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I. INTRODUCTION

The partial-wave analysis (PWA) of a three-particle system within
the framework of the isobar model has been a powerful tool for the study of
baryon resonances in, for example, the reaction 7N » nrN. The first anal-
ysis of this kind on a three-meson system was carried out by Ascoli and his
coworkers at Illinois. Since then, hils analysis and, in particular, his
analysis program has been applied successfully to 3w and Knr systems over
a wide energy range in a number of reactions.

The purpose of this review is to give a comprehensive survey of
both the mathematical formalism underlying the analysis and the experi-
mental results of the analysis as applied to 37 and Krn systems. There has
been over the yeafi gg informative ser}es of summaries on the experimental
results by Ascoli‘™ and others.(4“8 Our main aim here is not so much
to give an up-to-date account of the results as to combine the survey with
an exposition of relevant theoretical formulas in order to make this a
reasonably self-contained review of one of the more fruitful areas of
meson-resonance. physics. :

In Section 1I we delve in some detail into the full range of mathe-
matical tools that are required to describe production and decay of a
three-meson system. As will become clear, the exposition here represents
our own independent view. 1In particular, we present and discuss a complete
set of orthonormal functions which are suitable for description of a three-
meson system. We give, in addition, our own approach to parametrization
of the spin-density matrix which guarantees the positivity and rank condi-
tions as well as parity conservatiom.

We survey, in Section III, first the results of the PWA on (3‘11)i
data with emphasis on the current status of the Aj, Ay and A5 enhancements,
and then discuss the results of a recent analysis on the (37)° data, where
a possible Regge recurrence of the w is seen at mass 1669 MeV. Results of
the PWA on the Kmn system derive from three charged states: K-ntn—, ROn°n~
and B°nTr~. Prominent features found in the Knm systems are the Q-region,
the Krm decay of the K*(1420) and the L-region. These and other relevant
results are given in Section IV.

We give in Section V our view of the future prospects. We present,
with particular care, how the current techniques of the PWA can be improved
upon at succeeding levels of sophistication. A summary is given in Section

VI.



II. (3r)" FORMALISM

We give here the general mathematical tools required to describe
the production and decay of a three-meson system. A similag formalism,
first treated by Ascoli, can be found in Brockway's thesis(®) and a recent
paper by Hansgen, gg_gi,tlo) Our approach here 1is essentially the same,
as there cannot be much freedom in the "isobar model' as applied to a
three-meson system. However, certain derivations and parametrizations are
our own, and the results are not identical in "minutiae.”

1. Preliminaries

Let us start our for concreteness by selecting the reaction

+

Tp > (3w)+p

4 (1I.1)
+>TEA

for exposition of our formalism. Let w be the effective mass of the In
system, R{aBy) the Euler angles describing the orientation of the 3w
system with respect to a coordinate system fixed in the production process
(the precise definition will come later), and 0% the scattering angle be-
tween the initial and final nucleons in the CM. Then the phase-space
factor assumes the form, neglecting factors which depend only on w,

*
d¢, = dcos® dw dR d¢, (I1.2)

4

where d¢5 is the Dalitz-plot phase-space element given by (again neglect-
ing explicit dependence on w)

d¢y « dE, dE, (1I.3a)
o dsi dsj (I1.3b)
= p;q dw, dcos6, (II-3C}

where p, and E, are the momentum and energy of the particle i in the 3w
rest frame (RF} and vy (Bi) ig the 27 effective mass (squared) defined
cyclically:

2 2 > 2
sy =y = EFEDY - ()



(—-8,;) is the angle between the particles i and j in the (j+k) RF and q4
is the magnitude of the momentum of j in the same RF.

If we denote by T the Lorentz-invariant transition amplitude'for

process (1), the differential cross-sections assume the form,

da
%
dcos® dw dR d¢3

«zjT|? (11.4)

where the summation is over the initial and final nucleons and all the
factors which depend solely on w and on the overall CM energy have been
suppressed.

2. Orthonormal Functions

We shall henceforth consider only a small region of phase space
with a given w, cos8® (or equivalently t, the four-momentum transfer
squared between the initial and final nucleon) for the reaction (1) with a
definite CM energy. Then the problem of 37 analysis involves 5 independ-
ent parameters, R = (a,8,v) and ¢, = (Ei’E Y. Our task here is to develop
a complete set of orthonormal funétions which span the entire S-dimensional
space.

For the purpose, let us first introduce two variables which de-
scribe the Dalitz plot: ome is the angle @; defined in (3), and the other
is defined via

sin(TiIZ) = qi/qo, q, = max(qi). ' (I1.5)

Note that t; by definition ranges between o and v inclusive, and the value
of o(m) corresponds to the minimum (maximum) value of qj, which in turn
corresponds to the maximum (minimum) for pj. Hence, the boundary of the
Dalitz plot has been relegated to the values of 8; and 7; at o and . We
shall find it convenient to recast d$3 in terms of Ty and 64 in the follow-
ing way, again neglecting factors which depend only on w;

dgy = &(1y) dry (11.6a)
P
E(t,) = i >0 (II.6b)
i vy cos(ri/2)

dri = sin'ri dcoa‘fi dcosOi- (II.6¢c)



Note here that the '"phase-space factor" is carried by sint{ in the sense
that drj goes to zero when 14 is equal to o or n. Therefore, the factor
E(t4y) 1is merely a correction factor (which is always greater than zero)
comnecting the phase-space element d¢3 to dry which is mathematically
more advantageous for our purposes. From now on, we shall drop the sub-
script 1 from 1, © and r; it should be understood that these quantities
are defined in one particular 2m rest system which is obtained from the
31 rest system via a pure time-like Lorentz transformation.

We have thus reduced the 5-dimensional space of a 3n system to
mathematically simple variables R = (afy) and r = (1@) with the variables
ranging between o to n for B, v, and &, and ¢ to 2v for a and Y. We may
also define a normalized distribution via

do do
LRr) = par © dRds ()
x z[r]2 £(t) (II.73)

so that

2
1(Re) = —ET ()
fdRdr Z)T|C £(1)

(I1.7b)

We are now ready to introduce a complete set of orthnormal func-
tions which span the Dalitz plot 11),

(v+1) T(v-g+l) 1/2

T (v+o+2) ]

b, (1) = 2°T (0+1) [(20+1)

(11.8a)

X eiﬂ/z(sim)0 Cgti(COST) Po(cosg)

+
where Pc is the Legendre polynomial and Cg_é is the Gegenbauer polynom-

1a1{(12) (v>0). The functions ¢,5 are normalized such that

f¢v'o'(19) ¢:G(T9)df = 78 (I1.8b)

&
w' og!

and ¢°o(19) =1, (11.8¢c)



From the defining formula (8a), it is clear that the index ¢ car-
ries the meaning of dipion spin; hence, it will in general have some
finite cutoff value, beyond which one need not consider in a given experi-
mental data. Note also that the Bose symmetrization is automatically
taken into account, if we choose the dipion system to be the one with like
charges and consider only even values of spin 0. Note furthermore that
near the dipion threshold one has sintj = qj, so that the factor (sint)®
in (8a) plays the role of the angular-momentum barrier effect. The Gegen-
bauer polynomial which depends only on the variable cosT affords no
straightforward physical explanation; it simply picks up the remaining
Dalitz-plot variable, and in general the index v ranges from 0 to «.

The orthonormal functions which span the 5-dimensional space can
now be written as a product of ¢y4(7,8) and D&mr(a,s,y) which of course

form a complete orthonormal set over the rotation space R = (a,8,Y).
The distribution I{R,r) can be expanded in terms of these functions,

o I *
IR) = £ © I Q-‘%ln(mxx) x Doy (R) dr(x)  (11.92)
IMN I=0 K=0 (27)

The quantities H(LMNIK) are the experimentally measurable moments given by
L
H(LMNIK) = [dRdr DMN(R) ¢IK(r) I(Rr) (11.9b)
with the normalization
H(00000) = 1. (11.9c)

Two special cases of the expansion (9a) are of some practical im-
portance. First, note that, if we integrate over r, we obtain the familiar
expansion in the rotatiom space:

I(R) = JI(Rr)dr
*
5 (ﬂ‘lg-l-) H(LMNOO) n:'mcn) (I1.10a)
IMN 87

Second, by integrating over R, we obtain an expansion appropriate for a
Dalitz-plot analysis:



I(r) = JI(Rr)dR

I
I H(O0OIK) $7.(r) (11.10b)
120 K=0

H
g |-
IJMS

The efficacy of introducing a complete set of orthonormal func-
tions in R and r space is two-fold: First, it affords a straightforward,
unblased way of assessing the goodness of fit; one simply compares the
theoretical (or fitted) and experimental H moments and forms a joint x2,
from which one derives a goodness-of-fit probability. Second, the expan-
sion (9a) demonstrates the richness of information contained in the joint
space of R and r; it demonstrates that, as long as the maximum 37 spin
in a problem remains finite, one can in principle determine all the para-
meters in the problem (and in general unique)} because the number of in-
dependent moments H is infinite (i.e. I goes to », while L remains finite).

3. (31T)+ Decay Amplitude

Our next task is to write down the Bose~symmetrized decay ampli-
tude corresponding to the step decay J" - s"s + T, s"s » 7t + 71—, where
J($) is the (3m)*(21)° spin and n and ng are the corresponding intrimnsic
parities. And the amplitude is then given explicitly in terms of the
variables R and r.

Let us define the body-fixed axes (that is, to the (31r)+ system)
as shown in Fig. A. To wit, we choose the negative of the n~ direction
in the (37) RF to be the x~axis and the y-axis in the 3m plane, so that
the z-axis is along the normal to the 37 plane. The helicity frames for
the two separate 2« subsystems have thelr axes (xl,z sXo and z,) in the
direction as shown in Fig. A. The angles 8; and 85 are defineé
(w3w2) RF and (w3wl) RF, respectively, while the angies €1 and €7 are
those corresponding to, respectively, “3.21 and T3, in the (3n) RF.

Then, the decay amplitude for a given 3w spin-parity a = {J,n}
with step decays via a number of intermediate (27)° spins s and helicity
A can be written

*

a J
A <= «ix D 5 (21s ® .00 d o8 f J\(WI) + (1+2) (I1.11)

where fsl(w) is the helicity amplitude for a given a and s for the (ﬂ T )
system. The arguments of the first D function, which specify the orienta~
tion of the axes zj; and x; in a coordinate system fixed in the production



process, can be re-expressed in terms of R(x,8,y) as follows:

R(2,, 8),6;) = R(x,B,Y) R(-¢;,n/2,-1/2) = RR
(I1.12)
R((bz’ @2:¢2) = R(G,BsY) R(EZ,'IT/Z,TI‘IZ) = RR2

The next step 1In our derivation is to re-express fsx in terms of
the £-s coupling constants:

a a
£,00,) = §(£03A|JA) QW) 6 (11.13)

where G gs is the &-s coupling constant and Q) (w,) contains all the "known"
mass or momentum dependence such as the Breit—Wigner form for the (2m)°
intermediate state or the angular-momentum barrier factors,

g, ¥y o 18,00y
Q, (w,) = Pi(ggiii L sind_(w,) (I1.14a)
i

with 2 2
cotds(wi) = (ws -, )/(wsrs) _
(11.14b)

Py = Tyl ay/a )

where w and F are the mass and width of the (2“) intermediate state and
q = iTw — % The factors appearing in (l4a) have been fixed by demanding

that the ﬁbr@n%z—}nvariant amplitude A have the dependence Pi for Py ~ 0 and
ql for q4 = O. The energy dependence on g given above, although fairly
common, is not unique; there is as yet no generally accepted form for the T'g
energy dependence.

We can now recast (11) using (12) and (13):

*

a a J J
A, =D G T DL (R)E L (x) (11.15)
s U
where J 2 *
= II.
11R‘S(r) z(zosA|JA) 121 Qg wy) DuA(R ) d 58y (IL.16)



We may choose the variable r such that r = r_, = {71,,8.,} for the (w+,w;)
system. In this way, the requirement for BoSe symmet%ization can %e
trivially taken into account in the orthonormal expansion, as pointed out
in the previous section.

We are now ready to give a precise meaning as to what we mean by
an isobar model; it amounts to assuming that the 2-s coupling constants
G,g are indeed constant for a given region of w and t. Our "best dynam-
ical knowledge" concerning the 37 decay is then reflected in the term
Qgs(wi) given in (l4a) and (l4b).

4. 31 Production Amplitude

In a non—-dynamical description of the 3w production process, the
most general and economical tool available is that of the generalized spin
density matrix, in which the possibility of interference between different
37 spin-parity states is taken into account. However, it is not always
easy to parametrize the density matrix whereby all the constraints the
density matrix is subject to are satisfied and at the same time the number
of parameters is the same as that of the independent unknowns in a density
matrix.

Qur approach here is not to derive all the relevant formulae but
rather to give a brief outline of the major steps involved in the para-
metrization. We shall first define a complete set of eigenstates of the
reflection operator; this enables one to incorporate in a natural way the
constraints of parity conservation in the production process. The second
step in the parametrization involves the so—-called triangular representa-
tion of the reflectivity density matrices. For details of the approai¥5)
given here, the readers are referred to a paper by Chung and Trueman.

Assuming that the reaction AB+RC takes place in the xz plane

(which we call the production plane), the reflection operator can be
written

HY = HRY(ﬂ) = Ry(ﬂ)n (11.17)

where T is the parity operator and R§(n) represents a rotation by n of
the system around the y axis (or the’production normal). The reflection
eigenstates can be written

|cam> = [[am> - en(=)" "] a-m>] 0(m) (11.18)
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G(m)=;17§,m>0

= %. m=20 (11.19)

=0, m< @

where a = J" 1s the spin-parity of R and ¢ is the "reflectivity"” relafed
to the reflection eigenvalue:

Hy]eam> = -e(-)2J|eam> (1I1.20)

Note that 1 2. (—)2J, so that ¢ = +1 for bosons and € = + i for fermions.
The inverseyof (18) 1s given by

|am> = £ |eam> 8(m)-n(-)7 ™ a*lsa—m> 8(-m)] (11.21)
€

In terms of the reflection eigenstates, the production amplitude
for R can now be written,

mﬁfei = <gam eflT[einA> (11.22)

where ei(e ) refers to the reflectivity of the initial (final) nucleon B(C).
Note that gor a spin-1/2 particle, the reflectivity eigenvalue exhausts the
spin degree of freedom. From parity conservation, it follows that ¢ is

a function of € and si:

eg = - (=)%Y €, (11.23)

where we assume the beam particle A to be a pseudoscalar (nA = -1).

Now the density matrix in terms of the reflection eigenstates can
be written, from (22)

*

£na e a'
[o] y = z T T ' (II.Z")
mefei m efei

Note that there is no interference between different reflectivity ¢ because
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of (23) and that, furthermore, the summation over £, suffices to accommod-
ate the "external" spin degrees of freedom. So the spin-density matrix

is broken up into two disjoint submatrices +)p and (')p as a conseqguence
of parity Co?i rvation. An additional consequence 1s that each of the
submatrices p has rank 2, corresponding to the values €, = +1. We
have chosen the sign of € [see (18)] such that (*)p [(")p} has contribu-
tions only from the nadural (unnatural) parity exchange in the peripheral
region.

From (18) and (24) one can give a relationship between the re-
flectivity density matrix ®p and the conventional one:

£ aa'
p

t t t f
m' 2{92:1. S M P22 11 8(m)e(m") (11.25)

A parametrization of €p which covers all the constraints is
given by

K
v = L V TR (11.26)

where K is the rank of s:p (=2 in our case). The €¥'s have the so-called
triangular representation, i.e.

o
|

ik - 0, k>1

real, k = i (11.27)

= complex, otherwise

where we use the notation i to represent the combination (a,m).2 Note
that the maximum number of independent real elements in V is N” where N
is the dimension of the matrix ®p, corresponding to the case when k
ranges from 1 to N; otherwise, the number is smaller than N

Let us consider as an example a 37 system with s 07, +, y3d
and 3—, Then, the total number of real parameters for (Mp [ )p] is
16x16 [15x15]. 1If, however, the rank of %p is 2 (i.e. k=1 or 2), then
the number for (* )p [(-)p] drops to 28 [26] Note that precisely the same
number of elements are required for €V's

Owing to the bilinear form of (26), the positivity of €p is auto-
matically satisfied in the triangular representation, and one is free to
vary each element of ‘v independent of one another. Therefore, by
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parametrizing Ep in terms of EV, one has accomplished the task of repre-
senting the full allowed space of ®p without resorting to complicated
relationships which result from the constraints of positivity and rank
conditions.

5. PFull Distribution Functions

The overall 3w amplitude has the form,

€r =z ET:E a2 (11.28)
€if  am i°f
(16),
The decay amplitude here is the analog of (15) in the reflectivity basis :
£ a* J
£.a a
Am « T Gﬂs I Dmu(r) Euﬂs(r) (11.29)
is u
* J J J
. £.a _ _ _yJ-m
where Dmu(R) = [Dmu(R) en(-) Dumu(R)] 8(m) (11.30)

And the distribution function can now be written

2
Ige) = ¢ T, _ |7 &0
ey i°f

so0 that

*
e aa' e.a e.a’
I(Rx) = T Dmv Dmu(R) Dm|u|(R)

2 a' 3 It* (11.31)
X GQSAGE.S. Euzs(r) Eu.z.s.(r) E(1)

where the summation extends over all the repeated indices. This distribu-
tion, however, 1s not the most general one. It is possible that the pro-
duction process can influence the waves (£,s8), in which case the density-
matrix elements should be enlarged:

€ aa' _a a'* e ,alsm
p. oy G, G -+ )

gs Cotg? P a't's'm' (11.32)
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For simplicity, however, we will continue to assume in most cases that the
m dependence "factorizes" from that of the waves (%,s).

It is instructive to write down explieitly the probability for a
given state {a,c}, i.e. from (31),

*
P | ¢ aa a a J
L'S' '
*
J J
where sr's’ = T fdr Eugs(r) Euz,s.(r) £ (t) (II1.34)
u

This shows that the interference between different waves (g,8) cannot in
general be separated, and therefore even the 3y mass spectrum w will in
general be influenced by this interference effect.

A few words regarding normalizations are in order at this point.
Let us denote the normalized functions by the tildas. Then,

J 11/2

Leps (11.35)

~J _J
Euzs(r) = Eugs(r)/[e

Note that the normalized function is now unitless. Correspondingly, we
have, from (34),

~J = - ' 1
eﬂ,&ﬁ.'s' 1, 1if (2,s) (e',s")
(11.36)
~J
IeRSE'S'l _<_ ]—’ if (f.ss) * (2.':3')

so that the latter may be regarded as a correlation coefficient for the
(25)x(2's") interference effect. Let F, be the quantity proportional to
the number of events in a given bin of w and t, i.e. from (33)

F o= I €¥2,

£a

or, for the general case of (32),

£ ,afsm
Fo z (ak‘s'm
£am
gsi'a’

) &) g (11.37)
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Then, the most general normalized distribution function is given by

*
l 1
I(Rr) = 2~ zEp(:‘fz?s,m,) ED:m(a) en;.u.(n)
© (11.38)
oo, ., @ e
X e E(r

ulzlst

Note that the unknowns are collected in the "super-density matrix" of (32)
and that the normalization factor F_ is also a function of the super-density-
matrix. Of course, the super~densigy matrix can also be given by the tri-
angular representation:

. o Eyals e a't's’'
!) - i vmk vm!k

£ ,afsm

p(alzlsfm (11-39)

With this, the distribution function now has a simple "amplitude representa-
tion", i.e.

1Rr) = = 1|%B, &0)|7 £(r) (I1.40)
o k
where £ £ a8 € a ~J
Bk(Rr) = ais mG Dmu(R) Euzs(r) {(I1.41)

my

Under the factorization assumption, the V's break up into the simpler V's
introduced earlier and the decay parameter G's. Thus, in this case,

£ _ E,a €3 a =J
Bk(Rr) = I mG Dmu(R) T Gls Euls(r) (11.42)
amyu s

We recommend that the formula (40) be used in actual computer programs
because of its simple form and resulting ease of handling many indices.

It is instructive to find out the total number of parameters in
(38) and see by how much it can be reduced with additional assumptions.
Let us take as a concrete example a 37 system with J"'s up to 3— allowed.
All possible states (als) for s up to 2 are listed in Tables I, II, and III.
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The most general case 1s that corresponding to the super-density matrix

of (38): the number N of independent parameters is, from Table III,

N = 72x72 + 60x60 = 8,784. This undoubtedly is an impossibly large number!
If we restrict the rank of the super-matrix to 2, i.e. k = 1 or 2 in (39),
then we have N = 71x4 + 539%x4 = 520. If we assume factorization, i.e.

the dependence of m is independent of that of (2,s) for zach a, we obtain,
from Tables I and II, N = léxl6 + 15x15 + 42 = 523; with the rank condi-
tion, N = 15x4 + l4x4 + 42 = 158.

A remarkable aspect of the (31r)i system is that the actual number
of waves required to describe the system is considerably less than the
maximum. In fact, for w up to 2 GeV, only 10 partial waves, listed in
Table IV, are required to describe the bulk of the (37)— data. With
factorization and rank condition, the number N of independent parameters
is merely 26. Given that the potential number of parameters is astronom-
ically large, what one obtains from the (37w)— analysis is not so much a
unique solution but rather a solutiom with a fair description of the data
for a minimum possible set of parameters.

6. Maximum Likelihood Analysis

In this section we list a few relevant comments which might be
helpful in a likelihood fit to the (37) data.

The likelihood method can be applied in two different ways. 1In
a conventional approach, one forms a likelihood functilon starting from a
normalized distribution (38):

R

sy

il

£n I(Riri)

N
Zt
i=1
Ne
T (1I.43)
i=

in F(Rir - NtEnF

)
1 i

where I{(Rr) = F(Rr)/F_ and N_ is the number of events in the sample being
analyzed. There is no absolite scale in the problem in this approach,

for multiplying F and F_ by an arbitrary constant does not affect the like-
lihood function «'. Therefore, it is necessary to fix F_ to a given number,
e.g. N . This amounts to keeping the trace of the super-density matrix

to a fixed number, which can easily be done as given, for example, in

Chung and Trueman, (15 However, one disadvantage 1s that the dependence

of I(Rr) on the actual parameters being varied is quite complicated, which
could lead to an inefficient use of the maximum—-likelihood program.
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ao)

A better approach is to use the extended maximum-likelihood method,

as was done by Ascoli. 1In this approach, the likelihood function is
Ne

A= §=1m F(Ryr,) - F_ (11.44)

We now have an absolute scale in the problem, and the maximum-likelihood
solution will automatically adjust itself so that Fo T N_. Note that this
procedure requires one additional parameter than the previous approach,
corresponding to the absence of the trace condition. However, a distinct
advantage is that F(Rr) and F, are now quadratic in the unknowns [see (39)].
it has been stated that the extended maximum likelihood method of (44) is
better statistically, for it takes into account the Poisson distribution of
the total number of events N¢ in the sample. However, any sample of events
large enough to give a reliable set of parameters in the analysis should be
large enough to make the error on YN; inconsequential.

A possible complication in the analysis might arise when the (3wft
system has reflections from N*'s or A's. One of the simplest ways of elim-
inating these reflections is to impose cuts on the experimental data. Im
this case, the normalization constant Fo is no longer given by (37), but
rather

Fo = [ dRdr F{Rr) (11.45)
cut

which should replace F_ in (43) and (44), and the integration is over the
region outside the cuts.

III. PARTIAL WAVES IN 3m SYSTEMS

1. Results on (3n)i-Data

Since the first publication in 1970 by Ascoli_gg_gi,(l7) on the
partial-wave analysis of a (3n)” system, similar analyses by the same group
as well as others have been extended for the n—p data from 5 GeV/c to 40
GeV/c. And the range of the 37 mass w covered in the analysis goes from
the threshold up to 2.1 GeV.

The data on the (3n)" system, obtained from the reaction

ip TN p, (111.1)
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consist of the Illinois data(17) with PLab at 5 and 7.5 GeV/c, the Il1li-
nois world compilation(ls) with P ranging from 11 to 25 GeV/c, and
the Serpukhov data(1?) at 25 and 4BaEeV/c. Results on the (31r)+ system,
from the reaction

ﬂ+p > w+ﬂ+ﬁ-p, (I1I.2)

have so far been reported by three groups on three separate data: the
Purdue data(@0) at 13 GeV/c(' fhe Aachen/Berlin/Bonn/CERN/Heidelberg
(ABBCH) collaboration data 31 at 8, 16 and 23 GeV/c, and the Berkeley
data at 7 GeV/c.(22)

In addition, similar analyses have been performed on the coherent
dissociation 1 -+ (37)" in two different reactions. One of these, an ex-
periment carried out by an Illinois group, 23) involved detection of a
4,33 MeV y-ray from the excited carbon state in the reaction

T C > ﬂ+ﬂ—ﬂ-C* {I11.3)

at PL = 6 GeV/c. The other involved a more conventional coherent dis-
socia%&on on nuclear targets,

T A > ﬂ+ﬂ_ﬁ-A, (II1.4)

at 22.5 GeV/c, an experiment performed by the Carnegie-Mellon/Northwestern/
Rochester group.(24) A summary of these data, together with certain
pertinent characteristics, is listed in Table V.

All the aforementioned analyses use the Iilinois partial-wave
analysis (PWA) program, except the Berkeley work. The formulas used in
the Illinois PWA program are not substantially different from those in
the preceding section. The differences in the Illinois program are:

(1) the 37 analyzer (body-fixed z-axis) is taken to be a vector in the 37
plane, instead of the normal to the 37 plane as in our case; (2) certain
minor energy-dependent factors in Ql (w,) are differeant; (3) the para-
metrization of the spin-density matfix is different. These differences
are clearly technical in nature; there should not be any substantial dif-
ference in the results whichever formulas are used in the analysis.
Parameters for the intermediate states €, 0% and f, used in the Illinois
program, are given in Table VI. Note that the ¢ width is large (v 400
MeV); the ¢ state is used in the analysis not so much for its "purported
existence” as for its usefulness as a means of parametrizing a large
s-wave in the nn scattering amplitude.
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The Berkeley program parametrizes the 3r production amplitude in
terms of amplitudes rather than a density matrix. The Berkeley group in
fact made one crucial assumption: spin coherence of all the waves consid~-
ered. In our language, this amounts to setting the rank of € to one. In
addition, the assumption is made that ¢ is equal to +1, i.e. no unnatural-
parity exchange contribution to the 3n states. This {is not a drastic as-
sumption, for it has been known from the results of the Illinois PWA program
that € = +1 is dominant over £ = ~1.

Before we go into the actual survey of the results, we shall describe
our notations which specify completely a given (3ﬂ)i-partial—wave state.
They are

JV 25 m®
(II1.5)

example: 2+ Dp° l+

Thus, the orbital angular momenta are designated S, P, D and F for £ = 0,
1, 2 and g while the intermediate states are given the resonance symbols,
i.e. ¢, p , f and g for s = 0, 1, 2 and 3. The reflectivity ¢ is given
as a superscript on m, following the conventions of previous analyses.

A complete list of all the waves that have been considered for
the (Bw)_.system with w up to 2 GeV is given in Table IV. Significant
waves have been underlined in the table note that only 10 waves are found
to be important in this mass region 255 Each of the more important partial
waves is shown as a function of mass in Figa: 1-5. It is seen that in all
cases the significant partial waves belong to unnatural spin-parity series,
produced via naturalwparity exchange. For both (37)” and (BW) systems
there appear three enhancements, the so-called Ay (*1.15 GeV), A, (01,32
GeV) and A3 (11.65 GeV) states, with the 4 enhancement being by far the
largest in Intensity. ZEach of these states is produced primarily in one
partial-wave!

Ay 1t g% oF

By 2t pp® 1t (III.6)
- +

Ay 27 SE O

The figures demonstrate, furthermore, that Ehere is léttle intrinsic dif-
ference in the intensities between the (37) and (37) systems.

Turning now to a discussion of the resonance phases, all the anal-
yses agree that the A; phase variations with respect to other waves are
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constant throughout the resonance region; see Figs. 6, 7 and 8. It is
clear that a simple resonance interpretation for the A; 1is impossible.

A portion of the A bump might indeed be the sought-after 1% =1

JV = 1% resonance (required from the point of view of the quark model);
however, one has to invent a mechanism by which the resonance phase does
not vary rapldly relative to %he background phase. This is not impossible,
as in the model by Bowler, 26) although one does get the feeling that
his model is rather contrived. For the time being, one should remember
that the Reggelzed Deck model of Ascoli and Jones 27} does glve the
correct phase variation in the A region as well as certaln qualitative
features of the partial-wave mass spectra, Basically, the model involves
on-mass-shell 77 and 7N scattering amplitude connected by a Reggeized
pion propagator, and the amplitude is symmetrized in the two identical

n mesons (see Fig. B). As we shall see later, this Reggeized Peck
amplitude is required to understand the relative phase between the A1

and Az as well.

The resonance interpretation of the A, bump is secure; all the
investigators agree that the phase variation  in the A) region is as ex-
pected from a simple Breit-Wigner form interfering with a relatively
constant background phase as shown in Figs. 9, 10 and 11, According to
the Serpukhov-data analysis, the mass and width for the AE are £1315 + 5)
MeV and (115 + 15) MeV, and the Purdue analysis gives for the Aj
(1298 + 7) MeV and (112 + 23) MeV. The A, bump in a sense is an anomaly.
This state with J" = 27 is the omnly signi%icant natural spin-parity state
in the (37)— system, and it persists all the way up to PL b= 40 GeV/c,
indicating that Pomeron exchange plays an important role $2 the A2 pro-
duction. This idea is further strengthened by observation of the A
gignal in EE? coherent process T - atn™1~ on carbon at 22.5 GeV/c %see
Fig, 12).¢

. The o(Ap) vs. P b effect is shown more guantitatively in Fig. 13,
where it is seen that U%i ) decreases as PLab_O'U from 5 to 40 GeV/e, in
contrast to other meson productions via quasi-two-body process which d?EB)
crease much more rapldly in P . According to the Illincis analysis,
the energy dependence of G(Azy?acldt for the A, and, in particular, the
phase difference between the A} and A, can be understood with an A, pro-
duction amplitude with f and P (Pomeron) exchanges and the aforementioned
Reggeized Deck model for the A; (see Figs. 13 and 14). It can thus be
said that we now have not only a detailed partial-wave knowledge of the
(3ﬂ)i-system from the threshold to the A, region, but also a semi-quanti-
tative theoretical understanding of the production of the Aj and the Az
as well.

Results on the A3 enhancement are far from clear. 1In both the
" p data and the v+p data, an enhancement is observed in the partial-wave
2°Sf but not in, for example, 27Pp? (see Fig. 15), so it appears that the
Aq is associated with an fm threshold effect somewhat similar to the Aj
enhancement in the pm system. However, the phase variation of the 27Sf
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wave with respect to others is confusing. As seen in Fig. 16, 2 Sf - Z-Ppo
relative phase shows no significant change in the Aj region for both the
ﬁ+p and n"p data. However, the A3 phases with respect to all other back-
ground waves show little dependence on the 3m mass in the 7 p data, whereas
they exhibit a moderate increase through the A3 region in the 7 p data.
What is clearly needed 1s large-statistics experiments on both the w+p and
©~p interactions at relatively high energies, preferably to be analyzed by
a single experimental group.

2. Results on (317)o Data

The partial-wave analysis on a meutral 3v system has so far been
performed by a single group, based on the reaction,

n+b - (ﬂ+ﬁ-ﬂo) A++(1236), (III.7)

+
with the data dervied from the Berkeley Group A experiment on 7 p interac-
tions at 7.1 GeV/c.{29) The data sample analyzed consists of, after the
ATt selection,

6800 events, 0 < |t| < 0.36 cev?

(1I1.8)

6000 events, 0.35 < |t| < 0.80 cev?.

Several new dimensions enter into the problem, if a partial-wave
analysis is to be performed on reaction (7). First, the symmetry among
the pions depends on the total I-spin of the 37 system, so that the I-spin
should be explicitly included among the quantum numbers that characterize
a given partial wave. Second, the angular dependence of the A+t decay at
the baryon vertex has to be taken into account. Third and most important,
additional quantum numbers and variables make the number of unknown para-
meters prohibitively large.

It is therefore essential to make scme simplifying assumptions
before a meaningful analysis can be performed. The assumptions they make
are: (1) neglect all amplitudes with a heldcity flip of 2 units at both
the meson and baryon vertices; (2) restrict the partial waves to those
with J < 3, %+s < 3, and I < 2 plus an additional wave (3'Fo°)I=0. wWith
these assumptions, they have performed maximum-likelihood fits on the
data using the production amplitudes as parameters.

The results are shown in Figs. 17, 18 and 19. Several remarkable
differences are apparent here when compared to the results on the (3m)—
systems. Unlike the (Bw)i.systems, the unnatural-parity exchange
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contribution is large as seen in Fig. 17. 1In addition, there is little
evidence of the A, production with natural-parity exchange. This means
that the A, resonance [(2*Dp®° )1=1 wavel must be produced mainly by B
exchange and not by p. Note also that the A phase, as seen in Fig. 19a,
shows variation expected for a simple Breit-Wigner form. The mass and

width for the A9, according to this analysis, are (1298 + 8) MeV and
(122 + 12) MeV.

Another remarkable aspect of the results is absence of the Aj
and A3 bumps (see Fig. 19). This lends credence to the idea that the
Ay and A, enhancements are mostly the Deck-type threshold enhancements.
One should bear in mind, however, that small portions of the A} and A3
bumps in the (3ﬁ)—-systems might be genuine resonant states which are
somehow suppressed in the (3n)° system.

Figure 18 shows a significant peak near 1.7 GeV for the partial
wave (3*Fp)1=0. *This gtate 18 likely to be a Regge recurrence of the w;
hence the name w” (1700). The mass and width for this enhancement are
found to be

m(w*)
T

(1.669 + 0.011) GeV
(I11.9)

(0.173 + 0.019) GeV.

*

Both the Ay and w are produced predominantly by unnatural-parity
exchange, presumably the B exchange. The ratios R of natural to unnatural
exchange cross sections give a quantitative estimate of this effect:

0.32 + 0.05

I+

R(Az)
* (I1I1.10)
R{w )

]

0.14 + 0.07.

In contrast, the background waves, all of which belong to umnatural
spin-parity series, are produced entirely by natural-parity exchange.

IV. PARTIAL WAVES IN Krm SYSTEMS
Partial-wave analyses of Krnn systems have so far lagged behind
those of 37 systems, because the Knm system is inherently more complex

and the available data is relatively small. The (Kmn)~ data based on
the reaction,

Kp » (K71 )p, (Iv.1)
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come from four separate experiments. They are: (1) the Aachen/Berlin/CERN/
London/Vienna (ABCLV) collabo ation (30) witn Pyap at 10 and 16 GeV/c;

(2) the Serpukhov experiment( 1) at 25 and 40 GeV/c; {33 the Rutherford/
Ecole Polytechnique (Paris)/Saclay (RPS) collaboration‘3Z) at 14.3 GeV/c;
(4} the Ecole Polytechnique EPg;is)/Nielﬂ Bohr (Copenhagen)/College de
France (Paris) collaboration at 3.95 GeV/ec. The RPS experiment anal-
vzes, in addition to reaction (1), the complementary reaction,

K_p > (Epﬂon-)p (Iv.2)

from which valuable information on the overall isospin of (Knw) systems

has been obtained. There is, in addition, an analysis performed by a joint
group of Aachen/Berlin/CERN/Londonlgzenna and Athens/Democritus/Liverpool/
Vienma (ABCLV-ADLV) collaborations on the neutral Krm system from the
reaction

Kp-~> (E?w_n+)n {Iv.3)

at 8, 10 and 16 GeV/c. Summary of these data 1s given in Table VII.

Unlike 3n's, the isobar models for the Knnm systems require inter-
mediate resonances not only in mr systems but also in Kn systems. The are
£, p? and f for the 77 systems and x(s=0), K (890) and K*(1420) (or K="} for
the Kr systems. Parameters for these resonances, as used on the Serpukhov
data, are listed in Table VIII. Again, ¢ and k are introduced merely as
a simple means of parametrizing large s-waves in 77 and Kn scattering amp-
litudes.

On the experimental side, a complication arises because K and o
cannot be always distinguished, especially for low K7 7 effective
masses. Basically, the solution involves throwing out those events for
which it is impossible to distinguish a K from a n~; for details, see
Refs. 30 and 31. The effect of the cut can easily be taken into account
by correcting the normalization integral in the maximum~likelihood fit.

The partial waves that have so far been considered for the Kmn
mass w from threshold to 2 GeV are listed in Table IX. The resulting in-
tensity distributions for the waves as a function of w are shown in Fi§s.
20, 21 and 22. The Q-region (V1.3 GeV) is seen to be dominated by a 1
wave (m® =gt ) with the 0° wave also showing some enhancement in the region.
In the higher mass region (see Fig. 22), there is some indication of the
K* (1420) » Krw in the 2 wave (mE=1 ), and in the L-region (v1.7 GeV) a
bump in the 27 wave (mE=0%). As in the 37 case, the Knm system up to
w = 2 GeV consists predominantly of umnatural spin-parity states produced
via natural-parity exchange (see Fig. 23).
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A breakdown of the 1+ state (see Figs. 24 and 25) indicates that
in the Q-region the l+SK ot wave dominates over the 1+Sp0+ wave with
the corresponding D~wave states being negligible. As was the case with
the A; region, the phase of the 1¥sK* wave shows little vagiation with
respect to w in this region (see Fig. 26). Thus, the 1*SK" enhancement
is again not a simple Breit-Wigner resonance. Furthermore, the Q en-
hancement seems to be a composite of different spin-~parity states; as
mentioned earlier, the 07 wave tends to peak also in the Q-region.

The 2% wave shows a small but significant structure in the 1.4
GeV region. This signal, which presumably is due to the K*(1420) decay,
is seen to be composed entirely of the 2tDk* and not t?e §+Dp°, as shown
in Fig. 27. According to the Serpukhov-data analysis, 1) the X*r to
Kr branching ratio is

KT (1420) > (K*n)”
KT (1420) + (kn)”

= 0.65 + 0.13. (1V.4)

Another way of reliably measuring the branching ratio is to observe the
two decay modes in a non-diffractive channel. One such measurement due
to Aguilar-Benitez, gg_gi.,(35) obtained from neutral K*(1420)'s off
neutron in K p interactions, gives 0.47 + 0.08 for the branching ratio,
quite consistent with the result of the partial-wave analysis.

Let us now turn to a discussion of the L-region. Figure 28
shows the partial-wave decomposition of the 2~ wave in thg L-region. It
appears that the L enhancement comes mostly from the 27SK' (1420) wave,
analogous to the 27Sf dominance in the A3 region. Due teo limited stat-
istics, information on the phase variation on the 2~ state is not yet
available. In any case, it seems 1likely that more than one spin-parity
states constitute the L-bump (see Fig. 29), a situation gimilar to that
of the Q-region. One should bear in mind that a sharp K enhancement
at 1760 MeV has been observed in the reaction Kp > Kntn and another
enhancement at 1710 MeV in the §?action K'p + K wp, both observed in the
BNL K p data at 7.3 GeV/c.(36’3 It seems reasonable to assume that
one or both of these enmhancements have decay modes into Kmm systems,
further complicating the L-region analysis.

Information on the overall isospin of t?g §wn system comes from
the RPS analysis of reaction (2) at 14.3 GeV/c. (3?2 By comparing the
1+sk* and 1+Sp waves in the two reactions (1) and (2), they conclude that
the Knr system in the Q-region is mostly I=1/2. The results of separate
analysis in reactions (1) and (2) are otherwise similar (see Fig. 20),
despite the absence of ¢ intermediate state in reaction (2).
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One remarkable aspect of the RPS analysis concerns the production
dependence of the subsystems K i and Kp in the Q-region. They find that
the waves 11SK™ and 1+Sp have markedlx different production dependence
(the m dependence). Indeed, the 1tsx” wave 1s produced predominantly in
the state m° = 0% in the t-channel reference frame (the t-channel helicity
conservation), whereas the 11Sp is mainly m® = 0% in the s—channel frame
(the s-channel helicity conservation). This suggests that J" = 1t subgys~
tems K*1 and Ko have different dynamical origips. Note in this regard
that the Q-region might harbor two different K resonances (C = +1 and
C = -1), strange partners to the A (be it Deck or resonance) and the
B-meson.

Results on a neutral Knm system, from the charge-exchange reaction
(3), are relatively meager due to a paucity of statistics. What is known
about this system, as found by the ABCLV-ADLV collaboration(34) on combined
data of 8, 10 and 16 GeV/c, can be summarized as foliows. A partial-wave
analysis has so far been performed in one mass range 1.04 < w < 1.56 GeV.
They find in this mass range 35% 2% state which they attribute to the
K*(1420) decay, 42% 1% state and 24% 0~ state. The fraction of unnatural-
parity exchange, at about 20%, is somewhat larger than that for the
charged Knm system. The 1* state is mostly in the 1*sx*ot wave, similar
to that in (Kmn)~, but the m® = 1t state seems relatively more important
here.

V. POSSIBLE IMPROVEMENTS AND FUTURE PROSPECTS

What improvements can one make on the partial-wave analyses per-
formed so far? What are their future prospects? These questions can be
dealt with at several levels. On a more immediate level, one might attempt
to reanalyze the A3 region with both (31)* and (31)" data to see if the
question of the phase variation can be resolved. However, the existing
data may not be sufficient and one might have to wailt for much larger stat-
istics with higher Prap (% 40 GeV/c). Similarly, a large-statistics ex-
periment on Krm systems with high Pyap would be required to do a detailed
study of the L(1770) region, including that of the phase variation. For
both the 37 and Knrm systems, a wider wvariety of final states should be
studied to gain information on the isospin-dependent structures. They may
come, for example, from the reactions: rtn > n+w'w°p, Kp -~ ﬁ+w'w°A,

p + (Knm)PA, atn + (Krn)+A, etc. In addition, with accumulation of suf-
ficient statistics in the future, one can extend the partial-wave analysis
to such final states as ﬂ+w'n, KK, n+v"w, etc.

At a technical level, a more systematic measure of the goodness-of-
fit has to be employed so as to demonstrate that the best fit indeed gives
an acceptable description in the full five-dimensional space. A straight-
forward way of achieving this goal might be to calculate x%'s using the
moments H(LMNIK), obtained by evaluating the orthonormal functions for
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each event. Another approach in this regard involves the experimental
L of (II1.44) and its error:

Nt:
Xexp = iq:( , .1
. Ve 2 |
5xexp = §=1(?;) . w.2)
where
F = tn F(R,r) ~ F /N (V.3)

A theoretical expectation value for X can be calculated,
Xep = N fdRdr F(R,T) I(R,r) (V.4)
From these, one can form a global "standard deviation,"

o) = [x;xp -‘z;hlfsxexp (v.5)

which may be viewed as a measure of the goodness—of-fit.

Another area of further study and improvements concerns the
angular-momentum barrier effects. Note that the isobar model as given in
Section Il calls for the factors pf‘qS in an 2-s coupling scheme. It is
clear that these factors are necessary to avoid kinematical singularities
near the thresholds (p = 0 or q * 0). However, it is far from certain
that these factors prevail in the region far above the thresholds. There
are many ways of modifying the simple barrier factors; perhaps the simp-
lest way might be to take the transformation

p* > [p//p? + x2)1* (V.6)

and similarly for qS as well., Note that the righthand side approaches pg
as p + 0, while it goes to one as p + ®, Here the parameter Y can be left
as a free parameter in the fit or fixed at some value, say at 0.5 GeV,

and one can assess its effect in a resulting fit. An additional improve-
ment of the isobar model could involve inclusion in the fit of the exotic
intermediate states, i.e. I=2 mm and I=3/2 Krv phase shifts. It is most
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likely that the waves with these intermediate states are small in all mass
regions, but their interference with other non-exotic waves might turn out
to be important.

At a much more ambitious level, the isobar model will have to in-
clude rescattering corrections in the final state (see Fig. C). Ascoli
and Wyld(38) have already gone to a considerable length in including this
effect within the context of a unitarized 3w scattering amplitude. The re-
sults are that spin-parity compositions are roughly the same, although the
¢ to p ratio changes. However, what is particularly serious is that the
fit becomes significantly worse. Thus, within the framework of the unit-
arized version of Ascoli and Wyld, the rescattering corrections are too large,
and an entirely different approach to the rescattering corrections is
called for. The problems relating to three~body unitarization are complex,
and there is as yet no clearcut path to the solutions. Ome way might be
to use approximations spelled out in Aaron and Amado.(39) Or, one might
use the three-body K-matrix approach of Graves—Morris.(40) In any case,
this area of improvements is one which presents a tremendous challenge to
theorists and experimentalists alike.

VI. SUMMARY

In Section 11 we have presented in some detail mathematical tools
relevant for study of a three-meson system. We have given, in particular,
a complete set of orthonormal functilons appropriate for the five-dimensional
space of the n¥n¥n~ system and shown how the requirement of the Bose sym~
metrization can be bullt into these functions. It has further been shown
that (3n)% decay amplitudes can be parametrized, within the context of the
isobar model, in terms of the £-s coupling constants GES for each given
spin~parity state a. The intermediate diplon states needed for this para-
metrization are then related in a general way to the mr scattering ampli-
tudes. The factors Qyg(w;), which carry this information as well as the
angular-momentum barrier effects, represent our "best knowledge" of the
dynamics of sequential decays.

It was shown, in addition, that spin-density matrices, which char-
acterize production of a (mt system, are best parametrized in terms of
the reflection eigenstates and that its eigenvalues are connected with
the naturality of exchanged particles in the peripheral region. The pos-
itivity and rank conditions are easily incorporated into the parametriza-
tion of ®p (e is the reflectivity) by use of the triangular representation.
If the factorization hypothesis does not hold between the production and
decay for a given 37 spin-parity state a, then the coupling constants Ggs
may themselves depend on the production-dependent parameters m (the z-com~
ponent of the 3n spin J) and the initial and final nucleon helicities.

The prescription for this case is, as has been demonstrated, to combine %p
and G§g into a super-density matrix, in which the indices range over all
the variables {agsm}.
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A survey of the results of partial-wave analyses has been given
in Sections III and [V. Briefly, it may be recapitulated as follows.
Analyses of the (3n)— systems show three prominent enhancements, each
in a particular partial wave: 1+Sp0+(A1), 2+Dp1+(A2), and 2'Sf0+(A3).
Other waves are definitely present, but the number is small; in all, a
total of 10 waves produced via natural-parity exchanges are required to
give an adequate description of the (37)- system from threshold to 2 GeV
(see Table IV).

The Ay wave shows little phase variation with respect to others
in the Ay reglon, indicating that the Ay is not a simple Breit-Wigner
resonance. In fact, much of the Ay region can be understood within the
context of a Reggeized Deck model. The A, enhancement, which shows
phase variations of a simple Breit-Wigner resonance, seems to be pro-
duced through exchanges of Pomeron and f trajectories. The situation
with the A3 enhancement is less clear; there is as yet no convincing
evidence that the A3 is not a simple Breit-Wigner resomance. Thus, the
answers to this and other related questions can come only with a fresh
analysis on a much larger statistical sample than has hitherto been avail-
able.

A partial-wave analysis of a neutral (3'rr)0 system from the final
state v+n—w°A++, according to the Berkeley analysis, indicates that the
Ay and A4 bumps do not seem to be present and the A, state [(2+Dp)1=l]
is seen to have its typical phase variations. A noteworthy result of
the analysis is cobservation of a (3'Fp)1=0 enhancement with mass at
(1669 + 11) MeV and width (173 + 19) MeV, a likely candidate for the

Regge recurrence of the w.

Partial-wave analysis on Knm systems is much less extensive due
to inherent complexities of K71 systems and relative lack of statistics.
The Kmn system up to 2 GeV consists mainly of unnatural spin-parity
states produced via natural-parity exchanges. The Q-region is dominated
by the 1tsk* state, but the 1'Sp state, which is also present in the
region, shows different m dependence from that of the 1tsk”™ state, sug-
gesting possibly a different dynamical grigin for the two states. As in
the A, region, the phases between the 1 and other waves do not vary in
the Q-region. Also, the 1T wave does not account for all the events of
the Q enhancement; it appears that the 0O wave peaks in the Q-region as
well.

Thus, the Q-region seems to be even more complex than the A; re-
gion. 1In a sense, this is not surprising, if one considers that there
might be in the Q-region two different I=1/2 states, the strange partners
of the B meson and the A; (or the "non-Deck” portion of it).

+ There is only one significant natural spin-parity state: the
2 DK wave yhich peaks near 1420 MeV. It seems likely that this repre-
sents the K n decay mode of the K (1420). 1In the L-region, one sees an
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) R
enhancement in the 2 SK (1420) wave, but it does not account for all the
events of the L enhancement. For both the 2% and 2~ waves, little is known
about their phase variations, due mainly to lack of statistics.

In Section V we have considered several possible improvements and
future prospects. The field of partial-wave analyses is still young, and
with the advent of high-statistics equipments such as the BNL Multi-Particle
Spectrometer, CERN Omega and SLAC LASS, we can look forward to a rich and
fruitful future in this area of meson-resonance physics.
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TABLE I. Allowed £ Values

=
[}
*

g: s= s=1 g2 5$9131

0 0 1 2 4

+

1 1 0,2 1,3

2” 2 1,3 0,2,4 10

3t 3 2,4 1,35 10

1 1 2 2

ot 2 1,3 4

3 3 2,4 4
Total 42

* Number of independent real parameters in Gi for each a = J", Note that
one Gis can be set to one for each a without loss of generality.

TABLE II. Allowed m Values

bl et el
0 0

1t 0,1 1

2 0,1,2 1,2

3t 0,1,2,3 1,2,3
1 1 0,1

2t 1,2 0,1,2
3 1,2,3 0,1,2,3

Total number 16 15
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TABLE III. Number of Allowed Combinations (afsm)

gﬂ £=+ £==1
0 3 0
1" 10 5
2" 18 12
3t 24 18
1 2 4
2t 6

3 ] 12
Total 72 60

il en on £ m

0" s P D o

1* P s,D P,F ot,1*

2" D P,F s,D o, 1%t
3" F D 4 or,1t

4" F D ot

st ¢ ot

6 H ot

1~ P D 0”,1%

2" D P 0,1

3 F D 0”15, 2%, 5%
4 F 1"

a. This table shows the orbital angular momenta for final states ew, o7
and fr; the waves shown underlined are the significant waves found
in fits.
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TABLE V. Summary of (3m)¥ Data

Number
PLab (Gev/c) Selections of Events
% at 5 and 7.5 ot and 4° oyt 12,900
(I1linois) (17) t' < 0.7 GeV
7" at 11-25 st out , 15,300
(Compiled B.C. data)(ls) t' < 0.7 GeV
n at 25 0.10<|t]<0.33 Gev? 31,400
5 at 40 0.04<|t{<0.33 cev? 52,200
(Serpukhov)(lg)
" at 13 A prly o) out 5,250
(Purdue)(zo) t' < 0.5 GeV2
+ ++
7™ at 8, 161 23 A out 9 11,500
(aBscH) (21D t' < 0.8 GeV
mtat 7 At out 5 n30,000
(Berkeley) (22) t' < 0.6 GeV
TABLE VI. Intermediate States for (SW)i'Systemsa
o
Spin (s) ws(HeV) rs (MeV) Symbol
o 765 400 £
1 765 135 p
2 1264 150 £
a. Values quoted here are those used by Ascoli, gg‘gl.(la) The Breit-

Wigner form, according to formulas (II1.14), is

2.8 2 2
Qe(wy) = pyay/ g - wy - 1wl )

_ w0 28+l
and T_ = Ps(ws/wi)(qi/qs)

where w, is a neutral dipion mass with q, its breakup momentum, and pj is
the breazkup momentum between the dipion and the odd pion in the 37 rest
frame. The quantities with subscript s are evaluated with the dipion mass
replaced by LD
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TABLE VII. Summary of Knw Data

Kumber of

PLab (GeV/c) Selections Events

K" at 10 and 16  A'' out ) 4,7302
(ABCLV) (30) t' < 0.8 GeV

K~ at 40 0.05<|t[<0.60 Gev? 10,180%
(Serpukhov)(31)

K~ at 14.3 s ana ot out 19,7003
(rPs) (32) t' < 0.8 GeVZ

K~ at 3.95 A out ) 1,715
(pcp) (33) t < 1.0 GeV

a. In all these data, an additional selection has been made; a fractiom
of the sample for which a K cannot be distinguished from a 7~ has
been thrown out.

TABLE VIII. Intermediate States for Kmrn Systemsa

Spin (s) Di-Meson v, (MeV) I (MeV) Symbol
0 wn 765 400 ¢
1 LE 765 135 0
2 w 1269 154
Kn 1320 600 p
Kn 892 50 K" (890)
2 Kn 1420 110 K (1420)
(31)

a. Quoted values are from the work on the Serpukhov data. See

Table VI for definitions of ws and Fz.
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TABLE IX. Partial Waves for Kam Systems

i 25% n°
- %
0 Seb,PK »Pp 0+
*
1+ SK ,5p,Px,Pe 0+,l+
- * * +
2 PK ,Pp,SK (1420),Sf 0
+ * + -
2 DK ,Dp 1,0
x
3t bk ,Dp,PE o

Both the orbital angular momenta and di-meson spins are given in their
usual notations.

0 Se and 0 Sk are so similar in all variables that they cannot be
distinguished experimentally, and the 0 Sx is left out of the analysis.
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DPefinition of the body-fixed axes for ATt system; the z-axis
is normal to and gut of the paper. Also shown are the dipion
rest frames for ﬂzﬂg {(denoted by subscript 1) and n{wg (denoted
by subscript 2).
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Fig. B. Reggeized Deck mbdel of Ascoli and Jones. The model uses on~

mass-shell nm and nN scattering connected by a Reggeized pion
propagator.

{9
P

Fig. C. Schematic diagram showing possible rescatterings ian the 37 final
state.
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FIGURE CAPTIONS

1.

4.

Partial-wave decomposition for compiled » p data at 11-25 GeV/c
(Ref. 18).

Partial-wave decomposition for Serpukhov m p data at 40 GeV/c (Ref.
19). Notatloms: JIMmE(sn) instead of our J"gsmE.

Partial-wave decomposition for Purdue w+p data at 13 GeV/c¢ (Ref. 20).

(Note that intermediate states s have been suppressed in the nota-
tions.)

Partial-wave decomposition for ABBCH W+p data at 8, 16 and 23 GeV/c
(Ref. 21).

5a[b] Partial-wave decomposition for Berkeley w+p data at 7 GeV/c with

10.

11.

12.

13.

14.

15.

0 < |t] <0.1Gev2 [0.1 < |[t]| < 0.6 GeV2] (Ref. 22).
Intensity and phase of 1+Sp wave (Refs. 18 and 19).

Phases of l+Sp relative to 0 Se and 1+Pe and of 2+Dp relative to
1¥sp (Ref. 21).

Intensity and phase of 1+Sp (Ref. 22).

+
Intensity of 2+Dp and its phases relative to 1 Pe (upper points) and
l+Sp (lower points) (Ref. 19).

(a) Intensity of 2+Dp and (b) the Argand diagram for the interference
term between 2+Dp and 1%Sp (Ref. 20).

Intensity and phase of 2+Dp (Ref. 22).

Partial-wave decomposition for T o+ (3n)— on Carbon at 22.5 GeV/c
(Ref. 24).

(a) o vs. P&ab for n p > AE(*povﬂ)p with 1.2 < M(37) < 1.4 GeV and
t' < 0.7 GeV4; the solid (dashed) curve is for X > 0 (K < 0), where
K is the ratio of f toIP residues. '

(b) Comparison of the measured to fitted differential cross sec—
tions for n7p -+ AE (= o°17)p.

Comparison of measured Ap-Ay interference phase to the phase predicted
from Regge and Deck model calculations (Ref. 28).

Intensity of 2 Sf and 2 Pp from wip data, (a) Ref. 18, (b) Ref. 21,
(c) Ref. 20, (d) Ref. 19.
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FIGURE CAPTIONS (Cont'd.)

16. Phase of Z:Sf wave relative to l+Sp, 2“Pb, 0 Se and 1+P€ waves from ﬂi§
data. #® t p(Ref. 18), ¥ n"p(Ref. 19), ¢ n'p(Ref. 20), ¢ 7Tp(Ref. 21).
+ -

17. w1 n° mass spectrum from the reaction w+b > (31r)°A++ at 7 GeV/c (Ref.

29); the hatched histogram corresponds to the natural-parity exchange
cross section.

18, (31r)o mass spectrum (i) from w+b > (3n)°A++ for two different t inter-
vals (Ref. 29); the total intensities in the waves (2+Dp)I=1 (%) and
(3"Fp)1=g (¢) are also given.

19. (a) Relative phase between (2+bp)1=1 and (2—Sf)1=1 for low Itl (Ref.
29),

(b) Relative phase between natural- and unnatural-parity exchange
amplitudes for (2+Dp)1=1 for low |t|; the straight line comes from a
Regge model with p and B exchanges.

(c){d] Total intensity for the (1+)I=1 [(2—)I=1] wave for low |t| (%)
and for high |t| (}).

20. Differential cross sections (in pb/GeV) as a function of Krr mass for
various partial_wave§ from the reaction K p » K'ﬂ+h"p (+) and the
reaction Kp + Eon% p (+) at 14.3 GeV/c (Ref. 32).

21. Partial-wave decomposition (3"n%) for the (Knn)  system from K p -
K'n*rp at 10 and 16 GeV/c (Ref. 30).

22. Partial-wave decomposition (Jnms) for K—p e K—v+ﬂhp at 40 GeV¥/c
(Ref. 31).

23. Natural and unnatural spin-parity components for both the produced
and exchanged systems (Ref. 30).

24. Decomposition of the 1+ wave [Jni(sn)m] (Ref. 31).
*
25. Study of the Kp and K n states in the 1+S state (Ref. 30).
26. Relative phases of the 1+SK* wave with respect to other waves (Ref. 31).
*

27. Intensities of the waves 2+DK l+ and 2+Dp1+ {(Ref. 31).

- - kR . - %
28. Intensities of the waves 2 SE, 2 8K , 2 Pp and 2 PK (Ref. 31).

* - kX
29. Intensities of the waves 1+S(p+K ) and 2 S(X +f), compared to the Kmw
mass spectrum (Ref., 30).
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