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Abstract

Bestellungen sind zu richien S

— in der DDR an eine l_iuchhum“un;z oder an den Akadenue-Verlag. The asymptotic behaviour of partial wave amplitudes is calculated supposing various Regge models
DDR-108 Berlin, Leipziger Strafle 3—1 for the total scattering amplitude A(s, ¢, %). The high energy partial wave behaviour obtained is

— im sozialistischien Ausland an eine Buchhandlung fiir fremdsprachige Lucratur oder an den “’mbmcfl with the validity of partinl wave dispersion relations. It is shown that consistency of these
zustandigen Postzeitungsvertrieb asumpticns ean only be achieved by demanding .

— in der BRD und Westherlin an cine Buchhiandlung vder an dic Auslieferungsstelle 1) a definite asymptotic behaviour of the discontinuity of the left hand cut of partial wave amplitudes,
KUNST UND WISSEN, Erich Bicher, 2) the validity of partial wave sum rules of similar kind as the well-known finite energy sum rules for

7 Stuttgart I, WilthelmstraBe 4 -6 the total amplitude,

— in Usterreich an den Globus-Buclivertrieh,

1201 Wien, Ilochstadtplatz 3 All steps of the derivation shall first be demonstated for elastic scattering of identical scalar particles.

Then within the helicity formalism the results are generalized for particles with arbitrary apin and

— i iibrigen Ausland an den Internationalen Buch- und Zeitsehrificalundel; dea Buchexport, | different masses. Finally the question is studied whether the sum rules can be cmployed to determine
Volkseigener AuBenhandelsbetrieb der Peutscheu Demokratisehien Republik. = mknown CDD-pol rameters i N ) oy ] P 3 rIiy
DDR-701 Leipzig. Postfach 160, oder pole parameters in an N/D approach for the I = J = 1/2 state in =N scattering. It

isshown that the sum rules of highest order are able to do that.
an den Akademie-Verlag.
DDR-108 Berlin, Leipeiger Stralle 3—1

— 1. Introduction

H

“ltis the }vcll-known aim of the analytic S-matrix theory to determine seattering ampli-
: hldfis uniquely by means of basic principles as unitarity, crossing symmetry, analyticity
7 ot first and sceond kind, duality cte. Mainly two approaches can be distinguished.
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) 1} One tries to construct the total scattering amplitude A(s, ¢, u) satisfying at least

e some of the basic assumptions. The various dual inodels proceed along this way. Here

Repubiik. .

Gesamtherstellung: VEB Druckhaus ,,Maxim Corki’ , DDIt - 74 Altenburg, Cart-von-Oumetzky Straile 30/31. the main problem, namely the i i itari i
Erscheiaungewese: Die Zeitsebrift . Fortechritte det Physik* erscheiot monatlich. Die 12 Hette zines J:m.re- bilden eincn Wg: f i p o . y ¢ ln(‘Ol‘pOf?thn. Of ‘m’tar'ty’ ShOlll‘d be solved by andl
Berugapreis j¢ Band: 180,~ M suzilglich Versandspesen (Prers fie die DDR: 120, M). Preus te Heft 15, 3 (Preis fir die DDR: iy ng the amplitude in the trce approximation {(dual models with Mandelstam ana-

— M). . foe . kS : ;
L enme diesea Heftes: 1027/24/9. > Yticity [1]) or by a perturbation-like approach [2]. Both ways lead to certain troubles
@ 1976 by AkademicVerlug Berlin. Printed in the German Democratic Republic. : . ) which have not been removed till now.
H

l?artial wave amplitudes 4,(s) are calculated generally by combining unitarity equa-
tions with dispersion relations. The results are usually checked against positivity
aud crossing symmetry properties employing additional conditions in the form of

3 Zeitsehrift ,, Fortschritte der Physik", Heft 9
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sum rules, inequalities ete. In this way free parameters (input-potential, CDD-po)
parameters in the case of an N/D approach [3], subtraction constants etc.} can be
estimated up to a certain degree. Equations for partial waves are very useful for
phenomenological investigations, e.g. for testing consistency of phase shift analysig
for the determination of scattering lengths, effective range parameters. However the
whole program can be realized only approximately, because of the very large number
of additional conditions, the rather unknown redundances between them, and the
enormous computer capacity required [4]. ¢

In both approaches unitarity and asymptotic behaviour are treated on a quite different
basis. In the first approach Regge behaviour for the total amplitude is taken into ac.
count in the model ad hoc, and this in a crossing symmetric manner. Unitarity has to be
included lateron. In the second approach, where partial waves are eonsidered, one pro-
ceeds actually in the opposite way. Here one usually tries to statisfy unitarity directly by
determining the partial wave amplitudes from corresponding integral cquations. In.
elasticity is treated phenonienologically in practical calculations. The inclusion of a defi-
nite asymptotic behaviour remains as a second step, and only a few authors turned to it
up till now [5].

The present paper deals with this last question. We investigate the conditions which re-
sult from combining partial wave dispersion relations and Regge asymptotic partial
wave behaviour. To calenlate the high energy behaviour of partial waves we suppose
that the total scattering amplitudes are dominated by Regge terms which in principle
arc in agreement with recent high energy data.

The following Regge contributions can be considered.

1. Regge poles with intercept (0) =1 + £, 2 0. This leads to geometrical scaling [6).
The total cross section rises logarithmically at least in a restricted energy region, and
this because of

gr~14+¢lns

2. Regge dipoles and triple poles, respectively. Geometrical scaling is fulfilled and total
cross section shows logarithmic rise [7]. .

3. Sum of ordinary Regge poles and cuts. This gives asymptotically constant total cro
section. The rising behaviour as it conies out at present accelerator energies is ex-
plained as an intermediate range cffect {8].

4. Pairs of complex conjugate Regge poles. The total cross section is oscillating [9].—

In the following we exclude Regge poles with intercept higher than one beca.use.Of
violation of the Froissart bound. Furthermore we do not consider complex trajectores
although it would not lead to principle difficulties.
To calculate the partial wave asymptotic behaviour the Regge terms mentioned 8r¢
projected supposing a strong enhancement of forward and backward scattering. One
the asvmptotic behaviour in the form of an asymptotic expansion of inverse powert
the logarithm of encrgy and of the encrgy itself. Consistency of this asymptotic beha¥i0X
with the validity of partial wave dispersion relations means that the latter ones have’
produce the correct asymptotic behaviour of the real part of A,(s) if the partial wave
discontinuity (according to that Regge behaviour) is used above a certain cuto N
Tt turns outs that this is only possible, if firstly the asymptotic left-hand discont}m,;”ty
of the partial wave amplitude is chosen in a definite way, and if sccondly an infinite
of sum rules is fulfilled. These sum rules are similar to the finite encrgy sum rules f‘fﬂﬂ
total amplitudes [10] (containing, however, left-hand discontinuities as well). T8=
wave sum rules could be employed for testing models against Regge asymptotite:
haviour. It is quite possible that they can be used to restrict the frcedom in the "W
of trajectories in dual models with Mandelstam analyticity. Furthermore the su®*
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give an average of the left-hand discontinuity including the region where the partial
wave expansions of the crossed channels are not defined. Last not least they determine
free parameters (e.g. CDD-pole parameters [3]) when the asymptotic behaviour is assu-
med to be known.

In chapter 2 the sum rules are derived in the scalar case generalizing also an earlier treat-
ment where only single Regge pole contributions have been regarded [1I]. This is ex-
tended to spinning particles with different masses using the helicity formalism in chap-
ter 3. Chapter 4 demonstrates s practical caleulation in the case of =N scattering. It is
shown that the sum rules of highest order enable us to determine CDD-pole parameters
inthe I = J = 1/2 state,

2. Regge Asymptotic Behaviour and Dispersion Relations for Partial Waves in the Scalar
Case
2.1. High Energy Behaviour of Partial Wave Amplitudes

e considcr two particle elastic scattering of scalar identical particles (of mass m = 1).
The scattering amplitude can be expanded in the form

Afs, b, u) -——-IL; (2 + 1) Ay(s) Pi(z) (2.1)
where )
. +1
A3y = 7fd: Pzy A(s, t, w) (2.2)
Byl

Tepresents ic I-th partial wave. The Mandelstam variables s, ¢, « are defined as usually.
tis the cosine of the scattering angle in the c.mus. of the s channel

2u

8§

1 —

2
z=1+ — =
+.3——4 L s+ t+ u=4+.

Indagrecment with experiniental results and theoretic reasoning we assume that forward
tnd backward scattering at Ligh energics are strongly enhanced. Therefore we require
for large physical s

[A(s, ¢, u)] < Ofs~%) if 2] < 1 — &(s). (2.3)
3’? 188& sufficierlntly high positive number and e(s) has a sruall positive value withz(s) — + 0

= +o00.})

In the standard approach the asymptotic hehaviour of the total amplitude is deseribed

1% a series of Regge poles and cuts if ¢ or u are fixed, respectively. However, we adopt

i:‘; ilmsatz of the same kind also for the asymptotic limit of large s at fixed scattering
gle. That will be correct up to terms of orders Ofs—¥) if the Regge terms as well as the
tkground themselves are demanded to fulfil the relation (2.3).

Us schematically we have

Afs, t,u) = 3
g 00
2 tixed

(¢-channel Regge terms) + (¢ <> u) (2.4)

wh ‘ '’ .
Q tAt we call herfa t, u-channel Regge terms” is explained in the following. As discussed
€ introduction we consider three types of contributions due to exchanges in the

I .
order to determine N one may also refer to the well-known quark conting rules.

"
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t-channel and u-channel (the background term will be omitted; it is assumed that it @
be shifted sufficiently far to the left of the I-plane by Mandelstam’s procedure).

1) Regge poles,
2) multifold Regge poles (to second order) [7], and
3) Regge cuts.

&
Crogs
sections (at least in the intermediate energy region). We discuss them separately. For
simplicity, only the ¢-channel contributions are regarded (the scalar problem is comple{éfié

These models (at least appropriate combinations of them) explain rising total

crossing symmetrie).
1) Regge pole terms

We have for a single pole contribution
1 + o exp{—inx(t))

- sa(l)
sin na(t)

AD~ - ﬂ(x(l)} t)

>+
z fixed R
where ¢ denotes the signature. The function g, which is essentially the Regge pole redi-
due, is assumed to factorize with terms killing all nonsense singularitics of the signature
factor. As mentioned above the whole term should behave like (2.3). Let us discuss the
case of Regge trajectories a(t) which rise lincarly in ¢ in some region 0 = ¢ = ~r
(7" > 0, sufficiently large) and tends for ¢ < —7T monotonically to a finite limit a(—oo)
< a(—"1T). Here the restriction to lincar behaviour is not an essential one. One can show
that our approach is generalizable to the ease of nonlinear trajectories, too. Thena Regge
pole contribution (2.5) behaves like T

3=Dl)

(s — o0, z fixed)

W

and if for large negative ¢, [f(t), £ O~} with M = N + a{—7) then the Regge pole

term (2.5) fulfils obviously condition (2.3).

2) Multifold Regge pole terms

amplitude of the following form {7}

d” 1 + o exp(—1txl)

Ay — — | ) ——————— " ¢ ) =1.2. ‘e

M e I [ﬂ( ) sin =l $ fmstt) n 5
s fixed ;}&

Multifold Pomeron poles of ligher degree than n =2 arc excluded because Of;g?
Froissart bound. JENkovsky and WaLe [7] have shown that a dipole Pomero® |
(n =1, ¢ = +1, «(f) lincar with ao = 1) displays the main features of high energy PP -
data such as rising total cross section, dip structure in the differential cross sec‘@!‘%;
Moreover this model shows geometrical scaling [6]. 25
A multifold pole contribution (2.6) can be written as a sum of terms some of which ha
the ordinary Regge pole form (2.5). In the following we regard only dipoles for simplicty-
The calculations in the case of triple poles proceed analogously and yield additionsgd
In? s-ternmi. We have S

Ayp — Bua0), 8) E(x() 2O Bala(t), ¢) r(alt))

a—r 00
2 lixed

+ B(x(), £) E[a() - In s
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where
1 + oexp(—1imx)
sin s

{la) =

1 4+ ocosax
sin mo

r{o) = Re {{a) =

o~

ﬁl(a) e) = 2_0 5{“; t)
X

g

B2(a3 t) o .B(a’ t}

sin 7x

The second term in equ. (2.7) contains only the real part of the signature factor ().
We reinterprete this term: as a sum of two Regge poles with opposite signatures. One gets

1 4 oexp(—ixx)
sin srx

Bar(a) * = Ba ( yLlzoexp (_i"’)) P (2.8)

sin Tx
where

Balx, ) = —0c =z r(x)

In order to satisfy condition (2.3) the individual terms of expression (2.7) should have
the same properties as assumed for Regge poles, such as trajectories linearly rising in the

range [T, 0]. but |a{—~o0)| < o0, and a corresponding behaviour of the g-functions for
negative £,

3) Regge cut contributions

The contribution of an I-plane cut an be written as

a{l}
A, — f(zz+ 1y A, p Lo (=) gy (2.9)
PESREIFSN sin 7l
dfixed ¥

drepresents the discontinuity of the t-channel partial wave amplitude on the Regge cut
9 to a factor 2i. & is a sufficiently large negative number (in correspondence with the
Position of the background term). &(f) denotes the branch point and is assumed to ex-
Nhlblt the same properties as the Regge pole trajectories. For definiteness let us assume

& < af{—oc) < x(—T).
To verify the behaviour (2.3) the discontinuity 4 should behave like
14, 8)] = o) t< T
xZl < ()

for

and

¥ large positive number).
contributions are generally calculated from special models (eikonal, absorption

ﬁ;’iel, K matrix formalism ete.). However, the simplest one usually employed is due to
DPELsTAM, GrIBOV et al. [12].
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They studied logarithmic branch points of the well-known form

1 R
Aty = — B(, 1) (alt) — l)”‘"‘gg disc (In (x(t) — 1)), m=2,34,.. (2.1’_2‘)
@v
The exponent m denotes the m-fold exchange of a trajectory a,(t) =d
i
¢ g
a{t) = ma, (5-2—2-) - m - 1. g

Restricting the original assumption that the function R(I, t) should be regular near the
branchpoint, B(l, t) will be demanded to be regular in the whole integration region ang
t € [—~T, 0). Then we may expand R(l, ¢) into a Taylor expansion with respect to ¢ and}
in that region, by
After having summarized the class of Regge models under consideration we are now"fn
the position to derive the high energy behaviour of partial wave amplitudes. In accor-
dance with condition {2.3) the partial wave projection (2.2) can be rewritten as '

e

h) !
— 1\
2t )+(_l)_ [dlLA(.c.{,ta)P, (1+ 2“)
s — 4,
-

g

1
Als) — ——

= ton § — 4
-7

dt Als. t,u) P, (l + sy Py

(2.11)
where the first (second) term deseribes the strong enhanced forward (backward) contri-
bution. Here the lower limits —7 and — U, respecetively. are introduced with sufficient-
Iy large but finite values instead of ¢ dependent onces. Therefore expression (2.11) fo-
gether with the ansatz (2.4)— (2.9} will describe the asymptotics of A4,{~) correctly up fo
terms of order O(s~%), L sufficiently large. We remark that the ¢-channel Regge terms
dominate in the first integral, whereas the u-channel contributions dominate the back-
ward scattering integral. Because of £ — % crossing we can sum up both terms of equ
(2.11) and perform the following caleulations. e
At first we compute the projection integral according to (2.11) for simple and multifold
Regge poles (equ. (2.5) and (2.8), respectively) which can be written in a unified manner
as demonstrated before. After that we shall deal with the Regge cut contributfons;gf
B

have
0 )
— 1y 5
Ai(s) —— L) X (Ins)® [dt B, () P, (1 + t ) s (212)
3> 00 ¢ —4 pole terms R s — 4 G
n=0,1,2 -7
with . )
1 + o exp (—imx(t)
B, (8) = Blx(e), t .
o) = A0 ) sin 7x(t)
0 simple poles
It is n =41 for dipoles
2 triple poles

In order to determine the integral in equ. (2.12) we expand the integrand. Care 18 B
essary because the Taylor expansion around ¢ = 0 is convergent only in the ré
[—4,4] (By.(t) possesses a branchpoint at ¢ = 4). Therefore we calculate the indetii
integral as function of the upper limit. To determine it at ¢ = 0 we expand the integy
atl = —1 = 0, but to get the valueat? == —T'weexpandat! = —r witht 2 (T
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The Taylor expansion around ¢ = —r reads
[+ <]
Bp'(t) — Z BD“’“)(-—T) (t + T)M
== [1!
with
]
By W{—1) = 2_‘; (‘;‘) BN (—1) 1 (—~1) —igfW{—1) {2.13)
and
1+ acosax(t
) = 1 + acosax(f) (2.14)

sin woft)

where r(t) is the real part of the signature factor.

The Legendre polynomials in equ. (2.12) yield powers in { connected always with powers
in 8. We expand them, too
porfi - )
s —4

2t
Py (1+3-4) (s — 1) it -+t

-

i
=z

A==y

Thus we are led to indefinite integrals of the forni

Fylr,x) = [ dt(t + )% 520, (2.13)

As outlined before the trajectories of all Regge contributions are assumed to he linearly
nsing in [T, 0]

alt) = ag + a’t, & >0. ) (2.16)
This yields
] K AR\ . (x+ 1)K
Fylt, ) = s0 —1)i p
w(T, 2) = s (é‘;( 1) (') i ~in s)‘*')' (2.17)
We conclile then
i ] n
48— (1 4 (1Y A ).‘__E_nﬂ__
s-a»—uco( ( ) ) poic Terms i=o (8 — 4)1+1
n=0,1,2
% 9 B )
x L5y P 0 F14,00,0) + Qst-my
= (1 + (—1) r Il —=1yien ()‘ + .“) Q‘Ele’(li) £'“(0) {2.18)
pote terms 0515y 2 (' yirast
n=0,1,2 L0
sos(ln g)r—i-p-1 ( . © (). + -+ 2\ r(0)
QUGS S A v —1Yy —¥
G—oer \ Tt U0 ) wy (9 )
+ £ (=)

;4 W
1 here we used equs. (2.13) and (2.14). The 2-term in equ. (2.18) is due to the indefinite

fgral calculated at the limit ¢ = —7 and consists of an expansion of the Fr(r, —T)
boga S Wlt%l T 2 (T — 4)/2. Thus it represents a function proportional to g«—T)—1 up to
Tithmic factors. a; denotes that trajectory which is leading at't = —7.
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e Tw

Now we turn to the consideration of Regge cuts, The partial wave projection of th
contributions leads to

e g

B
7 85

0 a{f)
—1y b
A — 2EEY o L [arer + 1) R,y (ae) — )2 =
st ™4 reu'terms B
m=24,. —~T af~T) m»

—r

@ )

< [+ m.axp(-ml) 3”’:(1 n 2t )+ O(seut-1-1)
sin zl’ s —4

where equ. (2.10) has been employed. The cut integral corresponding to (2.9) has beey

restricted to the integration region [a{—T'), a{t)]. The remaining part with upper limi

a(—T) behaves like s2e4~7)-1(o; (— T is the leading branchpoint at { = —T).

Interchanging the order of integrations and substituting I’ = ay + «'t’ = x(t') we get

0 _

L+ (=1)

Ay(8) ——e X dt’ Bt') st {2.20)
8->+ 00 8 — 4 oot le:l;ms v
m=23,... -

where we have abbreviated

1 4 o exp (—ixx(t)
sin (¢}

Bc(t’) =

o |

X | )28 + 1)*fd: R(a(t). f) (¢ — )2 Py (1 -+ ;-i%)J (2.21)

&

Thus we achieved a form similar to that of Regge poles (2.12). Jf(_x(t’), t) should be s
regular function of botli ¢’ and ¢ in a large region (¢f. discussion below equ. (2.10)). Then
it can be expanded as a double power scries. Furthermore & is assumed to cancel the
poles of the signature factor for negative t’. Therefore we get a power series in ¢ also for
the function B.{#') in the same way as for the corresponding B, (¢)-function {equs. (2.13):
(2.14)). With the calculation of integrals of the type (2.15) in accordance with (2.17) we
are finally led to the asymptotic expansion ‘ 4

sy

s*(In s)~m-i-p-e

A)— (1 + (=) X 3 [zaw]

>+ cut terms DS it (3 — 'l')“"l
m=231 ueZ20
o — 7]
Y (—1;0 + E (_1), (;»’f‘ u + e ‘i}" m 1 ‘+‘ V) "(_“(’_(}23 (ln 3}_') + Q(.};‘L(_T)"l}
r=0 0

where the numbers y,,, are in detail

(= 1ypewre Gt B0 £ = DIBPOW) 125,

FY (o’ tatett

Zipg =

with r,, the expansion coefficients of the double power series of R in ¢ and ', & ‘

denotes
’ m-2 fm — 2
Zy=} ( )

=0 v

{(—1)
Kigw+1
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We conclude that the asymptotic behaviour of partial wave amplitudes can be represen-
ted as a definite expansion with respeet to powers of both s and In s. Exeept dipole and
triple pole exchanges (n = 1, 2) there are no terms with pure power behaviour in s.
Simple and multifold poles as well as cut contributions lead to similar expressions
(compare equs. (2.18) and (2.22)).

The pure Pomeron pole contribution to the partial waves is of special interest (xp(0) = 1,
op = 1, n = 0). Its leading terms (4 = 0, u = 0, 1) are given by

. Be(0) 1

ap'Bp(0) Int s

P(O i 14 1 .
A,P(S);:; (1 + (1)) %;7)' (—m + 5 + 0 {ln-? S)) (2.23)
i.e. the imaginary part dominates as we expected.

In the following only the terms of definite powers in ¢ are of interest. The factors in
front of them including the derivatives of the residue functions etc. are not important
because of the linear character of dispersion relations. We denote these typical terms of
the asymptotic expansions (2.18) and (2.22) as follows

Sa.—-l-—w
hols) —

A co . T 4w T(')(O) .,
s Tnay—rt P {——w -+ é;(—l) ( , ) __._(“‘)' {In s} } 2.24)

0 simple poles and cuts
with no==d 1 for dipoles
2 triple poles
0 all pole terms
T = for
m—1 cuts (mo=2,3,...)
(4] z 0

The power s-¢ corresponds to the powers of s — 4 in the denominator of (2.18) and
{2.22). respectively.

In the partial wave dispersion relations to be studied the asymptotic behaviour for
8-> —o0 is also needed. In order to get this behaviour we assume the absence of an
essential singularity at infinity, Then we may derive the asymptotics for s - —co by
fymmetry considerations on the basis of expressions (2.12) and (2.20), respectively,
8ssumed to be valid independently of the direction how s tends to infinity. For the
oment let us regard simiple pole and eut contributions (n = 0). Expanding the Legendre
Polynomial the terms of pure power behaviour in ¢ are of the form

getl

0
a(l) Y s(l)
[ dt By S o= (2.25)
-

All these terms have a definite symmetry. They are even or odd functions in ¢ according
O the signature o as well as to the power w. Corresponding to this behaviour the imagi-
bary part of partial wave amplitudes (or of the functions A% (s), respectively) has to be
thosen for ¢ — — 0o in order to compute dispersion integrals belonging to left-hand cuts.
or the multifold pole case (n = 1, 2) the expression (2.12) itself does not exhibit such a
Metry behaviour. Therefore we decompose all terms with a definite power in ¢ into
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two terms of opposite symmetry, i.e. we introduee instead of (2.12) » ‘x'g
- (&) 1] \t

1 55, 3% + g —ag)= ;

5 f dt B(t) _'757(3")_' (In"s 4+ 010" (—s)). (2.26)

h —

For n == 0 this reduces to (2.25).
Transmitting these considerations to the expression (2.24) we introduce

1 gra—i-w . Gt T - ¥\ r{0) &

LES —— e — Y _ 1y ~7 L L .
i —— 5o sw{ io+ F (-1 ( ' ) o n et s & ol (—)

(2.27)

with !

Kii(s) = RII(5) + Al (s).

For the imaginary parts of (2.27) we require .

Im ARz (s + de) = - (—1) ImAT2(s + i¢). (2.28)

This result will be extensively used in the next section.

2.2. Determination of Very Short Range Forces and Derivation of Partial Wave Sum
Rules

We study partial wave dispersion relations separated at a certain s, into a lower energy
and an asymptotie part, where the Regge behaviour {equs. (2.18), (2.22)) derived above
is assumed to be valid. The asymptotic behaviour suggests an once subtracted dis-
persion relation. Choosing the subtraction point at s == 0 and oniitting pole terms for
simplicity we have

sl

—8 2 X
Afs) — g + S5 (s Im :4,‘(.9’ +ig) s ds’ Im :4,58' + fe) =
x §'(s’ — 8) X &8 — 8)
-2 LM .
+ s s’ Im A’,(:—s + 1¢) s 2’ Im j4,’(3 = w). (229)
b4 §'{s" -+ 98) 71 (s’ — 8) o
Into the infinite integrals we insert the imaginary parts of the expansions (2.18) 3pd—

(2.22), respectively. We ask for the behaviour of expression (2.29) in the asymptoti¢
region § — -+o00. Consistency of the dispersion relations with the behaviour (2.18)'
(2.22) means that both sides of equ. (2.29) must yield the same asymptotic expansions.
The occurence of additional powers in s on the right-hand side then leads to the validity
of sum rules following from the requirement that the coefficient of each of these power®
nwust vanish. s

The integrals with finite boundaries yield pure power behaviour in s. Therefore only £22. -

infinite integrals in (2.29) ean reproduce the correct asymptotic behaviour of the pa
wave amplitudes 4,(s). Let us study the asymptotics of the infinite integrals for the
. and odd components h%*(s) separately. At first the integrals are calculated for 2%

logarithmie powers. ‘

‘P”‘

1
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One gets expressions like
oG
s dz () 1)
Zp sy O b*sd) (2.30)
E4 e ) Inf 2 oo T (Ing)fti 7 8

L3

The integrals are tabulated in detail in the appendix. The coefficients @,/ and b;(%) are
well-known. The latter depend on the above introduced “cutoff” s,. The first sum on
the right-hand side of (2.30) is responsible for producing the asymptotic behaviour of
Re A4,(s). It can be proved that the correct behaviour result only of the imaginary parts
of the components A7 along the right and left hand cuts obey the definite symmetry
mentioned above (cf. equ. (2.28)). Thus we get a necessary condition for the consistency
of dispersion relations with the high energy behaviour requiring that the far left-hand
cnt diseontinuity has to possessa definite form. Therefore we have a preseription to deter-
mine very short range forces.

Furthermore both the finite integrals in (2.29) and the infinite integrals due to equ.
{2.30) (and in the possible casec of pole terms, too) produce an expansion of pure powers
in s, which has to be cancelled. The cancellation of each power in s gives a definite sum

rule

-8y 8
L7 1
40, — = / ds" s~V 1Im 4,{s") — —:l—fds’ gt Im Ads’) = 7 r=0,1,2 ...
n

(2.31)

W
-3

The constants 7 are due to the pure powers in s in equ. {2.30). Therefore they depend
upon s, and Regge parameters. The value s, is chosen so that (Ins)-* <€ 1. For prac-
tical purposes s, =~ 10* will be sufficiently large as to be discussed in more detail
later on.

In the following we confirm all these statements and calculate the 7 by studying in
detail dipole and Regge cut contributions. The ordinary pole contributions {Pomeron
pole with ap(0) = 1, ¢p = 41 and Regge poles with a{0) < 1, ¢ = 4-1) have been con-
sidered already in paper [11].

~

1) Dipole Pomeron contribution (:z =1,ap(0) = 1, 0p = +1)

Taking into account In (—s) = In s — iz the leading terms of the functions A%71%(s)

“n be expressed in the following way

- L [I[] = = L.
)h reo 238 (In ) Ilins + +

1
[O](r+z)(r+2>(r+3) - o

e -1 FIL | —1 nt 1
T’{{ O]+[+l}(t+ 1)§‘m—2';+[+1} (r+ 1 (r+2) (T+3)ﬂm +}]
2.32
Where ( )
E n?
re{0) =0, rp(0) = -3 ap’, 1p7(0) =0, rp/"{0) = -1 {op)3, e

bave been used. In the square brackets the upper value belongs to &+ and the lower to k-,
Pectively, Now one can show power by power that the asymptotic dispersion integrals
ttenfor b+ with imaginary parts corresponding to (2.32) and (2.28) yield the real parts
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‘ s
in equ. {2.32), indeed, and additionally the pure power terms in s mentioned ahove, W,

get in the case of even functions k+ (compare with equ. (A.2)) in the limit § — 400 } »

il’fds‘ (('ml)“* . ’1 )Im h’j;,(s')
k11 s+ 8 s’ —¢s 8

i 1 n at 1
:gm[?m‘f‘(f‘{”1){7+2}(f+3)1—2m+'“]

o~
[ 3

o Bewinidin i 23 bbb

® 1 {1 g e ~
_Z;(l — (—1ypta) o {:Em (1t 4+ O(ln 185})}.

Py

pFo
Here we are allowed to neglect all lower powers in In s, because s, is assumed to be suffi.
ciently large. ®
Analogously the odd functions k- are treated. However, contrary to A+ and to the treat-
ment of simple Regge pole contributions [1I] the first term of the right-hand side of
equ. (A.2) will not be cancelled. It must be kept to produce the asymptotic behaviour of
Re b~ which surpasses the imaginary part by one In s power.
In the A case we get

s T o (1) 1 T A2 (s7)
;]f‘l'>(3'+3 Ty = s

= Re AZ(5)

LY ;f

+ (‘3‘0‘(1+(-1)p:~w)l 1(,.{.1)_‘”_@_.“4,0(1”13)) __1__~¢L2__’,}
P} s* 14 (p — o) (Ins)r+2t ¢ 8@ (In g,)r+Ly
P40 7
@3

e

The last term on the right-hand side is due to the uncompensated first contribution‘i)}
(A.2) and will give an important contribution to the constants y in cqu. (2.31). %
With respect to the s, dependence the leading contributions to the ¢ are given}!y

i

(r=0,1) i
® Ao In-1s,(1 4+ O(In-1s,) ﬁ

¥ o ) e

p o~ s,(l + O(In? sc)). 3

£

Here we have omitted all proportionality factors depending on the Regge “residué—
and slope parameters (compare with equ. (2.18)). Our resuit shows the following. Inthe

¢'7 the powers @ = 0 and r = 0 give the esscntial contributions. This means that on 39
one side it is sufficient to regard only the leading s power in (2.18), whereas on the other
side the proportionality factors in equ. (2.35) do not depend on the derivatives of the
“residue” function f{x(#), ). 2
If the total amiplitude is dominated by a dipole Pomeron, then there is indeed 3060,
to equs. (2.7) and (2.8) additionally a term like a simple Pomeron pole (n = 0) but ¥l

negative signature. Contributions of that kind were not considered in [1I]. Sincegg.
real part of the signature factor r(t) does not exist at ¢ = 0, we cannot expand r{f) ¢
(2.13) and (2.14). Therefore we include the denominator sin 7x(f) in the “residue”f,

* expand real and imaginary part of the numerator of the signature factor separste}
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1t leads to a modification in (2.18). Denoting
1 — cos nx{t) = R(t) sin na(l) = I(t)
we get for the “Pomeron contribution with negative signature” the following expression

{compare with equ. (2.24))
‘_g;(_lan:H {'g (—1y (t —j v) R%(0)

kw H (3} ——

]

+iI9(0) 1
@y (n 83'}

with w, v == 0, 1, 2, .., There are no additional powers in In s (n == 0). Therefore k,,(s)
is identical with the corresponding function with odd symmetry &, i.e.

_ 1
hmv(‘g) = kmr(‘s) ;:c; W

. : 1 3
><{e[(wl)%———s—(w1)(r+2)(r+3>%-5+~~]

The dispersion integrals are treated as before nsing the synimmetry behaviour (2.28). The
aaleulation shows that the real part is again reproduced exactly. The power expansion in s
finally reads .

=2
*..!.‘.

9
In2s (2.36)

1
+[2—?<r+1)<r+2)

2
so(ln g, +1

sP
p— o) (Ing)+?

o0 o 1
Eﬂ(l + (—1)+ )S—p {(r +1) ( {1+ O(ln"‘.?c))} e

JE
and the contributions to the '™ are determined to be

7% ~In-ts (1 4+ O(In? .5',,.))
(2.37)
¥V ~In-ts (1 4 O(lnt s,.)).

Thus the “negatively signatured Pomeron” (rn = 0) will give a contribution to y of

t}lle same order as the n == 1 term of the dipole, whereas in @ the n = 1 term dominates
alone,

2) Dipole Regge contributions (n = 1, 0 <oy <1, ¢ = 1)

The more general case of trajectory intercepts ay << 1 is treated in the same way as be-
ore. Only the evaluation of the asymiptotic integrals leads to more coniplicated froms.

2o (2]

) 1+o -1 =
el 2 )

By . L o7
srreo 2 $%(in sy

e[

1 Ins

(2.38)
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I

According to equ. (2.28) and equs. (A.3), (A.4) we get in the case of negative signatuxé

the following results. For ¢ = —1 and the even function &}, i
3 Im h 1(0) =

8 , [(—1)= 1 mhl(s) 1 g1y =
T Pfds (s’ + 8 Tz s) T8 2 sa(lns)rtd 3
a

[ 38

(st on) 20,1 g — ¢ (1552) 11257 ot w00t 1 — ) +

807+“°"’l"‘”

Lbqe

(t = o) S 1P

T2 GFas T ey T o0 sc))}

1

b4 g1 I — cos xg) {1 + ¢os 7
T 2 se(ins)tI\ sinza, sin zxg

) + o =Rehi(s) + n (2.39)

In the last two equations we have dropped the power expansion in s. To derive (2.39)
we used properties of the generalized zeta function

1+ & 2—ay 7 )

c<1,ao>+m,1-ao)—c(1, - )—-c(l, )=t o

L, &) — {1, 1 — o) = 7 cot 7. (2.41)

In the same way the calculations for A~ with o = —1 and A£ with ¢ = -+ 1 can be done.

In each case the symunetry behaviour (2.28) is confirmed. Apart from the correct re-
production of the real part of the asymptotic expansion of A,(s) we are interested mainly
in the pure power expansion in s to calculate the 7. Therefore we write down for the
remaining cases only the corresponding power expansions. For ¢ = —1 and the odd
function A, we get

gcp+a.—l—w

+ B+ o o

@ | (p+ o —1—w)(ns) (l + Ol 's”))}

3cP+°n‘1"w

-—f(l — (_1)P+w)._1.{1
p=0

T T o T —aynay (L T 00 .sc))}

foro = +1, &,

Scpéa.-«l—w

3 L r(0) ‘ B
+§é;(1 =0 )6_’ {_—2— (p+ x — 1 — @) (Ins)+? (1 F O(In lsf))}'

This yields finally the leading contributions to the y'", Fiir ¢ = —1 we find
#0 ~ 51 + Ofln-t s,)

Y

_ y(lb ~ g% In-t 36(1 + O In-t 35)) I

and for ¢ = 1
) },‘0) ~ Sca"_l In-t sc(l -+ O(ln“l 35))

?u) ~ 8,_.“‘(1 -+ O(ln“]' 8c))
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3) m-fold Pomeron exchange cut {n == 0, ap(0) = 1, op == +1)

The calculations proceed in this case in the same way as before. Because of n = 0 similar
to the case of simple Regge poles one of the functions of definite symmetry (2.27) is
identical with A, (s) itself. So the discussion requires a smaller expense.

The leading terms of &}, = A, are

e i T ) e b D D+ 2 (4 3) o+
harls sertoa 8(In g)r+1 2\ ) Ins @ 24 v (v (v m3s © |

(2.43)
Considering the symmetry behaviour (2.28) the asymptotic integrals yield the correct
real part of &, and the following power expansion in s

b 1 {1 8§ P-w

- ¥ e FER N ¢ 1
S ) g {n o) syt (1 F Ol 8")}*
PEw

Therefore the leading contributions to the y'" of the highest order sum rules (r = 0, 1)
gre(t=m — 1, m==2,3,...)

7‘0' ~ s (ln g \m (l + 0(1“‘1 Sc))
¢ \ “ (2.44)

1) e
L4 (In s )™

(1 + O(n-1s,)).

4) m-fold Reggeon exchangecut (n =0, 0 < 0y < 1,0 = £ 1)
Because of equ. (2.27) we have
k=0 if o¢=7FIL.

Thus the signature determines the symmetry behaviour. Correspondingly we introduce
the notation k2 (== k,.). Then equ. (2.28) takes the form

Im RS {—s + de) == o(—1)* Im & (s + i¢).

The leading teris are

go? r0)

B (s) ——r e [—-ia + #(0) — — 0+ 1—:11_3 + ] (2.43)

sorpoo S2(IN g)r 1

The asymptotic dispersion integrals then produce the correct real part and as before
% power expansion in s

L] had e i
TP o (35 L) Il
8 48 8§ -3 s
s
SRe o (g) — 3 (o — {_1)p+e 11 g pta-1-w .
oRle) = 5 (o — (=1F )sv{:: e T ey w0 e
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Finally we get the corresponding leading contributions to the y (v =m —1,m =2, 3, . )
i.e. for g

positive signature o = +1 | negative signature ¢ = —1 %

g ¥e—2 8ca.—-l 'ﬁ‘

{0y 0 "

res~ {in s,)™ 4 (in s)m (2-46)

8% 8,501

m ¢ 0 e s
e (ins)m 7 (In s )™

In Table I we tabulated all contributions to the first two ' including the leading Reggs
pole contributions evaluated previously in [11]. .

TableI

Leading contributions to the first y&) constants (scalar case)

Regge Pomeron / Reggeon “Pomeron pole m-fold exchange cut
poles [11]  dipole contribution with Pomeron [ Reggeon
n=10 o=} =0 =0
g=+1 o=+l a=—1 g= 1" 5= || 0= +1 g=—1
3:"'_1 t) 1 3Ca,——l . ' 1 1 3,0 -2 ,gtac—l
{0 P T —~ § S0 P~ P~ ,
7 In s, In s, Ins, ¢ n s, AN (Ing )  (Ing)»
\ 5, *%) . A 2, 2 g1
v~ ln s, T e In s, Ins, (Insdm (Insym (Ing)®

*) Regge pole eontribution with negative signatured trajectory {o-trajectory), g < 1
**) Pomeron pole contribution gp = +1 )
**%) This term arises in connection with the dipole Poreron

(2.31) if s, is sufficiently large?). We remark that the addi_tionally arising ’Pomergofl
pole like terms with negative signature will contribute to ' in the same leading order
as the corresponding dipole term with logarithmic power n = 1, 0o
Summarizing we have classified the main contributions to the sum mles (2.31) due't
different Regge models with real trajectories. In the last chapter we shall apply‘the ;mn:
rules to the realistic case of =N scattering. It will turn out that the I:L‘Sltlts are hlghlydl';-
dependent on the special Regge ansatz. Therefore we shall regard in ‘thc follogvm%g__ﬂ ]
cussions only simple Regge poles which are better known from experimental fits ll:hg
valid in the intermediate energy-regions. o b toal
Formally the sum rules (2.31) are similar to the fmlf:c energy sum rules for t’g o
amplitudes [70]. But in our case it is generally impossible to express the f1.m§e left- i
cut integral via crossing symmetry by the right-hand ent contribution. This is the ::nge
disadvantage of these conditions, because there is not much known about the short ra?

. - Po-
*) This is not & matter of course, As Table 1 shows among the ordinary Regge poles it is not th’ﬂf!
meron pole which dominates in y® but a Regge pole with negative signat;ure_ (g-trajecto_ty)- 5
means that the dominance in the total scattering amplitude is not tantamount with the domlmm
the partial wave sumrules.
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forces. We shall show how this difficulty can be surrounded in our application to =¥
scattering. One should remark that the equations (2.31) permit a duality interpretation
for partial waves. The left-hand cuts are determined by ¢- and u-channel contributions
together. Therefore the resonances of all three channels are simultaneously creating
the s-channel high energy behaviour represented by the constands 7.

3. Helicity Partial Wave Amplitudes and the Formulation of Sum Rules

3.1. High Energy Behaviour of Helicity Partial Wave Amplitudes

To apply sum rules of the same kind as {2.31) to more realistic cases than the totally
crossing symmetric scalar one (realized e.g. in the =%® elastic seattering) we generalize
our investigations to the case of elastic scattering of particles with arbitrary spin. To
study =V scattering later on we assume also different masses. It is convenient to use the
helicity formalism. '
The gencral assumptions (dominance of sharp forward and backward scattering, ana-
lyticity of Regge residue functions, linearly rising Regge trajectories, validity of dis-
persion relations) and the methods of derivation are essentially the same ones. Therefore
only the main steps will be sketched. But contrary to the investigations in chapter 2 we
shall restriet ourselves to contributions of single Regge-poles, althouglh these will gene-
mlly not give the leading influence in the corresponding constants ¥'7 as shown below.
However, we are justified for doing this because in the concrete ease of =V scattering
the first sum rules are not sensitive with respect to the special Regge parametrization,
80 that a pole approximation will suffice.
The description of seattering processes by helieity amplitudes has the advantage that the
decomposition into invariant amplitudes can be avoided. Furthermore for studying
Regge asymptotic behaviour £ und 4-channel exchange contributions can be considered
ina unified way. On the other hand care is necessary because of kinematic singularities
and crossing relations. In our investigations conventions of DrRECHSLER {15] and Congx-
Taxxounst et al. [16] will be employed. Propertics of the rotation functions of the first
kind are tabulated there, too.

e partial wave projection usually used can be written as in chapter 2 assuming do-
hnanee of enhanced forward and backward scattering (which is connected with a power
behaviour (2.3) applied to the total s-channel helicity amplitude)

-14e 1

Floioanls) — 'y [ + f dz froaenals, 2) d(2) 3.1)
e 12,

r 00

Fth 2= 2 — 4, X' = 2/ — 4. The quantities 4; und 1; are the helicities of the in-

®oming and outgoing particles, respectively. di,., represents the rotation function [15].

¢ mass of one particle will be denoted by A. We use a normalization where the sinal-

T Mass of the other particle is put m = 1. As usually the Mandelstam variables s, ¢, u
e defined by

S+ t4u=2M L2,

)I"I'EOVer we have

L =1 —

(3.2)

.
u Zeitachrizt ,, Fortschritte der Physik™, Heft 0
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witi:.x
A= (M2 — 1)2
. (s — (M + 1)%) (s — (M — 1)3)
43

{s- and u-channel are assumed to be crossing symmetric to each other). The followix)g‘"
Regge pole ansatz is applied I

fagls, 2) ——

x {(}/:—t.)“_” Bisy(0 L+ ocexp (—ina) s*’(‘)]

s—»+00 poles sin 7
¢ channel &
T\ 1+ o, exp (—i:t(oc — 1)) 4
ot e Bfylu . go{m) 3.
+p£5 [(V + 3 () sin (o — ) ( 3},
u channel &
with
0 for boson-boson, fermion-feriion processcs
v = .
1/2  for boson-fermion processes.

All Regge terms themselves shonld satisfy the condition (2.3) and the trajectories are
assumed to be linearly rising at least in a certain region as discussed in the scalar casel
In the functions Bt Regge residues as well as the crossing matrices [16] are involved.
It is not important for our purposes to know them explicitly. However, it turns out that
the functions Bt are free of kinematic singularities for ¢, « £ 0, if the residues of {- and
u-channel Regge poles are chosen appropriately?). The remaining square root singulari-
ties factorize and have heen written separatly in equ. (3.3). Moreover one can choose s
dip mechanism (nonsense-choosing) killing all unphysical poles of the signature factor
in the regions §, 4 < 0. %
In the ansatz (3.3) and in the following we consider only terms of highest order in s, and
this for cach pole contribution. So we neglect e.g. the influence of daughter trajectories
in the a-channel needed to avoid difficulties connected with kinematies of different
masses. The neglect of lower powers in ¢ can be justified as in the sealar ease (conclusigg
below equ. (2.35)). i
The ansatz (3.3) is inserted into (3.1). By transforming the integrations and introducing
the lower hmits — 7, — U {(with T, U sufficiently large, but independent on s) we geﬁg’

1 + o, exp(—izT(u))

)it 2 —_ ’
'(—"Q{_svf [ Jdu (=07 Biy(w)
49 gpoles | ~U

X A0, (1 - 2—:—)J

1 2 R 1 4 oy exp {(—dx(t)
tiE [fdt(v—e)“ 1 g Lo )

tpotes { —T sin :zx(t)

Flyls) ——

. sin X (@)

x &0 di,, (1 + 5;—2)]

with the Si)ifted trajectory &{u) == aly) — v.

© can be avoided by introducing parity doublets.

: e
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A Taylor expansion of the t and u dependent terms in (3 4) leads agai i

_ > . . gain to integrals of
the type (2.15). Their evaluation yields the asymptotic expansion f iei i
wave amplitude (leading powers in s) o P 'HS]OH o the heliity partial

Fo 5 B D82~ 2

s>+ Lupoles u=0 /‘!

§2@ (184~ 2]/2)~1 [—-io 4 5;: (1) (,u + k4 104 — l'[) By 1
k=0

K e ——
(In g)s+idi-Xi+1 k (o")* (In g}*

B#(0)
[ (0) A —TTF1

(3.5)
with

+1 t—
8 = {_ { for u—} channel eontributions.
Helicity indices ?\ave been owitted. The coefficients r*1(0) are the derivatives of the
real part of the signature factor (compare with expression {2.14); in the u-channel case
the trajectory is replaced by the shifted one ). '

Inthe special case of =N scattering assuming dominance of the Pomeron pole it turns out

that in leading order both spin-flip and nonflip amplitudes are imaginary. As a kine-
matic consequence helicity conservation is obtained

P
}‘1{ AR) — g w __!._
s> p oo Ap0) Iny
} ' P (3.6
A (3 R—— (j 4 -IT) B"'(O) ___1__. + .. )
§oom OO - (,\p (’0))2 }‘)’ “ll -9)2
3.2. Dispersion Relations for Helicity Partial Waves and Sum Rules
Let us introduce partial wave amplitudes with normality
F{?l,'z,z,i'ﬁ') = Fﬁ.'l,'z.z.("’) + Ay (—1)hseme FiA,'»A,‘A,A,(")- (3.7)

Hete 5, and i i
S: Te Qe » g " » vk y : H

the”f nd rcpr'qut the internal parity and the spin of the i-th particle, respectively,
ollowing we use reduced amplitudes

—
5

II{}',,(‘?') = oi{ur)y FiI, (W), Wey (3.8)
With the threshold factor
v
Sy = — Y
Tty
thosery s0 that .
- the generalized Mac Dowell symmetry [17] is satisfied
Hiy(— W) = (— 1=+ Sy (3.9)

Befin; ) N
' ‘n;’?g the anal‘ytnc continuation of the amplitude from Re W > 0 to Re W < 0
o has no kinematic singularities in the ¥ plane [16], ’
2 s(tisymptf)txf b}fha;’mi?lr of Fi}; is modified in & manner independently on §
ynamical threshold behaviour following from a generalized i Gri
Sentation is taken into account. ¢ ¢ o Frotssart-Gribor

10
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Assuming a Mandelstam representation-for amplitudes without kinematic singularitiey
the loeation of dynamical singularities of the partial wave amplitudes Hi" can be foung,
The result is the same as known from elastic =N scattering [18]. ]

In the s plane we get the following dynamical cuts (if pole terms are omitted for simpli.
city)

1. |s] == M2 — 1, a circle cut,
2. —o s —M*+1, M+ 1=Z850,
3. (M 4+ 1) £ 8 = -+oo the physical cut.

0<s<(M— 1),

According to these cuts dispersion relations are written for /" in the W plane. With
reference to the behaviour (3.5) the number of subtractions chosen at I =0 is

p =465 + &) — Al — || + 1. (3.10)
Analogously to the scalar case (equ. (2.29)) the integrals are separated at certain suffi.

ciently high W, naniely at both the imaginary and the real axis. Property (3.9) as well
as real analytieity lead to

i,
. Ll We 1 dise Hin(W")
Ay - 3 n i [ .
Himw) = L a W + 2 de WV — %)
‘

’ e - 173 + N
+(_1)p+1—rB_f[d".,hnlm( ] (W - dg)
T

v + W)

I FUR(IV 4 ie)

R ———————

W — )

W,
+ 2 [aw
:I .

M1 M1 :
W "H_ dpllin (f5'. W) (— )t e f " ,1,,,',1;5 4>, w) f
2 §EER (g 12 2 sy L W

ac = Wc, ‘,C'—" ‘VG. ’

@3.11)

with _ h
A, W)= Im Hin()s 4 ie) (s + W) + (—ppea=s ‘,»-

Im Hl=-9%m()fs 4 i) (s — W i

> Im Hi s+ ie) (s — ) am

AgsH()5, W) = —disc H}s + &) (}¥ + W) — (—1)p+1 b

x dise I — V5" — &) (J5 — W). #

&

The first integral in equ. (3.11) carrying the notation U belongs to all finite unpli}”ﬂm‘l
cuts including the circle and possible pole terms. dzH/* is determined by the im:%glff‘;{lt:
parts of the expansion (3.5). 4,5 H/" has to be chosen in such a way that both the lnfl&‘,
integrals of (3.11) will reproduce the correct asymptotic behaviour of Re Hi"(W) ago0r
ding to (3.5). The integrals with finite boundaries yield an expansion of powers in pur
W-"(v > 0) which is absent in the expansion (3.5). To prove the existence of an appry
priate d,yH® — the determination of which is tantamount to an evaluation O
short range forces — it is convenient to regard only components of (3.5) (cf. eXpre
(2.24)). Therefore we introduce the following auxiliary function rather than H’{ﬁ}(}

Wosto)+n . = m + k\ r'Y(0) 1
hate) = s o+ 3 0 (" )

Regge Models and Dispersion Relations for Partial Waves 4y

with the inteéers
m o= u + |64 — i}, u=0,12 ..
1= 4(s; + &) — 64 — i’ — 2.

y= -1, (—1) belongs to the spin-non flip (spin flip) part according to (3.7). The gene-
nlized Mac Dowell symmetry (3.9) leads to

ba(—W) = (— 1)1~ h(W).

Ifwe define the corresponding “discontinuities” 4 ohal ]".—s—’, ¥) and A;,,h,,,( }’.’3_', I¥) then the
symnietry assumption
Apsehal V=5, W) = o(—1)0+02 40k (}V5, W) (3.14)

vields the requested result similarly to the behaviour (2.28) in the scalar case. Here we
have to put

2 — for boson-boson, fermion-fermion scattering, for boson-fermion scattering

contributions with § = -1 and 1} — 54| = 2| — 12}l
3 — for hoson-fermion scattering contributions with 6 = -1 and |3 — 52’
b= = Al + &}
with d = —1 and |2 + 9d'| = |4] 4 |&]
4 — for hoson-fermion secattering contributions with 6 = —1 and |2 4 42|
= [l2] — 14"},
In the boson-fermion case the u-channel contributions (¢ = —1) to the infinite integrals

in (3.11) can be caleulated analogously to the sealar case if one introduces formally the
shifted trajectory intereept 3(0) = (0} — 1/2.

By making use of {3.12), (3.13) and (3.14) one is able to show now that the infinite inte-
mals of (3.11) caleulated for the contributions A,{ W) with arbitrary m yield Re A, (1F)
wd an additional expansion of pure powers in . The proof proeeeds in the same way as
in the sealar ease. Finally we demand the vanishing of all powers W~ (» integer) and
get the infinite set of sum rules

iw(

{
;‘de’ dise Hin(Iy"y W'r
v

W,
i 1 - - -
T~ f AW’ (I Hit(W’ + ie) — (—1)r+3=8 Ing HACODs(WW 136 W = a,_y + 0
o
My (3.13)

vith r — ~p, —p -+ 1, ... Here the constants 3" are descended from the infinite inte-
Bals and depend upon the cutoff W, and Regge pole parameters. In Table II the S,

Pendence of the leading contributions is summarized.

U5 we arrive at the following conclusion. In all cases of boson-boson and fermion-
f"}'mlon scattering the first suni rule (r = —p) is dominated by a Regge pole exchange
s Negative signature (g-meson pole). The sum rules for odd p -+ r values vanish iden-
'liifny' because the amplitudes H/* are analytic in s = 172 For boson-fermion scattering
- “°rent results can be realized depending on the value of Ay, = Min (|4], 12']). However,

2 Scattering (Ampn = 1/2) both p{~»*and yA~#+1 are dominated by a negatively signa-
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tured ¢ channel exchange taking into account the empirical fact that the interceptéﬁ
baryon trajectories lie considerably lower than those of the leading meson trajectorieg, ¥
After having derived the sum rules {3.15) for arbitrary spin the question arises how ¢,
apply them. In these relations integrals along unphysical cuts appear. Using a suffy
ciently large number of sum rules one should be able to determine appropriately parg.
metrized left-hand cut discontinuities. At this one has to insert empirical values in thy
physieal cut region integral (M -+ 1... W.). A more difficult but from the theoretj
point of view more interesting question consists in the simultaneous determination of
short-range forces, subtraction constants and CDD pole parameters {3] in the framewérg

Table I

Leading contributions to the first 7 constants (spin dependent case, only Regge poles)

boson-boson, boson-fermion scattering

fermion-fermion, - t-channel exchange u-channel exchange

scattering
D) _ 1—g . ) - 1 4 gf — 1) mat1f2
4 g1—2(0)(In g,) ik -+ 1 PR C R R DR Sl 1= 3(0)(In 5, )4+
1 4 o{—1)hmin+1/2 140
wpe) =0

Pl - . - o~ - v
phmin = 12 = 2Oy s YA+ 10+ s AP0l ¢, IR -

Amin = Min ({1, |3’}

of N/D cquations {19]. This problem could be enlarged including the determination of
long-range paranieters. With respect to the pion-nucleon problem this would raise the
question, whether it is possible to calculate the nucleon pole parameters, too. If this could
he done the result would be a uniquely fixed partial wave amplitude, satisfying ans-
lyticity, Regge asymptotic behaviour in the sense of equ. (3.5), and unitarity. However,
it turns out that the technical expense rises up enormously. Therefore a reduced pro-
gram can only be solved within a realistic expense. In the next chapter we shall demon-
strate how the partial problent of fixing CDD-pole parameters can be solved by applying

cmpirical data.

A-.!;a

4. Application of Partial Wave Sum Rules to Pion-Nucleon Scattering

4.1. Sum Rules for Pion -Nucleon Scattering

In this chapter we investigate the =N state with isospin I = 1/2 and total angular >
mentum J = 1/2. At first we discuss the modifications of the snn rules (3.15) bﬂﬂg"
necessary in this special case. We remark tlat no pole terms have been taken I
account up till now. Therefore the nucleon pole must be included in {3.15). Furthffm"”
"in the =N case the reduced amplitudes H/j,(w) defined by (3.8) are not identical with ¢
reduced amplitudes &, k. ;- usually used. For the latter onesdifferent threshold factors
have to be applied which take into account a more detailed knowledge of the kinems'
singularity behaviour than it could be treated in the general case of arbitrary 31.\5.
-Consequently modified sum rules are valid for the functions Ay, kg4~ Firstly mﬁ"ﬁ
tractions are necessary in partial wave dispersion relations. Secondly the concrete 2%
of the constants * will be changed, but only with respect to powers in In s, The_
vation is analogous to the general spin case. We state therefore only the results 2

AMURBE SRS QLI LR Rt DAUAL A VA End AWh & 444 VARE TEomd L

gimilarly to (3.15) we consider now the relation

iw,
L f AW’ dise h(W’) W'r-1
i

w,

1 ’ 4 v ’ 2. 3
+ ;] dW' {Im M(W') + (—1) Tm h(—w')} W'r—1 + = Gh yn(— M1 = p0,

RIgH ]

r=1,2.. 4.1)

where M (== 6.75} is the nucleon mass and gz y.{~ 13,5) represents the N coupling
constant. According to the Mac Dowell symmetry we have assumed thatfor W = M + 1

(W) exp (2i6(W)) — 1
2io(W)

7o+ (W) exp (2ido (1)) ~ 1
2490+ (W)

W) = = ko (W) =

(4.2)

(W) exp (28, (W) — 1

n(—W) exp (2i3(—W)) — 1
= h_(W) = Zig, (V)

2ig(— 1)

—h—W) = —

(W) denotes the real phase shift and n(W) theinclasticity. The function o( W) produces
the correct threshold behaviour
. W4 MpE—1
o) = aoo(W) =g BTV 1
24y
. , (W —3p -1
—o(=W) = o1(W) = g ——57——.

For the first two y'” the following expressions can be derived [20]

1 C.4(0)

S (2H) e (W 2)el®-1
L — 24(0) «,'(0)

o o el
v Tn (IF2)

y® = 2y (4.3
where only the dontinant contribution has been written down. Corresponding to the
Investigations of chapter 3 the ¢ trajectory (with negative signature) dominates in
and @ (348 and y¥ are dominated by the Pomeron pole). In equ. (4.3) C.¢(¢) denotes
the Regge pole residue of the A’-amplitude introduced by Stxeu [21]. For numerical
tleulations paramcter values of a fit of Cnrv ct al. [22] have been used. Within their
Iotation and paramecterization we have

1 ag(0) ‘
C.e(0) = (ﬁ) Cot(ol0) + 1)

Yith By = 1 GeV (scale constant), x,(0) = .58, a,(0) = 1.02 GeV-2, ¢ = 1.49 mb GeV.
8 fit corresponds to a rather large slope of the Pomeron trajectory {«p’(0) ~ 1/2) and

a8 the advantage that the value IW* where n{ W) and 8(WW) start to grow monotonously to

Igymptlc:;)ic limits is lower than for other fits. We have W* <C 10 and take therefore
¢ == .
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forces (considering crossing relations) and of suitably adjusted short range forces t

DUy F. Kascrrornw and M. MOLLER-PREUSSKER

4.2. Formulation of the N/D Equations

To study the question whether the sum rules (4.1) enable us to determine CDD-pole
parametersin the nN I = J == 1/2 state we employ a formalism of N/D equations simj.
lar to that of FRy® and WarNock [19]. In these equations the cutoff W, occurs intrg.
duced above. Therefore from the mathematical point of view we have to solve the same
type of equations as in the strip approximation {23]. For practical purposes it is suffj.
cient to use the method of matrix inversion {24]. In the region M + 1 < [W| < W, and
if n, CDD poles (WW;, {';) are present the equations have the following form

2n(W) W Re B(W) — W, Re B(IV,)
1 4(W) W— W,

o=t WA 20(W7) Re N(W)
—{P | & dw’ ¢
+ ﬂ( ] Pf) W (14 2(W)) W — W)

Re N(W) = Re BW) + 3,
i=1

(W’ Re B(W') — W Re B(W)}

—iv, M1
(4.4)
% g I Bt el G N 20(W’) Re N(W")
ReD(W) =1+ W| ¥ —"er — — [P P [ }di TR :
=1+ (:. V=17 = (-Jf Msfl) (T 7)) W — W))
(4.5)
According to
29(W) -
== et R N
Int D(W) TF () Re N (It}
the output phase shift is given by
Im D)
— A 46
tan dou(1V) Re D(F) {4.6)

which yet depends on the undetermined CDD pole parameters. The input funetion
Re B(W) has to fulfil the following two conditions.

1. Along the physical cuts below W, Re B(W) has to he identical with [25]

() sin 2000) 1 (7L RN p(W) sin? (W) 47
Zo(V) “?(If“f W —m

-, Mi

Re Bon (1) =

where the right-hand side is calculated with empirical phase shifts.
2. The discontinuities of the unphysical cuts dise 2(T¥) in the finite encrgy region hafi to

be consistent with the sum rules (cqu. (4.1)) caleulated with cinpirical phase shifts,

. too. :
Only in this way it seems possible to get results comparable with experimental data. Su
a potential could be constructed, for instance, by a pole approximation of long rsng®
parameters of which could be determined in principle by the sum rules themnselves. He"’
it turns out that short range forces must give a contribution large enough fo f _;‘f',
least the first sum rules. : ;leﬁ
However, for our purposes outlined above it is not necessary to know completely e
input, i.e. to have an explicit knowledge of disc A({W). Therefore we only agsume thA%--
"function Re B{W) should exist satisfying the two conditions stated above. The
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solve the N/D equations with Re Bemp( W) and calculate the integrals
iw,

1 f AW dise A(W') W'r=1

M3

v

using the sum rules (4.1) with empirical phase shifts [26] (Figs. 1, 2, 3). Thus we’

replace an approximative pole input by a model independent one.*) k 4
We remark that Re Benp( W) contains the direct channel nucleon pole. To examine t
case without this pole we have to snbtract its contribution ;

_3 Fewe_
S W+ M

from Re Bymp(W).

4.3. Numerical Results

o
i
2
)
&
2
i

We studied the N/D equations for the three cases

a) neither with direct channel nucleon pole nor with CDD pole,

b} with nucleon pole but without CDD pole,

¢) both with nucleon pole and with one variable CDD pole (Cy. Wy). .
In all cases the first two snm rules were tested by inserting the output phases §
{equ. 4.6) into the sum rules (4.1). The numerical caleulations led to the followiy

results., -
for the cases a) and b) the sum rules cannot be fulfilled. The disagreement hetween the
left-hand and right-hand sides of equ. {4.1) is extreme for case 1), but becowes smaller

for the case b). In the case ¢) we tried to find the points where the individual sum roles

are satisfied, and this by variation of €y and I, (Fig. 4). The region shown in Fig. 4k

iy
- 1381

t “DD-pole parameters in the 7

-3¢
130
~126
~122
7
(]
‘Fig. 4. Geometric locus where the sum rules I and TI are satistied; optimal CBD parameters I, = —-13.25,C: “??&

2
the only one in a wide range where the suin rules I and IT are fulfilled ina small dlst,:;“
from each other. We have not drawn other curves in other regions where en‘lj1 Omﬂ

these sum rules is satisfied. Thus we see that the first sum rules are fulfill ‘
taneously at one point (W, = —13.25, C, = 0.45). One can show that the t .

4) Of course, our input contains assumptions about the behaviour of the phase shifts in ﬂl c
region where no experimental phase shifts are available. Thus we use a smoothed InterPolatlon 2
.empirical values and those determined from the high energy behaviour of the amplitude M

hird 304 § @
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fourth order sum rules are not satisfied at this point. But it turns ont that these CDD
le parameter values are & certain “optimum” for the higher sum rules, too.

To reach better agreement we should introduce obviously more CDD poles. Furthermore
we conclude that the CDD-pole position W; derived above agrees with that point where
the empirical P;, phase shift equals © the second time. The parameters determined
correspond to output phase shifts in a very good agreement with the experimental ones
(Figs. 1 and 2). In table III the behaviour of the individual parts of the sum rules (4.1)
is stated for the three cases considered. We conclude that in the two sum rules very big
contributions must be cancelled to give the rather small 7 values. In this sense the
determination of the CDD parameters does not depend sensitively on the chosen Regge
fit. Thus we should expect that the consideration of terms which are responsible for
rising cross sections (Regge cut and Regge multifold pole contributions) will not modify
the main results derived above.

Thus we can finally conclude that the sum rules enable us to determine CDD pole para-
meters provided a correct input potential is used.

Table ITI

Values of the individual parts of the first two sum rules in the cases
a) neither dircet channel nucleon pole nor CDD pole
b} with nueleon pole but without CDD pole
¢} both with nueleon pole and fixed CDD pole (', = —13.23, C; = 0.45)
{CPC, PC, NP, Z, resp., denote symbolically the contributions of the unphysical cut, the physical cut,
the nucleon pole, the whole left hand side of the 8 sum rule (4.1}, respectively)

Case r pln ‘E PC \p UPC

a) 1 —Ah02 . —11.36 —13.02 2193  —18.27
b} —0.02 0.82 —~2.84 21.93 —18.27
¢) —0.02 ~—0.02 —3.63 2193 —18.27
a} 2 0.3 117.9 243.0 ~147.7 17.6
b} 0.3 — 1.1 129.0 —147.7 17.6
c) 0.3 0.3 130.4 —147.7 17.6

5. Counelusion

It was shown that on the basis of definite assumptions finite encrgy sum rules for partial
¥aves can be derived which make their dispersion representations consistent with Regge
Symptotics, For the latter different models were used. We treated the sealar as well as
e gencral spin case. In the special exaniple of pion-nucleon scattering it was demon-
frated that the sum rules of highest order (r = 1, 2) can be emiployed to determine
J = 1/2 state. Whether sum rules of lower order (and
s eventually Regge asymptotics) are appropriate to fix also the nucleon mass and
pion-nucleon coupling constant remained an open question. It may well be that
wer order sum rules (r = 3. 4, ...) require the inclusion of further CDD poles.®) Thus

§ "¢ cannot draw actually definite conclusions about the bootstrap idea. This situation

®sembles to that of the various dual models, where two fundamental constants, an over-
toupling constant and the intercept, are left undetermined by the unitarization
cedure via loop techniques.

; .’Th-is situation might be quite different from the non-relativistic case where neither crossing sym-

hor CDD-poles {The both aspects are possibly connected) are involved.
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Appendix
Asymptotic Behaviour of Dispersion Integrals

We state the behaviour of integrals of the type

I3 =P (A

dx
f e+ ) Inf o

in the limit ¢ —> co [17]. The cases « integer and & noninteger are distinguished. g js
assumed to be integer. Then the following asymptotic expansions can be derived
a=1,23,...

(—1)*i) 1 ® I'2n + 1+ p)
‘) e 2
I:ﬂ ('g) = [ — :l e né; F(ﬁ
1 (—1)a+ (1 _ 41 )
x W 20(2n + 2) I
' 1
(—=1)m* 1 M l-a o\g‘ (p'Jf"ﬂ) 1 1 ) 19
+n)=—:) [ 1 ] ,;'T‘—*'—T (Sc 1 ’;—,:‘0 F(ﬂ) (n T 1 — )p 't (ln $ )ﬂ+p ( --)

nEx—1

with
Inlns — Inlns, B—1
Ly = { 1 [ 1 ) for 5= 1
B —1 (_ (nsy-1 7 {(Ins, -1 s
k<ax<k-+1, kinteger
> e+ 8) 1 =
{=} —_— ol
I3(s) = 2T s
02, (—1)R+l 1 Ll ] :g'l’(p—}-ﬁ) 1 1 (3-3)
+;}=JG { 1 g+l > p’f:o @) (n+ 1 —a)p+! {In sc)ﬁ-{-p
with
— k
‘Z;.“=(—1)’““(€(n+1,1—oc+f~)—-:;;é‘(n+l -—-—-—-—-}j—————)

1+« k))

Zym=Ctn+ 1,1 —a+ k) —(—1yPin+1,a—k).

the
The upper (lower) values in the angular brackets belong to I3(I3). £(2) de”"tes
_Riemann zeta function whereas [(z, «) is the generalized zeta function.
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