3) converges only for sy /sy, > 0. It is therefore not an entire function of
§1/512. We wish to find the nature of its singularity and obtain the analytic continuation of (A.3).
We use the identity

ioo
w1 ) (=
e 2"1_{» dAT(=\) (=x)*, (A.4)
which is simply verified by closing the contour to the right, on the second term of the exponen-
ial in (A.3). The y; and x, integrals can then be done yielding
ioe
IN'(—a;+A) I'(—ay+A) I'(—a(s,) ta;—A) ['(—A) /55 2
B~ (s ) i [ an — 2 —1 (ﬁ) ,
S V2w D(—a(s;) ta;—ay)

(A.5)

—joo 51
where the contour separates the poles in the first two gamma functions from those in the second
two. Eq. (A.5) is recognized as the integral representation of the hypergeometric function,

Jo0
1 A
m_fiwd)\ D(a+)\) T'(b+\) T(c—a—b—N) T(=\)z

_T@TI®)(c—a) T(c—b)
B r'(c)
The singularity in s; /s;, can be easily found from (A.5). For s, /s;, < 1, the contour can be
closed to the left, picking up the polesat A =a;, a;— 1, ..., and A = a5, a; — 1, ... (see, for example,
Bialas and Pokorski [17]),

2F1(a,b;c;1—z). (A.6)

F(—a1+n) F(—a2+a1—-n) F(—Q(S2)+}’I) (_ 51 )n

D(—a(sy)+a;—ay)n! 515

By~ (—s))M {(%11—2) K néo

(A.7)

(312) %2 E; [(—aytn) I'(—atay—n) I'(—alsy) taj—as+n) 51 ”}
+|—= —— .
S]_ n=0 l-‘(—oz(sz)+a1——a2)n! ( 312)
Equation (A.7) exhibits explicitly the singularities in 51, /s; of the reggeon coupling to three par-
ticles discussed in sections 3.1 and 3.6. The first term has the behavior (—s,)*! times a function
with poles in a(s,), and the second term has the behavior (—s5;)*1~ % (—s,,)% times a function
with no singularities in a(s,). Thus, there are no simultaneous discontinuities in overlapping en-
ergy invariants. To obtain an expression valid for s, /s;, > 1, the roles of s; and s,, and ¢, and s,
must be exchanged in (A.5) and (A.7).
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A.1.2. Double-Regge limit
The double-Regge limit can be obtained by taking the further limit s, - o (s, /s, s, fixed) on
(A.3), (A.5) and (A.7). Thus making the usual change of variables

xXy=Y,/(=s,)

on (A.3) gives (see for example, Bardakci and Ruegg [14])

By~ (—5)% (—5,)% fdylfdyzyl"‘ Lys e lexpl—y =y, t 0,0, 7,1 (A.8)

Similarly (A.5) becomes (see, for example, Drummond, Landshoff and Zakrewski [56])

By~ (=) (5,0 o f dA D(—a+ ) T(—ay+N) T(=A) (1, (A.9)

_lgo

This is of the general form (3.28) with B(A, ¢y, #,) = 1. Eq. (A.7) yields the expansions (3.29) and
(3.30) of the double-Regge vertex, with

! E T(—a+n) [(~a,+a —n) (A.10)

Vil ) = Fay T ey 2
and similarly for V,.

When the A contour in (A.9) is closed to the left, an exact expression for V{(z,, 5;71;,) is ob-
tained. This expression also clearly exhibits the behavior as n;, - . Eq. (A.9) can also be used to
obtain the behavior as 7,5~ 0. In this case the expression is only asymptotic since the integrand
behaves like (77, A)* and hence the contour at infinity does not vanish. We pick up the poles in
I'(=A)

Vit tyim,) ~ ltoaja,m,t (A.11)
npp—0

It is amusing to note that taking the discontinuity of V in 1, (equivalently, the discontinuity of

Bs in 5q,) introduces a factor sin@A in (A.9). Since there are then no singularities to the right of

the contour, the discontinuity vanishes faster than any power of n,. A detailed calculation gives

a1+a2+1

2mwing}

disc_ V(¢q,t5; ~
n VU1 123M12) ny— o' D(—a)T(—a,

) exp(—1/n,,) - (A.12)

In section 3.4 we argued that, in general, there can be fixed pole singularities (3.40) to the right
of the A contour (see fig. 3.7). Only multiplicative fixed poles give such singularities in the
Regge residue. The dual model has no such fixed poles and hence the behavior (A.12). Therefore
there appears to be an amusing connection between the behavior as 1, > 0 and the presence or
absence of multiplicative fixed poles.
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A.1.3. Helicity asymptotic limits
Examining (A.1), we see that s;, - —e° causesix;~ 0 or x, =~ 0 to dominate in the integral*.
There are therefore two contributions. Taking first

X1 =y /(=51)

we have

o 1
By~ (=s;,)% [ dy, [dx, 7o x5 (1= x,) 20D Lexp(—y, x,) (A.13)
0 0

A simple change of variables allows the integrals to be done. Including the contribution from
x5~ 0, we have [141]

L(—a(s;) M—artay) ‘T o L)) Paytay)
T'(—a(sy) — aytay) (—a2) (=s12) T(—als;) —a;+ay)

(A.14)

B5 ~ F(—al) (_312)011

This is in agreement with the general form (3.59).

The helicity limit behavior is important in the theory of the DRM. It means for negative a; and
@y we can write an unsubtracted dispersion relation in s;, with the other «’s in (A.1) fixed. There-
fore, Bs can be written exactly as a sum over the poles in s5y,.

Finally, the combined Regge and helicity limit s; > e and s, /s~ * is from (A.7) or (A.14),

I(—a(sy)) N(—aztay)
F(—Q(SZ) — cx2+a1)

BS ~ F(—al) (—Slz)al + P(—(Xz) (—512)0”2 F(—a1+a2) (-Sl)al_ 2 . (A 1 5)

A.2. The six-particle amplitude

We first study the triple-Regge vertex of section 4, and then the linear triple-Regge limit con-
sidered in our discussion of factorization in section 5.

A.2.1. Triple-Regge limit

The channels are defined as in fig. 4.1. We start with the integral representation

By=

o%r—-

1 1
f f dxl dx2 dX3 xl—m—l (1 _xl)—a(Sn)—lxia(n)—l Q1 __xz)—ag-—lxé—a3—1 (1 —X3)_°‘(s23)_1
0 0
X (1 _x1x2)—°‘(52)+°‘(slz)+°‘2 (1—x,3x3)" a(sz)talss)taz (| _x1x2x3)-a(sax)+a(sz)+a(83)—012 .

(A.16)

As sy, 59,83 > —0, x;= 0, x,~ | and x3~ 0 dominate the integrand. We thus substitute

* The integral does not converge if both x ; and x, ~ 0.
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x1=y,/(=51), Xy=1+y,/s,, X3 = y3/(—$3)

and find [96,101]

a3—1

S

Bg~ (—5)™ (—52)%2 (—53)*3 f f dy,dy, dyy yy o tyze-lys
0 0

X expl—y;—yy—=y3 Ny 1y T Ny3vpys + 0y 3yl (A.17)

Using the identity (A.4) on the last three terms in the exponential, we have [51]

joo joo joo
o o [e3 1 3
Bo~ ot s s () [ [ anpdagany,
oo

2ni

—je —jeo
X (=nM2 (=i B (— ;)3 (A.18)

The advantage of (A.18) is that it allows continuation to positive Njj- It has the standard form
(4.20) with

B(A12, g3, Agys ity b, t3) = 1.

We shall not discuss the helicity asymptotic limits of B¢ here (see DeTar and Weis [51] for
further details).

A.2.2. Linear triple-Regge limit
The channels are defined as in fig. 5.3. We use again the representation (A.16), but with the
channels appropriately redefined,

1

1 1
B6:ffj dxpdxy dxyx] @7 (1 —x )@l xga-l(] —x,) e G- xge-1(] _x )l
0 0 0

X (1 _xlxz)"a(312)+a(s1)+a(sz)(1 Ax2x3)—a(s23)+a(s2)+a(s3)
X (1 _x1x2x3)—a(slza)+w(slz)+a(S23)-a(Sz) . (A.19)
For sy, §5, §3 > —o°, X, X,, x5~ 0 dominate the integrand. We thus substitute

x1=y1/(~sl), x2=y2/(~~sz), x3=J/3/(“S3)
and find
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oo

By~ (=51)"1(—5,)%% (—53)*3 f f f dy dy,dy; ypoa-tyyoeiysee!
0o 0 0

512352
X exp [—»yl—yz =¥3tnp 1Yo yay3— NN (s12S23) ylyzya] . (A.20)

Again we use the identity (A.4) on the last three exponentials. After some redefinition of variables
we have [140]

FET

joo
11\3
B6 ~ (_Sl)al (—sz)o‘Z (—53)‘3‘3 (ﬁ) f f f d>\12 d)\23 dp F(——a1+ )\12) F(—a2+7\12+ )\23—[7)

—joo —jeo —joo

(A.21)

512352)”

X D(=a3t2y3) D(=App+p) D(=Aptp) ['(—p) (_nlz)m(—n23)}\23(s125 3
2

As usual the integration contours separate the infinite sequences of poles which run_to the left
from those which run to the right.

As usual we wish to extract the singularities in the energy invariants. Using the integral repre-
sentation of the hypergeometric function (A.6), we have

2 1 ico  joo
fcay 4 ] n@aTCamp) e I

joo —joo

1
By~ (=5 (—5,)% (—55)% (27;)

X (=012 D(—ay+ Ap3) T(— a3+ 0g3) I'(—Ap3)

S A
it 2) (A.22)

X (—nyp)® 2F1(—)\12, — Az g3l —<
12523

Due to the cut in 5 F(z) for 1 < z < e, this expression only allows us to evaluate the amplitude
for —m < arg(s 35, /51, 5,,, < m. In order to extract the singularity in this variable, we use the
formuia for analytic continuation of the hypergeometric function

_T@T®-a) _,

2 Fi(a, b;c;1-2) —W(l—) 279 Fi(a,c—ba—b+1;1/z)+(aeb). (A.23)

We can set 51935, /512523 = 1 inside the hypergeometric functions on the right-hand side of (A.23)
and still have an expression valid for all 51535, /515553 =€*2"™ (n =0, 1,2, ...). Using

Fila,c—ba—b+1;1)=T@@—-b+1)(—c+D)/I(-b+1) (~c+a+1)

we have
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R B B S
B6~(—s1)1(~52)2(—s3)3i_‘(_—a2)(m) fimf Ay Ay T(—ay+Apy) T(—ay+ A p)

—joo

X T(=A1p) (=)™ T(—apt Ag3) T(—a3+ Ap3) (= Ag3) (—np3)'®

[Sinﬂ'()\lz—az) Sinﬂ7\23 (S123S2) A sin7‘r(>\23—a2) Sinﬂ')\lz (5123S2)?\23j|

sinfray sinm(A; —Ay3) SinTlay sinT(Ay;— App) (A.24)

S12523 512523

The Ay, and A3 contours can be closed in their left-half planes analogously to the case for the
double-Regge vertex. Of the eight possible terms, only five are non-vanishing, since one of the
two factors in the final bracket vanishes if A{; = a5 or Ay3 = a,. We then have, using (A.10)

B6 ~ D(=ap) I'(—ay) I'(—a3) {(—51)0‘1“!2 (—=512)°27 %3 (—=5123)*3 Vo (n12) V3 (n33)

sinm(a,—aj3) sinmo,

+(—5)%27 M (—=51)M17 ¥3 (—543)"3 Vi) Vi(nas)

sinwa, sinm(a; —a;3)
T (=5 )17 %2 (—53)%37 %2 (—=5193)*2 V (n12) V3 (N23)

sinm(oy—aq) sinmog
Vi(niz) V3(n23)

F(—5,)27 %3 (_5,,)¥3" M (g 1 -
(=52) (=523) (=5123) sinma, sinm(az—a;)

+(—53)537 %2 (—8593)*27 X 1(—5193)*1 V1 (n12) Va(np3) ], (A.25)

in agreement with (5.13).
A. 3. Inclusive cross sections

We discuss in some detail the dual model results for the single-partical inclusive cross section for
a+b- C +anything [18, 25, 50, 70, 138]. Many particle inclusive cross sections have also been
studied in the dual model, and in particular it has been found that they factorize as expected. We
refer the reader to the papers of Jen, Kang, Shen and Tan [87] and Hoyer and Lam [83] for further
details. For phenomenological studies see Thomas {131]; Bebel, Biebel, Ebert and Otto [15], and
references therein.

——— O
——— O

b ———————}H

T ————— 0
>
>
bl
&
O —to——h——g— O
o

a) b)
Fig. A.1. Tree diagrams used for calculating dual amplitudes for (a) fragmentation region, (b) central region.
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A.3.1. Fragmentation region

We study the term with the ordering of particles shown in fig. A.1a. Using the variables appro-
priate for this tree diagram, we have

1 1 1
BG=f dx; fdxfdx2 xl—%c—l(l_xl)—aac—lx—“—lu_x)—aaa—lxz-%rl(l_xz)—ase—l
0 0 0
X (1—xlx)“"iac+"‘ac+°‘ai(1—xxz)“"a?aé+°‘§é+"‘ai(]——xlxxz)_"‘bf)*""iac""‘aié_°‘aa , (A.26)

where ap = a(Spe)s @ye = a(s,e), etc., and a = a(M?) = a(S,cp). We study the limit corresponding to
the fragmentation of b:

Q, G, Q3¢ > oo,
The dominant contribution comes from x ~ 1, so we make the change of variables
x=1+y/a.

The y intégral.can then be done, and changing variables to z; = x;/(1 —x;) we have

o oo

B~ T'(—ay3) f f dz,dz, zf“bc_l(l+zl)°‘bc+°‘bf)““a§522‘°‘55'1(l +2,)%bc* *bb ~ *aac
0 0

X (1+z;+2,)” %aa~*bb* *aac™ *aac (—a —a, 2] —zcZy)%2d . (A.27)
For the inclusive cross section we need the discontinuity in M2(a) for M? > 0. This discontin-

uity comes from the last term in (A.27) which develops a phase for positive M2. An easy calcula-
tion gives

«

o Ape—App— X208 a apstaph—- a5
X (I_a—yl) bc aac (1___y2) be T bbb~ *aac
\ ac

. 2mi - Q,c\*bb ¥ (o *be ror — 1. —ar=—
dlscMzBG~a_a§_g°‘aa (_.&_) ( ) Of of dy;dy,0(1—y—y,)y7 “be 1yz el

[41 44 — Q= apptagactag, -
X (1_ =y - -—J’2) aa bb" ®aac™ ®aac (l—yl-yz,)“aa, (A.28)
. Qe a3g
where
Xac ; . asg
Y1 o 1’ Y2 Py %)

We note two features of (A.28). In the triple-Regge region, s/M2 » =, and hence
@, = azz~ —S5, we have the usual behavior

2mi
Flaz+]1 —ape— ajg)

discyp By~ M?%aa D(~ayp,) (s/M?)*be [(—agz) (s/M?)*be | (A.29)

There is an exponential cut-off for large transverse momentum at fixed
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x=1-M?*/s~ (M?*/s,.— 1)~1. Since

Spe = M+ m2 — (pPmi+mix?)/x ~ — p?/x,

large p? is large ay, = agc. The dependence on oy and agg in (A.28) is

(1_(1——_171551 )abc (l_("lfl/lx—)y_z)%g (A.30)

so the dominant contribution will be for the largest y; and y,, i.e. y;~ y, ~ 3. Then (A.30) gives
the behavior [138]
2p?
exp [— - In lﬁ] . (A.31)
X I —-x

Three other dual model terms contribute to the b fragmentation region — those corresponding to
interchanging b and c, and/or b and ¢. We refer the reader to DeTar, Kang, Tan and Weis [50]
for a detailed discussion of these terms.

A.3.2. Central region

It is convenient to begin with the choice of variables corresponding to the tree diagram of fig.
A.1b. The same result could, of course, be obtained by taking the limit oy, ag;~> > on(A.28).
We have

111

[ s-1 so-1 p—opp-1 —a,.-1 o1 —ape-1
f f dx;dzdx, xy %aa™" z7 %ac™" x5 b7 (1 —x )" %ac™ (1 —z)” *aac™ (1 —x,) *bc
0 0

(1—xlz—x22+x1x22):]°‘_“a0_“bc_ (A.32)
(1—x;2)(1=x,2)

For a, a,., ap. > — = (a/e, . fixed), the important region of integration is x; and x, ~ 0. The
usual exponentiation procedure gives

X (1 —le—x2Z +X1X2Z)aa55 [

By~ D(~ayg) (—540)" T(—0yp) (=51, )PP J dzz2aaE 1 (1-2)~ 50 Wia g agiz(1 -2
0 (A.33)

where 7= M? /s, Spc~ /5,055 and V is the double-Regge vertex of subsection A.2 above. Thus

the structure of the two-reggeon and two-particle amplitude resembles both that of the four-
particle amplitude and the double-Regge vertex*. The discontinuity in M? is equivalent to the
discontinuity in n of the vertex function. The behavior for small p? 1 (n - ) is of course controlled
by the usual helicity poles [151]. The behavior (A.31) for pl - o (n - 0) goes over into

exp( 4p ). This can also be obtained from (A.12) and (A.33). The exponential decrease for

p 1 = o thus appears to be connected with the absence of multiplicative fixed poles. Therefore,

the helicity and angular momentum plane structure seems to control the asymptotic behavior

in a rather unexpected kinematic region.

* One should note that the rather simple form (A.33) holds only for the forward configuration where a, . = a5, etc.
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