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We construct a Reggeized Deck model for the reaction # p —w*# 7 p that satisfies the Steinmann
relation in the physical region. The p-7 mass spectrum is reproduced with a slightly improved width, and the
p-m partial waves agree with the results of previous calculations. An explanation for the success of the
Reggeization in this low-pmr-mass region is given. Resonancelike behavior is isolated in the p-mr—cut term,
and a resonance-type loop is shown to be present in the 1*s-wave Argand diagram. The difficulty associated
with observing a hypothetical A, meson in this reaction is discussed.

I. INTRODUCTION

A series of calculations''? using a Reggeized
Deck model has reproduced quite well the experi-
mentally determined phases of the 37 partial waves
in the reaction 7"p—~7*n"1"p. This model suffered
from the defect of violating the Steinmann rela-
tion.*~® The Steinmann relation forbids the pres-
ence of simultaneous discontinuities in overlapping
energy variables in an amplitude for a scattering
process, provided that the discontinuities are
taken in the physical region of the scattering pro-
cess. A recent paper by Jones® considered only
quasi-three-body final states like p°r~p, and dem-
onstrated that if the double-Regge residue obeyed
a particular constraint at ¢, = 0, pronounced
cancellations occurred, and the standard Mellin
representation’ for the five-particle amplitude ap-
proximates the successful “naive” model at this
point.

In this paper, we assume that the reaction pro-
ceeds entirely via

T p~pnp

Tt

We shall continue Jones’s work and obtain a double-
Regge residue, valid for a range of momentum
transfers, that satisfies the mentioned constraint
for #,40n =0. In Sec. Il we demonstrate that the
form of the “constrained” residue is largely de-
termined for arbitrary momentum transfer by the
known analytic structure of the amplitude. The
amplitude that we obtain may be neatly expressed
in terms of hypergeometric functions which ex-
plicitly display the correct discontinuity structure
in the physical region of the reaction.

In Sec. III we give various kinematic formulas.
We also give the expressions used to calculate the
partial wave amplitudes.

In Sec. IV we discuss the resulting p-m mass
spectrum and other distributions. The behavior of
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several partial waves is displayed. We find that
the width of the A, bump is slightly improved, and
the behavior of the partial waves is similar to that
obtained by Ascoli et al.

In Sec. V we consider the contributions of the
separate terms with distinct cut structures. It is
found that the term with the cut in the outgoing
pion-proton subenergy dominates. An explanation
for the success of Reggeization in this reaction is
given. We partial-wave-analyze the separate
terms and show that the term with the cut in the
p-m subenergy acts as though it contains the entire
resonant behavior of the amplitude. A description
of how a hypothetical A, “meson” could be hidden
in the partial-wave data is also presented.

Finally, in Sec. VI we present a summary of the
main results.

II. THE MODEL

Our labeling of kinematics for the reaction 77p
~p°r7p is shown in Fig. 1. The momenta p, and
b, are those of the incident pion and proton, re-
spectively; g,, ¢, and g, are the momenta of the
outgoing p, pion, and proton. Our overcomplete
set of kinematic invariants is given by

S12= (P, +15)?,
s,=(q,+q)?,
$,=(q,+q)?,
t,=(p,=4q.)?, (2.1)
ta= (P2 =45,

n:—s.lg_

$,8,”’
My, =+s,.
Following others,® we omit the proton helicities
completely, and take the ¢,-channel helicity am-

plitude with the p having zero helicity to be the
sole contributor to the cross section. We may then
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write the familiar® Mellin representation for the
signatured double-Regge amplitude:

ATxTz = ﬁl(tl) Bz(tz)
5 27

x f A T (=N = a )T = ay)(=s )™~

X (=) M=s ) BNt t) . (2.2)

In the above, «, and @, are the 7 and Pomeron
trajectories, respectively. The variable A is to
leading order the complex helicity of the two Reg-
geons. It has been shown by Jones® that the above
will reduce to an amplitude with the phase of the
“naive” Deck model® if the double-Regge residue
B(r;t,,t,) obeys the following constraint at {,=0:

(L=X 504 0. (2.3)

B(K;tuo):m‘ﬁ‘

We first observe that for an event in which the

-

(s,+my’~ mwz))\l/z(sxz; M2 my?) = (my® +m? — t;))‘l/z(sxz, sy, my?)

815

" S12 p

FIG. 1. Kinematics for the double-Regge exchange
considered in the text.

proton is forward scattered in the center-of-mass
frame of the initial state, if we fix the values of
sz and §,, we necessarily specify s,. Its value is
given by

- 2
S 2 forward proton St mP +2

where Aa,b,c)= a?+b%+c?=2ab —2ac —2bc. It
follows that 71 is uniquely determined in this case,
depending only on s,,, $,, and ¢,. In the double-
Regge limit, i.e., S,,8,,5,,~%,t),1,,7 fixed, we
have to leading order

=(my2—t)7" . (2.5)

The corresponding value of ¢, we will denote by
t,us Where

n forward

(SL2+mN2 —my7) (St my’=s)
2s,,

toy=2my" =

+ Al/2(3,1,29 lez, m‘lrz)kl/z(slz’ mNz’ s‘L) . (2'6)
25,

To leading order, we have t,,=—(s, = m2)?my?/

2(s,;)%. In the double-Regge limit, we have t,,~0.

In this limit, Eq. (2.3) will be satisfied by a func-
tion of the following form:

(1=N)P(t,,t,)
. - Ltal .
B ty t2) T+ 1)M(¢t,¢t, 2.7

J

(s)2+ my® - mﬂz))‘llz(s 12051 my®) - )‘1/2(312’ m,, mlvz)(sxz +8,-my°) ’

(2.4)

r

We shall show that the function M(¢,,¢,) is largely
determined by the analytic structure of the ampli-
tude in the s, channel, and Eq. (2.3). In addition,
the function P(¢,,t,) will be related to single-Regge
residues obtained from two-body reactions by ex-
amining the pion pole term in the ¢, channel.

In order to determine M(t,,t,), we first note that
by Eq. (2.3) it is subject to the constraint M(¢,,0)
=17. In the double-Regge limit, we may instead
impose the condition

Mt ty)=n. (2.8)

We now recall the familiar integral representation
of the hypergeometric function:

T'(c) Y Ta+)rd +1)

Fla,blcl2)=5rmy i 2miL(c +£)

XT(=t)(-z)tdt. (2.9)

If we substitute Eq. (2.7) into Eq. (2.2), we obtain

AE‘ 2= Bl(tx)ﬁz(tz)P(tv tz)("s1)a1(-sz)a2r("a1.)r(“az)lF(""ap _azllln/M) - alaz(n/M)F(l e t) 1- azizlnmn ¢

(2.10)

In the above, we have written M(t,,t,) =M. On examination of the hypergeometric series

T'(c) i T(a+n)T'( +n) 2"

F(a,blclz)= T@T®) = n!T(c +n)

(2.11)
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we see that the hypergeometric functions appearing in Eq. (2.10) are analytic for 0<7/M<1. This is un-
desirable, for the factor (-s,)*}(-s,)*2 will yield simultaneous discontinuities in the channel subenergies
s, and s,, violating the Steinmann relations.®~*™° Therefore, the amplitude will have an improper discon-
tinuity structure in the physical region of the reaction unless 7/M=> 1.

We may use another well-known relation among the hypergeometric functions,

T(a)T'(®) _I'@r®-a -
“TE) F(a,blclz)--————r(c —a) (-2)"*F(a,1-c+a|l -b+a|l/z)
T(®)C(a-b) -b
VT (- - - 1 . 2.12
T b) (-2)*F(b,1-c+a|ll-a+b|1/z) (2.12)
to rewrite the amplitude in the following form:
A; 1m2 =ﬁ1(t1)ﬁ2(t2)(—s1)a 1(—sz)azr(_a1)r(—az)[ (—ﬂ)alVl(tu ty; 71) + (—ﬂ)an(iu tz; 7’)] . (2-13)
The double-Regge vertices V,(¢,,¢,;M), V,(t,, t,; M), are given by
o Pl,t) T(a-a)
Vit tasm) = M(tlj’tj"‘l Tar al)l [F=ay, —a,|1=—a,+ a,]M/n) =0, F1 —a,, —a,|1 - a, +a,|M/0)],  (2.14)
P T -
Vz(tp tz;n)= (tl’t‘a)_" (a‘L gﬁ[F("az) ‘a2|1—02+ 01‘M/77)"012F(1 -0y, —a2|1-02+a1|M/71)] . (2.15)

M(t,, ;)% T(l+a,)

If we choose M(t,,t,) such that M/n <1 in the
physical region, then V,(t,,t,;m) and V,(t,, ¢,;7M) are
both real in the physical region of the reaction.
The hypergeometric functions are finite at M/n=1
if @, +a,> 0, which is certainly true for ¢,,¢,
small. The factors (-n)** and (-7)*2 nicely cancel
the unwanted simultaneous discontinuities. A func-

S
>

Y
FIG. 2. Orientation of the M frame (p-7 rest frame).

r

tion which satisfies the condition M/n <1 and Eq.
(2.8) is given by

M, t) =

212 (2.16)
s].s2 max(812, sl’ tl’ tz)
In the above, S, m.x is the maximum value of s, ki-
nematically permitted, given s,,, s,, #,, and ¢,.
If we denote the rest frame of the p-7 final state
by the superscript M (see Fig. 2), we may write
SZmax = mN2 + mﬂz +2 qgoq‘ol

+2|8¥|§¥| (cos8, cosy, + sinf, siny,) ,
2.17)

where ¢ and ¢¥ are the energies of the outgoing
proton and pion, respectively, in the p-7 rest
frame [see Eq. (3.2)]. The angle 6, is the angle
between the incident 7 and the outgoing p in the M
frame, and ¥, is the angle between the incident 7
and outgoing proton, also measured in the M
frame.

We see that Eq. (2.17) contains s,, and s, depen-
dence. Its leading-order expansion, however, is
given by

32 max (812’snt17 tz)
- %3— [mg® -t —t2+2(t1t2)1/2]
1
+0(s,,°,5,72). (2.18)
To leading order then,
M - 2 1/27=1 1 1
(t1yta) = [mg® =t = t,+2(¢,1,)2] 71+ 0 PR E
12 1

(2.19)
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In the double-Regge limit, the dependence on s,
and s, disappears; as a result M(¢,,t,) depends
only on ¢, and ¢,. It should be noted that the factor
(t,¢,)*/? contains simultaneous discontinuities in ¢,
and t,. Since these channels do not overlap, this
is, in fact, permissible. A more serious objection
is that the term (¢, ,)"/%= (~t,)/3(~t,)"/? yields si-
multaneous discontinuities in s, and ¢,, s, and ¢,,
s;; and ¢,, etc.; these unwanted discontinuities oc-
cur, however, only for ¢,>0 or £,>0. Since these
unwanted cuts do not appear in our model in the
physical region of the reaction that we are study-
ing, we shall regard our choice of M(t,,t,) to be an
“adequate” parametrization of the “true” function
in the physical region. In particular, it yields the
correct combination of signature factors in the full
amplitude, thus assuring that the amplitude has the
correct phase in the physical region.

It should also be noted that the choice given in
Eq. (2.16) is not entirely unique; for example, we
could also consider the function

S (2.20)
sz slmax(slzy sz: tp tz) ’
where S, ...(S 1 Sz, £y, t,) is the maximum value of
s, kinematically permitted, given s,,, s,, ¢,, and
t,. To leading order, we have

M'(tu tz)=

Mty t,)= [ma® =) =t + 22, £5) 2] ‘+°< 1 "1—>°
Sz’ S,

(2.21)

Therefore, M(t,,t,) and M’(t,,t,) differ in nonlead-
ing terms. We shall use the choice M(t,, ¢,) and
later comment on its appropriateness.

We now will determine the function P(¢,,¢,), and
obtain a result independent of our choice of

Vit ta3m) = —m "z%

1

1
Valty, ta5m) = T(=a)T(=ay) Z T T —a)T (o, - a,-n)n™"Bla, =n;t,,t,) .

n=0

We compute the following residues at the pion
pole, where a,=0, da,/dt,=1:

Res{l"(-al)r(—ag)Vl(tp tz; 77)} lt1=m"2

= =T (-ay)P(m,2t,), (2.28)
Res{I'(=a )T (~a)V,(t,, tz; M} ¢ ,=m,2=0.
From Eq. (2.22), we get that
ReSA |y =m 2= —28,(m 2B, (t,)s, 2,
XT(=a,)P(m,2 ¢1,). (2.29)

P(n a;)l"(al—az—n)n "Bla,=n;t ,t,),

M(t,, t,). We first consider the full amplitude, ob-

tained by summing over all the allowed cuts,® and
obtain

Ag=B,(t)s," T (~a,) B,(t,)s,**T(-a,)
X [£,E,m% WV, (¢, t23m)

+E,81M72V (8, £55m)] - (2.22)
The signature factors are given by
= pimoy
£ =e +1, 2.23)

Ey=emiTum ) g,

We shall wish to compare the above with the “ex-
act” t,-channel helicity amplitude corresponding
to a p meson with helicity 4, which we denote by
F¢2. Following Berger,'' we write down the j1=0
amplitude near ¢,=m,?; from unitarity, the pion
pole dominates, and we have

—4m 2)1/2 ng-frg

D g (m
To Eom (7, t, -m,2+ie

. (2.24)
In the above, g, is the effective pnm coupling
constant. It is real and positive with g,m>/4m=2.2.
The quantity M, ., is the on-mass-shell elastic
m-p scattering amplitude (neglecting proton helici-
ties) for a center-of-mass energy s, and momen-
tum transfer f,. For the purposes of our analysis
we use the Reggeized form

Mvrp—»ﬂp=ﬁ1rP1r(tz)BNPN(tz)Ezr(—az)szaz) (225)

where the residues B,p.(¢,), Bypn(t,) give the cou-
pling of the Pomeron to the pion and proton, re-
spectively.

We now wish to evaluate the residue of A, at ¢,
=m,%. The pole expansions® for the double- Regge
vertices are given by

(2.26)

(2.27)

r

As we have previously suggested, the above is in-
dependent of M(t,,t,). If we set Resf¢v)|, "
=ResA°®, ,=m,2 after cancelling some common fac-
tors we obtam

B1(m®) B,(t)2P(m,*, t,)

= gpmr(""p2 - 4m1rz)l/2ﬁ men(t)Bapn(ts) . (2.30)

Now White has demonstrated'? the factorization of
the single-Regge couplings in the five-particle am-
plitude; hence we may write
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Ba(ts) = Bupn(ts) - (2.31)

In the spirit of previous work!*®!! we assume a
constant pr7 coupling; factorization then permits
us to write

By(t) = gpm(m * —4m,H)Y2. (2.32)
From Eq. (2.30) we conclude that
P(tu tz) =%3wpn(tz) .

To complete our specification of the model, we
used a curved trajectory of the Pignotti type

a,==(m2=t)/(m>=t,+1) (2.34)

and a moving Pomeron trajectory

(2.33)

P(t,, t)nM(t,, t,) "%
sinm(a, = ax)T'(1+ay)

Vx(tu La; n)=

X{m,mg)

PUHALA 17
a,=1.0+0.275¢,. (2.35)
The choice

B‘!rPﬂ(tz)BNPN(tz) = Ce“z (2.36)

with 2b =6.75 yields a 77p differential cross section
proportional to exp(8t,) at s,=10 (GeV)’. From the
optical theorem we may write

C=0uy/7, (2.37)

where o,y is the 77p total cross section ¢ ,y=29
mb.

As a matter of calculational convenience, the
double-Regge vertices may be rewritten as a power
series in 1 -M/7, namely

T'(l+a,)? [(ay+ a)F(~ay —a,|—a, — a,|1 =M /1)

-0a,0; F(1 =y, —a,|l —a, - a,|1 - M/n))

(-, -ay)
r(_a2)2

The corresponding expansion for V,(t,, t,;7) may
be obtained by interchanging «, and a,. These
forms have the practical advantage that since
[M(t,,t,)]/n is near 1 in the regions of phase space
that contribute most heavily to the cross section,
the resulting hypergeometric series are easy to
evaluate.

III. PARTIAL-WAVE FORMULAS

We shall find it interesting to determine the par-
tial-wave content of our amplitude, in hope of ob-
serving resonancelike behavior, or its absence.!'®
Following Ascoli et al.,' we define our coordinate
system as in Fig. 2. Vectors in the M frame are
denoted by the superscript M. The M frame is de-
fined by the condition §¥ +§*=0, and the orienta-
tion

(1 =M/m)ree [(1 —p/m) LA @n 1+ a2+ o)+ apll - M/n)

l+a,+a,
"F(av1+ax‘1+a1+azll'M/n)]} . (2.38)
T
M _ mﬂ2+s]-tg I‘ﬁu = Al/a(rn‘wz,sptz)
10 2@; b 1 2\/5‘1 b
g = Sz my®=s, 54| = A(s 5 my? s )
20 2‘/3—1 > 2\/:9—1 )
qM — sl+m92—mﬂ’2 ‘-ﬁ” = )‘l/z(sgm‘pzxmnz)
- ’
10 2\/8—1 ’ 1 2‘/51
(3.2)
u_ Sytmg-m,?
0 2\[3_1 ’
t +2PM qﬂ -m Z_m 2
cosf,= - 10 gt 2
! 2[pyl1ay ’
cosy, = 2P0 50+ S, =S ~t,+my®

pY=(%,0,0,|5],
a3 = (a3, 1a3| siny,, 0, |G} cosy,) , (3.1)
a1 =(a%, |aY|sind, cose,, |§}|sinb, sing , [§¥| coss,) .

In terms of our set of invariant quantities, the
above are given by

2pillg;]

We denote the s,-channel helicity amplitude cor-
responding to a P meson with helicity A and mo-
mentum in the 6,, ¢, direction in the M frame by
F$96,, ¢,,515,5,,t5), or for brevity f$(6,, ¢,). Its
decomposition in terms of partial-wave amplitudes
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Fi¥is

FE90,, )= 2

J.M,L

2 +1 1/2
( 4: ) Dﬁ(‘i’u% -¢1)
X(ZL + 1>1/2<L 10A|JA) FI¥ .
2 +1
(3.3)

In the above, {L10A|J)) is the Clebsch-Gordan co-
efficient that couples angular momenta L and 1
with z projections 0 and A, respectively, to yield
angular momentum J. Equation (3.3) may be in-
verted to yield

—

1
m- ./‘dQ"EX D‘IIIX(¢11 61,0)(21, +1)1/2

X(L10A|IN) F§V(60,, 0,) . (3.4)

We now wish to express the last result in terms
of the ¢, channel helicity amplitudes f§2(6,, ¢,),
where p is the helicity of the antirho in the frame
where P, -q,=0. The crossing matrix between the
s,~channel helicity amplitudes and the #,-channel
helicity amplitudes is given by

£$96,, ¢) =€y dby (0) 1426, 9,), (3.5)
m

where

TM_
Fii=

(m2=m 2 =t,)(s,+m,%=m,?) =2m,22m,2 =m,%=t)
) 2 1 L 0

COSw = -~

sinw = =(1 - cos?w)/? .

)\1/2(31: m, 2’ mrz))\llz(tz; mpzy m‘rrz)

b

(3.6)

If, as mentioned before, we assume that the only nonzero t,-channel amplitude is the one with ©=0, Eq.

(3.4) becomes

TM_
Fy¥=

For the amplitude f$9(6,, ¢,), we shall use A,
given in Eq. (2.22). We shall find it interesting to
calculate the above partial waves, not only to com-
pare with the results of previous calculations, but
also to search for “Schmid loops”*® corresponding
to expected p-m resonances.

IV. RESULTS

In this section, we display some of the results of
our calculation, and compare them with both the
data and results of other calculations. For all dis-
tributions that we shall consider, the lab momen-
tum was taken to be 25 GeV/c. The phase space
used was subject to the cuts | ¢,|<2.5 (GeV)?,
| #,/<1.0 (GeV)®. The restriction on ¢, was moti-
vated by convenience; as we shall see, in our
model the ¢, values that we omitted contribute a
negligible amount to the cross section for the range
of M, values that we consider. The restriction on
t, guarantees that for our choice of trajectories a,
and a,, and for our cutoff in ¢,, we satisfy the con-
dition o, + a,> 0, thus avoiding the singularities of
the hypergeometric functions mentioned in Sec. II.
As a practical matter, our calculation was insensi-
tive to this last restriction largely due to the fac-
tors B.ps(t,) and Bypy(t,), which are sharply
peaked in t,.

In order to evaluate the performance of our mod-
el, we shall compare its predictions with data
found in Ref. 2, unless otherwise stated.

The total p-m cross section in the mass range

ﬁlg f dszl{}_; e M01gL, (w) dyyy(6,)(2L +1){L10A| J)\)} 4906, 0. (3.7

I

0.92 GeV < My, < 1.5 GeV was calculated to be 139
ub. This is 44% of the observed cross section in
this region, excluding the A, contribution. The
calculated curve, normalized to yield the correct
total cross section, is displayed as curve A in
Fig. 3. We see that at large values of M,,, the
“tail” of the distribution agrees well with the data
except in the vicinity of the A, and A; bumps. The
peak of the distribution, occurring at M,,=1.1
GeV, also agrees with the data. At small values
of M,;, the leading edge of the p-m mass distribu-

1 1 L |
0.9 I 1.3 1.5 1.7 1.9

Mpw(GeV)
FIG. 3. Calculated pr mass distribution. Curve A,
full amplitude; curve B, 7m-p—cut term; curve C, p-m—
cut term. Data points are from Ref. 2.
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250

200

150

100

Events /(.05 GeV2)

50

N
1
o} 0.4 0.8 1.2
-t fo p (Gev?3)

FIG. 4. Distribution in ¢, for 1.0 GeV <M,, <1.1 GeV.
Curve A, full amplitude; curve B, m-p—cut term;

curve C, p-m—cut term. The histogram is taken from
Ref. 2. Curve A is normalized to 2193 events.

tion is somewhat more rounded than the data, al-
though not much more rounded than the calculation
of Ascoli et al.? We shall speculate on the origin
of this effect in Sec. V. Choices for M(¢,,t,) other
than the one used tended to both broaden the dis-
tribution and reduce the total cross section.

The distribution do/dt, was calculated in the ef-
fective mass range 0.96 GeV<M,, <1.2 GeV, and
found to be an exponential of slope 11.66. This
compares with an experimental slope'* of 10.6

200
150+

100

events /(.1 Gev?2)

50

-1 to p(Gev?)

FIG. 5. Distribution in , for 1.5 GeV < M,,<1.8 GeV.
Curve A, full amplitude; curve B, m-p—cut term;
curve C, p-m—cut term. The histogram is taken from
Ref. 2. Curve A is normalized to 694 events.

+2.2 at a lab momentum of 11 GeV/c.

In Fig. 4 we present the distribution do/dt, in
the effective mass range 1.0 GeV< M, < 1.1 GeV,
which we compare with the 11-25 GeV/c data pre-
sented in Ref. 1. Curve A, which represents the
contribution of the full amplitude, reproduces the
general features of the amplitude for small |¢,|. It
is interesting to note the slight “shoulder” in the
distribution at ¢, ~0.42 (GeV)?. This effect is due
to the fact that for small M,, and large |t,[, we Ki-
nematically exclude forward scattered protons in
the overall center of mass (t,=t,,) if s,, is held
fixed. We should note, however, that we have not
explicitly incorporated p-m resonances like the A,
into our model. One would expect that a strong
resonance which contributes only to partial waves
with small orbital angular momentum would act to
broaden the tail of the distribution at large ¢,. In
curve A of Fig. 5 we see do/dt, for the effective
mass range 1.5 GeV<M,, <1.8 GeV. Again, we
see the same kinematic “shoulder” appearing at
t,~ -1.7 (GeV)? that causes the model to drop more
rapidly than the data. Again it seems reasonable

5 _(b)
2p
/'; 4_
.og op
8
Q 3r
&
8B er
|-
2%
0 —————— I E—
0.9 1.1 1.3 1.5 1.7
M, (GeV)

FIG. 6. Cross sections for large partial waves. (a)
1" s contribution. Curve A, full amplitude; curve B,
m-p—cut term; curve C, p-n—cut term. (b) 27p, 0"p,
and 2" d contributions. Note the change of scale.
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260
240
220

— 200f1*s_-~~

180}

160+

140HH, only
120}4-9°p

100 5vy

gof-M="1
60}
a0l 5
20
ol 1+ 1

T T 1T 17 F 11

ABSOLUTE PHASE (deg

1 1 1 J

1
0.9 1.3 1.7 2.1 2.5
Mo (GeV)

FIG. 7. Absolute phase of important partial waves
as a function of p-m mass. Unless otherwise indicated
M=0 is shown.

that the explicit incorporation into the model of
p-m resonances would broaden the tail of the dis-
tribution. In Sec. V we shall discuss a possible
program for the explicit incorporation of p-m res-
onances into such a model.

In Fig. 6(a), curve A shows the contribution of
the 1*s partial wave to the total cross section,
and in Fig. 6(b) we see the contributions of the
07p, 27p, and 2%d partial waves. The 1*d partial
wave (not shown) is about § as large as the 2*d
wave. The 1*s p-m wave, which peaks in our cal-
culation at M,, =1.07 GeV, is a bit stronger than
it is in the data after the amplitude has been nor-
malized to yield the correct total cross section,
as we show. This may be partly due to the fact
that our curves are normalized to fit the entire
three-pion data, which also contain € - final
states. These states contribute strongly to the
07p wave, and their absence in our model is ex-
pected to affect adversely the ratios of the various
partial wave contributions to that of the full ampli-
tude. We do expect, however, that our model
should contain the various p-7 partial waves in the
same ratios as they appear in the data. This ap-
pears to be the case for the waves shown.

We now wish to examine the phases of the vari-
ous partial waves. In Fig. 7, we display the ab-
solute phases of several of the large partial
waves. We notice that the relative phases com-
pare favorably with those of Ascoli et al.,! with the

exception of an abrupt increase in the phase of the
27p wave at low M,, values. We shall examine the
origin of this effect in the next section, but first
we wish to display the partial wave amplitudes in
more detail.

In Figs. 8=11 we show Argand plots of the real
vs the imaginary parts of the various partial waves
for t,=-0.05 (GeV)?. If we compare Figs. 8-10
with the corresponding plots of Ref. 1, we note the
qualitative agreement between the two calcula-
tions. In Fig. 8, we see the 1*s M=0 wave. We
note that its amplitude decreases monotonically as
M,y increases, and in addition there is a complete
absence of any rapid phase variation. From our
knowledge of two-body reactions, we might infer
the absence of any resonant behavior in this par-
tial wave, but as we shall see in Sec. V, this may
be an oversimplification.

In Figs. 9 and 10 we see Argand plots which re-
semble resonant behavior in two-body reactions.
In fact, by general arguments due to Schmid,®
resonant behavior is expected in the 2*d partial
wave due to the A, meson; unfortunately, the

-
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FIG. 8. Argand diagram for the 1* s partial wave as
a function of M,,. P4 =25 GeV/c, t,=-0.05 GeV?,
M=0.
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FIG. 11. Clockwise loop in the Argand diagram for
the 1'd partial wave. Pj;=25 GeV/c, t,=—0.05 GeV?,
M=+1.

known mass of A,(1.32 GeV) cannot be readily in-
ferred from either the amplitude or the phase of
the resulting “Schmid loop.”

If we calculate other partial waves, most are
seen to resemble either Fig. 9 or Fig. 10. Itis
interesting to note that those waves which start in
the right half-plane, like the 1*d wave, yield loops
which tend to be full and rounded. Those which
start in the left half-plane tend to be rather elon-
gated, like the 2*d wave. An extreme example of
this behavior is seen in the 1'd M =+1 wave for ¢,
=-0.05 (GeV)?, shown in Fig. 11. In this example
we see that the loop has been pulled inside-out and
deformed into a clockwise loop. We shall now
show that this and other surprising behavior comes
about from the interplay of the two terms propor-
tional to V(¢,,t,;m) and V,(t,, t,; 7).

V. INTERPRETATION OF THE MODEL

In light of the overall agreement between our
model and the data, there are several questions
that we might properly ask:

(1) Why should a Reggeized formula work so well
when one of the subenergies, namely s,, is barely
above threshold?
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(2) How can we simply interpret the rather bizarre
behavior of the Schmid loops and perhaps relate it
in a more obvious fashion with the known p-m
resonances?
(3) Why is no Schmid loop seen in the 1*s wave?
In order to answer the above questions, we first
return to Eq. (2.22), which we now write in the
form

A,=H,+H,, (5.1)
where
H,=B,(t)B,(t)T ()T (=a,)s, 2 %1, %1
X &85\ V1(ty, £237) (5.2)
H,=B,(t)By(t)T(~a )T (-ay)s,*17%2s ,%2
XE 12V ot t257) - (5.3)

As we see from Egs. (2.26) and (2.27), V,and V,
have spurious poles for those values of ¢, and ¢,
such that |@, - a,| is an integer, although these
poles cancel in the signatured amplitude A} 1"2. We
notice though, that since a,> -1 for our Pignotti-
type trajectory, the condition a,+ a,>0 implies
that |, - a,| <2 in the physical region of our reac-
tion. As a result, the only spurious poles that we
encounter occur for |a, = a,|=1. This is fortun-
ate, since at these points §,,=£,,=0, and H, and
H, each separately remain finite. We yield to the
obvious temptation to calculate the contributions of
the separate terms to the cross section, and we
show the results in Fig. 3.

Curve B of Fig. 3 shows that the dominant con-
tribution to the p-m mass spectrum in the A, re-
gion comes from the term H,. This is an interest-
ing fact, since H, has the asymptotic behavior
s,%2"%1s ,%1, In the A, region, both s, and s,, are
large; hence we see that the dominant term is in
its asymptotic region. We see from curve C that
the term H,, which has the asymptotic behavior
5,%17%g %2 g small in the A, region. This too,
is noteworthy, since s, is barely above threshold.
We can conclude that, at least within the frame-
work of this model, Reggeization is a reasonable
procedure since the dominant term which contri-
butes to the cross section is in its Regge limit.
This last conclusion is not at all obvious in a
“naive” Reggeization as in Ref. 2.

In order to obtain a possible interpretation of the
physical significance of the terms H, and H,, it is
useful to examine their separate contributions to
do/dt,, shown in Figs. 4 and 5. We see in both
graphs that the H, contribution, again given by
curve B, contains a sharp spike in the small-¢,
region, while the H, distribution (curve C) is much
broader. This shows that H, mainly receives con-
tributions from the small-J partial waves, while

2%d, M=+
1,-0.05 Gev?
H, Contribution

] M, =10 +5

|.2/""_\x
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2.
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1.4

I.

FIG. 12. Schmid loop from the H, contribution to the
2'd M=+1 partial wave. P;,=25 GeV/c, t,=-0.05 GeV?,
Units are the same as in Fig. 10.

H, receives a significant contribution from the
higher-J partial waves. Since H, has a nonzero
discontinuity in the subenergy s, as a Feynman
diagram containing a p-7 resonance would, it is
inviting to regard H, as containing a “dual aver-
age” to the p-m resonances. From Fig. 3 then, we
see that the main contribution to the cross section
comes from the “nonresonant” piece H,.

If H, were to contain most or all of the contribu-
tion of the p-m resonances it would be interesting
to partial-wave-analyze this term alone. Since «,
> -1, we may substitute H, into Eq. (3.7), and the
angular integrals will not violate the condition «,
+a,>0 if [¢,| is sufficiently small. In Figs. 12 and
13 we see the results of such an analysis on the
2*d partial waves. Both curves clearly resemble
resonance loops, and the M =+2 partial wave peaks
very near the A, mass. The H, contribution is al-
most purely positive imaginary, firstincreasing at
the pr threshold, thengradually decreasing for large
M,,. It turns out that resonancelike loops are seen

25

2%d, M=+2
1,=-0.05 Gev?2 2
H, Contribution
M’";:','I.\l.o @
x c
2 \ [
/ .94 5
3% - . < 3
6 4 2 /30 5
1.4 ReF (arbitrary units) x :
€

I.é\—’/,
20

FIG. 13. Schmid loop from the H, contribution to the
2'd M=+2 partial wave. Pj;=25 GeV/c, t,=—0.05 GeV2.
Units are the same as in Fig. 10.
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FIG. 14. Schmid loop from the H, contribution to the
1'd M=+1 partial wave. P ;=25 GeV/c, t,=—-0.05 GeV2.
Units are the same as in Fig. 9.

in the H, contribution to all of the partial waves.
We should not take this model’s predictions of res-
onances too seriously then, but we can gain some
insight into the behavior of the partial waves, if
resonances actually were present.

We may readily understand the rapid increase in
phase that some of the partial waves display just
above the p-7 threshold. If we partial-wave-ana-
lyze the H, contribution to these partial waves, we
obtain loops like those shown in Figs. 12 and 13,
but rotated clockwise by 90°. Thus for low M o
both the H, and H, contributions are increasing in
the +¢ direction, and the resultant sum varies ra-
pidly in phase. In cases such as these (the 1*d
M =0 partial wave shown in Fig. 9, and the 2°p M
=0 wave with phase displayed in Fig. 7) the initial
rapid increase in phase is not due to resonant be-
havior, but rather to the phase relation between
H, and H,. In general, those partial waves (M= 0)
that start in the right half-plane form rounded
loops with a rapid increase in phase at low M, ome

The rather “flattened” loops, such as those oc-
curring in the 2*d waves, result from the fact that
the contributions from H, and H, do not initially
increase in the same direction. These waves start
in the left half-plane, and their H, contributions,
which are again counterclockwise loops, tend to
move in the ~¢ direction, while the H, contribu-
tion, as before, moves in almost exactly the +i

direction. Another example of this is shown in
Fig. 14, which displays the H, contribution to the
1*d M =+1 partial wave. Again, we have a counter-
clockwise loop. As we saw in Fig. 11, however,
when we add this piece to the H, contribution
(which has an almost purely imaginary, and there-
fore stationary, phase) we obtain a clockwise loop.

In light of the above discussion, we conclude that
if the p-m resonances contribute to the H, term,
they can only be seen if either the resonance con-
tribution is very strong, or else the H, contribu-
tion is very small. It seems reasonable that the
A, has been seen in this reaction partly because of
the d-wave threshold behavior of the H, contribu-
tion to the 2*d partial wave.

Finally, we may ask whether this resonancelike
behavior is present in the partial wave amplitude
for the 1*s wave. In Fig. 15, we see the H, con-
tribution to the 1*s M =0 partial wave. Again we
see a Schmid loop corresponding to resonancelike
behavior. It is interesting to note that the mass of
the “resonance” is about 1.1 GeV. Apparently, the
H, contribution is large at the p -7 threshold due
to the absence of kinematic threshold factors in
this partial wave. This “nonresonant” term acts
as a background that masks any resonant behavior
that may actually be present.

It is interesting to speculate on the existence of
an A, “resonance,” and the possibility of incor-
porating it, along with other p-m resonances such
as the A,, into the model. As we have seen, the
term H, contains Schmid loops corresponding to
p-m resonances, while the H, term contributes a
piece with nonrotating phase to the partial waves.
It seems reasonable, then, that we could replace
the H, term with several tree graphs correspond-
ing to p-m resonances like the A, and (hypothetic-
al) A,. More sophisticated approaches may read-

ImF (arbitrary umits)

(

. 2
i 1,3-005 GeV
X x—|5
L3 1.4 -

/

Hy Contribution -4

FIG. 15. Schmid loop from the H, contribution to the
1"s M=0 partial wave. P,,=25 GeV/c, t,=—0.05 GeV2.
Units are the same as in Fig. 8.
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ily be imagined, and this general type of approach
would not involve any double-counting of the reso-
nances if we were to retain the H , term, since
that term does not appear to have much (if any)
resonance content. If we look at Figs. 3 and 6(a),
we see that an A, “resonance” at about 1.15 GeV
would contribute negligibly to the leading edge of
the p-m mass spectrum. The resultant curve
would more nearly resemble B in shape in this re-
gion; this is desirable since curve B is more
sharply peaked, and hence bears a greater resem-
blance to the data. The addition of a term corres-
ponding to an A, resonance would not affect the
mass spectrum in regions far from the A, mass,
since as we see in Fig. 6(b), the 2d wave is rela-
tively small in our calculation.

VI. SUMMARY

We conclude that the reaction 77p — p°r™p can be
described by a double-Regge amplitude that does
not contain simultaneous discontinuities in s, and
s, when the amplitude is evaluated in the double-
Regge limit. The shape of the calculated 37 mass
distribution agrees with the data. The main con-
tribution to the mass spectrum comes from the
term H,, which we interpret as being nonresonant.
The slightly improved width of the distribution is
due partly to the interference of H, with the term
H,, which we interpret to contain the p-7 reso-
nances.

We obtain partial-wave amplitudes that agree
with the calculations of Ascoli et al. In the 1*s
partial wave, the resonancelike contribution of H,
is hidden by the H, contribution. This effect is
particularly strong in this partial wave due to the

phase relation of the two terms and the absence of
threshold suppression factors.

Finally, the success of this model is readily un-
derstood by noting that the dominant term H, has
the asymptotic behavior s,*27%1s,%1, In the “A,”
region of phase space, this term approaches its
asymptotic limit; the success of Reggeization is
then not unexpected.

As a closing comment we speculate on the possi-
ble existence of an A, meson. As we have noted,
the H, contribution to all of the partial-wave am-
plitudes contains Schmid loops, so that a Schmid
loop in the 1*s wave can hardly be considered
“proof” of the existence of such a resonant state.
However, the facts thatthe Argand plot of the H 2
contribution peaked at about 1.1. GeV (in the mid-
dle of the high “nonresonant” 37 bump) and that the
large “nonresonant” term (H,) tends to dominate
the 1*s partial wave, suggest that perhaps the (ex-
clusive) final state 7*7~77p is a poor choice in
which to search for the A,. One might hope that
these detrimental effects could be minimized, for
example in inclusive 37 production, so that more
definitive results could be obtained.

ACKNOWLEDGMENTS

The author wishes to express his deep apprecia-
tion to Professor Lorella M. Jones for suggesting
the problem, and for countless hours of valuable
discussion. He also wishes to thank W. W. MacKay
and C. W. Wingate for important computational as-
sistance. Finally, he wishes to thank the Illinois
High Energy Experimental Group for the use of
their computer facility. This research was sup-
ported in part by NSF Grant No. PHYS 75-21590.

1G. Ascoli et al., Phys. Rev. D 8, 3894 (1973).

%G. Ascoli et al., Phys. Rev. D 9, 1963 (1974).

%0. Steinmann, Helv Phys. Acta. 33, 275 (1960); 33,
347 (1960).

‘H. Araki, J. Math. Phys. 2, 163 (1961).

’K. E. Cahill and H. P. Stapp, Phys. Rev. D 8, 2714
1973).

L. M. Jones, Phys. Rev. D 14, 3233 (1976).

'J. H. Weis, Phys. Rev. D 6, 2823 (1972).

8. D. Froggatt and G. Ranft, Phys. Rev. Lett. 23, 943

(1969).

°R. C. Brower, C. E. DeTar, and J. H. Weis, Phys.
Rep. 14C, 259 (1974).

11, T. Drummond, P. V. Landshoff, and W. J. Zakrzew-
ski, Phys. Lett. 28B, 676 (1969).

YE. L. Berger, Phys. Rev. 166, 1525 (1968).

124 R. White, Nucl. Phys. B67, 189 (1973).

1%C. Schmid, Phys. Rev. Lett. 20, 689 (1968); Nuovo
Cimento 61A, 289 (1969).

4G. Caso et al., Nuovo Cimento 47, 675 (1967).



