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Abstract 

The asymptotic bchuviour of partial wave amplitudes is calculated supposing various Regge models 
for the totlll scattl'ring amplitude A(,~. I, u). The high energy partial wave beha,·iour obtained is 
!Ilmbincd with the vlIlidity of partial wave dispersion relations. It is shown that consistency of these 
assumptions cun only bc achim'cd by demanding 

1) adefinitc asymptotic behaviour of the discontinuity of the left hand cut of partial wave amplitudes, 
~) the validity of partial wu~'c slim rulcs of similar kind as the well·known finite energy sum rules for 

the tQtlll amplitude, 

.\II steps of the derivation shall first bc dcmonstatcd for elastic scattering of identical scalar ptrticles. 
Then within the Il(·lidty formalism the I'Csults afe gcneruli7.ed for pnrticles with arbitrary spin rmd 
different massC8. ~'illally thc qllestion ill studied whether thc sum rules can bc cmployed to determine

I~own CDD.pole parameters in un N/D Ilpprooch for the I = J = 1/2 state in;;;.Y scnttering. ItIiii shown thnt thc sum ful ....!! of highest order arc able to do that. 

1. Introduction 

It is the well-known aim of the analytic S-matrix theory to detcrmine scattering ampli. 
tudes uniquely by means of basic principles as unitarit'· cro"sinrr S"lIlllletr" analyticit't·
f . "'.. .J, .... J '" , Jt"" 

Q fIrst anel sC('ond kind, duality cte. Mainl\' two approaches can be distinguished. 

I) One tr·" t t t th ttl tt' 
... 

I't d A( ) t· f' tit
' leS 0 cons ruc I' 0 a sca erlng amp I U I' s'"I u sa IS ylng a eas 

Some of the basic assumptions. The various duallnodels proceed along this wav. Here 
th . bl I I . . f . . I Id bId b" d'~ main pro em, name y t le IncorporatIon 0 unltarlty, S lOU I' so ve y 1U0 I' 
fYIll th I't d . th ,. (d I I I . I 11.,1 d I t. g e alllp I U I' In I' trce apprOXlnlatlOn ua mo( e S Wit 1 ~. an I' s aln ana· 
lytlCity [1]) or by a perturbation·like approach [2]. Both ways lead to certain troubles

h' h' W Ie have not been removed till now. 

i!) ~artial wave amplitudes A/(s) are calculated generally by combining unitarity equa­

; hons with dispersion relations. The results are usually checked against positivity

! and crossing symmetry properties employing additional conditions in the form of 
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sum rules, inequalities etc. In this way free parameters (input-potential, CDD-POle 

parameters in the case of an NjD approach [3], subtraction constants etc.) can be 

estimated up to a certain degree. Equations for partial waves are very useful for 

phenomenological investigations, e.g. for testing consistency of phase shift analysis 

for the determination of scattering lengths, effective range parameters. However t' 

whole program can be realized only approximately, because of the very large number 

of additional conditions, the rather unknown redundances between them, and the 

enormous computer capacity required (4). 


In both approaches unitarity and asymptotic behaviour are treated on a quite different 

basis. In the first approach Regge behaviour for the total amplitude is taken into ac· 

count in the model ad hoc, and this in a crossing symmetric manner. Unitarity has to be 

included later on. In the seco,nd approach, where partial waves arc eonsidered, one pro­

ceeds actually in the opposite way. Here one usually tries to statisfy unitarity directly by 

determining the partial wave amplitudes from corresponding integrnl equations. In· 

elasticity is treated phenomenologically in practical calculations. The inclusion of a defi· 

nite asymptotic behaviour remains as a second step, and only a few authors turned to it 

up till now [-5].

The present paper deals with this last qnestion. 'Ve investigate the conditions which re­

sult from comhining partial wave dispersion relations and Hegge asymptotic partial 

wave behaviour. To ealelliate the high energy behaviour of partial wave>! we suppose 

that the total scattering amplitudes arc dominated by Regge terms whi('h in principle 

arc ill agreement with recent high energy data. 

The following Reggc contributions can be considered. 


1. Hegge poles with interccpt <,(O) 1 + c, e ~ O. This leads to geolllctrif-al 
The total eross section rises lou:nrithlllieally at least in a restrided energy region, 
this beeause of 

8' ~ t + fillS 

2. Regge dipoles and triple poles, respectively. Geometrical sealing is fulfilled and total 
eross section shows logarithmic rise [7]. 

3. SUIll of ordinary Regge poles and cuts. This givcs asymptotically constant t~tal.croS5 
section. The rising behaviour as it cOllies out at present accelerator energies IS el' 

plained as an intermediate range effect t8]. . . ., :;_ 

Regge .Models and Dispersion Relations for Partial Waves 

give an average of the left-hand discontinuity including the region where the partial 

,,'ave expansions of the crossed channels are not defined. Last not least they determine 

free parameters (e.g. CDD-pole parameters [3]) when the asymptotic behaviour is assu­

med to be known. 

In chapter 2 the sum rules are derived in the scalar case generalizing also an earlier treat­

lIlent where only single Regge pole contributions have been regarded [11]. This is ex­

tended to spinning particles with different masses using the heliCity formalism in chap­

ter 3. Chapter 4 demonstrates a practical calculation in the case of r.N scattering. It is 

shown that the sum rules of highest order enable us to determine CDD-pole parameters 

in the I J 1/2 state. 


2. 	 Regge Asymptotic Behaviour and Dispersion Relations for Partial Waves in the Scalar 
Case 

2.1. High Energy Behaviour of Partial Wave Amplitudes 

We eonsider two particle clastic scattering of scalar identical particles (of mass m 1). 
The scattering amplitude can be expandcd in the forlll 

"" A(s, t, u) 1: (21 + 1) AI('~) I'/(z) (2.1) 
1-0 

where 

1 

2 
d:: I'I(Z) A(s, I, u) (2.2) 

representll the l·th partinl wave. The Mandel:;talll variables s, t, tL are defined as usually. 
zis the eosine of the scattering angle in the e.llI.s. of the 8 channel 

z = 1 + 2t 2u s _ 4 = -1-
.~ - s+t+tt=4. 

, In agreement with experimental results and theoretic reasoning we assullle that forward 
I and bM·klmro scattering lit high energies arc strongly enhanccd. Thcreforc wc require4. Pairs of eomplex conjugate Rcgge poles. The total cross sectIOn I"; oscillatmg [9]. 

lor large physical 8 

In the following we excludc Reg~e poles with intercept higl.lCr than one be?ause .of I IA(s, t, u); ~ 0(8-'\') if Izi < 1 - (2.3)
violation of the Froissart bound. Furthermore we do not commler complex tra)ectorres 

it would not Icad to principle d!fficultie~. " ed are ,~i8 a suffiCiently high positive number and e(s) has a small positive value with e(s) -l> + 0 
To ealculate the partial wave asymptotic hehaVlour thc Regge term" llI?ntlon •.. IfUr ,,-+ +00,1) 
projected snpposing a strong cnhnncement of forward and bacl,,~ard sCI;ttermg. One~ In the standard approach the asymptotic hehaviour of the total amplitude is dcscribed 
the asymptotic behaviour in the form of an aSYlllptotie expansl?n of mve~e pow:ers • by a series of Rcgge poles and cuts if t or u arc fixed. rcspectively. Howcvcr. wc adopt 
the logarithm of encrgy and of the energy itself. Consistency of tIllS asymptotic behaVl?'f! I an ansatz of the same kind also for the asymptotic limit of large s at fixed scattering 
with the validity of partial wave dispersion relations means that the latter ones. ha.v~. angle. That will bc correct up to terms of orders O(s-·V) ·if the Regge terms as well as the 
produce the l'o;rect asymptotic behaviour of t?e rea.l part of Al('~) if thc ~artla.l '7t: I ~ckgrOllnd thcmselves arc delllanded to fulfil the relation (2.3). 
discontinuity (according to that Regge behaVIOur) IS used a,bove a certal.n cut?'ty I us schematically we have 
It turns outs that this is only possible, if firstly the aSylllptotlc left-hand dls.co~t~o/.sel 

A(s, t, u) -'>- 1: (t-channel Rcggc terms) + (t H u) (2.4)of the partial wave amplitude is chosen in a ~ef~nite way, ~n? if sccondly an mfuute 
"-+00­

of su'm rules is fulfilled, These sum rules arc Similar to the flllite encrgy sum rules .z: tlxed 

total amplitudes [10] (containing, howcver, left-hand discontinuities as well). ~at ~e call here "e, u-channel Regge terms" is explained in the following. As discussed
wave sum rules could be employed for testing models against Regge ~duction we consider three types of contributions due to exchanges in the
paviour. It is quite possible that they can bc used to r:s~riet the frcedom in 

of trajeetories in dual models with Mandelstam analvtIcltv. Furthermore the i In. order to determine N one may also refer to the well,known quark conting rules. 
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t-channel and u-channel (the background term will be omitted; it is assumed that it 
be shifted sufficiently far to the left of the l-plane by Mandelstam's procedure). 

1) Regge poles, 
2) multifold Regge poles (to second order) [7], and 
3) Regge cuts.; 

These models (at least appropriate combinations of them) explain rising total czi 
sections (at least in the intermediate energy region). We discuss them separately. FOr 
simplicity, only thet-channel contributions are regarded (the scalar problem is comple~ 
crossing symmetric). ':1 

1) Regge pole terms t 
We have for a single pole eontribntion;~:. ,

1 + a exp(-ma(/») :" 
Ap. - P(:.:(/), /). 8~(1) (2J;) 

......+00 sm n.x(t) ~: 
z fixed 

where a denotes the signature. The function p, which is essentially the Regge pole~­
due, is assumed to factorize with terUlS killing all nonsense singularitics of thc signatule 
factor. As mentioned above the whole term should behave like (2.3). Let us discuss the 
(,lise of Regge trajectories .x(/) which rise lincarly in t in some region 0 ~ t ~ ':::'p 
('1' > 0, suffieiently large) and tends for t < -T Illonotonieally to a finite lilllit a(-Oo) 
< .x( -1'). Herc the restriction to lincar behaviour is not an es.<;elltial olle. One can show 
that our npproaeh is generaliznhle to the ease of nonlinear trajedories, too. Then a Regge 
pole ('ontributioll (2.5) behaves like<~: 

·t~8·(-T)/(/) (s -l- +00, z fixed) ., .... 
~. 

and if for large negative I, ;;:,; O(/-·ll) with III N + ",(-1') then the Rcgge JlI!le 
term (2.5) fulfils ohviously (2.:3). } 

2) llultifold Hegge pole terms 

contrihutions to the ~waves in thc = 
form 

A d
n 

1 + a 81], n = 1.2.lLp.-­
dl" t) /=.(1) 

Regge Models and Dispersion Relations for Partial Waves 

where 
C(a) l+aexp(-iM) 

sin na 

r(<x) Re C(.x) 1 + a cos :rx 
sinna 

t) a t) 

$2(a, t) = I) . 

The second term in equ. (2.7) contains only the real part of the signature factor '(a). 
We reinterprete this term as a sum of two Regge poles with opposite signatures. One gets 

:J ( ). R 1 - aexp (-i:r.x») • ('> 8)P2r ., 8 f'2 +. 8 _. 
sm :r,x 

where 

:r 
P2(X, t) -a 2 r(x) P('" I). 

In ordcr to Hatisfy condition (2.3) the individual tcrms of expression (2.7) shonld have 
the samc properties as assnmed for Rcgge poles, such as trajectories linearly rising in the 
range [ - T, 0]. but lex( - 00) I < 00, and a corresponding behaviour of the p-functions for 
negative t. 

3) Rcgge cut contributions 

The contribution of an cut an bc written as 

t) 1 + (J ~xp (-i:rl) 81 dl.Ac. + 1) sm :rl.J-++OO 
2: flxctl 

LI repre;o;ents the discontinuity of the t-channel partial wave amplitude on the Regge cut 
3_+00 

: fixed 
 up ~ a factor 2i. Z\ is a sufficiently large negative number (in correspondence with the 

llilitifold Pomeron poles of higher degree than n 2 are excluderl hecause :;~ Ir~~t\On of the backgr~und term). ~(/) denotes the branch point and is assumed to ex­
j<'roif(;;nrt bonnr!.•JEXIWYSKY and "VALL [7] have shown that a dipole Po eiOI1 _ I It the same properties as the Regge pole trajectories. For definiteness let us assume 

(n = 1, a = +1, .x(t) linear with ~o 1) displays the main features of high 

dat,l such as rising total cross section, dip structure in the differential crosS 

1\1oreover this Illodel shows geometrical scaling [6]. 

A multifold pole contribution (2.6) can be written as a slim of terms sOllle of which 

the ordinary Regge pole form (2.5). In the following we regard only dipoles for simpIicN' 

The calculations in the case of triple poles proeeed analogously and yield addition~ 

In2 a-term. "Ve have 

A M .p• - PI(a(t), t) C(a(t») 8°V)'+ #2(a(t), t) r(CI:(t») 8,(1) 

,,-"+00 

:c fixed 


+ Platt), t) C(CI:(t») 8"(1) • In 8 

£ < .x(-oo) < CI:(-T). 


To verify the behaviour (2.3) the discontinuity LI should behave like 


ILl (l, t) I ;;:,; O(t-M ) for t <-T 

and iX;;:'; l ;;:,; lX(t) 

(M a. large positive number). 
Cut Contributions are generally calculated from special models (eikonal, absorption 
~el, K matrix formalism etc.). However, the simplest one usually employed is due to 

DELSTAM, GRIBOV et al. [12]. 

-
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''t' 
'oi\..They studied logarithmic branch points of the well-known form 

1 
..~ 

.1(1, t) = ! R(l, t) (ex(t) - l)m-2 ;i disc (In (ex(t) - m =2,3,4, .,. (2~ 
~, 

.~The exponent m denotes the m-fold exchange of a trajectory ex.(t) 

cx(t) = mOl. C:i) - m + 1. 
!<i"·,,5 

Restricting the original assumption that the function R(l, t) should be regular near the 
branchpoint, R(l, t) will be demanded to be regular in the whole integration region alid 
t E [-T, 0). Then we may expand R(l, t) into a Taylor expansion with respect to t and.l 
in that region. \:: 

After having summarized the class of Regge models under c~msideration we are now~~ 
the position to derive the high energy behaviour of partial wave Itlllplitndcs. In accor­
dan('e with condition (2.3) the partial wave projection (2.2) Can be rewritten as "" 

-

o 

(')t) 
0 

(214 )--41 f (It A(s. t, u) PI 1 + -,--- + (-,-1)1--4 rdu A(s. t, n) PI 1 + --" 
,'-_ '."" s - ., 4, ~ - • 8 4 

-T -[. .,"" 

(2.11) 

wht're the first (second) tl'rIll deserihc,.; the strong enhanced fonnml (badnmrd) contri­
hlltion. Here the lower limits T awl U, respectively. arc introc\u('ed with sllfficie~t­
Iy large bllt finite values instead of 8 depemlent ones. Then'fore expression (2.11) .to­
gl'tlll'l' with the ammtz (2.4)-(2.9) will des('ribe the aRymptotks of AIls) ('orrectJy up~ 
tt'rllls of order 0(8-L ). L suffkiently large. 'Ve remark that the t-chanuel Regge ten.ns 
dominate in the first integral, whereas the u-('hanncl contrihutions dOluinate the baCk­
wanl s('attering integral. Beeallse of t u crossing we can sum tip hoth terms of equ. 
(2.11) and perforlll the following call'ulutions. fl 
.-\t fir:;t we l'ompllte the projeetion integral a('cording to (2.11) for simple and multifold 
Regge poles (cqu. (2.5) and (~.6), respeetively) whieh can be written in a unified manner 
as demonstrated before. After that we shall deal with the Regge eut contributions.-:f~ 
have "!"' 

o 
1 + (-1)1 r (.)t )AI('~) - 4 1: (In 8)" dt BIl.(tl PI 1 + --- 8,(1) 

(P 

(2.12) 
.~+ "" 8 - [POle terms • 8 - 4 

n=0.I,2 -T 
with • 

Bldt) l1(x(t), t) 1 + U ~xp (-i:tcX(t»). 
sm :t.~(t) 

simple poles 
It is dipolesn U1o, 

triple poles 

In order to determine the integral in equ. (2.12) we expand the integrand. Care is 
essary because the Taylor expansion around t = 0 is convergent only in the 
[-4,4) (Bp.(t) possesses a branchpoint at t = 4). Therefore we calculate the 
,integral as function of the upper limit. To determine it at t = 0 we expand the 
aU -T 0, but to getthevalueatt -T we expand at t = -r with r ~ 

Regge :tIiodels and Dispafsion Relations for Partial Waves 

The Taylor expan.'!ion around t = -r reads 

Bp.(t) = "" B p./"'(-r) (t + r)"
p! 

with 

Bp.("l{ -r) = 1: (p) 11(,,-·1(-T) rb)( -T) -iul1(")( -T) (2.13)
,,=0 " 

and 

r(t) 1 + u cos mx(t) 
(2.14)sin nex(t) 

where r(t) is the real part of the signature factor. 
The Legendre polynomials in equ. (2.12) yield powers in t connected always with powers 
in s. We expand them, too 

PI (1 + ~) / 21 Pi") (1 - ~)
8 4 1: -- 8-41=0 (8 _ 4)1 I..• I (t..LIT.)1 

Thus we arc led to indefinite integrals of the form 

PIi(r, x) = Jelt(t + r)1i 8,(0. (2.15) 

As outlined before the trajectories of all Reggc contrihutions are a"sulUed to be linearly 
rising in [ -T, OJ 

,,(I) <'0 + (\'t, ee' > O. (2.16) 
This yields 

PK(r, x) = 8'(.1:) (1: (_1)i (~) i! (.1: + r)1i -i) (2.17)
j=() Z e,' In 8)j-1 • 

We condn<ic then 

AI(~)8:-:-(1+(-1)1) 1: i' (In~)" 
-00 [POlO terms 1=0 (~ - 4)/+1 


11 :=-0.1.2 


"" ')1 B (")(0) 
x 1: =, p/(1)(1) _1_'-,- F1h(0, 0) + .Q(s'd-Tl-l)

,,=() J.. p. 

(1 + (-1)1).r 1: [( -1 )1-+-" (). + It) 2'PI(11(1) P(I'I(O)] ~ (2.18) 
pole terms 0'51::;/ ). (,,')l+I'+1

[ fl=O,l,2 ,u::;0 

8"'On 8),-1-,,-1 (. "" , (). + It + v) r"I(O) 

X (8 4)1+1 v (ee')'
_ -JU +,~ (-1) 8)-') 
+ .Q (S3L(-T)-1) 

:here We used equs. (2.13) and (2.14). The Q-term in equ. (2.18) is due to the indefinite 
tegral calculated at the limit t = -T and consists of an expansion of the FK(T, -T) 
~~ with T ~ (T - 4)/2. Thus it represents a function proportional to 83d-T)-1 up to 

flthmic factors. <XL denotes that trajectory which is leading att -T. 
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Now we turn to the consideration of Regge cuts. The partial wave projection of 
contributions leads to 

o «(I) 

A/(s)- 1 + (_1)1 I: jdtjdl'(2l' + 1) R(l', I) (ex(t) _l')m-2 
8....+00 8 - 4 [cut terms 


m=2.3,..• -T «(-Tl 


[1 + 0' exp (-inl')] 8/'P (1 + ~) + Q(8~L(-Tl-I) (2.19)X sin nl' / 8 - 4 

where equ. (2.10) has been employed. The cut integral corresponding to (2.9) has been 
restricted to the integration region [at -T), a(I)]. The remaining part with upper limit 
ex( -T) behaves like 8·d - Tl - 1(aL( -T) is the leading branchpoint at t -T). ,: 
Interchanging the order of integrations and substituting l' = ao + ('<'t' = ('«t') we get. 

o 

AI(s) -. 1 + (-1)1 1: Jde' Be(t') 8'(1') (2.2Q) 
8-++ t;X) 8 4 [cut terms 

In'''''2.3 •... -T 

where we have abbrcviated 

Bc(t') 1 + 0' exp (-i:r.x(t'») 
"in :rx(t') 

0 , 

(2.21)X (x')",-I (:h(t') + 1) ·/f dt R(cx(n. I) (t nl'll-2 P, (1 + 8 :: ....) J. 
[ 

Thus we achieved a form similar to that of Regge poles (2.12). R(,,(t'), t) should be.' 
rl'gular function of both t' and t in a large region (d. disell~sion below efJu. (2.10». Then 
it can be expanded as a double power series. Furthermore R is assullied to caneel~he 
poles of the signature factor for negative t'. Therefore we get a power series in t' also.for 
the function Bc(t') in thc same way as for the corresponding Bp.(t)·function (equs. (2.!jJ), 
(2.14». With the calculation of integrals of the type (2.J;j) in accordance with (2.17):we 
arc finally led to the a~ylllptotic expansion .1i, 

8·.(ln 8)-m-'-I'-~

AI('~)- (1 + (-1)1) 1: E Lr..II'&] (~ .1\" • 


3-+00 [cut termS 0:;;,;;:;1 - - . 
m=2.3:..& I',~il:O 

). + .u + e + m - 1 + V) rbl(O)
'X (-i(1 +.£ ( .~)-,) + .Q (8"« - T) -I) 

~ 

,=0 V (c<')' 

where the numbers 7.'I'~ are in detail 

. = (-1)'+I'+P (). +.u + (! + m - I)! 2APIW(1) rl'~Z.l>!' 
7.11'~ - ).! ("c')HI'H+I 

with r!,p the expansion coefficients of the double power series of R in t and t', 
denotes 

m-2 (m - 2) (-I)' 
Z/\ == 1: V K + 'JI + 1 • .-0 
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We conclude that the asymptotic behaviour of partial wave amplitudes can be represen­

ted as a definite expansion with respect to powers of both s and In 8. Except dipole and 

triple pole exchanges (11. 1,2) there are no terms with pure power behaviour in 8. 


Simple and muItifold poles as well as cut contributions lead to similar expressions 

(compare equs. (2.18) and (2.22)). 

The pure Pomeron pole contribution to the partial waves is of special interest (ap(O) 1, 

(Jp 1, 11. 0). Its leading terms (). = O,.u = 0, 1) are given by 


{Jp(O) ( i n 1 . {JP'(O) 1 )A/(s)- (1+(-1)1) --, --+ -+t , -+0(ln-3 8) (2.23) 
......+00 IXp In 8 In2 s ap {Jp(O) In2 8 

i.e. the imaginary part dominates as we expected. 
In the following only the terms of definite powers in 8 are of interest. The factors in 
front of them including the derivatives of the residue functions etc. are not important 
because of thc linear character of dispersion relations. We denote these typical terms of 
the asymptotic expansions (2.18) and (2.22) as follows 

8·,-1-", {. "" (1' + V) ,.1')(0) } 
(2.24)11:,(11).::;:: (Ius),-n+1 -1(1 + ,£ (-I)' V (.x')' (ln8)-' 

with 11 {~ for 
simple poles and cuts 
dipoles 
triple poles 

T ~ { 0 for 
all pole terms 

m -1 cuts (m = 2, 3, ...) 

(r) 0 

The power ,~-'" eorresponcls to the powers of 8 4 in the denominator of (2.18) and 
(2.22). respectiyely. 
In the partial w!tve dh;persion relations to be studied the asymptotic behaviour for 
8 -+ -00 is also needcd. In order to get this behaviour we assume the absence of an 
essential singularity at infinity. Then we lIlay derive the asymptotics for s -;. - 00 by 
symmetry considerations on the basis of expressions (2.12) and (2.20), respcctively, 
assumed to be valid independently of the direction how 8 tends to infinity. For the 
moment let us regard simple pole and cut contributions (11. = 0). Expanding thc Legendre 
polynomial the terms of pure power behaviour in .s are of the form 

ordt B(t) 8·(0 + 0'( -S)·(I) (2.25) 
-'T . • • 

All these terms have a definite symmetry. They are even or odd functions in 8 according 
to the signature (1 as well as to the power w. Corresponding to this behaviour the imagi­
nary part of partial wave amplitudes (or of the functions h:.(s), respectively) has to be 
phosen for 8 -;. - 00 in order to compute dispersion integrals belonging to left-hand cuts. 
or the multifold pole case (11. = 1,2) the expression (2.12) itself does not exhibit such a 

IIYtnmetry behaviour. Therefore we decompose all terms with a definite power in 8 into 
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two terms of ' opposite symmetry, i.e. we introduce instead of (2.12) 'l'f 
,->,

o 
1 J S·(I) + 0'( -8)·(1)

dlB(t) .",+1 (In"8 ± 0' In" (-8)}. (2.26) 

-T 

For n 0 this reduces to (2.25). ...
Transmitting these considerations to the expression (2.24) we introduce 

~j 

1 8·,-I-w { "" (T + V) rl,)(O) }
h!;"(8) -- ,+1 -iu + E (-1)' -,-, (In 8)-' {In" 8 ± 0' In" (-8»)

.--+-+"" (In s) , ,=0 V (ex ) 
(2.27) 

with ., 
h:,(8) h!;(8) + h!;(8). 	

• > 

For the imaginary parts of (2.27) we require 

Imh!;(-8+iE) = 1)Wlmh!~(s+if). (2.28) 

This result will be extensively lISed in thc next section. 

2.2. 	Determination of Very Short Range Fore-es and Derivation of Partial Wave sum 
Rilles 

We stuely partial wave dispersion relations separated at 11. certain 8 e into a lower energy 
and an asymptotic part, where the Regge behaviour (equs. (2.18). (2.22» deri,-ed above 
is assllmed to be valid. The asymptotic hehaviour suggests an OfJ('e suhtracted dis­
persion relation. Choosing the subtraction point at 8 = 0 and omitting pole terms for 
l'lilllplicity we have 

-8c. 	 .te 
<'~.""­

A/(s) at + ~ Jd8' Tm ~1:8' + ie) + !.. rds' 1m AI(·f + tel;r 8 (8 - 8) ;r . 8'(,j' 8) u~ 

-', an 

!.. J""d ' 1m Air -8' + ie) !.. f"" J.' IIll A/(8' + iF) (2.29.:".:~.').+ :l 8 8'(.S, + 8) + ;r "'" 8 '(8, - s)' ~J 

~ ~ ~ 

Into the infinite integrals we insert the imaginary parts of the expansions (2.18) Jll.d 
(2.22), respectively. We ask for the behaviour of expression (2.29) in the asymptotiC 
region 8 ~ +00. Consistency of the dispersion relations with the behaviour (2.18) a#i 
(2.22) means that both sides of equ. (2.29) must yield the same asymptotic expanlJio~, 

The occurence of additional powers in 8 on the right-hand side then leads to the 

of sum rules following from the requiremcnt that the coefficient of each of these 

must vanish. 

The integrals with finite boundaries yield pure power behaviour in 8. Therefore 

infinite integrals in (2.29) ean reproduce the eorrect asymptotic behaviour of 

wave amplitudes A/(s). Let us study the asymptotics of the infinite integrals for 


. and odd components h!~(s) separately. At first the integrals are calculated for 
logarithmic powers. 
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One gets expressions like 

<lO 	

_'bHI(8C)_ 8 P J ax __ 8 1-. ___ail:!:.) + __ 
(2.30) 

:n; x"(x ± s) In~ x 8--+-+"" f (In s)Hi f 8; • 

'< 
The integrals are tabulated in detail in the appendix. The coefficients ail±) and b/±) are 
weIl-known. The latter depend on the above introduced "cutoff" Se' The first sum on 
the right-hand side of (2.30) is responsible for producing the asymptotic behaviour of 
Re A/(s). It can be proved that the correct behaviour result only of the imaginary parts 
of the components h!; along the right and left hand cuts obey the definite symmetry 
mentioned abo,-e (ef. equ. (2.28)). Thus we get a necessary condition for the consistency 
of dispersion relations with the high energy behaviour requiring that the far left-hand 
eut discontinuity has to possess a definite form. Therefore we have a prescription to deter­
mine very short range forces . 
Furthermore both the finitc integrals in (2.29) and the infinite integrals due to equ. 
(2.30) (and in the possible easc of pole terms, too) produce an expansion of pure powers 
in 8, which has to be cancelled. The cancellation of each power in s gives a definite sum 
rule 

-~ 	 ~ 

41 r5of - ~ ,'" d8' .~'r-I Jm A/(s') - 1 fd8' 8'r-l 1m As(.l) = y!r); r = 0,1,2, ... 
:t • :t 
-~ 	 ~ (2.31) 

The COllstantll ylrl arc due to the pure powers in .~ in equ. (2.30). Therefore they depend 

upon 8c and Regge pm·umeters. The value '~e is ehosen so that (In se)-l ~ 1. For prac­

tical purpo;;es Se ::::' 10~ will be sufficiently large as to he discussed in more detail 

later on. 

In the following we confirlll all these statements and calculate thc ylr) by studying in 

detail dipole and Regge cut contributions. The ordinary pole contributions (Pomeron 

pole with iXp(O) 1, Up = +1 and Regge poles with .:\(0) < 1,0' = ±1) have been con­

sidered already in paper (11]. 


1) Dipole l~olllcron contrihution (n 1, ~p(O) = 1, Up = + 1} 

Taking into account In (-8) In.9 - i;r the leading term;; of the functions h:;I±(8) 
ean be expressed in the following way 

l"() [{[r];r_, 8 -~ 1 _ + [1] (T + 1) (T + 2) (T + 3) :t-
3 

- 1 + ...} 
• -+ "'" 28'" (In 8)' 1 In.~ 0 	 12 In3 s 

f ,.{[-11 [1] 1 [-1] 	 1 }]
:n;2 	 :n;4"r~ 0 + +1 (r+l) In28+ +1 (T+1)(T+2)(T+3)24In48+'" 

(2.32)
where 

3 

rp(O) = 0, r/(O) = -; exp', rp"(O) = 0, rp'''(O) = -: (ex/)3, ... 

have been used. In the square brackets the upper value belongs to h+ and the lower to h-, 
l'espectively. Now one can show power by power that the asymptotic dispersion integrals 
lr:ritten for h± with imaginary parts corresponding to (2.32) and (2.28) yield the real parts 
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<.in equ. (2.32), indeed, and additionally the pure power terms in 8 mentioned above. 'XI 

get in the case of even functions h+ (compare with equ. (A.2)) in the limit 8 --+ +00 ,; 

<XI -.t 
!-Pfds' (;-1)" + _,_1_) Imh~,(8') ~ .-......'f 8+8 8-S 8 

B, 

11 ['f 'f31]= - -- 1:' - + (1:' + 1) (1:' + 2) (1:' + 3) - - + ...
2 s"(ln s), In s 12 In3 S 

OQ S p-w }1{1- 1:' (1 - (-1)P+"') - - e (l + 0(ln-1 s,») . 
p=() s'1' 2'f (p - (0) (In 8e )' 

11*" 

Here we are allowed to neglect all lower powers in In 8 e bccause Se is assnmed to be 
ciently large. 
Analogously the odd functions h- are treated. However, contrary to h+ and to the 
ment of simplc Regge pole contributions [11] the first tcrm of the right.hand side 
equ. (A.2) will not be cancclled. It must be kept to produce the asymptotic behaviour of 
He h- which surpasses the imaginary part by one In.~ power. 
In the h- ease we get 

()O 

.s pfd.~' (-(-I)"' + _1_) IllIh,:,(s') = Reh-(.s) 
:t 8' + 8 S' - 8 s' wr 

B, 

+.P(I+(_I)P~W)..!..{:;t(T+t) 8,P-" ",(1+0(ln-1S,»)}-..!.. :;t/21~
p"':'o sP -I, (p - OJ) (In s,)' -c. . .s" (In 8,)·+1.% 
11+0 • 

(2.34) 
<,j 

tJ~~ 

The last term on the right.hand side is due to the uncompensated first contribution in 
(A.2) and will give an important contribution to the constants yl') in eqn. (2.:U).''= 

With respect to thc s, dependence the leading eontrihutions to the ylrJ are given 

(r 0, I) 


ylO) ,...." In-I 8,( 1 + O(ln-1 8 e ») 


ylll ,...." 8,(1 + O(ln-1 Se»). 

= 
_ 

The more general case of trajectory ntercepts L';o < 1 is treated in the same way as be­
fore. Onh· the evaluation of thc 

Here we have omitted all proportionality fadors depending on the H.cggc "resid~ 
and slope parameters (compare with equ. (2.18». Our result shows the following. 
ylr) the powers 0) = 0 and 1:' = 0 give the esscntial contributions. This means that 
one side it is sufficient to regard only the leading s power in (2.18), whereas on the 
side the proportionality factors, in equ. (2.35) do not depend on the derivatives 
"residue" function P(<x(t), t). 
If the total amplitude is dominated by a dipole Pomeron, then there is indeed 
to equs. (2.7) and (2.8) additionally a term like a simple Pomeron pole (n 
negative signature. Contributions of that kind were not considered in 
real part of the signature factor 1'(t) does not exist at t = 0, we cannot expand 
(2.13) and (2.14). Therefore we include the denominator sin 'f<x(t) in the 
expand real and imaginary part of the numerator of the signature factor separate},l 
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It leads to a modification in (2.18). Denoting 

1 - cos 'f<x(t) = R(t) sin 'f<x(t) == lIt) 
we get for the "Pomeron contribution with negative signature" the following expression 

with equ. (2.24)) 

+ v) Ri,)(O) + i/l,)(O) _1_} 
::-:;: 8"(ln s), +1 1:' 

1 { 00 

v (.x,), (In 8)',=0 

with w, r 0, 1, 2, ... There are no additional powers in In S (n 0). Therefore 
is identical with the corresponding function with odd symmetry h;;;" i.e. 

hw.(s) == h;;;,(s) -- s"'(ln 8)'+'
6 ___ +00 

. [ :y 1 :y3 ]
X { t (T + 1) In S - 6" (1:' + 1) (r + 2) (1:' + 3) 8 + ... 

1 :Y2]}+ 2 - 2 (T + 1) (1:' + 2) 1:\28 + ... . (2.36)[ 

The disperHion integrals arc treate(l as before Ilsing the syml\letry behayiour (2.28). The 
calculation shows that the real part is again reproducecl exactly. The power expansion in 8 
finally reads 

00 1 { s p-w } 2E (1 + (-I)P+-"') 7P (T + 1) ( ') (I ),H (1 + 0(ln-18c») - -.­
psO IJ P - (!) n se .: 

< 

p.... 

and the contributions to the y!rl arc determined to he 

y'O; ,...,... In-1 s,( I + O(ln-1 '~e») 
(2.37) 

ylll ,...,... In-1s,( 1 + 0(ln-1 8,»). 

Thus the "negatively signatured POlUeron" (n = 0) wiII give a contribution to y!O) of 
the same order llS the n 1 term of the dipole, whereas in I'll) the n = 1 term dominates 
alone. 

2) Dipole Regge contributions (n = 1, 0 < '~o < 1, (1 

integrals leads to more complicated frollls. 
have' 

1 8 0 . ­ + + (1] (1' + 1) r'(?) +1 

-(1 ~] n) 1s + ... } s"'(ln S)' <X 

(2.38)+ i {-(1 [! ~ + [~!] (1r(O) I:s + ...}]. 
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According to equ. (2.28) a.nd equs. (A.3), (A.4) we get in the case of negative signatur;; 
the following results. For a = -1 and the even function h!. 

(lO 

!...Pfds' (-1)01 + _1_) Imh!,(s') 1 S-·-lr (O) 	

.~ 

.­~11: s' + 8 S' - S 's' 2 s"'(ln s)·+1 <i 
0, 	 f 

x (W, iXo) + C(1, 1 - C(1,1 ~ iXo)_ C(1, 2 -; iXo) +C(1, C(1,1 +.;; 
:L 
.' 

00 1 {r(o) seP+-,-I-", (1 + O(ln-1 8 »)}-.E (1 	 (-1)1'+W) Sl1 2 (p + iXo _ 1 _ w) (in se)'+! e 

__.::.. 	 S"·-1 (1 cos :l:XO) (1 ~ cos :7t 
iXO) + ... Re h;.(,~) + .... (2.39) 

- 2 s"' (In s)·+1 sin :liXo sm :7tiXo 

In the last two equations we have dropped the power expansion in s. To derive (2.39) 
we used properties of the generalized zeta function 

1+iX) (2-''\0) :l (2.40)W, iXo) + 1 - iXo) - C( 1, ~ C 1, ~ = sill :l.'\o 

C(I,iXo) C(I,1 iXo)=1I:cotn,,<0' 	 (2.41) 

In the sallie way the calculat ions for h- with a -1 and h};; with a = +- I t',Ul be done. 
In each case the symllletry behaviour (2.28) is confirmed. ,\part from the correct re­
production of the real part of the asymptotic expansion of A/(s) we are interested mainly 
in the pure power expansion in s to calculate the y!r). Therefore we writ<.' down for the 
remaining cases only the corresponding power expansions. For uland the odd 
function h;;;, we get 

(lO 	 IS p+«,-I-..1{I
+p-E.(1 + (-1)11+") 81' 7l ,~ ~ C; .,.\ II .. " \,(1 + 0(ln-1 

I 

for a +1, h;, 

00 	 S 1'+_,-1- ..1{1
'""' 1 - -1)11+" _ _ e 	 1 + 8 e»)}pI;:o ( ) sP :l ,~ • ~ f ... \ lin 0 \t ( 

for (J = +1, h;;;. 
o IP+E (1 + (-l)P+w)..!... {r(o) se + .- -", (1 I- 0(ln-1 S e»)}. 

p~o lSI' 2 (p + iXo 1 - w) (In se)'+1 

This yields finally the leading contributions to the ylr). Fur a = -1 we find 

,..., s.".-1(1 + 0(ln-1 

y(I) ,..., s:, In-1 se(1 + O( In-1 s.») i 
and for a = +1 

ylO) ,...,. S ••• -1 In-1 se(1 + 0(ln-1 s.») 

yll) ,...,. se••(1 + 0(ln-1s.)} I 
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3) m·fold Pomeron exchange cut (n = 0, iXp(O) = 1, ap +1) 

The calculations proceed in this case in the same way as before. Because of n = 0 similar 
to the case of simple Regge poles one of the functions of definite symmetry (2.27) is 
identical with h",.(s) itself. So the discussion requires a smaller expense. 
The leading terms of h!, == h"" are 

1 [.11: 1;t3 	 1]
1I",(s);::::, 8"'(ln 8).+1 -J + '2(r + 1) Ins + 24 (r + 1) (r + 2) (r + 3) In3 8 + .... 

(2.43) 

Considering the symmetry behaviour (2.28) the asymptotic integrals yield the correct 
real part of hOI, and the following power expansion in s 

(lO 1{1 s P-"-1:'(1-(- sp 7l 1- ...~ 11~ " \.+1 (1 + O(ln-I 

1',,0 

p=w 


Therefore the leading contributions to the ytr) of the highest order sum rules (r 0, 1) 
are(r=m I,m 2,3, ... ) 

yco• ......, 	 1 1 
se(In .~ \In (I + 0(ln­

<I 	
(2.44) 

......, se }(In se)m (1 + 0(ln-1 Se»). 

4) m-fold Reggeon exchange cut (n = 0,0 < iXo < 1, (J = ± 1) 

Becausc of cqu. (2.27) we have 

h;:,. == 0 if u=:fl. 

Thus thc signature determines the symmetry behaviour. Correspondingly we introduce 
the notation h .. ,). Then equ. (2.28) takes the form 

IIll h:,( -8 + ie) a( -1)'" 1m h:,(.j + it). 
leading terms are 

18 •• - [ r'(O) 1 ]
h:r('~) -- , -iu + r(O) -, (r + 1) - + .... (2.4.')

8_+00 8"'(ln S),.,.1 	 In s(I: 

The asymptotic dispersion integrals then produce the correct real part and as before 
8, power expansion in s 

00 

8 ~ (-; P J' rLs' 	 a~ -1)'" + _1_) 1m h:,(s') 

Ii + 8 S' - S s' 


" 
(lO 	 S 1'+_,-1-.. }1{I

""lteho (s) - ~ (a - (-1)1'+0.) _ _ c 	 (1 + 0(1n-1 s.») . 
'If 1'"::0 sp 1t (p + iXo 1 - w) (In sc)'+ 1 
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Finally we get the corresponding leading contributions to the r1r)(T 1n -1, 1n = 2, 3, .. ~} 
i.e. for 	 '. 

positive signature (f = +1 negative signature (f = -1 	 .,t·, 
8 «0-2 

__ 8 c",-1 	 '''' 
1'(0) __ """ r~O) _-'- ­

.it(In B,)m (In Bc)m 
(2.(6)

S «,-1r(l) _ _c __m Bc·' 

I' - (In .sc)m 
 (In 8c)m I 	

­

In Table I we tabulated all contributions to the first two including the leading Regge 
pole contributions evaluated previously in [11]. 

Table I 

Leading contributions to the first ,,(T) constants (scalar ease) 

ltegge 	 Pomeron I Reggeon "Pomeron pole m-fold exchange cut 
poles [l1J dipole contribution with Pomeron I Reggeon 

,. 	 ()11.=0 	 11=1 () 11. 

f1 +1 f1 +1 IJ' =-1 IJ' = -I·····) IJ' = +1 IJ' = +1 0'=-1 

.) s ;30- 1 	 '. 8...- 1 __c__ ,....""",1.'/,.-1 ~ y'O) 
In 8e ,...,. In 8, In 8c -In·~c .Yc(ln "e)m (III "cl'" (In 8.)­

U) 	 1 
y(l) 

8e 	 ~£ "r ~ 8c·· ­-";8 ~8c~·c-In .g	 -ln8 ,...,. (In XC)III (In 8.)­e 	 In ,Yc c (III "'cl'" 

.) Itcggc pole eontriplItion with negative signatured trajectory «(?-tmjectory). "0 < 1 
*.) Pomcron pole contribution O'p +1 
...) This term arises in connection with the dipole Pomcron 

As one sholllci naively expcct the dipole Pomeron will really dOlllinate in thc sum~. 
(2.31) if B. is sufficiently larg(2). Wc remark that the additionally arising Pomero~ 


pole like tcrms with negative signature wiII contrihute to 1'10) in the ,mille leading order 

as the corresponding dipole terlll with logarithmic power n = 1. ' 

Summarizing wc have classified the main contributions to the SUIll rille,; (2.31) due to 

different Hegge models with real trajectories. In the last ehapter we shall apply the ~ 

rules to thc realistic case of r..N scattcring. It will turn out that the results arc highly Ill ­

rlependent on the special Hegge ansatz. Therefore we shall regard in the following~ 

cllssions only simple Rcgge poles which are hetter known from exprrimcntal fits bemg· 

mlid ill the intermediate energy-regions.;'!" 

Formally the sum rules (2.31) are similar to the finite energy sum rulcs for the total 

amplitudes [10]. But in our case it is generally impossible to express the finite le{t-h~d 

cut integral via crossing symmetry by thc right-hand cut contribution. This is the ma.lll 

disadvantage of these conditions, because there is not much known about the short 


2) This is not a matter of course. As Table I shows among the ordinary Regge poles it is not 
meron pole which dominates in ,,(0) but a Regge pole with negative signature (Q-trajector,r 
means that the dominance in the total scattering amplitude is not tantamount with the 

. the partial wave sllmrules_ 
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forces. We shall show how this difficulty can be surrounded in our application to rrN 
scattering. One should remark that the equations (2.31) permit a duality interpretation 
for partial waves. The left-hand cuts are determined by t- and 'It-channel contributions 
together. Therefore the resonances of all three channels are simultaneously creating 
the s-channel high energy behaviour represented by the constands r(r). 

3. Helicity Partial Wave Amplitudes and the Formulation of Sum Rules 

3.1. High Energy Behaviour of Helicity Partial Wave Amplitudes 

To apply sum rules of the same kind as (2.31) to more realistic cases than the totally 

crossing symmetric scalar one (realized e.g. in the ..0;;:0 elastic scattering) we generalize 

our investigations to the case of elastic scattering of particles with arbitrary spin. To 

study ;;:N scattering later on we assume also different masses. It is convenient to use the 

helicity formalism. 

The gencral assumptions (dominance of sharp forward and backward scattering, ana­

lyticity of Regge residue functions, linearly rising Regge trajectories, validity of dis­

persion relations) and the methods of derivation are essentially the samc ones. Therefore 

only the lIlain stcps will he sketched. But contrary to the investigations in chapter 2 we 

shall restrict oursch'cs to contrilmtions of single Regge-poles, although these will gene­

rally not gin· the leading influcnce in the corrcsponding constants rlr) as shown below. 

Howe\'cr, we nrc justified for doing this bccause in the concrete casc of -:r:Y scattering 

the first SHill rules nrc not sensiti\'(~ with respect to the special Regge parametrization, 

so that a pole approximation will suffice_ 

The desrription of scattcring processes by helicity amplitudes has the adnmtage that the 

decoHlpoflition into inntriant amplitudes can be a\·oidcd. Furthermore for studying 

Regge asymptotic heha\'ionr t- und 'It-channel exchange contributions can be considered 

in a unified way. On the other hand care is necessary bccause of kinematic singularities 

and crossing relations. In our i1H'estigations conventions of DRECHSLER [15] and COHE:N • 


TA..'1NOUDJI ct al. [16] will be employed. Properties of the rotation functions of the first 

kind are tabulatcd there, too. 

The partial wave projection usually tlsed can be written as in chapter 2 assuming do­

minance of enhanccd forward and backward scattering (which is connected with a power 

behaviour (2.3) applied to the total B-channel helicityamplitude) 


-1+. I)

Fb'l,;,(8) -:;:- 1 (+ r dz /1,'I.'I,;,(S, z) dh.(z) : (3.1) 

8-+.00 .. ..(
-I 1-. 

Itith ;. Al - )'2' ;: = At' - 1.2'. The quantities ).j und )./ are the helicities of the in­
~ming and outgoing partides, respectively. dh., represents the rotation function [15]. 
Iehe lUass of one partide will be denoted by ~f. We use a normalization where the smal­
tlUass of the other particle is put m 1. As usually the l\Iandelstam variables B, t, 'It 

ate defined by 

8 + t + 'It 2M2 + 2. 
lIoteover we ha ve 

LI 
'It Bt -1 __ 

z = 1 + 2q2 2qZ 	 (3.2) 

li Zeitschrift ..Fortschrltte der Physik", lIcit 9 
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with t'.·,..LI = (M2 1)2 
t 

~ 

q2 = (8 (M + 1)2) (s - (M 1)2) i
48 ~ 

(s- and 'U-channel are assumed to be crossing symmetric to each other). The fonown; 
Regge pole ansatz is applied2;~ 

z) __ E [(Ft)IA-l'l Bl",(t) 1 + at ~xp (-inex) s.(t)] f. 
3-10+1» poles SIn nLX .';i" 

tchannel ~ 

. LI)I.I+l'1 1 +agexp(-in(iX 17») J+ E -'1£ + - Bfl,,('U) , 8'(11) (3.~
v) .,.POI'" [(V 8 sm n(ex ­

" channel .~
with ;1

for boson-boson, fermion-fermion processes ~i v {~/2 for boson-fermion processes. '~ 

All Rcggc terllls themsclvcs should satisfy the condition (2.3) and the trajectories a~ 
al';sumed to he linearly rising at least in a certain region as di.'lcussed in the scalar c~ 
In the function» Bt •• Regge residlles us well as the crossing matrices [lGJ are involved. 
It is not important for our purposes to know them explicitly. However, it turns out that 
the functions Bt.1t are free of kinematic singularities for t, l' ~ 0, if the residues of t- and 
u-ehnnnel Rcgge poles are chosen nppropriately3). The remaining squnre root singulari­
ties factorize ancl have been written separatly in equ. (:J.:J). Moreover one can choooe.~ 
clip mcehanitim (nonHen:"e-ehoosing) killing all unphy~icl\l poles of the signature factOr 
in the regions t, u ~ o. ;:f 
In the ansatz (:t3) and in the following we consider only terms of higheiit orcler in 8, a':l:~ 
this for each pole ('ontrihlltion. So wc neglect e.g. the influence of daughter trajectories 
in the 1t-ehannel needed to avoid difficulties eonnected with kinematics of different 
masses. The neglect of lower powers in 8 can be justified as in the scalar case (conclusi~ 
below equ. (Z..:~5»). if., 
Thc ansatz (3.3) is inscrted into (3.1). By transforming the integrations and introduc.i!!g 
the lower limits - T, - U (with T, U sufficiently large, hut independent on s) we get,: 

. (-l)i -1' [ 0 ,-- I 1 l'I 1 + a"cxp(-i:'!C:,"(u») 
FtAI)(8) -- 2 8" 1: Jdu (} - 1') - ­

.~~"",1q gllolcs-U !lin :n(u) 

X Sll(O) d~ll' (1 + ~)J2q2 

+ 412 E [J dt (1:'::t)IA-1'1]Jl,
1 

(t) _1_+_(J--::,.,...cx...:.·P....!(.,...,-_i:r_:"IC:..:,:(t:.!.») 
q Ipoles -T r 1 " sm ;'!x(t). 

X ~(')dil' (1 + 2:2)J 
with the shifted trajectory .i(u) ex(u) - v. 

~) 'In the boson·fennion case difficulties with 1\ nonfactorizable l'ii singularity of u-channel 
can be avoided by introducing parity doublets. 

Regge Models and Dispersion Relations for Partial Waves 495 

A Taylor expansion of the t and u dependent terms in (3.4) leads again to integrals of 
the type (2.15). Their evaluation yields the asymptotic expansion for the helicity partial 
wave amplitude (leading powers in s) 

. ~ (-l)I'(I'+ltH-A'I)! BCuJ(O) 
..... r. [iX'(O)]I'+I~l-l'l+lFI(s)--8_+00 t.1iEpoles ."=0 IL' 

S·(O)-(16A-1'1}2)-1 [. (I' + k + 1M. - ).' I) r(J,)(O)(lO 1 
X (In s)I'+161-1'I+1 -M' +c~ l)k k (ex')k (In s)C (3.5) 

with 

o {~! for t-} channel contributions. 
'1£-

Helicity indices have been omitted. The coefficients r(k)(O) are the derivatives of the 

real part of the signature factor (compare with expression (2.14); in the u-channel Case 

the trajectory is replaced by the shifted one i'). 

In the specinl case of "N sea ttering assuming dominance of the Pomeron pole it turns out 

that in leading order both spin·flip amI nonflip amplitudes are illlnginnry. As a kine­

matic consequence helicity consermtion is ohtained 

" . B~ _(0) _1_ + ... 
}I•. (8) -- -$ .'\/(0) In 8

$--.t-ec:> 

(3.6)t) uP _(0) 1 + )
pi, (8).:-:: -i (j +:2 C"/(O))2 f; (11\8)2 

:~.2. Disper,.;ion Relations for Helicity Pilrtial Waves awl SUIll Rules 

Let Us introduec partial wave amplitudes with normality n 

Fl(A,'l,A,(.s) = Pl"l"l,.lJ~) + 1I111'}~(-1)"-"-' F~A"_l,·A.l.(8). (:l.7) 

Here 'ii Iln<l8j represent the internal parity and the spin of the i-til particle, respectively. 
In the followinO' we use reduced amplitudes 

Jl{i',/( lV) P~1'1( JV), IV (3.8) 
with the threshold fa('tor 

JPi 
(48q2)i-"-" 

fiO that 

the generalized Mac Dowell sYlllllIetry [17J is satisfied 


ll{~d(-JV) = (_1)l-A' lli~~J1)t2'nl(JV) (3.9) 

~i~ng the analytic continuation of the amplitude from Re W > 0 to Re W < 0, 

3' Il~~'l has no kinematic singular!ties in the W plane [16J,

t the asymptotic behaviour of FU., is modified in a manner independently on j, 

I\l the dynamical threshold behaviour follOWing from a generalized Froissart-Gribov 


presentation is taken into account. 

http:Pl"l"l,.lJ


496 F. KAsCRl.uH~ and M. MULLER·PREUSSKER 

Assuming a Mandelstam representation for amplitudes without kinematic singularities 

the location of dynamical singularities of the partial wave amplitudes Hilt can be found. 

The result is the same as known from elastic TeN scattering [18]. 

In the s plane we get the following dynamical cuts (if pole terms are omitted for simpli. 

city) , 


1. lsi = M2 - 1) a circle cut, 

2.-00 s~-M2+1, -M2+1~8 0, 0~8~(M-l)2, 


3. PI + 1)2 ~ s +00 the physical cut. 

According to these cuts dispersion relations are written for hin in the IV plane. With 
reference to the behaviour (3.5) the number of subtractions chosen at IV = 0 is 

p = 4(.sl + 82) 11).1 - +1. (3.10) 

Analogously to the scalar case (equ. (2.29)) the integrals arc separated at certain suffi· 
ciently high We' namely at both the imaginary and the real axis. Property (3.9) as well 
as rcal analyticity lead to 

1 iW_ 

Iiin( Jr) = '£ an Jrn + WP J' dJV' disc mn( W') 
,,=0 :t lV'p( IV' lV) 

(/ 

w w 
JVp (' I Ilin( I'" + . ) n'p r' I Ili{( 1),1',,1 (W' + '} _ dJV' til , If: (_l)P+l-l' ., fir' III 'Ie 

+ :r. lV'p( IV' - Jr) + :t, ( W'P( IV' + W) 
.~ltl .If,.1 

00 

JrPJ~ , Ll/lllin (y;-, w) WP Jf"l J .\I11i1l (l/:;;, W)
+ d8 .y'(pH)J2 (.~' IP) (­ :!:t ( 8'(PHJ/2(8' + WI) 

"~=WtrJ.!c=Wl 
(3.U) 

with 
1LlnJJin(¥7, == 1m mn(}':? + ie) + W) + (_1)P..I. 1 - · 

"1!'>...lIf 

x 1m lli[(-l)·l·nJ(}Q + is) Jr) = (3:i~) 
LlJMIJin(l/i, W) == -disc JIin(y7 + E) (}8' + w) (_I)p~1 

X disc ][ilt( - ¥7 - E) (y7 - IV). .; 

The first integral in cqu. (3.11) carrying the notation U belongs to all finite unph~:i.J 
cuts including the circle and possihle pole terms. I.l R Hin is determined by the 
parts of the expansion (3.5). LJJjJHjn has to be chosen in suC'h a way that both the 
integrals of (3.11) will reproduce the correct asymptotic behaviour of Rc J[in(JV) 
ding to (3.5). The integrals with finite boundaries yield an expansion of powers 
JV-'(v > 0) which is absent in the expansion (3.5). To prove the existence of an 
priate LlJMHi" - the determination of which is tantamount to an enduation 
short range forces it is convenient to regard only components of (3.5) (cf. 
(2.24». Therefore we introduce the following auxiliary function rather than 

lV2.(0)+ n {. 00 m + k) r(k)(O) 1 }
hm(w) = ,I fp.,~~1 -tty + 1: ( 1.: (:x')k (In JV2)k1<=0 

Regge lfodels and Dispersion Relations for .l:'artial \\ aves \l,l:Il 

Ifith the integers 

TIt It + 16).- p. = 0,1,2, ... 

1~ = 4(81 + 82) - 2. 

+1, ( 1) belongs to the spin-non flip (spin flip) part a{'cording to (3.7). The gem'­
Illlized Mac Dowell symmetry (3.9) leads to 

hm(-W) = ( hm(lV). 

If we define the corresponding "discontinuities" LlRIt",( )'8', TV) and LlJlfh",( liS', TV) then the 
5Ylllllletryassumption 

Lln1hln ( ,lV) 0'(-1 )(n+i)/2 , JV) (3.14) 

,ields the req nested resu It to the behaviour (2.28) in the scalar case. Here we 
have to put 

2 for boson·boson, fermion·fcrmion scattcring, for boson·fermion scattering 
contribution:; with 6 = +1 and !i, - 1]i.'1 iil.l­

:3 for boson-fermion scattering contrilmtiolls with 0 + 1 and I). ­
i + 1).'1 

6 1 anrl I). + 1]).'1 I},I -+ li:1 
4, - for hoson·fermion scattering contrihutions with 0 = 1 Rnd Ii. + 

In the boson·fermion case the u·channel contrihutions (0 = -1) to the infinite integrals 
in (3,11) cun he calctllatl'rl analogollsly to the s('alar ca"l' if OIlC introdu('es forlllallr the 
shifted trajectory interccpt ,'\(0) = ",,(0) - 1/2. 
By making lISC of (:t 12), (3.13) and (3.14) one i~ able to show no\\' that the infinitc inte­
grals of (3.11) ('alclllat(!d for t he contribution!" hm( IV) with arbitrary 111 yield Re 11,.( 
and all adrlitional (!xpansion of pllre powers in W. The pruof pro('eeds in the same way as 
in the scalar casco Finally wc demanrl the vanishin!! of all powers JV-. (1' integer) nnrl 
get the infinite set of Slllll rules 

iW, 

~J dIY' disc Hi" (IV') W'r
:l 

U 

lV, 

+.: (dlV' Hi"(IY' + iE) - (-ll'+~-l'IIUJli[(- IV' iE) TV" = a_._1 + ylrJ
:'I: J 
.1(+1 15) 

'ith r = -p, -p + 1, ... Here the constants )'Irl are descended from the infinite inte­
:ala and depend upon the cutoff We and Regge pole parameters. In Table II the Be 

}lendence of the leading contributions is summarized. 
r':~ We arrive at the following conclusion. In all cases of boson-boson and fermion­
"'~lI.Uon scattering the first sum rule (r = -p) is dominated by a Regge pole exchange 
~th negative signature (e-meson pole). The sum rules for odd p + r values vanish iden­:;Uy, because the amplitudes HiN are analytic in 8 = JV2. For boson-fermion scattering 
itt erentresults can be realized depending on the value of A.mln = Min (1).1, 1i.'I). However, 
~N scattering (AlIIln = 1/2) both y(-p) and y<-p+1l are dominated by a negatively signa­
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tured t channel exchange taking into account the empirical fact that the intercept8~ 
baryon trajectories lie considerably lower than those of the leading meson trajectories.f 
After having derived the sum rules (3.15) for arbitrary spin the question arises how to 
apply them. In these relations integrals along unphysical cuts appear. Using a SUffi­
ciently large number of sum rules one should be able to determine appropriately paii. 
metrized left-hand cut discontinuities. At this one has to insert empirical values in the 
physical cut region integral (M + 1 ... We)' A more difficult but from the theoretic 
point of view more interesting question consists in the simultaneous determination Of 
short-range forces, subtraction constants and CDD pole parameters (3) in the framewon: 

Table II 

Leading contributions to the first y(r) ~onstants (spin dependcnt case, only Rt"gge poles) 

boson-boson, boson-fermion scattering 

fermion-fermion, t-channel exchange 'It-channel exc·hange 
scattering 

a( -1»),••,.+ Iii
y( -p) a a 

8,1- .(O)(ln 8,)'[ll - "'11 +1 8,1-.(OI(ln ",):!ll-Il',i+ 1 .•/m'''~ t -.(O)(h\ 8,)11.1+11'1+1 

1 + a( -1)1..·,,,+ tl~ 1+0';,( -p ,.1) = 0 
",lm" -1,'2 - .(O)(ln s,)lll +II', +1 8,t/t-.(Il)(ln .'1,):1'1 -'1'11+1 

i. mill )lin (1.1.:, Wi> 

of XID equations [19]. This problem ('oulel be enlargell ineluding the !ll·termination of 
long-runge parameters. \Vith respect to the pion-llucleon problern this would raise the 
qnestion, whether it is possible to calculate the nucleon polc parameters. too. If this could 
bc done the result wOllld be a uniquely fixed partial wave alllplitlHk satisfying aria­
Iyti('ity, Regge asymptotic hehaviour in the sense of equ. (3.5). antlllnitarity. However, 
it turns out that the techni<'al expense rises lip enormously. Therefore a reduced pro. 
gram can only he solved within a realistie expense. In the next chapter we shall demon­
strate how the partial prohlcm of fixing CDD-pole parameters can be solver! by appl~ 
empirical data. 

4. Application of Partial ~rave Sum Rules to Pion-Nucleon Scatteriol; 

4.1. Sum Rilles for Ilion -Nucleon S{'attcring 

In thi8 chapter we investigate the -r:N statc with isospin I 1/2 and total angular ~ 
mentum J = 1/2. At first we discuss the modifications of the smll rnlc8 (3.15)'~ 
necessary in this special case. We reillark that no pole terms lm\"c been taken 1!1to 
act-ount up till now. Therefore the nucleon pole must be included in (3.15). Furthe11'JlO1'l: 
in the -r:N case the reduced amplitudes H11,\(w) defined by (a.8) are not identical with the 
reduced amplitude8 hl+' It(l+ 1)- usually used. For the latter ones different threshol~fae; 
have to be applied which take into account a more detailed knowledge of the kine~ 
singularity behaviour than it could be treated in the general case of arbitrary s~ 
Consequently modified sum rules are valid for the functions hl+' h(l+I)_' Firstly no,~ 
tractions are neeessa.ry in partial wave dispersion relations. Secondly the conerete~ 
of the constants ,,(r) will be changed, but only with respect to powers in In Be' The.I.~...' 
vation is analogous to the general spin case. We state therefore only the results [ ~ 

'~ ;\ 

"''''''e)e)'''-' ...ILVU.....d . .:::I U.l.J.\,& ~ • .::..t:H, .....a..;:JJ.Vu. .....vl..... \,..lvJ. .....:I ""' ...... .£. UJ. .. ~ ............ I ... " 


Similarly to (3.15) we consider now the relation 

iWe 

.!:.. ( dW' disc heW') W'r-l 
:'f~ 

U 

J
~< 3 

+~ dW' 11m h(W') + (-1)' 1m h(-w')) W'r-l + 8:1: gt'l'",(-hf)'-l = y(rl, 

.11+1 

r 1,2, ... (4.1) 

where M ( 6.75) is the nudeon mass and glYN"'(""'" 13,5) represents the nN coupling 
constant. According to the Mac Dowell symmetry we have assumed that for W ~ M + 1 

"lor) exp (2ib( W») 1 710+( W) ex-p (2ibo+(lV») - 1 
h(W) "ig(JV) - ho+(W) = 2ig +(W)

o
(4.2) 

, 71( - W) exp (2ib( - JV») 1 "II-or) eXJl (2ib t _ (IV») 
-h(- n) = 2ig(- W) = hl_(W) =,. ,.... 

~(W) dellotl'~ the real phase shift and t)(W) thc inclasticity. The fum·tion g( JV) produces 
the rorrect threshold behaviour 

_ (JV + Jl)2 - 1 
g(U') = !?o+(JV) = q 2W2 

• (lV - .M)2 - 1 
W) g,-Of) = q 2W~ 

For the first two "Ir) the following expressions can be derivcd [20] 

1 C.9(0) (II' ~).e<O)-1 __ . (2Jl)I-.~O) .:.....,...c::.....:..,.~_ 

;'1;2 (1 - :X1'(O») Cte'(O) In (W,2) 

= -2J[y(l) (4.3) 

~here only the dominant contribution has bcen written down. Corresponding to the 
Investigations of chapter 3 the g trajectory (with negative signature) dominates in y(l) 

and 1'(2) (y(a) and y(~) are dominated by the POlllcron pole). In equ. (4.3) C ...e(t) denotes 
the Regge pole residue of the A'-amplitude introduced by Sewu [21]. For numerical 
~alculations parameter valuc!'; of a fit of CIIm ct i'lL (22) have been used. Within their 
notation !lnfl parameterization we have 

1 )"P(O)
C ... P(O) ( Eo Coe('''e(O) + 1) 

"it,h Eo = 1 GeV (scale constant), Ctt(O) = .58, Ctq'(O) = 1.02 GeV-2, Coe = 1.49 mb GeV. 
ThIS fit corresponds to a rather large slope of the Pomeron trajectory (:xP'(0) ,....., 1/2) and 
bas the advantage that the value JV* where 71( IV) and b( JV) start to grow monotonously to 
~Ptotie limits is lower than for other fits. We have JV*::5 102 and take therefore 

• 100. 

http:a..;:JJ.Vu
http:neeessa.ry


501 ouu .If. KASCRLUHN a.nd M. MtlLLER·PREUSSKER 

4.2. Formulation of the NID Equations 

To study the question whether the sum rules (4.1) enable us to determine CDD-pole 
parameters in the 1tN 1 = J = 1/2 state we employ a formalism of N1D equations sinli~ 
lar to that of FRYE and WARNOCK [19]. In these equations the cutoff W. occurs intro­
duced above. Therefore from the mathematical point of view we have to solve the sa.me 
type of equations as in the strip approximation [23]. For practical purposes it is suffi­
cient to use the method of matrix inversion [24]. In the region M + 1 ~ IWI ~ W. and 
if n. eDD poles (W;, Gj ) are present the equations have the following form 

2!'J(lV) ~ TV ReB(W) - Wi ReB(lV j ) 


1 + rJ( TV) Re NOV) Re B( + (::1 Cj TV W
 j 

+ .!.. (p.y~ P i.') dW' 2g( W') Re N(TV') {lV' Re B(Jr') - W Re B(W)I 

:It -IV,' .\(-'-1 (1 + 1)(TV'») W'(lV' lV) 


(4.4) 

Ite D( IV) 1 + lV (f Cj. _.!.. (1-;;-~ P 7') dJr' , 2g( Jf::) Re.,N(~V') ). 
id IV - If j :c: -IV, .HI (I -;-1,(11 ») IJ (Jf -IV) 

(4.5) 

According to 

IlIl D( TV) - 2g( W/r }{.e N( IV)
1 + IJ! ) 

the output shift is givcn 

IIll DOr)
tan bout( (4.6)

ReD(W) 

whieh yet depends on the undetermined eDD I)ole parallleters. The input function 
He B( TV) has to fulfil the following two conditions. 

1. Alollg the physical Nits below lrc Re B( lV) has to he identical with [2,;] 

Jr)'j( Jr) "in 2b( W) _ (4.7)1 (1-;;- I P t) dJr' li( IV') sin2 b( lV')Re 
2g(lV) :t -w,+ .11+1 (?(lV')(IV' W) 

where the right-hand side is calculated with empirical phase shifts. 

2. The discontinuities of the unphysical cuts disc: h( lr) in the finite energy region has to 

Le eOllsistent with the SUIll rules (equ. (4.1)) calculated with empirical phase sWf!:s...z­

too. 

Only in this way it seems possible to get results comparable with experimental daw.. Such 

a potential could be constructed, for instance, by a pole approximation of long range 

forces (conSidering crossing relations) and of suitably adjusted short range forces the 

'parameters of which could be determined in principle by the sum rules themselves",~er: 

it turns out that short range forces must give a contribution large enough fo fu.u.u ~ 

least the first sum rules. 

However, for our purposes outlined above it is not necessary to know completelY 


, input, i.e. to have an explicit knowledge of disc 11,( W). Therefore we only assume 

function Re B( JV) should exist satisfying the two conditions stated above. The. 
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6(w) 
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110 

11.0 

,,,
fool I 

I 
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Fill'. 1. S 11 output phase shlit (the dotted curve denotes empirical values). 

J(w) 
[dtg] 

IV1M i" .~. .-:. ..'- .Y- 1/0 ,'fl.] 
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0.0 

0.4 

0.1 
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FIg. 3. Emplrlcallnelast!cltles (I .. S H·w",·e. II .:, P 11.wave). 
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solve the N/D equations with ReBemp(W) and calculate the integrals i.
t 

fourth order sum rules are not satisfied at this point. But it turns out that these CDD 

:J~w' disc h( W') W'r-l I. 

u ' 

using the sum rules (4.1) with empirical phase shifts [26] (Figs. 1,2,3). Thus wet'... 
replace an approximative pole input by a model independent one.') )1 
We remark that Re Bomp( W) contains the direct channel nucleon polc. To examin~,t1!e 
case without this pole we have to subtract i:S contribution .•.1., 

3 UNN1C ; . 

-8:tW+M J 
from Re Bemp(W). 1/. 

t 
4.3. Numerical Results ..h 

We studied the N/D equations for the three cases 

a) neither with direct channel nucleon pole nor with CDD pole, 

bl with nucleon pole but without CDD pole, 

c) both with nucleon pole and with one variable CDD pole (C,. WI)' 

In all cases the first two sllm rules were tested by inserting the outptlt pha&l8 ' ­

(eqll. 4.6) into the SUlll rules (4.1). The numerical caleulations led to the follow:inr 

results. 

For the cases 11) and b) the SUIlI rules cannot he fulfilled. The disagreement bctween the 

left-hand Ilnd right-hand sides of eqll. (4.1) is extreme for ease a), but hecomes smaller 

for the <'nse b). In the cnse c) wc tried to fincl the points where the indh-jrlual sumro!e; 

are Ratisfied, and this hy ~-ariation of C1 and WI (Fig. 4). Thc region shown in Fig.4-i! 


L, 

-1:1,' 

r 
-13.' I~'- - - - ~-

-13.0 

-12.6 

-12.1 .::;.' 
1'" '" 

ilf~ 

'I'ill. ~. Geometric locus where the sum rules I omI II arc satisfieu; optimal eDD parameters Jr, = -13.25. C,­

the only one in a wide range where the Sllm rules I and II are fulfilled in a small 

from eaeh other. We have not drawn other curves in other regions where only 

these sum rules is satisfied. Thus we see that the first sum rules are fulfilled 

taneously at one point (WI -13.25, CI 0.45). One can show that the 


') Of course, our input contains assumptions a.bout the beha.viour of the pha.se shifts in 
region where no experimental phase shifts are available. Thus we use a. smoothed interpolation 

. empirical values and those determined from the high energy behaviour of the amplitude 

pole parameter values are a certain "optimum" for the higher sum rules, too. 

To reach better agreement we should introduce obviously more CDD poles. Furthermore 

we conclude that the CDD-pole position WI derived above agrees with that point where 

the empirical PH phase shift equals 7t the second time. The parameters determined 

correspond to output phase shifts in a very good agreement with the experimental ones 

(Figs. 1 and 2). In table III the behaviour of the individual parts of the sum rules (4.1) 

is stated for the three cases considered. We conclude that in the two sum rules very big 

contributions IHnst be cancelled to give the rather small ylr) values. In this sense the 

determination of the CDD parameters does not depend sensitively on the chosen Regge 

fit. Thus we should expect that the consideration of terms which are responsible for 

rising cross sections (Regge cut and Regge multifold pole contributions) will not modify 

the main results derived above. 

Thus we can finally conclude that the sum rules enable us to determine CDD pole para­

meters provided a correct input potential is used . 


Table III 

Vnlues of the inc\il-idua.1 parts of the first two slim rules in the eases 
a) neither direct channel nucleon pole nor CDD pole 
b) with nucleon pole but without CDD pol(' 
c) both with nuc\('on pole and fixed CDD pole (11'1 = 13.25, C1 = 0.45) 

([pC, PC, XP, E, r('sp., denote symbolically the contributions of till' unphysical ClIt, the physical ('ut, 
the nu('\con pole. the whole Il'ft hand side of the rlh slim rule (4.1), rt'spcctively) 

Case r y(r) E PC XP UPC 

a) - 0.02 -1 t .:U; -15.02 21.9:1 -18.27 
b) -0.02 0.82 -2.84 21.9:J 18.27 
c) -0.02 -0.02 -3.6." 21.9:1 -18.27 

a) 2 0.:1 117.9 248.0 -147.7 17.6 
b) 0.3 -1.1 129.11 -147.7 17.6 
c) 0.:1 0.3 130.4 -147.7 17.6 

S. ConcJIL'Iion 

It Was shown that on thc ha~is of definite assumptions finite energy sum rules for partial 
waves can be derivcd whieh make their dispersion representations consistent with Reggc 
asymptoticil. For the latter different models were used. 'Ve treated the scalar as well as 
the general spin casco In the special example of pion-nucleon scattering it was demon-
Itrated that the sum rules of highest order (r = 1,2) ean hc cmployed to determinc 
CDD-polc parameters in thc I = .1 1/2 state. Whcther sum rules of lower order (and 
thus eventually Regge asymptoties) arc appropriate to fix also the nucleon Illass and 
the pion-nucleon coupling constant remained an open question. It may wen be that 
~wer order sum rilles (r 3.4, ...) require the inclusion of further CnD poles.S ) Thus 
1fe cannot draw actually definite conclusions about the bootstrap idea. This situation 
:elll.bles to that of the various dual models, where two fundamental constants, an over-

COUpling constant and the intercept, are left undetermined by the unitarization 
PI'ocedllre via loop techniques. 
:----­
~ situa.tion might be quite different from the non-relativistic case where neither crossing sym­
- ..y nor CDD·poles (The both aspects are possibly connected) are involved • 
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Appendix 

Asymptotic Bebavio1ll' of DUpersion Integrals 

We state the behaviour of integrals of the type 

f
oo d:c 

I~)(8) p Inft x (A.I) 

" 
in the limit 8 -7> 00 [11]. The cases <X integer and <X noninteger are distinguished. Pis 
assumed to be integer. Then the following asymptotic expansions run be derived 
IX = 1,2,3, ... 

I~;;)(8) = [(-1).+1] ~ Lp J: ~---::-:-:--'--:"';'
-1 S ,,=0 

2.. u ·,·1x s'On 8)1211 +I +p 2C(2n + 2) (-1).+1 (1 - ~)][ 
1 

+ f [( 1)"+lj 1 (8/"1-- ~ r(p + fJ) 1 1) (..\.2) 
n ~O 1 	 1''':''0 r(fJ) (n + 1 - {In 8 c)P+' 

JI-F.:a--l 

j
with 

ln In .q In In Rc 
fJ

forLp 1 ( 	 1 ) 
1 

fJ =r 1fJ - 1 - + On 8 lP­r 

k < ,"( < k + 1, k integcr 

I~)(8) = _ yo Fin + {Jl
';-;;:0 r({J) -.- ­

00 [(_l)n+lj 	 1 (A.3)
+Eo 1 	 (In 8c)II+' 

with 

t ( .,+ t, 1 - iX + k) - C n + I, ----:::--'-- ­

(AJI 

Z,,+ = (-1 l
C(n+l,lX-k)- '21 )"+ 	 C 

Z,,-= 	 + 1,1 - IX + k) - (-1)" +1,1X k). J 
denot~ tiltThe upper (lower) values in the angu.lar brackets belong to I;:P(I."p). 

'Riemann zeta function whereas C(z, IX) is the generalized zeta function. 
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