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Abstract: The incorporation of the local analyticity properties of the six~particle
amplitude in a previous treatment of the three-Reggeon vertex is considered. A
triple Regge pole contribution is shown to be singular on the boundary between
two parts of the physical region where the partial-wave expansion was shown to
take different forms, This singularity can be removed by appropriate behaviour
of the residue function, but the asymptotic region where the pole contribution can
be expected to dominate behaves unsatisfactorily. For comparison, the connection
between the singularity of a Regge pole contribution and the bad behaviour of the
asymptotic region is also discussed for the zero momentum transfer problem.
Analytic group variables, uniformly related to the invariants are introduced for
the six-particle amplitude. A Lorentz-group expansion incorporating the vertex
covariance condition is given and a triple Toller pole shown to be a possible uni-
form asymptotic approximation to the amplitude in the neighbourhood of the bound-
ary considered.

The treatment of the three-Reggeon vertex is used to give a full group theoretic
treatment of an arbitrary multiparticle amplitude.

1. INTRODUCTION

In a previous paper [1] we considered the group theoretic description
of the six-particle amplitude corresponding to the "tree-diagram" of fig. 1,
which involves a three-Reggeon vertex, without considering analyticity.

The three-Reggeon vertex plays a central role in the general formulation

of the group theoretic description of an arbitrary multiparticle amplitude,
as we discuss later on. Consequently, in this paper we study the incorpora-
tion of the local analyticity properties of the amplitude in our approach,

and the relation of analyticity problems to the asymptotics of Regge and
Toller pole contributions.

Before [1], we discussed in detail the generalised partial wave expan-
sion corresponding to fig. 1 in a physical region where the momentum
transfers @, @p and @ are spacelike. It was necessary tor distinguish
between two parts of the physical region. In one part, the s-t region, the
plane defined by QA’ QB and Qc contains some time-like vectors and the
expansion is very similar to the Bali, Chew and Pignotti expansions [2].

In the second part, the s-s region, this plane contains only space-like
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Fig. 1. A three-Reggeon vertex for the six-particle amplitude.

vectors and the expansion takes a different form in which it is effectively
necessary to use a continuous basis for the representation functions. At the
boundary between these two regions (which occurs inside the physical re-
gion), the relation of the group theoretical variables that we used to the
invariants is singular. In this paper we show that as a result, a triple
Regge pole contribution, from the s-t region, say, will be singular at this
point unless the residue has an appropriate branch point. (The behaviour
of a triple Regge pole contribution near this boundary is important because
it involves a ccntinuous range of individual trajectories). If the residue
has this branch point it follows that the contribution will either vanish or
retain only its leading behaviour there.

The daughter problem for the four-particle amplitude at W =0 can also
be regarded as resulting from the singular relation of the group variables
to invariants. This singularity (as we show in sect. 2) results in the asymp-
totic region in which Regge pole contributions can be expected to dominate
receding to infinity. At the boundary between our two regions the asymp-
totics are also peculiar, but in the inverse way, that is the asymptotic
region comes in to finite values of the invariants, and so at W=0, we are
led to introduce analytic little group variables constructed inside the
Lorentz group. These variables, as well as facilitating a precise discus-
sions of analyticity, are also uniformly related to the invariants, and so
suggest the introduction of a Lorentz group expansion. A triple Toller pole
contribution can then be written down once the problem of incorporating
the vertex covariance condition has been solved. (This covariance con-
dition is really the origin of our problem since it is the covariance group,
rather than the little group as in the W=0 problem, which changes its
structure at the boundary we are considering). Such a pole will be a possi-
ble uniform asymptotic approximation to the amplitude, and corresponds
to infinite sequences of triple Regge poles with the same trajectories in
the expansions performed in the s-s region, the s-t region and on the
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boundary. So we conclude that a triple Toller pole provides a neat, but not
essential solution to the analytic and asymptotic problems at this boundary.
(The only essential requirement is that of analyticity, and a triple Regge
pole can be made to satisfy this).

The basic problems in the introduction of analyticity into the group theo-
retic formalism have been studied in a sequence of papers [3-6] by Cosenza,
Sciarrino and Toller, providing a powerful tool for the study of daughter
problems and kinematic singularities and constraints. First they dealt with
the problems for two-to-two amplitudes with various mass configurations.
Subsequently, Toller [5] derived the fundamental results necessary for the
introduction of a function of group theoretic variables which accurately re-
flects the analytic properties of a multiparticle amplitude. After stating
some of the results obtained in ref. [1] in sect. 2, we briefly review the
introduction of analyticity for the two-to-two amplitude, and its relation to
the asymptotics at W=0, in sect. 3.

Sect. 4 contains the introduction of the analytic group variables for the
three Reggeon vertex, which we still study in the context of the six particle
spinless amplitude. In general, in order to introduce group variables for
a particular amplitude it is necessary to define standard configurations
[2,7] for each of the vertices of the tree diagram' considered. For con-
venience in the parametrization of the little groups these configurations are
usually suitably aligned with the coordinate axes. At certain critical points
(including W=0 and the boundary between the s-s and s-t regions) this
alignment is not consistent with analyticity. At these points certain Gram
determinants [8] formed from the external momenta vanish. Rather than
these vectors spanning a lower dimensional space than usual, this corre-
sponds, in general, to some vector becoming light-like or a plane becoming
tangent to the light cone (that is, a plane becomes one spanned by a light-
like and an orthogonal space-like vector). The introduction of analyticity
can be pictured as the problem of rotating the corresponding standard
vector or plane analytically in such a way that it becomes light-like or
touches the light cone at the appropriate point. In ref. [1], we showed that
it was convenient to take the standard triangle for the three-Reggeon vertex
to be in the z,?¢ plane in the s-t region and in the y, z plane in the s-s re-
gion. To make an analytic transition between the two regions it is neces-
sary to rotate this triangle so that it touches the light cone at the boundary.
Since, at this boundary the "mass" of one of the Reggeons is equal to the
sum of the masses of the other two it is similar to a threshold or pseudo-
threshold point. The problems are analogous, at least up to a complex
transformation, to those considered by Cosenza, Sciarrino and Toller [4],
at unequal mass threshold points for the two particle-Reggeon vertex.
Unlike at these pseudo-threshold points, it is possible to keep the standard
triangle (and the associated transformations) real in our problem. This
makes it easier for us to adopt a geometric approach. Since the partial-
wave expansion is performed on the real part of the little group and we
discuss both the behaviour of this expansion and its asymptotic properties,
it is important that this triangle can be kept real. The section concludes
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with a discussion of the uniform relation mentioned above, which exists
between the analytic group variables and the invariants.

Sect. 5 consists of the mathematical preliminaries necessary for per-
forming the Lorenfz group expansion. This involves the decomposition of
of the representation of SL(2, € )3 in the coset space SL(2,C )3/SU(1,1). To
do this we use a variation of the heuristic techniques introduced in ref. [1].
In sect. 6 we show how an expansion for the amplitude, in terms of repre-
sentation functions of SL(2, C), with the necessary covariance conditions,
can be obtained. We arrange the standard triangle to move in such a way
that a function on SL(2, €)3 with a SU(1,1) covariance condition, when re-
stricted to the moving little groups, necessarily satisfies the vertex covar-
iance condition for the amplitude. We can then use the expansion formula
derived in sect. 5.

In sect. 7 we discuss the role of the three-Reggeon vertex in the group
theoretic description of multiparticle amplitudes corresponding to an ar-
bitrary tree diagram. We explain how such a diagram can always be ex~
tended to one containing only three-line vertices. Toller has used the re-~
sults established in ref. [5] as the basis for a study of the analytic pro-
perties of the multi-Regge model for 2-to-n production processes. This
model involves only "two-particle Reggeon™ and "one particle two-Reggeon"
vertices. When amplitudes involving six or more particles are considered
diagrams containing three-Reggeon vertices [1,9] become possible. The
corresponding high energy limits are for processes having at least three
particles in both the initial and final states. Although only of theoretical
interest [10] such processes are important for example because of the
multiparticle structure of the unitarity equations 8], and it is therefore
desirable to understand the details of the Regge behaviour of such ampli-
tudes in all possible limits. We describe the general process, for an arbi-
trary diagram, of introducing analytic group variables [5, 11], performing
the SU(1,1) expansion and finally an SL(2, C) expansion.

2. THE THREE-REGGEON VERTEX
In ref. [1] we defined * the six particle amplitude as a function over the
three little groups corresponding to fig. 1. We divided the momenta into
three sets A, B and C and wrote
Qpy=2P,, Qgp=UPy, Qc=2Pq, (2.1)
and introduced standard configurations PX, etc., in the (2,%) plane with

sums @R, etc., along the z-axis. Then if

O
P, =Lap)P, , Pg=LlagPg, Pc=L@)PS, ap,ag,acel,  (2.2)

* Unless otherwise stated the notation used is that of ref. [1].
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and gar &gy & Are chosen so that
L(gp) QR + Llgg) @3 + L(gr) Q2 = 0, (2.3)

we can define an element a so that

@ar @ @C) = L@) (@%, Q% @%) (2.4)
where
Q% = L(gy) QS et
Then

M(PA, PB’ PC)

W here

Because the sets A, B, C contain just two particles we have the covar-
iance conditions

f(kAuz(Vl)’ hBuz(Vz), hCuZ(VS)) :f(hA’ kB’ hC) . (2.6)
And also if L() leaves the plane containing QX', Q%’, Qg' invariant
Flehy, hg, khG) = £k 5, B, Re) . (2.7)

The group K of all such % is called the covariance group of the vertex.

It was necessary to distinguish two cases: (i) the s-s case in which
the @'s lie in an entirely space-like plane; here &p» ete., could be taken
to act in the ¥, z plane and so K is isomorphic to S0(1,1). (ii) the s-t case
in which the plane of the @'s contains time-like vectors, theg's can be
chosen in the z, ¢ plane and K is isomorphic to S0(2).

The partial-wave expansion took a different form in the two regions. In
the s-t case

f(hly hz: hs)

-z A1A2A3 DAl N ) pp2 o y o2
n n n

()} A dA ,d (2.8)
CUCTECT Mg 0 4 s

nan
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(where the n labels refer to the usual basis for the representation space in
which rotations about the z-axis are diagonal) and in the s-s case it can be
written in the form

AjAgAg Aq

Sy By, hg) = [ [ axy axg 0102203{F010203K1 kg Doykq, 0 )
xph2  (n) pAs (h,)} dA dA dA (2.9)
0'2K2,0 2 0'3(—K1—K2),0 3 1727737 )

where o = +1 and « label a continuous S0(1,1) basis of the representation
space [12].

A triple Regge pole contribution is then a triple pole in Fh1dals 5
Aj = ai(Q%). The asymptotic contribution of this pole to the amplitude is
obtained by rewriting the expansions in terms of second-type representa-
tion functions and pulling back the contours in the A; planes to pick up the
pole contributions [7].

3. ANALYTICITY AND ASYMPTOTICS AT W=0

Having defined the amplitude as a function of group theoretical variables,
and discussed the corresponding hypothesis of Regge asymptotic behaviour,
the next step is to consider how the analytic properties of the amplitude
may be incorporated in this formalism. In this paper we will be concerned
with the study of local analyticity properties, rather than the much more
extensive problem of making sure that the full consequences of global pro-
perties, like cut-plane analyticity, are reflected in the coefficients of any
partial-wave expansion. In particular, we want to examine whether a
Regge-pole contribution has the right analyticity properties. If such a con-
tribution is to be a uniform asymptotic approximation to the amplitude in
some domain it should be free of singularities (apart from those required
by unitarity) in the asymptotic region. The introduction of analyticity has
been studied extensively and systematically by Cosenza, Sciarrino and
Toller [3-6]. The conclusion is that it is necessary to modify the formalism
at various critical points. For the unequal-mass two-to-two amplitude the
most important point of this kind is where the square of the momentum
transfer W=Q2 = 0. Of course the problems associated with this point have
been widely studied within various frameworks.

The singularities in a single-Regge-pole contribution at this point, which
are cancelled by contributions from daughter poles in the usual approach,
are intimately related to the bad behaviour of the asymptotic region in terms
of the usual group variables. At the new type of critical point which occurs
in the study of the three Reggeon vertex the behaviour of the asymptotic
region is almost the reverse (and so has less significant implications). To
illustrate this connection between the singularities and the asymptotic re-
gion, we briefly review the introduction of analyticity for the four-particle
amplitude [3]. When analyticity is not being considered it is natural to
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take [1] the standard position of the momentum transfer, Q° = Qy» to be along
the z-axis for each W = Q2 < 0. Then Qy,= (0, 0, 0, V-W) which is singular

at W = 0. This singularity has to be removed, for example by replacing

Qw by @w = (3(1+ W),0,0, 3(1- W)). We can then replace P and PJ by

P0 and P0 respectlvely, still chosen in the z, { plane, w1th

Qy =2 B = 2Py, (3.1)

and their members depending analytically on W at W =0. The amplitude is
then completely specified by a function

F(i) = MBS L(k)P ), (3.2)

defined on I?ILS , the complexification of the little group of @'W . If particles
yyith spin are considered the amplitude may be reduced to a function
I |y mm, (%), bearing helicity labels corresponding to the external par-

particles, defined over HC by a straightforward generalisation of this pro-

cedure, which we refer to in more detail in sect. 7. Then fmlm mgmy sa-
tisfies the covariance conditions

~ M ~ =4 v

7 (1) T ) = &2 () e dmztmal” (g 3)

mymamzmyg 2 mimm3m4

It will have exactly the singularities that M has [5]. A Regge-pole contrlbu-
tion to f will take the form of a second-type representation function of H
multiplied by a residue function. The various possibilities can be written
down by choosing new axes so that ﬁW becomes the usual SU(1,1) group,
that is Hy, (= H o). Such a change of coordinates will be specified by any
Lorentz transformatlon ¢ such that L(C)QW QW, this gives a correspond-
ence % = che~1 between elements of HW and Hy, and the usual parametriza-
tions of H induce parametrizations of H_. In order to conveniently in-
corporate the covariance condition (3.3), ¢ should be chosen so that L (¢)
maps the x,y plane onto the ¥,y plane. It is then uniquely specified up to
a rotation in the x, y plane, which can only introduce phase factors in 7.
The relation between f and fis

F@) =5 (e . (3.4)
For definiteness we can take ¢ to act only in the z,# plane and it then has
the form

¢ 2
1 1-W 1+W
L) = 57 (1+W 1- W) (3.5)

The representation functions of fIlW will be those of Hy, with argument
c¢~17% ¢ and so a Regge pole contribution to the amplitude will take the form
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A -a(w)-1
m1m3 (W)B my (W) Am VMg, Moty

(c'lﬁc ). (3.6)
This is the same contribution as would be obtained from the non-analytic
formulation. The only achievement of the analytic formulation in terms of
examining the analyticity properties of a Regge-pole contribution has been
to display the singularity at W=0 explicitly in ¢. In fact, if all the particles
have zero spin, the simplest way to show that this is a singular contribu-
tion to the amplitude at this point, which cannot be made analytic by a
suitable choice of the residue function, is to use invariants. But the SU(1.1)
expansion only applies in W < 0. The only finite singularities of the second-
type function A occur at a set of points bounded in terms of its argument
and the asymptotic region in which the contribution (3.6) can be expected
(from the partial wave expansion) to dominate the amplitude is that for
which the argument of the A- function is large. Because for W < 0, c is
analytic, the contribution (3.6) will be analytic apart from the singularities
at a bounded set of points due to those of the A-function and so may provide
a uniform asymptotic approximation to the amplitude in any compact set
in W < 0. However, HS is not isomorphic to H%, [3] and so ¢ must diverge as
— 0. (The fact that these groups are not isomorphic may be viewed as
the fundamental problem). Therefore (3.6) cannot provide an asymptotic
approximation (in the limit L(%) — =) uniform for W in any set including
W = 0. If we had this sort of uniform behaviour in such a set it would also
show up at W=0. In fact the size of i is uniformly related to the invariants.
The relation between z = cosh {, where ¢ 1s the usual boost angle cor-
responding to #, and the invariant s = (Pl +P2) is given by

s =9, (M) + ¢p(M)z - ;—;Vl(Mg—Mf)WZ-Mg) +0 (W), (3.7)

where qbl, ¢9 are functions of the masses only. Fixed values of z corre-
spond to infinitely increasing values of s as W — 0. Thus in this limit the
asymptotic region where the pole contribution can be expected to dominate
recedes to infinity. The size of % can be described by 2 = coshC where §
is the boost angle in SL(2, C) corresponding to %(i.e. % = ulaz(C)uz for
some uq, ug € SU(2)) z and % are related by

-4(Z-1)W
a-w?

(z-1) = (3.8)

and so if we substitute this into (3.7) we see that s depends uniformly on

Z in the limit W — 0. [Since, at fixed W f is defmed over Hv(V:’ in general

it is defined over the set {(W,%): % GHS} As, H§ '©SL(2, C€) we may

try to induce a complex analytic manifold structure on the set from that of
SL(2,C)C. This can obviously be done in a neighbourhood of any W# 0. The
parametrization of u, £, v of HW, w0
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e 0 1
0 eé—iu 1-w
[ -w)2- 4w sinh2 382 2 sinh 3¢ eFV g
X
-2Wsinh%g [(1- w)2- 4Wsmh21€]% 0 e%iv
(3.9)

makes it possible to see that this can also be done about W=0. The little
group H,= E(2) is obtained by putting W=0 in (3.9). The contribution of

(3.6) contains the second type function [2] a'aJr(Z; lmz+m4 (¢) where ¢ is

related to the analytic coordinates W, ¢ by (3.8). This function then has
an essential singularity at W=0 (for each &). ] The solution of Cosenza,
Sciarrino and Toller [3] for the problems at W=0 remedies the difficulty
due to the receding asymptotic region for Regge pole contributions. They
show that if it is assumed that the function f(%) can be extended to a func-
tion over the whole of SL(2, €C) with (3.3) still holding throughout the group;
then the partial wave expansion can be performed in terms of representa-
tion functions of SL(2, C). The contribution of a Lorentz or Toller pole will
then be expected to dominate the amplitude at large value of 7 instead of
large values of 2. A Toller pole can be decomposed into an infinite set of
Regge poles with parallel trajectories [14]. Consequently such a contri-
bution shows Regge behaviour at W= 0 and can give a uniform asymptotic
approximation to the amplitude in a neighbourhood of this point.

Of course a Toller pole is not the only solution to the difficulties at
W=0. but it does exploit the introduction of analyticity into the group
theoretical approach to complex angular momentum.

4. ANALYTICITY AND ASYMPTOTICS AT THE BOUNDARY
OF THE s-t AND s-s REGIONS (), = 0)

A triple Regge pole contribution to the six-particle spinless amplitude
in an s-t region takes the form

—Z(n Ha-H + No|lhp -M )
Buy, ng, -ng-ng (An» g ) © 1lta e ]+ nalip -uc]

aA(oA) '¢,) a ~ap@P-1 e ~ac@@) (¢

o Baos s (&) (4.1)

a

We consider the analyticity of this expression in_the neighbourhood of the
boundary between the s-t and s-s regions, sayv-@4 = 5 Q2B +‘/‘ch . A
simple method of domg this is to use invariants. For example CA is related
to up = (Pg+ QB) by the equation
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1

uy = Q4+ M- 2{[>\(QA,QB,Q O, M2, @) cosh €,
A

- -5+ QA)@2- @240 ), (2)
where

)\(az, b2, 02) =(a+ b+ )c-a-b)p-c-a)a -b -c) . 4.3)

Thus the relatlon between up and cosh ¢, is singular on the boundary, where
Agbe= 2 (QA, QB, QC) = 0, as would be expected. A similar but more
comphcated expression ex1sts for KA» but it is not singular at » = 0. If we
continue (4.1) around the boundary (at fixed up, etc) in a suitable direction
cosh £ goes to - cosh {p via the lower half complexzplane This only has
the effect of introducing a phase factor exp[- m(a, (Qa)+ aB(QZB)+ aC(QC))]
because of a symmetry property of the a;,m functlons x

This can be removed by a branch point in 8. This is not enough to
guarantee that (4.1) does not have a pole or essential singularity on the
boundary. To do this we use an asymptotic formula for aznn

. wm-n .
e e R (P ) (4.4)
It
g =prazl@atanrac)+ Ny oy (4.5)

abc

where N is an integer and 8' = 8' (Q Q Q%) is regular onA , . =0, (4.1}
will have a pole of order (-N) on A 8 for N negative, and will be zero
if Nis positive. If N is zero the 1eacf1ng term in the asymptotic expansion
will still have the Regge form in terms of invariants, that is it will be a
product of factors of the form ((#4 - f1a }/f24 ) %A where fz‘A is a function

of the masses and the variables Qz. But at A, = 0 the other non-leading
terms will vanish and so the leading term will represent the entire contri-
bution of a triple Regge pole at this point. This contribution has been ob-
tained from the partial wave expansion in the s-t region, where x 5. > 0,
and continued to A 4,5, = 0. If we were to perform the expansion at A 5. =0,
with the appropriate covariance condition, then a single triple Regge pole

* The symmetry property of the al Dan function required is that it acquires a phase
factor e/ when continued from ¢ Z > 1 in the lower half complex z plane to -z:
alyn(-2) = e”’]aJ n(z) (See, for example, M. Andrews and J. Gunson: Journ. Math.
Phys., 51391, (1965)) We are using the form for al mn Biven in ref. 14, the asymp-
totic formula (4 4) follows from properties of the hypergeometmc function.
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in this expansion, would contribute the appropriate second-type representa-
tion function. This analysis could be performed by choosing the standard
triangle formed by the @'s to lie in a plane containing the z-axis and a light-
like vector in the (v, #) plane. This would leave the little groups unchanged,
although it would of course give a new covariance group. With the triangle
suitably chosen the relation between u, and the boost angle g A would be
given by (4.2) with A4, replaced by one. So the dependence on the boost
angles & etc., of a non-singular, non-zero, Regge-pole contribution con-
tinued from the s-t region, will be a product of factors of the form

(cosh CA)O‘. It can be shown that this is of the form of a second-type repre-
sentation function.

Thus we have shown that a single triple-Regge-pole contribution from
the s-t region can be made analytic at A,3, = 0. This depends on the con-
tinuation along a path encircling x = 0; another problem, which we will
discuss below, is to continue half way round this point and relate Regge
pole contributions in the s-s and s-t regions. However the analyticity of
s-t region contributions is the most important consideration because these
regions adjoin the physical regions where Regge-pole trajectories will
produce physical particles.

In sect. 3, we discussed the relation between the singularity of a Regge
pole contribution to the four particle amplitude at W=0 and the unsatisfac-
tory behaviour of the asymptotic region. Similarly the bad behaviour of the
triple Regge pole contribution (4.1) at A ;3. = 0 is reflected in the behaviour
of the asymptotic region. The region in which, from the partial wave ex-
pansion, the contribution (4.1) can be expected to dominate the amplitude,
is that in which {4, ?;’B { are large. Whereas equation (4.2) shows that
as A pe 0 w1th CA kept fixed, up will tend to the same fixed value in-
dependent of ¢ A- In consequence, the asymptotic region 'comes in' to finite
values of the invariants. On the basis of this we would expect a contribution
containing factors of the form ((#a - /14 )/f2a ) @A to dominate at u 5 = fqa
(we canlet A, =~ 0, up = f14 and keep {, large) where it may either
have a pole or be zero. Of course, what can be expected to happen is that
the background grows in importance. So the partial-wave expansion based
on the present group variables is not a satisfactory basis for discussing
asymptotic behaviour near this point.

In order to make a smooth transition from the s-t to the s-s region it
is necessary to continuously rotate the standard plane of the @'s. So, in-
stead of the standard triangle (QO QO , Q% ') in the (y, z) or (z,t) plane, that
we used before, we take a standard trlangle (QA, QB, QC) in the plane
containing the z-axis and the vector (1 +7‘abc’ 0, 1-2gpes 0) with sides of
the appropriate lengths. Because X 5, 20 corresponds to the s~t and s-s
cases respectlvely, we can choose the @'s to be real analytic functions of
the Q Q Q (for negative Qi etc., in a neighbourhood of any point on
Aabe = 0) Fur her it is possible to choose PO Bo P0 , standard con-
figurations for the sets of external part1c1es, to %epend analytically on

Q%, 64, @&, and such that 2B =§Q, etc. if a,q, ,ay,as < SL(2, C)
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are chosen so that

(@, @ QF) = L)@, 3, 8 (4.6)
~0 0 ~0
PA =L (aA)P , PB = L(aB) PB s PC = L(aC)P R 4.7}

we can replace M(Ps , By, Rie ) by a function of QA . QB, QC and the ele-
ments of the little groups HA, HB, HC of QA, GB’ QC respectively, de-
fined as follows:

M(Py, Py, Fo)=M(L(a) B}, Lag)By, Liag) BY)

a -1 0 ~1 %0 -1 ~0
=M(L(a "a )P , L(a aB)P , L(a aC) PC) (4.8)
where ]
}}'A=a a,€H,, etc.. 4.9)

(Agam we have spinless particles for simplicity; for particles with spin
i bears helicity labels corresponding to the external partlcles ) The func-
t10nf is thus defined over the analytic mamfold{(QA, QC, hA, B C)
FyeH,, ligeHy, ho e A }and by theorems of Toller 4 will have
exactly the same singularities as A.

In order to perform a parnal—wave expansion of / we have to parame-
trize the moving groups & A HB, Hc, effectively by mapping them on to
the standard SU(1,1) group. One way of doing this would be to make this
analytlc formulation more like our non-analytic one by introducing elements
Za» &ps&c which act in the plane of the Q's depend analytically on the
@2's and have the propert1es that L(gA) a3, L@'B)Q and L(g, )QC are
along the z-axis. Thenf, = g, i 45" maps H, onto SU(1,1) (the little
group of the z-axis). However f has to satisfy the covariance conditions

TRy, Rlig, BR ) = TRy gy B, Reky po (4.10)

where K, ;. is the subgroup of SL(2, C) which leaves the plane of the 50'5
unchanged and

~ ~ A

where ﬁA is the subgroup of SL(2, C) which leaves the plane of PO un-
changed, and similarly for B and C. Thus even if we introduce the F's
to obtain fixed little groups we will have varying covariance conditions.
Varying covariance conditions present no problem whilst we can find an
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element of the little group, varying analytically, which maps the covariance
plane onto a convenient fixed plane (i.e. one determined by two of the axes
of the group). This is _clearly possible for the conditions of 4. 11); we can
find such an element dAe SU(1.1) which maps L(gA)PA into PQ . For

Xgbe > 0 we can also find # €SU(1,1) which maps the plane of the §°'s

back on the (z,#) plane. We can choose L(#) to act in the (v, #) plane only
and then:

/ -

L(#) = 1 >‘achrl Nabe 1 (4.12)

2V>\abc )\abc'l )\abc+1 :

The partial wave expansion will now take the form
o o~ A AgA Ay
o, )= [ da 2 ABBAC gt
f(A B’ C) f A+nB+nCO”A” B"C H DnX, (XXXX)
X=A,B,C

(4.13)

Thus in the s-t region we have effectively regained the 'non-analytic' anal-
ysis much as we did in sect. 3. L {r) is singular at Agbe = 0 and complex in
the s-s region where A\4p, < 0. Thus all we have achieved in (4.13) is to
make explicit the singularity of the expansion continued from the s-t re-
gion at Agpe = 0. We have shown that the corresponding singularity in a
single triple-Regge-pole contribution can be removed by appropriate be-
haviour of the residue function.

However, the covariance group KA wbe as a subgroup of the complexifi-

cation of HAX HBX HC changes its structure atx ;. = 0, and so we cannot
expect to continue the partial-wave expansion to th1s point. This change

of structure has been discussed explicitly by Cosenza, Sciarrino and Toller
in appendix D of ref. [3]. They considered a pseudo-threshold for the four
particle amplitude, but as we remarked in the introduction, this is exactly
analogous to our problem.

When we attempt to continue (4.13) into A,z . < 0 the arguments of the
representation functions become complex, covergence is no longer obvious,
and its relation to the partial wave expansion in the s-s region is not im-
mediate. By writing the representation functions in (4.13) as matrix pro-
ducts the part which depends on# and continues into a function of pure
imaginary argument may be separated out. It is clear that some restric-
tions on the partial-wave coefficients F are necessary to perform this con-
tinuation and so it may only be performed for a certain class of analytic
square integrable functions in the s-t region. In particular it can be easily
effected for some Regge pole contributions, that is those whose residues
are non-zero for only finitely many values of the helicity labels. Such con-
tributions will, however, necessarily fail to be square integrable over the
coset space SU(1 1)3/K but this is not obviously unreasonable physically.

We can now show that the asymptotic region in terms of the analytic
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group variables, h As etc., is uniformly related to the invariants near
Agbe = 0. Since we chose the 2, analytically a convenient analytic choice
of the B is L (g*) B, so that dj can be taken to be the identity. Then

§AEA§AI € 5U(1,1). One way of choosing the standard moving triangle of the

Q's is to align @X along the z-axis, all of the time. This means that g
will also be the identity and so PA0 = PAO. The invariant «, is then related
to EA by

uy = @9+ L(B,) 1323\1)2 (4.14)

If we parametrize ﬁA by

Ry =kya (Da,, (4.15)

‘where &Ae (}A, I;,Ae K and, as usual, ax(f) is a boost along the x-axis
then

u, = @p + L, (P}, ) (4.16)
since
~=1, ~0 0 o _ .0
Lk, )8p=0Qp, and L(,)Py, =P, . (4.17)

Also since Q’% =L (r'l)QoB we have that

A0 Ay 50 12
up = Qg+ L (ra, () P (4.18)
So u, is given by (4.2) where ¢, is the boost angle of 7a_. (§) when expressed
in terms of the usual parametrization of SU(1,1). The re’fation between

cosh CA and cosh ¢, is given by

1 1
z "z 7o
(Aabc + )\abc) cosh CA = 2 cosh CA (4.19)

and so the relation between # 4 and cosh EA is uniform. The parametriza-
tion we have used of & A has been so arranged, to factor out the dependence
on the covariance groups on either side, to obtain a correctly adjusted mea-
surement of the size of %A' This adjustment is obviously necessary because
of the irrelevance of the size of the boost in the covariance group in the
s-s region.

For this calculation we have used §A = e, but in cases where the cor-
responding £ is not the identity it will still be analytic and S0 we can set
up coordinates in SU(1.1), of the form used above, for g‘AHAg“Zl and these
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will induce analytic co-ordinates of ﬁA which will have suitable asymptotics.
So to obtain a uniform description of the asymptotic region in the neigh-
bourhood of A,z = 0, it is again (as at W = 0 in sect, 3) necessary to use
little group variables moving analytically within SL(2, c)3. Therefore, to
obtain an asymptotic expansion of the amphtude which 1s well-behaved in
this nelghbourhood we should try to extend f (h h ) to a function
over SL(2, €)3 in a suitable manner. Before we can do t?us it is necessary
to consider the technical details of the expansion of such a function, which
we do in the next section.

5. HARMONIC ANALYSIS IN THE COSET SPACE SL(2, C)3/SU(1,1)

In the last section we gave reasons for considering functions on SL(2, C)
XSL(2, C)XSL(2,C) and in the next section we shall show that the appro-
priate covariance condition to impose on such a function is

f(val, va,, va3) =f(a1, @y, a3) , veSU(1,1), a;e SL(2, €) . (5.1)

Of course, there will also be compact covariance conditions on the right
but these will cause no essential difficulty. To obtain the expansion of such
a function in terms of representation functions of SL(2, C), it is necessary
to decompose the continuous unitary representation of SL(2, C)” which acts
in the space of functions on the coset (or homogeneous) space
SL(2, C) /SU(1 1), square integrable with respect to the corresponding
invariant measure. The existence of this invariant measure is immediate
since we are considering the quotient space of two unimodular groups *.
From a well known theorem [15, 16] this representation can be decomposed
into a direct integral of irreducible unitary representations. Since SU(1,1)
is non-compact the decomposition of this representation is not easily de—
ducible from the decomposition of the regular representation of SL(2, C)
But we can attempt to incorporate the covariance conditions in the partial-
wave coefficients of the regular representation in terms of their being
parallel to certain non-normalisable vectors in each representation space.
We can then make a heuristic deduction of the required decomposition
formula from that of the regular representation. Such techniques for simi-
lar problems have been given in ref. [1] and the resulting expansion for-
mulae proved directly for the cases to which they were applied; that is
SU(1,1)/S0(1,1) and SU(1,1)3/380(1,1). We now give a similar method for
this case.

We saw in ref. [1] that it is convenient to choose a basis for the repre-
sentation in which the appropriate subgroup is represented by diagonal
matrices. The usual form in which the representation matrices of SL(2, C),

corresponding to the representation (x, M) are given, is (D]m]'m‘ (a) [14],

*See appendix B of ref. [1].
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where ) is pure imaginary, M is a non negative integer or half integer, and
4 and m are discrete labels, labelling an 'SU(2) basis' (j =M, j > |m | and
j-M, j -m are integers). Alternatively, it is possible to use an SU(1,1)
(pseudo) basis [16, 17]. This basis would be labelled by (7, 7, m) where

7 = 1, I runs over the irreducible unitary representations of SU(1,1) and

m runs over the appropriate values for that representation (Here, of course,
! is used as an abbreviation for (¢,1), € =0, 5, Rel= -3, Iml > 0 or

(k, +), k=0, 3, 1,.... and only (¢, I) where M-¢ is an integer, and (&, &),
where 2 < M and 2- M is an integer, are required for the representation

(A, M)). Because we again have covariance conditions of different characters
for the two sides, it is most convenient to use an SU(2) basis on the right
hand side of the representation function and an SU(1,1) basis on the left;

that is we are using two different bases in the representation space. Instead
of realising the representation spaces by the labelling of bases, we can take
them to be the space of square integrable functions f(v, 7),1 v € SU(l 1),

7 = £1 satisfying the covariance condition f(uy(u)v, 7) = € TIMUTf(v, 7). This
realisation can be used instead of the SU(1,1) basis on_the left, and the re-
presentation (A, M) is then determined by functions (Z)Aﬁm (a) and its ac-
tion is to send the vector, with coordinates ¢j, in the SU(2) basis, into
the function f(v, 7) in the above space of square integrable functions where

Flo,7) = E M @9, (5.2)

vTim

In order to understand the sort of prcblems that arlse, it is perhaps
preferable to consider first the problem of SL(2, C) /SU(1 1). For a func-
tion f defined on SL(2, tIJ)2 we can hope to define partial wave coefficients

MMy A My NoMy

YT Fmy vy jimy vgTyjamy’

by
AiM; A M;
A M _ [ R R
vT i ff 4, @ )111]2 (Dv.'rijimi(al) day . (5.3)
Since (Z)UT T,( o) = (vvov' 1) the covariance condition f(val, va, )
= flay, ay), ve SU(l,l) is exactly equivalent to the condition
A
F oM = F’VMz e v€SU(1,1) on f's partial wave coefficients.
0T yj;m Vi Ty Jym

If we abbrev1ate FNiM; to ¥ (v, v,) the property ¥ (v,v,v v) Vv, v,)

VT jim; -2
means that iy is determined by y(e, v) and squared integrability of f over
the coset space SL(2, C)2/SU(1 1) will correspond to square integrability
of Y (e, v) over SU(1,1) rather than y over SU(1, 1)2. In this case we can
expand ¥ in terms of representation functions of SU(1,1)

_ ol il
Yie,v) = [ ”%‘n ¥, oD @)dl. (5.4)
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Because of the covariance property satisfied by the functions forming
the representation spaces y/(u, (1) vy, u,(ug)vg) = ¢ S UMT ) g My Toly)

and so ¥,,,,,,+ = 0 unless m = + MyT9 and m '=-M;71. The coefficients of f,

using the SU(1,1) basis on the left, F are related to F)‘iMi.
by l ’Jl viTi’]imi
i M; i M; L
M Efdz g [T nk ) (5.5)
YT Jimy my 3 o1 9 TiMp
Since Dl @) = Dl , (v) we have
m, m' -m, -
1
D )_ED w.) D} @), (5.4)
TzMz,-MlTl m T Ml’ 1 TzMz m 2
and so from (5.4) we can write
N l 1
F .= Z) ar g D v,) D v 5.6
Ti’]im f l,TZ,]ZmZ TlMl,m( 1) TzMz, m( 2)’ ( )
and so
A My = A M; _
ritgmigmy 201, 0,m 8 ) O - (5.7)

An alternative way of seeing that this is the result to expect, is as follows:

P freay [T @ @yde.  68)
Litymigzmy i=1,2  Tilmijim;

If [al, az] denotes the coset of (al, az) in SL(2, C)2/SU(1,1) we can factor
the invariant measures dalda2 = d[al, az] dv and

MMZ —ff([alaaz]) Z% 1—] D :
"y

T Limjjim; i=1,2  Tymgimy -

(5.9)

l.
X | l 1 d .
L it 2 Dmipmi® 40 ety @

So using

f.qu "'-mi(v) dv = 6(11-12)6 w0 , (5.10)

mi» ~my " my, My
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we obtain (5.7) with

A M
gl,Tz-,jim
= [flay, a,) T i @) oM (a,) d[a,,a,] (5.11)
o2 T1l, m', jimy © 1 ‘rzl,-m',jz'mé 2 1°72

In the problem that really concerns us, of SL(2,C )3/8U(1,1) we can

proceed similarly and define coefficients FT iv ]l ot abbreviated to

iv%
Y (v, vy, v3) satisfying (v, v,v5v,v5v) = Y (v, vy, v3) if f satisfies (5.1).
Hence we can expand (e, 5, %) in terms of functions

{ l
D2 vy vh) . Consequentl V1,09 ,Uq ) can be
R L VY quently y (v1,23,03)
expanded in terms of

Py Dl_zu ’ ., (07) DL

2y DR )P () (512)

71M1+y. -m

Now we can use the SU(1,1) Clebsch-Gordan coefficients [18, 19] to write

l2 pts
D—u,—m(vl) My+u, ~m' (vl)
_ I2l3l1 lalsl1 1
=Ja C"U-,Tr1M1+N-,Tl M c-m, -m) m+m' D‘rlMl, m+m' (vy) ,(5.13)
and so
A M; _ i M clelsly
Tzl m,,J,mz LilglgTjsm; —my, -my,my . (5.14)

The expansion formula, of course, takes the form

f(aI’ az, a3)

E fdx fa, 2 T priMi [T opriMi (@),
Ty My Jg, M Tili My Jimi i=1,2,3 Tilimy jimy
(5.15)
M
We can derive a formula similar to (5.11) for F,° and also a

Ly lolg Ti;m;
Plancherel formula for f in terms of this coefficient; this completes the
decomposition of the representation.
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6. AN SL(2,C) EXPANSION AND A TOLLER-POLE MODEL

We have shown in sect. 4 that the general method of introducing analytic
group variables, suitable for making hypotheses about the asymptotic be-
haviour of the six particle amplitude, results in its being defined as a func-
tion 7 over three little groups moving in S1(2, C )3. If we can extend this
function to the whole of SL(2, C)3 then we can perform a partial-wave ex-
pansion in terms of the representation functions of SL(2,C ), which will be
well-behaved in the neighbourhood of A 4,5, = 0. Of course, it will be neces-
sary to incorporate the covariance conditions in the partial-wave coeffi-
cients (to make the Lorentz invariance of the function, when restricted
to the little grou 3ps apparent), particularly since this was the difficulty
with the SU(1,1)° expansion. This can be done more naturally if we can
take f to be a function on SL(2, c)3 satisfying covariance conditions with
respect to subgroups of this group. The awkwardness of the changing na-
ture of the covariance condition (4.10) can be avoided if we can arrange that
7 is invariant over a larger subgroup of SL(2,C )3 in which this covariance
group is always included. To maintain the maximum amount of freedom for
the function restricted to the little groups, this larger covariance group
must intersect each little group in exactly the appropriate original one-
parameter subgroup. We can do this simply by taking advantage of the
freedom available in choosing the moving standard triangle of the §0's.

As in sect. 4, we choose the triangle formed by @g 2 QO to lie in
the plane contammg the z-axis and the vector (1+X,p., 0, 1- "abc’ 0).

But we also arrange that none of these lie along the z-axis at any stage.
The covariance group K defined by (4.10) will then always be contained in
the little group of the z-axis: SU(1,1). Also this covariance group will,
for any value of @ , @c, be exactly the intersection of each of the
little groups HA, ‘%IB, C, Wwith the little group of the z-axis. So 1ff
satisfies the covarianace condition (5.1), then its restriction to
ﬁAXﬁBX ﬁc will satisfy the correct covariance condition on the left.

The covariance conditions on the right (4.11) are not really a problem
at A4pe = 0 because they suffer no critical change and the covariance groups
may be related to standard groups by isomorphisms depending analytically
on the Qz's. Consequently it is sufficient to ensure that f satisfies

Hagnys agtg, agt) = flay, ag,ac) g e Uy, ups Up ucelUc - (6:1)

It is not difficult to see that a function 7 defined on H x Higx Hp sat-
isfying the covariance conditions (4.10) and (4.11) can be extended to one
defined over SL(2, C)3 satisfying conditions (3.1) and (6.1) .

The problem of performing an expansion in terms of representation
functions of SL(2, C) for a function f satisfying the non-compact covariance
condition (5.1) was discussed in sect. 5. The covariance condition itself
is equivalent to the restriction (5.14) on the partial wave coefficients. This
is a restriction on the left hand labels 7;[;m; of the partial wave coef-

ficients FriMi . . {6.1) will be equivalent to restrictions on the right
Tilimy, jymyg
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hand labels of the form

AM A . >\ -
F’Tzlm =2 ¢ ’.’Kl N (8; ) (6.2)
Z’]zml .72" TZ zmz,Al’; ]Z]’nz,]z

still taking d , etc., to be the identity.

Thus, with these restrictions on the partial-wave coefficients, we can
perform the expansion (5.15). As usual [3, 20] we can expect to write this
expansion in terms of second-type functions, and draw the contours to the
left to reveal pole contributions in the A planes (assuming the partial wave
coefficients to be meromorphic in some strip). This will gwe an asymptotic
expansion of the function in appropriate limits in SL(2, C)? including those
in which the 'adjusted’ size of the variables % becomes larger in the sense
we defined at the end of sect. 4.

So if we now consider a single triple-pole contribution

az(Qz) M
5 b e tymi, 5m; %8 O ) At o (6.3)

Jimi
occurring atx; = a z-(Q%), with a definite value of Mi and a factorized re-
sidue

2 2 2
(v) (A) 2, (B) 2. (0) 2
T L} (QA, QB, QC)B i1my (QA)B].2 mz(QB)B 3(QC) ,

we can use the general results of Sciarrino and Toller [14] on the asymp-
totic relation of second-type Lorentz-group functions to second type SU(1,1)
functions to infer that (6.3) corresponds to an infinite sequence of triple
Regge-pole contributions with factorized residues. Toller's results relate
the second-type SL(2, C) functions to the second-type SU(1,1) functions
when restricted to the standard SU(1,1) subgroup. To use these results

it is necessary to employ £p, etc., to map Hp onto this SU(1,1) subgroup
and write

M
D i ' )
- > fZ)W =1 (DAM > (Z)AM
j1, my, jo,mg Timjy ml(gA) j1myjomy @5 AgA) jamgj'm (&)

(6.4)

in the expans1on formula before changing to second-type functions of ar-
gument gA R AgA . This gives, instead of (6.3) the contribution
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' 2 2 2 AM -1
@y emew I 2,2 @)
Tis .lz'a m; Tili m%’]i m; A’ ¥BYC X=1,2,3 ]1" m1' TXle'X’]lml X
Ji» My 2
0y (@%), M.
XX X ), (6.5)
T Ix My
where we have used (6.2). QX(Q;Z(_) My

This expression together with the asymptotic expansion of 521»,1 mjomy (hx)
as a series of second-type functions of SU(1.1) shows that, both in the s-t
and s-s regions and on the boundary A,p. = 0, a triple Toller corresponds
to infinite sequences of triple Regge poles with parallel trajectories.

Because the second-type function in (6.3) only has singularities for
bounded values of 7 it is a possible uniform asymptotic approximation to the
amplitude in a neighbourhood of A 5. = 0.

7. THE THREE-REGGEON VERTEX AND THE z-PARTICLE AMPLITUDE

The aim of this section is to describe and extend the work of Cosenza,
Sciarrino and Toller [3-6] and of Bali, Chew and Pignotti [2] on the multi-
Reggeon description of multiparticle amplitudes. Using an approach very
similar to that of Toller, and relying heavily on his theorems [5] on the
incorporation of analyticity, we discuss the role of the three-Reggeon
vertex in a general group theoretic description of multiparticle amplitudes.

Following Cosenza, Sciarrino and Toller, we consider a process in-
volving # particle with arbitrary spins and masses. The connected part of
the scattering amplitude for this process can be described by a function
M . (P, ..., PM) of the spin labels m; and of the momenta P

MY, ..., M i
satisfying the mass shell constraints p®2 2 Miz and momentum conserva-
tion 2, P ) = 0. As before, the sign of the energy component of P() will be

2
positive (negative) if the i th particle is outgoing (incoming). Now, to study
analyticity, we consider complex values of the P®  and assume that Mis
analytic apart from certain singularities such as those required by unitarity.
(Note that, the assumption of crossing made here, that is, that the various
channels are described by just one analytic function of the P(l), is not es-
sential for the following discussion). For the group theoretic treatment of
particles with spin it is convenient to introduce another function M of com-
plex Lorentz transformations a;(or more precisely elements of SL(2, C ¥¢ ,
the universal covering group of the complex Lorentz group), related to the
M function by

_ (1 -1 (n) -1
Mml,...,mn(al""’a )—y%iAmlm'l(al ) ..... Amnm;e(an)
X ﬁml. o (@) PO% o, Lap (), ()
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and defined over the subset of [SL(2, C)c]" satisfying

2 Lap@°=0, where p(i)°=(M,; 0,0, 0) (7.2)
1

where A{?) denotes the appropriate analytic representation of SL(2, C)c.
Toller [5] has made precise and proved the statement that A is free of
kinematic singularities and constraints and so will have exactly the dynam-
ical singularities that M bas. M satisfies the invariance condition

M (aa

c
Mpy.n my 1 .»a), aeSL(2,C)", (7.3)

.,aan) - Mml,...,mn(al"'

which for @ =t is a statement of TCP invariance; and alson covariance
conditions of the form

mys g ym, C11 GO
- i1 C
i an>v. Bty O OMomg | g, ... my @ @ 08y) > PyeB o (14)

1

Consider a simply connected graph or tree diagram with » external
lines, 7 internal lines, each joining two of the (r +1) vertices (but with
no set of internal lines forming a closed loop). Associating each of the n
external lines with one of the » particles involved in the process, for given
external momenta P() a (unique) momentum @, is associated with each in-
ternal line so that momentum is conserved at each vertex. The next stage is
to define the amplitude as a function of elements of the little groups of
standard vector associated with each of the internal lines and, essentially,
the Lorentz invariants which can be formed from the momenta meeting at
each vertex. In general, an arbitrary number of external and internal lines
could meet at a vertex. If a vertex has more than three lines we can divide
these into two sets, separating the vertex into two new vertices joined by a
new internal line (as indicated in fig. 2).

Thus we obtain a new tree diagram from which the original diagram may
be obtained by contraction of an internal line. The invariants which could
be formed from the momenta meeting at the old vertex, and fix their re-
lative position, are equivalent to the two sets of invariants formed from
the momenta meeting at each of the two new vertices, respectively, together
with the little group element corresponding to the new internal line (which
determines the relative position of the momenta at one new vertex relative
to those at the other). If this process is applied repeatedly until no more
than three lines meet at any vertex, we obtain a 'fully-extended' diagram, in
which each vertex has either three internal lines ("three-Reggeon' vertex)
or two internal lines and one external line ('two-Reggeon particle' vertex)
or one internal line and two external lines, ('Reggeon two-particle' vertex).
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Fig. 2. Extension of tree diagram into a fully-extended diagram.

Any tree diagram can be obtained by contraction of internal lines from

a 'fully-extended' diagram and the Regge limits are a subset of those that
can be obtained from the larger diagram. Thus, it is sufficient to discuss
in detail the definition of the amplitude as a function over the little groups
corresponding to a 'fully-extended' diagram *.

Three lines will meet at a vertex in such a diagram, we will denote the
momenta associated with them by Q Q; and Q (irrespective of whether
they are internal or external lines), angi for convemence suppose that the
momenta have been directed so that momentum conservation takes the form
Q + Q. + Q = 0 for this vertex. We choose a standard trlangle for the
vertex cons1st1ng of vectors Q 80 Qf depending on le, Q; and Qk such
that QZ = Ql , Q] = Q} s Qk = Qk To introduce analytlclty this depen-

dence should be analytic in a neighbourhood of the values of Qi , QJZ, Qk

considered. If one of the lines corresponds to an external particle of non-
zero mass, we may clearly always take the standard triangle to lie in the
z, t plane. As we have seen, if the vertex consists of three internal lines

the situation is somewhat different; if all three @'s are spacelike then we
have to arrange an analytic transition from the s-s to the s-t' regions. In
general we can choose an element ¢ eSL(2, C), for the vertex which takes
the standard triangle {QO QO QO} into the actual triangle {Q;, @, Qp} s0

that

Q=L()Q), @ =L()QF, Q=L0)R). (7.5)

If ¢ is an internal line it will run from the vertex, v; say, to the vertex
v,, and will have standard vectors Qio(l) and QZ(_)(Z) in the respective stand-

ard triangles of these vertices. If ¢y and cg denote the transformations

* The relation of fully extended diagrams to coupling schemes for the products of
the Hilbert spaces of the external particles has been discussed by Toller in ref. [11].
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corresponding to these two vertices defined by equations (7.5) then
-1 o o]
L (c2 cl)Qi(l) = Qi(z) . (7.6)
Consequently, if we introduce a transformation ¢19 Which has the property

L (qlz) Q?(l) = Q;’(z) s (77)

and depends on the squares of the five vectors at the two vertices, we have

-1.-1 n . 0 -1 -1 .
that 4,¢,” €, 1s an element of the little group of Qi(l) and €y € 41, 1s an

element of the little group of QzF:Z) . Thus in this way, for given external

momenta, we can associate with each internal line elements of the little
group of either of the standard vectors associated with it.

In fact Toller [5] has shown that the ¢, defined by the equation (7.5) can
be chosen to be analytic functions of the external momenta if the standard
triangle have been chosen in a suitable analytic way. It also follows from
results of his that the g;; we have introduced in (7.7) may be taken to be
analytic. In each case we have to exclude a certain subset of the external
momenta but this is so small that it is irrelevant [5].

Instead of using either of the standard vectors Qc;(l)or Q(i)(z)from the

the standard vertex triangles, an alternative procedure is to introduce a
third analytically varying standard vector Q?‘, linked to Q%) by analyt-
I3

ically varying transformations, and construct a little group element of

Q9" from c:;lc,. This is the procedure adopted by Toller in his recent
i 2 "1

paper [6].

An obvious modification of our formalism, which will simplify it from
certain points of view, is to match up the standard triangles at adjacent
vertices so that, for example, the new Q?(z) = Q(i)(1) . We can do this by
working outwards from a given vertex, each time applying L(g;;) to the
vertices further out. (The standard triangles will now, in general, depend
on all the Qz.'s). It is then unnecessary to introduce new ¢..'s and célc
will be an element of the little group of the new Q?. v

The action of the little group elements can now be pictured as follows.
If we consider an arbitrary fully-extended diagram (for example fig. 3(a))
we can construct a dual diagram from the momenta P;, @; which takes the
form of a network of triangles (see fig. 3(b)), one triangle for each vertex.
The little group elements k; = ¢ ¢, etc., determine the relative position
of adjacent triangles in the network. The standard configurations of the
vertex triangles now fit together to form an analytically varying standard
position of this network and the measurement of the relative positions
is based on this standard network.

If all the external particles are spinless, all we are interested in doing
is determining the external momenta Pz- to within an overall Lorentz

1
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P:

Fig. 3. (a) A fully-extended diagram. (b) The dual diagram corresponding to (a).

transformation. It is easy to do this in terms of the little group elements
(and the Q2's). For if v, is any fixed vertex, L(c'l)P is the product of
little group elements correspondmg to the 1nterna1 hnes forming the
unique path from v, to the external vertex at which P; is attached. For
example in fig. 3 if we take v 0 =75

-1 _ -1 o
L(c5 )P1 -L(c5 Cl)Pl

)
=L(c 606 cl)P1

3 -1 0
=L, ny)P] , (7.8)

where %; is an element of H; the little group of Q? and P? is the vector in
the standard triangle of the vertex v4 corresponding to Py, and is an anal-
ytic function of the external masses and Qi2 (1< i< 6) in general. Thus if

we define a function f by

. -1
Sy, gy hgy by by k) = M(L(eg h )P, L (g hz)P

-1 (o} (s}
L(h )P3, Likg h4)P4,P5), hieH, (7.9)

where now Pio stands for Pl(-) and Plp' (1< <4), it will be analytic when
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i1 is and we can reconstruct the # function from it, because

JQ(PI, Py, Py, Py, Py)
= M(L(c'l)P L(c )P Lehp, Lchp, L) P
5 /11 5 ' Hg “\C5 1y LG5 ) Fy
o~ -1 (o -1 0 -1 0 -1 o .0
= M(L (tg"hy) Py, L(hg ho) Py, L (kg hg) Pgs L (kg hy) Py, Pg) . (7.10)

Therefore f will have no kinematic singularities or constraints by
Toller's theorems [5]. This procedure which can obviously be applied
to any fully extended diagram is a direct generalisation of our previous
treatment of the spinless six particle amplitude and is obviously independent
of the choice of the special vertex v_. Only small amendments to this pro-
cedure are now necessary to introduce external particles with spin. If the
M function is used instead of the /7 function to define the function f over
the little groups then the covariance conditions for the spin labels (7.4)
will give simple covariance conditions for f. Thus we must relate the
transformations a; associated with each of the external lines, to the c-
transformations and corresponding standard triangles introduced at each
of the external vertices. We have from (7.1), (7.2) and (7.5) that, for the
i-th external particle

o}

Fi= Llab

0
L(ci)Pi

]

= L(c;b) P(()i) ’ (7.11)

where c; is the c-transformation for the vertex to which P, is attached,
P? is the relevant standard vector and b is an analytic transformation re-
lating PO and p(z) Therefore

C
ai=cibiui, uieH+ . (7.12)

Since ¢ and b; have been chosen to be analytic functions of the external
momenta and therefore of the a;'s, u; will also be an analytic function

of the a;'s. Therefore, if we define f(h¢,..., h6) for the diagram of fig. 3

by

fml, my,.... my,my, m5(h1’ """ ’ h6)

- \] \

=M omi ... mg,m), m (hs hybys g h1b1"' g h4b4’hs h4b4’b5)’
1,71 4 4 5
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it is clear that the M-function can be reconstructed from f using (7.3),
(7.4) and (7.12) and so again by Toller's theorems f will have no kinematic
singularities or constraints. This procedure is exactly analogous to that
followed for the spinless amplitude and can also be applied to any fully ex-
tended diagram.

From (7.13) f will satisfy certain covariance conditions and these ensure
that the reconstruction of the M-function is well defined. If we consider an
internal (or three-Reggeon) vertex (for example vertex 6 of fig. 3) with
momenta @,, @;, &, meeting, then the function f will be invariant under the
transformation

hy = kg, ho kg, bk, k HOH;0H =K (7.14)

K will be the group of transformations which leaves invariant the plane
of the standard triangle at the vertex. This covariance condition exactly
corresponds to the possible freedom in the choice of a ¢ satisfying (7.5).
To make the covariance conditions at the external vertices simple, it is
convenient to require that in addition to satisfying L (b5)p( = PP, b;
should also map the (z,¢) plane into the plane of the standard triangle at
the corresponding vertex. The covariance condition at a two-Reggeon
particle vertex (for example vertex 5 of fig. 3), where B, Q;, Q) meet,
takes the form that under the transformation

-1
hj - hj u; hk—» hk”i , where u; = bz- ”z(“)bi EHimHjﬂ Hp =U;, (7.15)

f is multiplied by the phase factor e_imi“ . For a Reggeon two-particle
vertex (for example vertex 1 in fig. 3), where P, Pj » @ meet, the trans-
formation

-1 -1
h , where uij = bz.uz(p)bz. = bj uz(u)bj eH,N H].ﬂ H, = Uij , (7.16)

Ry = Rty

produces a phase factor e—l(mﬁmj”l on f. Both u; and ujj preserve the
planes of their respective standard triangles.

Having defined the amplitude as function over the little groups H; we
can now perform a partial wave analysis by expanding in terms of repres-
sentation functions of these groups. To construct these functions it is
necessary to parametrize the groups by defining an isomorphism of the
moving groups on to the standard SU(1,1) little group of the z-axis in the
region Q% < 0 in which we are interested, as in sect. 4. Such an isomor-
phism will be singular at Qiz = 0. This isomorphism will be of the form

hy = gihiggl D Hy - SU(1,1) , where g eSL(2, €). In order to conveniently
incorporate the covariance conditions we introduce elements of SU(1.1)
which map the image of the plane of the standard triangles under g; on

to either the (y, z) or (z, ¢) plane as is appropriate. For the external ver-
tices these take the form of transformations d; which will be analytic (as

a function of the Qz's). For three-Reggeon vertices we introduce transfor-
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matlons ¥; Which, as we showed in sect. 4, will necessarily be singular at

by (Q Qz, Q,f) = 0 and are different for Nijk z 0. To do the expansion at

A ;g = 0 a different »~transformation which maps on to a standard plane
touching the light cone must be used.

We can now write the general form of an expansion as follows: We divide
the internal lines ¢ into four sets «, 8, v, 6, depending on whether they have
three-Reggeon vertices on both sides, just on the right, just on the left, or
on neither side. Then

-1
Fongyessmyltye b = B S ab, EQD g 7))
-1
n D '(dzgz zgz 7' n D (Vigihigi d%)
ief i iey it
n J Aypymy..oomy
1€d n n' (dghg d)i ”1”1 nyn' (7.17)

Here A; labels the representations of SU(1,1), phiig a representation
function and #;, #; denote discrete labels unless the left, or right end re-
spectively, of the line 7 is part of three-Reggeon vertex in the s-s region
(or on the boundary of the s-s and s-t regions) when it is continuous. The
partial wave coefficient ' will be zero unless the sum of the m and »n
labels for each vertex is zero.

The difficulties that occur when either a g;oranv; become singular and
their relative importance have been discussed in sect. 3 and 4. They can
be removed by extending the function f to a function on SL(2, C)?, satis-
fying the appropriate covariance conditions, and performing a partial -
wave expansion in terms of the representation functions of SL(2, C). The
covariance conditions at the external vertices present no problem (if no
two external particles have the same mass). They can be incorporated by
introducing a d; transformation as for the SU(1,1) expansion and again
making the partial-wave coefficient

FAi.' . .‘. ./}ymg, . ....mn' ,
nljl’nlll""'"r]r’nr]v

zero unless the sum of the m and » labels for each vertex is zero. To in-
corporate the covariance condition at a three-Reggeon vertex, we introduce
transformations s; which (analytic as a function of the @;'s) align the plane of
the standard triangle to include the z-axis, but with none of the sides along
the z-axis. The covariance condition will then be satisfied if the j, z labels
corresponding to this vertex are taken to be the SU(1,1) basis labels in-
troduced in sect. 5, and F satisfies the condition (5.14). With these re-
strictions on F the expansion will take the same form as that given in (’7 17)
expect that the gZ s will not be present, the »; 's will be replaced by s;'s,
the A;'s will denote representations of SL(2, €) and the DAi's will be the
correspondmg representation functions. Toller poles can now be introduced
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into this expansion giving the usual sequences of Regge poles.

The difficulties at pseudothresholds of the external particles, which
occur in our formalism as a result of the d;'s becoming singular have been
treated in detail by Cosenza, Sciarrino and Toller [4]. When the masses of
the external particles are not equal these occur for values of the corre-
sponding Q?, greater than zero. They have also considered the more com-
plicated problem where two external particles of equal mass meet at one
vertex and the corresponding d; and 8; become singular simultaneously.

We are grateful to Dr. D.1. Olive for his interest and encouragement
during this work. We are also grateful to the SRC for maintenance grants.
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