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Summary. — In the 90s of the last century high statistics experiments with fully
equipped 4π detectors have lead to a better insight in the spectrum of hadrons.
In particular the finding of crypto-exotic and JPC exotic states tremendously im-
proved the experimental situation in meson spectroscopy. All this was possible only
with sophisticated analysis methods like the decomposition of measured phase-space
distribution into partial waves and to express the partial waves in terms of compli-
cated dynamical functions. This paper gives an introduction about the concepts
and formalisms involved.

PACS 11.80 – Partial wave analysis.

1. – Introduction

1
.
1. Goals . – The spectrum of hadrons, mesons and baryons is the result of bound

states of quarks like qq and qqq respectively. Although the quark-model was moti-

vated partly by the structure of the spectra and the symmetry and decay properties

of the hadrons, the gauge field theory of strong interactions, Quantum Chromodynamics

(QCD), has a very strong coupling constant at very low momentum transfer (e.g. low

masses) so that there are no firm predictions in the classical field of light quark spec-

troscopy and medium energy physics. Therefore there is no possibility to map out the
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states from first principles (if we leave lattice gauge theory out for the moment). To

understand the spectrum of light hadrons it is important to collect the properties to de-

rive effective models to be used in that field, which may tie up to the very high energies

where perturbative QCD works well. In order to uncover the spectrum it is necessary

to investigate the scattering and the decay of hadrons and to identify the intermediate

states throughout the whole reaction.

Lattice gauge theory could be a way out of the problem, but since the results reflect

a measurement on the lattice (with very limited precision and a lot of assumptions so

far) it is not suited to actually understand the principles and the physics behind the

measurements, e.g. an actual state and/or it’s properties.

The basic task is to find all resonances, with their static properties like mass, width,

spin and parities. Since SUF (3) [1] provides a lot of relations among the decays of pure

states (without Fock states) without complicated final state effects it is important to

measure the partial decays widths as well. This is a very demanding task, since a lot

of resonances overlap. In addition complicated production processes or scattering with

many waves in the intermediate state complicate the situation. To disentangle the waves

and to identify resonances and their actual yield.

1
.
2. Technique. – The techniques are manifold and we should to concentrate only on

two basic approaches. The first one is scattering of hadrons, usually on a proton or a

deuterium target, depending on the desired process. Typical examples are

• πN scattering with or without charge exchange (GAMS at CERN, E852 at AGS),

• γN scattering (CEBAF, MAMI, Elsa, Graal),

• πp or pp in the central region (WA76, WA92, WA102 at CERN, E690 at FNAL),

• pp near meson production thresholds (WASA at Celsius, Anke and TOF at COSY),

• pp in flight (Crystal barrel, Jetset and PS185 at CERN, Panda at GSI).

These reactions involve usually a lot of partial waves. Single or double polarization ex-

periments, low excitation energies and/or a selection of specific exclusive channels which

impose reasonable constraints on the reaction are required to enable an unambiguous

decomposition of the system.

The second one is where the initial system is at rest and/or the remaining part of the

reaction is not of interest like

• pN reactions at rest into many body final states (Asterix, Crystal barrel and Obelix

at LEAR),

• K0 and K± decays (NA48 at CERN, Kloe at Daφne, kTev at FNAL),

• φ(1020) decays (Kloe at Daφne, VEPP at Novosibirsk),

• D andDs decays in high energy reactions (photo-production at FNAL, Babar/Belle

at PEP-2/KEK-B, CLEO-c at CESR),
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• J/ψ decays (MarkIII at SLAC, DM2, CLEO-c at CESR, BES at BEPC).

For all experiments of this type it is important that spin densities are well known. Oth-

erwise a full decomposition is not possible. In that case additional assumptions have to

made to relate the different parameters.

1
.
3. Methods . –

1
.
3.1. The Partial Wave Approach.

Motivation. Partial waves are easily introduced in a scattering process. To get a first

impression we start with Schrödinger’s equation

− ~

2µ
▽2 Ψ(~r) + V (~r)Ψ(~r) = EΨ(~r)(1)

with ~k =
~p

~
= µ

~v

~
and the reduced mass µ =

m1m2

m1 +m2
. The incident wave can be

expressed like Ψi(r, ϑ, ϕ) = eıkz and we assume a vanishing potential V (~r) = 0. Then

we can expand the initial state |i〉 in terms of Legendre polynomials Pl, thus separating

angular and radial wave function

|i〉 = Ψi =

∞∑

l=0

Ul(r)Pl(cosϑ).(2)

The scattering wave function ΨS is the difference between incoming and outgoing wave.

We parametrize Ul in terms of a phase δl and an inelasticity ηl, which are motivated

from our knowledge of resonance curves, where the phase moves from −π
2 to π

2 and the

inelasticity carries all dissipated probability (e.g. into other channels):

ΨS = Ψf − Ψi =
1

k

∞∑

l=0

(2l + 1)
ηle

2ıδl − 1

2ı
Pl(cosϑ)

eıkr

r
(3)

The total cross section can then be written

dσ

dϕd cosϑ
=

1

k2

∣∣∣∣∣

∞∑

l=0

(2l+ 1)
ηle

2ıδl − 1

2ı
Pl(cosϑ)

∣∣∣∣∣

2

=
1

k2

∣∣∣∣∣

∞∑

l=0

(2l+ 1)TlPl(cosϑ)

∣∣∣∣∣

2

(4)

with

Tl =
ηle

2ıδl − 1

2ı
(5)
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the so called T -matrix. We will discuss it’s properties later in more detail (see sec.3
.
2.4).

To visualize the properties of T Argand plots are quite useful, since they provide a check

on the unitarity of T (which ensures that the probability of a reaction does not exceed

unity). The Argand plot is a graph of the imaginary part of T versus the real part of

T (see fig. 1). It is seen easily from this plot that the phase δl is not the same as the

angle φ which apears in the polar representation of complex numbers. As an example,

Re(T)

Im(T)

2d

f

h/2

1

1
2

I=yy*

Fig. 1. – Argand plot definitions.

fig. 2 shows the behavior of T for a relativistic Breit-Wigner function. If the inelasticity

is zero, e.g. there is only one elastic channel, the Argand circle has a constant radius of
1
2 and crosses the imaginary axis at one. From eq. 4 we see that the angular amplitudes

(Pl) and the dynamic amplitude (Tl) factorize.

1
.
3.2. The Isobar Model. The last preparative step to write down an amplitude is

to make assumptions how particles are grouped to construct a decay/reaction chain. An

empirical approach is the isobar model. It assumes that all subsequent decays appear

to be two-body reactions. This model seems to work extremely well in very different

environments and for most hadrons (exceptions may be ω → π+π−π0 and η → 3π). The

type of valid reactions is sketched in fig. 3a while fig. 3b shows a more complicated reaction

involving rescattering. The isobar approach will not work easily in those circumstances.

In some cases it can be retained if the rescattering process is refactorizable in terms of

many isobar reactions. This involves usually very many parameters and may not lead to

a sufficient description. In those cases model assumptions have to be made. In the isobar

model, the two-body decay into particle 1 and 2 factorizes (fig. 4) completely from the

recoil system 3, which might decay as well. Any node in the decay tree is represented by

the same isobar-like amplitude. The recoil systems are only involved in maintaining the

conservation of angular momentum and spin-projections, which imply summation over

unobservable quantities.

1
.
3.3. Construction of the Amplitude. The full amplitude for each node of the decay

tree consists of a dynamical part Tl and an angular part which we will call Rl. If we

deal with strong or electromagnetic interactions also isospin is conserved, which means

that we have to include an isospin related part Il, so that decays with different isospins
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(a)
Re(T)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Im
(T

)

0

0.2

0.4

0.6

0.8

1

(b)
]2m [GeV/c

0.8 1 1.2 1.4 1.6 1.8

 [r
ad

]
δ

0

0.5

1

1.5

2

2.5

3

(c)
]2m [GeV/c

0.8 1 1.2 1.4 1.6 1.8

2
|T

|

0

0.2

0.4

0.6

0.8

1

Fig. 2. – Simple relativistic Breit-Wigner. (a) Argand, (b) phase δ and (c) intensity plot.

|II3〉 can be related to each other. This is important if the same charged particle occur

with different charge in various parts of the decay tree. With these ingredients, the full

amplitude is defined via

f(I, I3, s,Ω) = Il(I, I3)Tl(s)Rl(Ω)(6)

One should note, that after combining the amplitude for all nodes in the decay tree,

all conservation laws (like J , I, and their respective projections) have to be taken into

account, which results in a sum over all unobservable values.

(a) recoil

s
p

p

K

K
(b)

s

Fig. 3. – Production process with propagation (a) and rescattering (b). (a) can be treated easily
with an isobar method, while (b) can not.



6 K. Peters

1

3

2
| >i

q

Fig. 4. – Isobar definition in a chain of subsequent decays. θ defines the angle for angular decay
distributions.

Example: Isospin Relations in pp(0−+, 1−−) → ρπ. The initial pp state has either

IG(JPC) = 1−(0−+) (called 1S0) or IG(JPC) = 0−(1−−) (called 3S1). The two final

state gammas have IG(JPC) = 0+(1−−). Both initial states can decay to ρπ but this

case illustrates how important isospin Clebsch-Gordan coefficients are, since

ρ0π0 → (1010|00) = −
√

1

3

ρ0π0 → (1010|10) = 0

ρ±π∓ → (1(±1) 1(∓1)|00) =

√
1

3
(7)

ρ±π∓ → (1(±1) 1(∓1)|10) = ±
√

1

2

it is evident that 1S0 has destructive ρ±/ρ0π0 interference, while for 3S1 only ρ±π∓

contributes and ρ0π0 does not exist.

2. – Spin formalisms

2
.
1. Preface. – There are various spin formalisms available. In principle there are

three basic types:

• tensor formalisms, in non-relativistic (Zemach) or covariant form,

• spin-projection formalisms, where a quantization axis is chosen and proper rotations

are used to define a two-body decay

• formalisms based on Lorentz invariants (Rarita-Schwinger) where each operator is

constructed from Mandelstam variables only.

The tensor formalisms are very fast algorithms if waves with small angular momentum

are involved but is getting very complicated if higher waves are present and/or a lot of

subsequent decays occur. Using the Lorentz invariants is not really a formalism, since one

has to construct an amplitude with the proper transformation and symmetry properties

as the actual particle and wave to be represented. As for the tensor formalism this might

be simple and extremely elegant for waves with low angular momentum but is virtually
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impossible for a complicated decay cascade. The Zemach formalism as a representative

of tensor formalisms is discussed in sec.2
.
2.

If we restrict ourselves now to the other formalisms the key steps in the specification

of a scattering formalism are as follows:

• the definition of single particle states of given momentum and spin component

(~p-states),

• the definition of two-particle ~p-states in the s-channel center-of-mass system and

of amplitudes between them,

• transformation to states and amplitudes of given total angular momentum (J-

states),

• symmetry restrictions on the amplitudes,

• formulae for observable quantities,

• specification of kinematic constraints.

The basic three formalisms are known as helicity, transversity and canonical (historically

known as orbital) formalisms. Their basic properties are summarized in tbl. I. Since they

have different symmetry relations they can be used in different fields. While the helicity

formalism is applicable to most spectroscopy experiment, it is the transversity formalism

which conserves parity and can therefore be applied for partial wave decomposition in CP

measurements. The three formalisms differ mainly in the choice of the spin quantization

Helicity Transversity Canonical (Orbital)
property possible/simplicity

partial wave expansion simple complicated complicated
parity conservation no yes yes

crossing relation no good bad
specification of kinematic constraints no yes yes

Table I. – Comparison of various spin formalisms. Depending on the choice of the quantization
axis, the amplitudes have different symmetry properties.

direction for each particle.

In the helicity formalism each particle spin is quantized parallel to its own direction

of motion so that its projection, the helicity λ is diagonal.

In the transversity approach, the component τ normal to the scattering plane is used.

In the orbital (or canonical approach) the component m in the incident z-direction is

diagonal.

The merits of each approach arise largely from the invariance of the projections. These

properties are made precise by the definition of the particle states. It is convenient to

define them by explicit Lorentz transformation from the spin statesm of a particle at rest.
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Detailed discussions are found in the original papers [2, 3, 4]. The essential principle in

all cases is, that the spin projection of a particle is defined in its rest frame. The general

single particle state is then defined by applying a definite sequence of boosts L(px, py, pz)

and rotation R(α, β, γ) to the system. We define

Ψλ = |p̃, λ〉 = R̂(φ, θ,−φ)B̂(0, 0, p)|m〉 ≡ Ĥ(p̃)|λ〉(8)

Ψτ = |p̃, τ〉 =
∑

λ

|p̃λ〉∆J
λτ = ∆̂Ĥ(p̃)∆̂−1|τ〉 = T̂ |τ〉(9)

Ψm = |p̃m〉 =
∑

λ

|p̃, λ〉DJ∗
λτ R̂(φ, θ,−φ) = R̂−1(φ, θ,−φ)Ĥ(p̃)|m〉 = Ô|m〉.(10)

It is clear that it is necessary to calculate the effect of a general Lorentz transformation

on the states |p̃ξ〉. While Lp̃ = p̃′ the corresponding state is not |p̃′, ξ〉 since the states

are being always obtained from the rest state by a definite sequence X(p̃) and these do

not in general commute. However, since both have the same value for the momentum

in a particular system they can both be transformed back to the rest frame by X−1 can

there they can differ at most by a rotation

L|p̃ξ〉 = X(Lp̃)R(L, p̃)|0ξ〉 =
∑

ξ′

|Lp̃, ξ′〉DJ
ξ′ξ(r)(11)

with the Wigner rotation given by

R = X−1(Lp̃)LX(p̃).(12)

The two-particle states are then defined essentially as direct products of single particle

states, but phase space factors may be included to make the form in the center-of-mass

system convenient for various purposes. More details are discussed in the particular

sections about the different formalisms (see sec.2
.
3.1).

2
.
2. Zemach Formalism. –

2
.
2.1. Formalism. The Zemach formalism was originally developed for the investiga-

tion of the K0 decays into 3π [5]. The basic concept is that every angular momentum

involved in the reaction is represented by a symmetric and traceless tensor of rank lin

3-dim. phase-space. The tensors A for spins up to two are

l = 0 A0 = 1

l = 1 A1(~q) = ~q(13)

l = 2 A2(~q) =
3

2



~q · ~q
T − 1

3
|~q|2
︸ ︷︷ ︸

for tracelessness




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with

~q · ~pT =




q1
q2
q3



( p1 p2 p3

)
=




q1p1 q1p2 q1p3

q2p1 q2p2 q2p3

q3p1 q3p2 q3p3



(14)

or with all indices

l = 0 A0 = 1

l = 1 A1
i = qi(15)

l = 2 A2
ij =

3

2
qiqj −

1

2
|qi|2δij .

The coupling of spins and/or angular momenta, like spin s of a particle and angular

momentum l relative to another spinless particle is then done by multiplying the tensors

and contraction of the resulting tensor.

2
.
2.2. Example: pp(0−+) → f2π

0 → π+π−π0. The two step process pp → f2π
0

and f2 → π+π− may serve as an example to illustrate the method. For ~p being the

momentum between π0 and f2 and ~q the momentum in the subsequent f2 → π+π−

two-body decay the construction of the amplitude leads to

A0 = A2
f2π0,ijA

2
π+π−,kl δikδjl︸ ︷︷ ︸

unpolarized

=
∑

i,j,k,l

A2
f2π0,ijA

2
π+π−,klδikδjl

=
∑

i,j

A2
f2π0,ijA

2
π+π−,ij(16)

with

A2
f2π0,ij =

3

2
pipj −

1

2
|pi|2δij(17)

A2
π+π−,kl =

3

2
qkql −

1

2
|ql|2δkl.(18)

Combining eq. 18 and eq. 17 with eq. 16 gives

A0 =

(
3

2
pipj −

1

2
|pi|2δij

)(
3

2
qiqj −

1

2
|qi|2δij

)

=
9

4
(~q · ~p)2 − 3

4
~q2~p2 − 3

4
~q2~p2 + 3

1

4
|~q|2|~p|2

=
9

4
(~q · ~p)2 − 3

4
~q2~p2(19)
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and finally the angular distribution is calculated by the squared amplitude

9

4

[
(~q · ~p)2 − 1

3
~q2~p2

]
=

9

4

[
(qp cosϑ)2 − 1

3
q2p2

]

=
9

4
(cos2 ϑ− 1

3
)2 = P 0

2 (ϑ)2.(20)

2
.
3. Canonical and Helicity Formalism. –

2
.
3.1. Few Particle States.

Canonical (Orbital) Formalism.

Single Particle States May |jm〉 be an at-rest state with spin j and spin projection

m on to the z-axis in an euclidean system with coordinates (x, y, z). The single particle

state with a momentum ~p is constructed through a pure Lorentz transformation Lp̃

|p̃, jm〉 def
= Lp̃|jm〉(21)

= R̂0LzpR̂
−1
0 |jm〉

where R̂0 = R̂0(ϕ, ϑ, 0) rotates the z-axis (like in fig. 5a) in the direction of the momentum

~p (~e~p = R̂0(ϕ, tht, 0)~ez. In the first step the momentum vector is rotated via R̂−1
0 in the

(a)

z

x

y

z'

x'

y'

q

j
(b)

z

x

y

x’

y'

z'

q

j

Fig. 5. – Definition of angles in canonical (a) and helicity formalism (b).

z-direction. Secondly the absolute value of the momentum is Lorentz transformed along

z and finally the z-axis is rotated to the ~p direction via R̂0.

If rotation of the single particle state is derived from the properties of the rotation

group. One obtains

R̂|~p,m〉 =
∑

m′

Dj
m′m|R̂~p,m〉(22)

where Dj
m′m(R) are the Wigner D-functions for the rotation R. From eq. 22 we see that

the canonical states transform like at-rest states |jm〉.
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Two-Particle States Two-particle systems 1+2 in a rest-system J with respective

spins can be constructed directly with the help of single particle states. One particle s

has the momentum ~ps and the other partilce t has the opposite momentum −~ps. Apart

from that the at-rest system of the two particles depends only on the stereo angle Ωs

and the direction of ~ps. Using eq. 21 one gets

|Ω0
s, smstmt〉

def
= κ



L p̃s︸︷︷︸
(Es, p̃s)

|sms〉L p̃t︸︷︷︸
(Et,−p̃s)

|tmt〉



 .(23)

The normalization κ can be derived from the single particle states:

κ =
1

4π

√
ps

mJ

=
1

4π

√
ρs(24)

where mJ is the invariant mass of the state J and ρs the invariant phase-space factor.

To get a practical recipe it is necessary to couple the angular momentum L and the

total spin S = s+ t. Thus the first step is the coupling of the single particle spins to S

|Ω, SmS〉 =
∑

ms,mt

(sms tmt|SmS)|Ω, smstmt〉(25)

where (sms tmt|SmS) is a Clebsch-Gordan coefficient. A state with a particular total

angular momentum L is then

|LmLSmS〉 =

∫
dΩY L

mL
(Ω)|Ω, SmS〉(26)

Finally we couple L and S to J :

|JMLS〉 =
∑

mL,mS

(LmL SmS|JM)|LmLSmS〉

=
∑

mL,mS ,ms,mt

(LmL SmS|JM)(sms tmt|SmS)

∫
ΩY L

mL
(Ω)|Ω0

s, smstmt〉(27)

with Y L
mL

(Ω) being the spherical harmonics. With these definitions we get the following

completeness relation

1 =
∑

J,M,L,S

|JMLS〉〈JMLS|.(28)

The normalization of the canonical states is then given by

〈Ωs′ , s′ms′t′mt′ |Ωs, smstmt〉 = δ(Ωs′ − Ωs)δss′δtt′δmsms′
δmtmt′

(29)

〈J ′M ′L′S′|JMLS〉 = δJJ′δMM ′δLL′δSS′ .(30)
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Helicity Formalism.

Single Particle States The construction of states is similar to the procedure for

canonical states. May |jλ〉 be an at-rest state with spin j and spin projection λ on to the

z-axis in an euclidean system with coordinates (x, y, z). The single particle state with a

momentum ~p is constructed through a pure Lorentz transformation Lp̃ plus a rotation.

This is due to the fact, that the z-axis is firstly rotated to the direction of ~p. Secondly the

result is Lorentz transformed. Therefore the new z-axis, z′, is parallel to ~p (see fig. 5b).

|p̃, jλ〉 def
= Lp̃|jλ〉(31)

= R̂0LzpR̂
−1
0 |jλ〉.(32)

The second line of eq. 31 follows from eq. 21 and the unitarity of rotations. If the helicity

state is rotated, then the momentum ~p is rotated, but the helicity is invariant, since the

quantization axis is rotated as well. Therefore

R̂|~p, λ〉 = |R̂~p, λ〉.(33)

Since eq. 22 and 33 are complete, it is possible to represent the helicity state in the

canonical basis and vice versa:

|~p, λ〉 =
∑

m

Dj
mλ(R0)|~p,m〉(34)

Two-Particle States Analogue to the construction of the canonical two-particle state

eq. 21, the helicity equivalent is constructed using the states eq. 31

|Ωs, sλstλt〉
def
= κR̂0 [Lzps|sλs〉Lzpt|tλt〉]
= R̂0(Ωs)|Ω = (0, 0), sλstλt〉(35)

Using a similar procedure to couple all spins one obtains

|JMλsλt〉 = NJ

∫
dΩ DJ∗

M,λs−λt
|Ω, sλstλt〉(36)

with the normalization factor

NJ =

√
2J + 1

4π
.(37)

The choice of NJ was made, so that we get a simple completeness relation

1 =
∑

J,M,λs,λt

|JMλsλt〉〈JMλsλt|(38)
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The normalization of the helicity states is then given by

〈Ωs′ , s′λs′ t′λt′ |Ωs, sλstλt〉 = δ(Ωs′ − Ωs)δss′δtt′δλsλs′
δλtλt′

(39)

〈J ′M ′λs′λt′ |JMλsλt〉 = δJJ′δMM ′δλsλs′
δλtλt′

(40)

2
.
3.2. Decay Amplitudes. The two-particle states can now be used to derive two-body

decay formulae in the two formalisms.

Canonical (Orbital) Formalism. May J be the at-rest system of the decaying state |JM〉
with arbitrary, but well defined spin J and projectionM . The decay amplitudes is derived

by using the two-particle states and summing over all unobservable spin-projections

A =
∑

ms,mt

〈~ps, sms|〈−~ps, tmt|M|JM〉(41)

with M being the unknown decay operator. To get to the final formula we need the

following relation

〈Ωs, smstmt|JMLS〉 =
∑

mL,mS,ms′ ,mt′

(LmL SmS|JM)(s′ms′ t′mt′ |SmS)

∫
dΩs′Y L

mL
(Ωs′)〈Ωs, smstmt|Ωs′ , s′ms′t′mt′〉(42)

=
∑

mL,mS,ms′ ,mt′

(LmL SmS|JM)(s′ms′ t′mt′ |SmS)

∫
dΩs′δ(Ωs − Ωs′)δss′δtt′δmsms′

δmtmt′

=
∑

mL,mL

(LmL SmS |JM)(sms tmt|SmS)Y L
mL

(Ωs)(43)

Now we include the two-particle states and obtain

AJM
msmt

=
4π√
ρs

〈Ωs, smstmt|M|JM〉(44)

=
∑

L,S

〈Ωs, smstmt|JMLS〉 4π√
ρs

〈JMLS|M|JM〉

def
=
∑

L,S

√
4πaJ

LS〈Ωs, smstmt|JMLS〉

def
=

∑

L,S,mL,mS

√
4πaJ

LS(LmL SmS |JM)(sms tmt|SmS)Y L
mL

(Ωs)(45)

with the canonical partial decay amplitudes aJ
LS

aJ
LS

def
=

√
4π

ρs

〈JMLS|M|JM〉(46)



14 K. Peters

which contain the physical matrix element of operator M.

Helicity Formalism. The decay helicity amplitude is derived in the same way as eq. 41

A =
∑

λs,λt

〈~ps, sλs|〈−~ps, tλt|M|JM〉.(47)

Using

〈Ωs, sλstλt|JMλs′λt′〉 = NJ

∫
dΩ′DJ∗

M,λs′−λt′
(Ω′)〈Ωs, sλstλt|Ωs′ , s′λs′ t′λt′〉

= NJ

∫
dΩs′DJ∗

M,λs′−λt′
(Ωs′)δ(Ωs′ − Ωs)δss′δtt′δλsλs′

= NJD
J∗
M,λs′−λt′

(Ωs)(48)

and inserting the two-particle states we get

AJM
λsλt

=
4π

ρs

〈Ωs, sλstλt|M|JM〉(49)

=
∑

λs′ ,λt′

〈Ωs, sλstλt|JMλs′mt′〉
4π

ρs

〈JMλs′mt′ |M|JM〉

=

√
4π

ρs

(2J + 1)〈JMλsmt|M|JM〉DJ∗
M,λs′−λt′

(Ωs)

= NJfλsλt
DJ∗

M,λs′−λt′
(Ωs)(50)

with the helicity amplitudes

NJfλsλt
=

√
4π

ρs

(2J + 1)〈JMλsmt|M|JM〉(51)

also containing the physical matrix element of operator M. The two formulae eq. 45

and eq. 50 have a lot of similarities. They are both an expansion in terms of spherical

functions of different type (Y L
mL

for the canonical and DJ
m′m for the helicity formalism)

with partial amplitudes which cover the decay matrix element.

To obtain an intensity it is necessary to include the population of spin states of the

initial state. For a particle with spin J there ae 2J + 1 projections to the quantization

axis, thus leading to a spin-density matrix ρ of rank 2J+1 which is usually diagonal and

has the form

ρMM ′ =




1 0

. . .

0 1



(52)
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With this definition the observed number of events is given by

I(ϑ)λλ′ =
∑

M,M ′,λsλs′ ,λtλt′

AJM
λsλt

(ϕ, ϑ)ρMM ′AJM ′∗
λs′λt′

(ϕ, ϑ)(53)

where the summation over λs, λs′ , λt, λt′ is implicitly constrained to λ = λs − λt and

λ′ = λs′ − λt′

2
.
3.3. Relations between Canonical and Helicity Base. Since both approaches deliver

a complete description of the state, it is fairly easy to go from one representation to

another. This is important if L and S are good quantum numbers for the system. Then

the recoupling coefficients lead to symmetry relations among the helicity amplitudes.

To move from one representation to the other we need the recoupling coefficients.

They are derived using the properties of the D-functions:

〈JMLS|JMλsλt〉 =

√
2L+ 1

2J + 1
(L0 S(λs − λt)|J(λs − λt))(sλs t(−λt)|S(λs − λt))(54)

With eq. 54 we obtain a relation between fλsλt
and aJ

LS . The recoupling from the canon-

ical to the helicity representation is

NJf
J
λsλt

=
∑

L,S

〈JMλsλt|JMLS〉
√

4π

ρs

(2J + 1)〈JMLS|M|JM〉

=
∑

L,S

√
2L+ 1(L0 S(λs − λt)|J(λs − λt))(sλs t(−λt)|S(λs − λt))a

J
LS(55)

while from the helicity to the canonical representation is

aJ
LS =

∑

λs,λt

〈JMLS|JMλsλt〉
√

4π

ρs

〈JMλsλt|M|JM〉

=
∑

λs,λt

〈JMLS|JMλsλt〉
NJ√

2J + 1
fJ

λs,λt

= NJ

∑

λs,λt

√
2L+ 1

2J + 1
(L0 S(λs − λt)|J(λs − λt))(sλs t(−λt)|S(λs − λt))f

J
λsλt

.(56)

2
.
3.4. Symmetry Relations. Reactions involving strong or electroweak interactions

conserve parity. Parity reverses the direction of ~r and ~p while the angular momentum

remains unchanged. Applying the parity transformation on a single particle state one

obtains

P |~p, jm〉 = η|ϕ+ π, π − ϑ, p, jm〉(57)
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in canonical basis and

P |~p, jλ〉 = ηe−ıπj |ϕ+ π, π − ϑ, |~p|, j − λ〉(58)

in helicity basis with η being the intrinsic parity (±1) of the particle. For the two-particle

states the parity transformation leads to the following relations

P |JMls〉 = η1η2(−1)l|JMls〉(59)

for the canonical and

|JMλ1λ2〉 =
∑

l,s

√
2l+ 1

2J + 1
(l0 sλ|JM)(s1λ1 s2(−λ2)|sλ)|JMls〉(60)

P |JMλ1λ2〉 = η1η2(−1)J+s1+s2 |JMls〉(61)

for the helicity basis with η1, η2 and η being the intrinsic parities of the two daughters

and the decaying particle respectively. This can be used to derive relations for the helicity

amplitudes. If parity conservation holds then

F J
λ1λ2

= ηη1η2(−1)J+s1+s2F J
(−λ1)(−λ2)

(62)

In the special case, that both particles are identical one obtains

F J
λ1λ2

1≡2
= η(−1)JFλ2λ1

.(63)

2
.
3.5. Examples. In this section several examples are given to illustrate the actual

handling of the helicity formalism in the day-to-day business.

Example: f2(1270) → ππ. The f2(1270) is an isoscalar tensor particle which means that

the initial state has IG(JPC) = 0+(2++). The two final state pions have IG(JPC) =

1−(0−+). The intrinsic parity of the f2(1270) is even, since ηf = η2
π(−1)l and l = 2. The

total spin s = 2sπ is zero. Starting with the definition of the formalism eq. 50

AJM
λ1λ2

= NJF
J
λ1λ2

DJ∗
Mλ(ϕ, ϑ)

and using λ = λ1 − λ2 = 0 and J = 2 we get

A2M
00 (ϕ, ϑ) = N2F

2
00D

2∗
M0(ϕ, ϑ)(64)

N2F
2
00 =

√
5 (20 00|00)︸ ︷︷ ︸

1

(00 00|00)︸ ︷︷ ︸
1

a20 =
√

5a20

A2M
00 (ϕ, ϑ) =

√
5a20D

2∗
M0(ϕ, ϑ).(65)
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Remember that this is a short-hand writing for a whole matrix of amplitudes

A2
00(ϕ, ϑ) =

√
5a20





d2
(−2)0(ϑ)e−2ıϕ

d2
(−1)0(ϑ)e−ıϕ
d2
00(ϑ)

d2
10(ϑ)eıϕ

d2
20(ϑ)e2ıϕ




.(66)

The intensity is then derived by the bilinear sum of amplitude and conjugated amplitude,

weighted by the spin density matrix

I(ϑ) =
∑

M,M ′

A2M
00 (ϕ, ϑ)ρMM ′A2M ′∗

00 (ϕ, ϑ)

ρ =
1

5




1

. . .

1



 .(67)

Due to cancellation of cosϑ and sinϑ terms, the final result is very simple, it is just a

constant:

I(ϑ) = |a20|2
(

15

4
sin4 ϑ+ 15 sin2 ϑ cos2 ϑ+ 5

(
3

2
cos2 ϑ− 1

2

))

= |a20|2 = const(68)

Example: ω → γπ. The ω is an isoscalar vector particle which means that the initial

state has IG(JPC) = 0−(1−−). The final state pion has IG(JPC) = 1−(0−+) and the

photon has IG(JPC) = 0(1−−). One should keep in mind that the real photon has no

longitudinal component. The intrinsic parity of the ω is ηω = ηπηγ(−1)l and the total

spin s = sπ + sγ is 1. Starting with the definition of the formalism eq. 50

AJM
λ1λ2

= NJF
J
λ1λ2

DJ∗
Mλ(ϕ, ϑ)

and using λ = λ1 − λ2 = λγ = λ1 and J = 1 we get

A1M
λ0 (ϕ, ϑ) = N1F

1
λ0D

1∗
Mλ(ϕ, ϑ)(69)

N1F
1
λ0 =

√
3 (10 1λ|Jλ)︸ ︷︷ ︸

− λ√
2

(1λ 00|1λ)︸ ︷︷ ︸
1

a11 = −λ
√

3

2
a11

A1M
λ0 (ϕ, ϑ) = −λ

√
3

2
a11D

1∗
Mλ(ϕ, ϑ).(70)
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or in matrix representation

A1
λ0(ϕ, ϑ) = −

√
3

2




−d1

(−1)(−1)(ϑ)e−ıϕ 0 −d1
(−1)1(ϑ)e−ıϕ

−d1
0(−1)(ϑ) 0 −d1

01(ϑ)

−d1
1(−1)(ϑ)eıϕ 0 −d1

11(ϑ)eıϕ



(71)

leading to the intensity

I(ϑ) =
∑

M,M ′,λ,λ′

A1M
λ0 (ϕ, ϑ)ρMM ′A1M ′∗

λ′0 (ϕ, ϑ)δλλ′

ρ =
1

3




1

1

1



(72)

which finally collapses again to a constant:

I(ϑ) =
1

2
|a11|2

(
2

(
1 − cosϑ

2

)2

+ 2

(
1 + cosϑ

2

)2

+ 2
sin2 ϑ

2

)

=
1

2
|a11|2(1 + cos2 ϑ+ sin2 ϑ) = |a11|2 = const(73)

Example: f0,2(any) → γγ. The f0,2 is an isoscalar scalar or tensor particle which means

that the initial state has IG(JPC) = 0+(0++ or 2++). The two final state gammas have

IG(JPC) = 0(1−−). The intrinsic parity of the f2(1270) is even, since ηf = η2
γ(−1)l and

l = 2. The total spin s = 2sγ is two and thus l = 0, 2 are allowed for the f0 and l = 0, 2, 4

are allowed for the f2. In the first case we investigate J = 0. Following the definition of

the formalism eq. 50

AJM
λ1λ2

= NJF
J
λ1λ2

DJ∗
Mλ(ϕ, ϑ)

and using λ = λ1 − λ2 we get with J = 0

A00
λ1λ2

(ϕ, ϑ) = N0F
0
λ1λ2

D0∗
0λ(ϕ, ϑ)(74)

N0F
0
00 =

∑

l,s

(l0sλ|Jλ)(s1λ1s2(−λ2)|sλ)als

=
√

1(0000|00)(1λ11(−λ2)|0λ)a00

+
√

5(2020|00)(1λ11(−λ2)|2λ)a22

=

√
1

3
a00 +

√
1

6
a22

A00
λ1λ2

(ϕ, ϑ) =

(√
1

3
a00 +

√
1

6
a22

)
D0∗

00(ϕ, ϑ)︸ ︷︷ ︸
1

= const(75)
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In the more complicated case for J = we get

A2M
λ1λ2

(ϕ, ϑ) = N2F
0
λ1λ2

D2∗
Mλ(ϕ, ϑ)(76)

N2F
2
λ1λ2

=
∑

l,s

(l0sλ|Jλ)(s1λ1s2(−λ2)|sλ)als(77)

=
√

5(2000|20)(1λ11(−λ2)|00)a20

+
√

5(202λ|2λ)(1λ11(−λ2)|2λ)a22

+
√

9(402λ|2λ)(1λ11(−λ2)|2λ)a42

=

√
1

3
a00 +

√
1

6
a22(78)

A00
λ1λ2

(ϕ, ϑ) =

(√
1

3
a00 +

√
1

6
a22

)
D0∗

00(ϕ, ϑ)︸ ︷︷ ︸
1

const.(79)

Because of the complexity of this result we limit the discussion now to the case where

J = λ = 2. Then a lot of terms disappear and the amplitude contracts to

N2F
2
1(−1) =

∑

l,s

(l0s2|22)(s11s21|s2)als

=
√

5 (20 22|22)︸ ︷︷ ︸√
2
7

(11 11|22)︸ ︷︷ ︸
1

a22 +
√

9 (40 22|22)︸ ︷︷ ︸
1

3
√

14

(11 11|22)︸ ︷︷ ︸
1

a42(80)

Using the symmetrization because of the two identical particles in the final state one gets

a fairly simple angular distribution

A2M = N2

(
F1(−1) + F(−1)1

)
D2∗

M2(ϕ, ϑ) ∝ D2∗
M2(ϕ, ϑ).(81)

Example: pp → ππ. The pp(0−+) has IG(JPC) = 1+(JPC) with M = 0,±1. The two

final state pions have IG(JPC) = 1−(0−+). Following the definition of the formalism

eq. 50

AJM
λ1λ2

(ϕ, ϑ) = NJF
J
λ1λ2

DJ∗
Mλ(ϕ, ϑ)

and using λ = λ1︸︷︷︸
0

− λ2︸︷︷︸
0

= 0 and J = l we get

AJM
00 (ϕ, ϑ) = NJF

J
00D

J∗
M0(ϕ, ϑ)(82)

NJF
J
00 =

∑

l

√
2l+ 1 (l0 00|J0)︸ ︷︷ ︸

1

(00 00|00)︸ ︷︷ ︸
1

al0 =
√

2J + 1aJ0

AJM
00 (ϕ, ϑ) =

√
2J + 1aJ0D

J∗
M0(ϕ, ϑ) =

√
2J + 1aJ0d

J
M0(ϑ)e−ıMϕ(83)
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The d-functions are not orthogonal, if ϕ is not observed ambiguities remain in the am-

plitude and polarization is needed. to disentangle the waves.

Example: pp → ωπ0 → γπ0π0. This is a two step process pp → ωπ0 and ω → γπ0

and illustrates how subsequent decays are handled in the helicity formalism. The pp has

IG(JPC) = 1+(JPC). The intermediate ω has IG(JPC) = 0−(1−−), the two pions have

IG(JPC) = 1−(0−+) and the photon has IG(JPC) = 0(1−−). The angular momentum

between the recoil pion and the f2(1270) is L = 2. Using the result from eq. 70 we obtain

AJM
λ1λ2

(Ω1,Ω2) = AJM
λωλγ

(Ωωπ0 ,Ωπ0γ) = A1λω

λγ0(Ωπ0γ)AJM
λω0(Ωωπ0)(84)

= Nω,1F
1
λγ0D

1∗
λωλγ

(Ωπ0γ)NppJF
J
λω0D

J∗
Mλω

(Ωωπ0)

= −λγ

√
3

2
D1∗

λωλγ
(Ωπ0γ)

×
(
∑

l

√
2l + 1(l01λω|Jλω)app,l1D

J∗
Mλω

(Ωωπ0)

)

= −λγ

√
3

2
D1∗

λωλγ
(Ωπ0γ)DJ∗

Mλω
(Ωωπ0)

×
(
∑

l

√
2l + 1(l01λω|Jλω)app,l1

)
(85)

The interesting feature of this amplitude is, that the helicity constant aωπ0,11 factorizes

and all helicity amplitudes of the pp system can be modified to

a′pp,l1 = app,l1aωπ0,11(86)

Example: pp → f2(1270)π0 → π+π−π0. This is an two step process pp → f2(1270)π0 and

f2(1270) → π+π−. The pp(0−+) has IG(JPC) = 1−(0−+). The intermediate f2(1270)

has IG(JPC) = 0+(2++) and the two pions have IG(JPC) = 1−(0−+). The angular

momentum between the recoil pion and the f2(1270) is L = 2. Starting with the definition

of the formalismeq. 50

AJM
λ1λ2

= NJF
J
λ1λ2

DJ∗
Mλ(ϕ, ϑ)

and λ = λ1 − λ2 = 0, Jpp = 0 and Jf2π0 = 2 we get The full amplitude is then given as

(amplitude tree)

AJM
λ1λ2

(Ω1,Ω2) = AJM
λ1λ2

(Ωf2π0 ,Ωπ+π−) = A00
00(Ωf2π0)A00

20(Ωπ+π−)(87)

= Npp,0F
0
00D

0∗
00(Ωf2π0)Nf2,2F

2
00D

2∗
00(Ωπ+π−p)

Npp,0F
0
00 =

√
1 (20 20|00)︸ ︷︷ ︸√

1
5

(20 00|20)︸ ︷︷ ︸
1

app,22
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Nf2,2F
2
00 =

√
1 (20 00|20)︸ ︷︷ ︸

1

(00 00|00)︸ ︷︷ ︸
1

af2,20

A00
00(Ωf2π0)A00

20(Ωπ+π−) =
√

5app,22af2,20D
2∗
00( Ωπ+︸︷︷︸

=(ϕ,ϑ)

)D0∗
00(Ωf2π0)

︸ ︷︷ ︸
1

=
√

5app,22af2,20

(
3

2
cos2 ϑ− 1

2

)
.(88)

with Ωxy = (ϕ, ϑ) being the direction of daughter x in the mother system of xy. The

final intensity turn out to be simple again:

I(ϑ) = 5
∣∣∣app,22af2,20

∣∣∣
2
(

3

2
cos2 ϑ− 1

2

)
(89)

2
.
3.6. The pp system.

Proton antiproton at rest . The proton antiproton system at rest is formed by an incident

antiproton beam on a hydrogen target. Due to Coulomb scattering the antiproton is

decelerated according to Bethe-Bloch’s formula until it’s energy is small enough to be

caught by a hydrogen atom. The protonium atom (proton antiproton atomic bound

state) is formed at very high n and l of about 30 where it replaces the electron. The

system deexcites through slow radiative transitions and through collisions (Auger effect).

These processes compete with the Stark mixing of the l levels. Due to the fact, that the

protonium atom is much smaller than a usual hydrogen atom it traverses those and

feels a very strong electric field which make the levels mix (Day, Snow and Sucher,

1960). The average electric field which is seen by the protonium atom varies with the

density of hydrogen atoms and thus depends on the target density. Since in S-wave

orbits a annihilation is very probable high density targets (like in liquid hydrogen) have

a dominant S-wave yield. In low density targets (like in gaseous hydrogen) more P-wave

is present [6]. The advantages of this initial system are manifold

• JPC varies with the target density,

• isospin varies with n (deuterium) or p (hydrogen) targets,

• atomic (incoherent) initial states enable unambiguous partial wave decomposition.

But there are also some disadvantages like

• limited phase space and a very small kaon yield.

The pp system has an invariant mass of mpp ≈1877 MeV/c2 . Since a recoil particle

is needed to ensure energy and momentum balance investigations are only possible up

to a mass of mMeson ≈1700 MeV/c2. If due to quantum number requirements another

(heavier) recoil particle is required, the phase space limits are even more severe.
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In principle the same kind of physics could be investigated using an n beam. This

has been done by the Obelix collaboration. Since the n as the n is neutral, there is

now deceleration in material and no neutronium atom. But one can do annihilations in

flight which is discussed in the next subsection. This is not true for annihilation of an

antiproton on the neutron of a deuteron, since the deuteron and the antiproton also form

a bound atomic system.

The annihilation - being a strong process - conserves all quantum numbers from the

atomic state. The most important ones are

• G = (−1)I+L+S,

• P = (−1)L+1,

• C = (−1)L+S and CP = (−1)S+1.

The isospin of a pp system can be either 0 or 1. Therefore in the isospin space the

protonium system mixes with the neutronium and the wave functions for the initial state

are

• 1√
2
(|pp〉 + |nn〉) has I=0,

• 1√
2
(|pp〉 − |nn〉) has I=1, I3=0 and

• |pn〉 has I=1, I3=+1.

Usually only S- and P -waves are taken into account. In liquid hydrogen the S-wave

is dominant with a yield of more than 90%. In gaseous hydrogen at NTP the ratio

between S- and P -wave is around 1. In low pressure targets the P -wave yield may be

as much as 90% [7]. Since the atomic system lives quite long compared to the strong

interaction it rotates many times until it finally annihilates. Therefore the helicity of the

initial antiproton is of no use. The population density is just equally distributed for all

helicities or in other terms for all values of the magnetic quantum number.

Proton antiproton in flight . With higher antiproton momenta a higher center of mass

energy can be reached and thus more massive mesons can be produced. In addition there

is the possibility to create resonances without recoil particles which makes the analysis

much easier and less ambiguous, although not all quantum numbers are accessible (only

fermion anti-fermion quantum numbers remain to be producible). The annihilation of

pp at higher incident momenta is completely different to the situation at rest. There

are no more atomic levels. As soon as the antiproton is to fast to be captured one deals

with a scattering process. The number of partial waves rise with increasing momenta

and detailed investigations show that the maximum needed angular momentum is l ≈
pcms/200 MeV/c2 which is almost compatible with statistical models. This leads to a

huger amount of waves which where most of them are allowed to interfere. But there are

some constraints which limit the amplitudes to be considered.
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Since we have a fermion anti-fermion system helicity conservation reduces the initial

helicities to 0 or 1 with the symmetry relation HJ
ν1ν2

= ηJ(−1)JHJ
−ν2(ν1)

with helicities

ν1,2 for the proton and the antiproton respectively and total angular momentum J . From

C and CP invariance on gets in addition H11 = 0 if L + S + J is odd and H−1(1) = 0

if S = 0 and/or J = 0. Since C and CP are conserved interference is only possible

in between waves where C and CP are equal. This decouples singlet and triplet states

as well as it decouples even from odd L. In total four incoherent sets of amplitudes

remain. The final state poses additional constraints so that many amplitudes vanish due

to other conservation laws. Nevertheless the number of parameters for a partial wave

analysis is still very high and can easily exceed 100. Therefore it might be possible that

in many cases the amplitudes have to be simplified with the cost of giving informations

and constraints away.

If there is a formation process with two particles in the final state a full featured

amplitude is usually applicable and produces unambiguous results [8]. But if there are

three and more particles involved and the number of resonances is large it is necessary

to reduce the complexity of the fit by integrating out the production process and con-

centrating on the final state. Many constraints from the initial state are lost that way

but the number of parameters can be handled easier. The main caveat is the handling of

coherence. For two fully coherent amplitudes the intensity looks like I = |A+ eiφB|2 =

|A|2+|B|2+2(ℜ [AB∗] sinϕ+ℑ [AB∗] cosϕ). If there is no coherence it is I = |A|2+|B|2.
In the case of a mixture of coherent and incoherent terms an effective coherence is needed

which can be defined like I = |A|2+|B|2+c(ℜ [AB∗] sinϕ+ℑ [AB∗] cosϕ) with c=-2,. . .,2.

This technique leaves in the possibility to check whether or not coherence between two

amplitudes is needed at all [9].

Other anti-nucleon nucleon systems. There are actually two other techniques which have

been used apart from pp annihilation. One is the nn annihilation by Obelix. This

reaction cannot occur from an atomic state, but as an in flight reaction. This is done

by using a antiproton beam to produce antineutrons in the reaction pp → nn. This

produces antineutrons in a broad energy range. They annihilate on a deuterium target

and the neutral events are selected with zero net charge in the final event. The quantum

numbers can be applied as in the pp case in flight. The usual energy range does not

exceed 300 MeV/c so angular momenta up to D-wave are sufficient to fit the data. The

other technique is to use a antiproton beam on a deuterium target and by selecting the net

charge of the event a selection of pp and pn reactions is possible. In addition information

comes from the spectating nucleon, either a proton or a neutron. The antiproton is in an

atomic orbit of the deuteron before annihilation, but the levels are somewhat different

(due to the different reduces mass of the system) and the base system for the waves is

the center of mass of the deuteron, and not the individual nucleon which takes part of

the annihilation. In addition, there is Fermi motion of the nucleons inside the deuteron.

To select the initial angular momentum of the whole system the breakup momentum

of the spectator is used. If the momentum is small (pspec <100 MeV/c) the process is
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dominated by S-wave. Due to the momentum range all phase space boundaries (like in

Dalitz plots) remain fuzzy.

2
.
4. Moments Analysis . – The basic idea of this approach is to do a Fourier decom-

position of of he final state. This is done for each bin of invariant masses of the exclusive

final state system. This method is explained best by using an example. For an unpo-

larized target and without measuring the recoil polarization of the neutron in a charge

exchange reaction of the type

π− + p →M0 + n and M0 → a+ b(90)

the differential cross section can be written [10] as

I(t,M, ϑ, ϕ) =
∂4σ

∂t∂M∂ cosϑ∂ϕ
=

1

2

∑

λp,λn

|Hλpλn
(t,M, ϑ, ϕ)|2(91)

where t is the momentum transfer between the incident π− and the M0 system, M is the

M0 invariant mass, λp, λn are the proton and neutron helicities and ϑ, ϕ are the polar

and azimuthal angles of either particle a, or b in the Gottfried-Jackson frame (1). The

full helicity amplitude Hλpλn
(t,M, ϑ, ϕ) which is the sum of the terms corresponding to

all possible intermediate spin j and helicity m states of M0 is given by

√
4πHλpλn

(t,M, ϑ, ϕ) =
∞∑

j=0

j∑

m=−j

√
2j + 1Hj

λpλn,md
j
m0(ϑ)eımϕ.(92)

Inserting eq. 92 in eq. 91 one gets

4πI(ϑ, ϕ) =
1

2

∑

λp,λn

∑

j2,m2

∑

j1,m1

√
2j1 + 1

√
2j2 + 1eı(m1 −m2)ϕ

= ×Hj1∗
λp,λn,m1

Hj2
λp,λn,m2

dj1
m10

(ϑ)dj2
m20(ϑ)(93)

The helicity products of relation eq. 93 can be expressed in terms of the density matrix

ρj1j2
m1m2

=
1

2N

∑

λp,λn

Hj1∗
λp,λn,m1

Hj2
λp,λn,m2

(94)

where N =
∂2σ

∂t∂M
. Therefore eq. 93 can be rewritten as

I(ϑ, ϕ) =
N

4π

∑

j2,m2,j1,m1

√
2j1 + 1

√
2j2 + 1ρm1m2

j1j2d
j1
m10(ϑ)dj2

m20(ϑ)eı(m1−,2 )ϕ(95)

(1) The Gottfried-Jackson frame is the M0 frame rotated so that its z-axis is parallel to the
incident π− direction.
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and its integral gives the trace equality

∑

j,m

ρjj
mm = 1.(96)

As the strong interaction conserves parity, for the process 1 + 2 → 3 + 4, the helicity

amplitudes satisfy the relation

Hλ3,λ4,λ1,λ2
= η(−1)kH−λ3,−λ4,−λ1,−λ2

(97)

whre η is the intrinsic parity product of the particles 1, 2, 3 and 4 and k =
∑

i(si + λi)

is the sum of their spins and helicities. Combining eq. 97 and eq. 94 one obtains

ρj1j2
m1m2

= (−1)m1+m2ρj1j2
(−m1)(−m2)

.(98)

In any reference frame where the z-axis is in the production plane, the most general

angular distribution of the M0 system can be written, according to parity conservation,

as a sum of the real parts ℜ [Y m
l ] of the spherical harmonic moments. For simplicity we

will write Y m
l instead of ℜ [Y m

l ]

I(t,M, ϑ, ϕ) = N

∞∑

l=0

l∑

m=−l

〈Y m
l 〉Y m

l (ϑ, ϕ)(99)

where 〈Y m
l 〉 are the normalized moments. In particular 〈Y 0

0 〉 = 1
4π

and Y 0
0 = 1.

Using standard relations amongst rotation matrix products, the 〈Y m
l 〉 coefficients can

be expressed as a sum of the real parts of the elements ρj1j2
m1m2

〈Y m
l 〉 =

1

4π

∑

j2,m2,j1,m1

(−1)m−m2

√

(2l + 1)
2j1 + 1

2j2 + 1

(lm j1(−m1)|j2(−m2))(l0 j10|j20)ℜ
[
ρj1j2

m1m2

]
.(100)

Together with eq. 94 it is easy to see, that the 〈Y m
l 〉 can be expressed as bilinear forms

of helicity amplitudes.

Including the factor N in the coefficients 〈Y m
l 〉,one obtains a new set of coefficients

tml which depend on the momentum transfer t and the mass M of the M0 system. The

angular distribution of the produced events can then be written as

Iprod(t,M, ϑ, ϕ) =

∞∑

l=0

l∑

m=0

tml Y
m
l (ϑ, ϕ)(101)

This set of coefficients is obtained by fitting eq. 101. To obtain the different waves, which

contribute to a specific moment the relation eq. 100 has to inverted. Since this is a
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non-linear system of equation there are several solutions and it has to be ensured in the

analysis process, that the different solutions show the same physical behavior. Otherwise

the data will not be conclusive.

An example with only S- and P -wave may serve to illustrate the details. For l ≤ 1

there are only two components

f(ϑ) = 〈S〉P0(cosϑ) + 3〈P 〉P1(cosϑ) = 〈S〉 + 3〈P 〉 cosϑ(102)

3. – Dynamical Amplitudes

a

b

c

d

s

Fig. 6. – s-Channel scattering.

3
.
1. S-Matrix . – Consider a two-body scattering of the type ab → cd (like in fig. 6).

The differential cross section is given in terms of the invariant amplitude M and the

‘scattering amplitude’ f through

dσfi

dΩ
=

1

(8π)2 s

(
qf
qi

)
|Mfi|2 = |ffi(Ω)|2(103)

where ‘i’ and ‘f ’ stand for the initial and final states; Ω = (θ, φ) denotes the usual

spherical coordinate system; and s = m2 is the square of the center-of-mass (CM) energy.

The qi(qf ) is the breakup momentum in the initial(final) system. [The observed cross

section is in reality the average of the initial spin states and the sum over all final spin

states— this is suppressed here for simplicity.] The scattering amplitude can be expanded

in terms of the partial-wave amplitudes

ffi(Ω) =
1

qi

∑

J

(2J + 1)T J
fi(s)D

J ∗
λµ (φ, θ, 0)(104)

where λ = λa−λb and µ = λc−λd in terms of the helicities of the particles involved in the

scattering ab → cd. Note that this ‘scattering amplitude’ is a factor of two bigger than

that with a more common definition (for example, see Section 5.1, Chung [11]). One may

in addition note that the argument of the D-function is frequently given as (φ, θ,−φ) (see

Jacob and Wick [2] and Martin and Spearman [12]). Integrating the differential cross

section over the angles, one finds, for the cross section in the partial wave J ,

σJ
fi =

(
4π

q2i

)
(2J + 1)|T J

fi(s)|2(105)
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Note that T J has no unit; the unit for the cross section is being carried by q2i . It is

necessary to define more precisely the initial and the final states

|i〉 = |ab, JMλaλb〉(106)

|f〉 = |cd, JMλcλd〉(107)

whereM is the z-component of total spin J in a coordinate system fixed in the overall CM

frame and the notations {ab} and {cd} designate additional informations needed to fully

specify the initial and the final states. Because of conservation of angular momentum, an

initial state in |JM〉 remains the same in the scattering process. Note the normalization

(see Section 4.2, Chung [11])

〈f |i〉 = δij(108)

In the remainder of this section and in subsequent sections, it is be understood that the

ket states mentioned always refer to those of eq. 107. In particular, explicit references

to the total angular momentum J will be suppressed. Note that, with this convention,

one has eliminated the necessity of specifying continuum variables such as angles and

momenta.

In general, the amplitude that an initial state |i〉 will be found in the final state |f〉 is

Sfi = 〈f |S|i〉(109)

where S is called the scattering operator. One may remove the probability that the initial

and final states do not interact at all, by defining the transition operator T through

S = I + 2ı T(110)

where I is the identity operator. The factors 2 and ı have been introduced for convenience.

From conservation of probability, one deduces that the scattering operator S is unitary,

i.e.

S S† = S†S = I(111)

3
.
2. T-Matrix . –

3
.
2.1. Harmonic Oscillator and the Lorentz-Function.

Harmonic Oscillator . As an academic example toward the discussion about the properties

of the T -matrix and how to obtain a reasonable parametrization we go back to the

classical harmonic oscillator. from the Lagrange function

L =
m

2
ẋ2 − kx2

2
(112)
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and the Lagrange equations

d

dt

∂L

∂ẋi

=
∂L

∂xi

(113)

one can derive the equation of motion, which is in this case the well known formula

ẍ+ ω2
0 = 0(114)

If the oscillator is damped and periodic forces are applied to the damped harmonic system

like

ẍ+ 2λẋ+ ω2
0x =

f

m
cosωRt =

f

m
ℜ
[
eıωRt

]
(115)

leads to the time averaged intensity (over a half period) in the proximity of the resonance

I(ωR) =
f2

4m

λ

(ωR − ω0)2 + λ2
.(116)

This function is called Lorentz function and has the phase δ with

tan δ =
2λωR

ω2
0 − ω2

R

.(117)

and has a maximum for ωR = ω0 with a value of I0 = I(ω0) =
f2

4m
.

Primer in Scattering Theory. In scattering theory a line shape of a resonance is obtained

by solving the Schrödinger equation. For two spinless particles with masses m1 and m2

the interaction can be described by a spherical potential with V (~r) = V (|~r|) = V (r).

The Schrödinger equation is defined like

− ~

2µ2
▽2 Ψ + V (r)Ψ = EΨ(118)

with the reduced mass µ =
m1m2

m1 +m2
. The incoming particle is assumed to be a free

particle, represented by an incoming wave. If the particle moves in z we get

Ψi = eıkz with ~k =
~p

h
.(119)

The incoming wave can be expanded in partial waves

Ψi =
∞∑

l=0

Ul(r)Pl(cos θ)(120)
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where Ul are the solutions of the free (V = 0) radial equation.

d2

dr2
Ul(r) +

(
k2 − l(l+ 1)

r

)
Ul(r) = 0.(121)

The asymptotic behaviors of the wave for kr → ∞ is

Ψi,kr→∞ = eıkz =
∞∑

l=0

ıl(2l + 1)

2ıkr



e
ı

(
kr − lπ

2

)

− e
ı

(
kr +

lπ

2

)

 .(122)

Without interaction we get Ψf = Ψi. Even with interaction the incoming wave remains

unchanged, while the phase of the outgoing wave is moved by 2δ and the amplitude is

reduced by a factor η. The asymptotic behavior is

Ψi,kr→∞ =

∞∑

l=0

ıl(2l+ 1)

2ıkr



ηle
2ıδle

ı

(
kr − lπ

2

)

− e
ı

(
kr +

lπ

2

)

 .(123)

The difference between the incoming and outgoing wave defines the scattering wave.

Ψs = Ψf − Ψi

=
1

k

∞∑

l=0

(2l+ 1)
ηle

2ıδl − 1

2ı
Pl(cos θ)

eıkr

r
(124)

=
1

k

∞∑

l=0

(2l+ 1)TlPl(cos θ)
eıkr

r
(125)

= f(θ)
eıkr

r
.(126)

Eq. 126 contains two important definitions:

Tl =
ηle

2ıδl − 1

2ı
(127)

f(θ) =
1

k

∞∑

l=0

(2l + 1)TlPl(cos θ)(128)

Another important result, is that the total cross section is proportional to the imaginary

part of the forward scattering amplitude. This is well known as the optical theorem:

σT =
4π

k
ℑ [f(0)](129)
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with the scattering amplitude f(ϑ) defined as

ΨS = f(ϑ)
eıkr

r

f(ϑ) =
1

k

∞∑

l=0

(2l + 1)
ηle

2ıδl − 1

2ı
Pl(cosϑ)(130)

f(ϑ) =
1

k

∞∑

l=0

(2l + 1)T lPl(cosϑ).

Using θ = 0 ⇒ cos θ = 1 ⇒ Pl(1) ≡ 1 we get

σT = σE + σI =
4π

k

∞∑

l=0

(2l+ 1)ℑ [Tl] .(131)

To derive explicit forms for σE and σI we now investigate the imaginary part of the

T -matrix:

ℑ [Tl] = ℑ
[
ηle

2ıδl − 1

2ı

]
(132)

= ℑ
[
−ηle

2ıδl + ı

2

]

=
1

2
ℑ [ηl sin(2δl) + ı(−ηl cos 2δl + 1)]

=
1

4
(−ηl cos 2δl + 2)

=
1

4

(
−ηl cos 2δl + 1 + η2

l + 1 − η2
l

)

=
1

4




∣∣∣∣∣
ηle

2ıδl − 1

ı

∣∣∣∣∣

2

+ (1 − η2
l )



 .(133)

From this we get for the elastic cross section (using eq. 131)

σE =
4π

k

∞∑

l=0

(2l+ 1)

∣∣∣∣∣
ηle

2ıδl − 1

2ı

∣∣∣∣∣

2

=
4π

k

∞∑

l=0

(2l+ 1)|Tl|2(134)

and correspondingly for the inelastic cross section

σI =
π

k2

∞∑

l=0

(2l + 1)(1 − η2
l ).(135)
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For the fully elastic case the T -matrix reduces to the simple form

Tl =
e2ıδl − 1

2ı
= eıδl sin(δl)(136)

=
sin(δl)

eıδl
=

sin δl
cos δl − ı sin δl

=
1

cot δl − ı
.(137)

3
.
2.2. Simple and Relativistic Breit-Wigner Function.

Decay of Unstable States . We assume a state which can be either a resonance in scattering

theory or a metastable state in an atom. The wave function of the non-stationary state

of frequency ωR = ER

~
and lifetime = ~

Γ can be written as

ψ(t) = Ψ0e
−ωRte

− t

2τ

= Ψ0e
−ωRte

−Γ

2
t
.(138)

Ψ as a function of the frequency is derived from a Fourier transformation

Ψ(ω) =
1√
2π

∫ ∞

−∞
ψ(t)eıωtdt(139)

=
Ψ0√
2π

∫ ∞

−∞
e
ı

(
ω − ωR + ı

Γ

2

)
t
dt

=
Ψ0

ω − ωR − ıΓ2




1√
2π
e
ı

(
ω − ωR + ı

Γ

2

)
t





∞

−∞

=
κ

(ER − E) − ıΓ2
(140)

where the constant κ is determined by the normalization of the wave function. To get

the connection to scattering theory, we determine κ with the formulae of the previous

paragraphs. In the case of elastic scattering (the resonance decays only in one elastic

channel m1 + m2 → R → m1 + m2) the maximum cross section for a given l is (see

eq. 134)

(σl
E)max =

4π

k
(2l + 1).(141)
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On the other hand the elastic cross section is proportional to the absolute square of the

wave function σE ∝ ΨΨ∗. Since (ΨΨ∗)max =
4κ2

Γ2
, we get the Breit-Wigner formula with

κ = Γ
2

Ψ(E) =
Γ
2

(ER − E) − ıΓ2
.(142)

The elastic cross section is then

σl
E =

4π

k
(2l + 1)

Γ2

4

(ER − E)2 + Γ2

4

.(143)

Breit-Wigner from Phase Movement . In the case of elastic scattering of spinless particles

via a resonance of spin J = l we start with T = 1
cot δ−ı

. In the proximity of the resonance

it is well known that δ ≈ π

2
⇒ cot δ ≈ 0 and ER = E(δ = π

2 ). We expand cot δ and get

cot δ(E) = cot δ(ER) + (E − ER)

[
d

dE
cot δ(E)

]

E=ER

(144)

= 0 + (E − ER)(−Γ

2
)(145)

where Γ
2 was defined as the first derivative of the cot δ. From this we obtain

T =
1

cot δ − ı
=

Γ
2

(ER − E) − ıΓ2
(146)

which is only valid for |E −RR| ≈ Γ ≪ ER.

Breit-Wigner from Field Theory. A different way is to start from field theory and to

to derive a dynamic function, e.g. a Breit-Wigner, from a propagator approach. Let’s

M1 M1

M2 M2

m0

Fig. 7. – Resonant scattering. A pair of mesons undergoes a resonant scattering and appears
again in the final state.

suppose we start with a process like the one in fig. 7. The transition amplitude, respective

the T -matrix can be written like

T = V12
1

E0 − E
V12(147)
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M1 M1

M2 M2

m0

+

M1

M2

M1

M2

m0

M1

M2

m0

+

M1

M2

M1

M2

M1

M2

m0

M1

M2

m0m0

+ . . .=

M1 M1

M2 M2

m

Fig. 8. – T -Matrix from perturbation.

where the transition is constructed from a propagator and the two couplings at the

vertices. But that is not the end of the story since more loops can open up like

T = V12
1

E0 − E
b

1

E0 − E
V12 =

V12bV12

(E0 − E)2
(148)

and finally the transition amplitude is constructed from an infinite series of propagations

(see fig. 8) where the strength gets smaller by the factor b for each additional loop:

T = V12
1

E0 − E
V12 +

V12bV12

(E0 − E)2
+

V12b
2V12

(E0 − E)3
+ . . .(149)

This can be written as a geometric series

T =
V12V12

E0 − E

(
1 +

b

E0 − E
+

b2

(E0 − E)2
+ . . .

)

=
V12V12

E0 − E

(
1

1 − b
E0−E

)

=
V12V12

E0 − E − b
.(150)

Since b is complex we get

T =
V12V12

E0 −ℜ [b] − E − ıℑ [b]

=
V12V12

ER − E − ıℑ [b]
.(151)

Relativistic Breit-Wigner . All discussions so far were based on non-relativistic forms.

Since most reactions in meson spectroscopy involve relativistic particles a relativistic

formulae is mandatory for any serious data analysis. Without prove and omitting some

details here is sketch toward a covariant description.
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Starting with the optical theorem in a slightly different form

ℑ [T (s, 0)] =
q

4π

√
s

2
σT(152)

we derive

Tl(s) =

√
s

2

1

cot δ − ı
(153)

with the inverse T -matrix (dropping l for ease of writing)

T−1(s) =
q√
s
(cot δ − ı) = k(s) − ı

2q√
s
.(154)

The matrix k(s) will later be introduced asK-matrix (see sec.3
.
3.1). k(s) can be any real

valued function. T (s) has a ‘peak’, e.g. a resonance, if k(s) = 0. The simplest covariant

function with this property is k(s) =
sr − s

γ
from which we obtain the relativistic Breit-

Wigner function

T (s) =
γ

sr − s− ı 2qγ√
s

.(155)

3
.
2.3. Centrifugal Barrier. From the covariant description of the decay amplitudes,

one can show that the mass dependent width of the resonances are proportional to q2l+1.

This is known as the centrifugal barrier. Taking out the phase space factor ρ =
√

2q/m

the remaining width is still proportional to q2l. This is only valid for low energies (where

they are very important) and a more general formalism is needed to accommodate for the

properties of a scattered wave far away from thresholds where the q2l+1 rule is invalid.

For fixed-channel orbital angular momentum L these effects are correlated in a simple

way with the semi-classical impact parameter

b = [L(L+ 1)]
1
2 /q(156)

where q is the channel wave number. When b is large (q small), cross sections and partial

decay widths are relatively suppressed. In any two-body resonance decay channel n

with orbital momentum L 6= 0, the form of the radial wave function will be determined

dominantly by the repulsive centrifugal barrier and the channel wave number qn for a

particle separation r greater than a certain ‘interaction radius’ (R). The approximate

wave equation which holds outside R is

∂2

∂ρ2
Un

l ρ ≃
(
b2n
r2

− 1

)
Un

l ρ(157)
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where ρ = qnr and bn = [L(L+ 1)]
1
2 /qn is again the impact parameter. The solution for

eq. 157 is proportional to the spherical Hankel function

Un
l ρ

r>R≃ iCnρh
(1)
l (ρ) ∼ Cne

ı

(
ρ− 1

2
Lπ

)

(158)

where Cn is a constant. Consider the situation if R is very small compared to b: for

r < b, the radial probability density grows rapidly with decreasing r. The reason is that

the outgoing wave is reflected inward by the centrifugal barrier. At r = R, the radial

probability density is

[T n
l (R/b)]

−1 ≡ ρ2|h(1)
l (ρ)|2.(159)

For a decay, we are interested on the lifetime which is involved with the centrifugal

barrier. In general we obtain a reduced width γn. In addition the factor qn/m is taken

out of the physical partial width Γn so that

Γn = γn

qn
m
T n

l (R/bn)(160)

Γn(qn) = Γ0
n

qn

m
T n

l (R/bn)
q0

n

m
T n

l (R/b0n)
(161)

where m is the mass of the decaying particle and qn/m accounts for the two-body phase

space. How do they actually look like. The spherical Hankel functions are defined in

terms of ordinary Hankel functions of half-odd-integer order:

jl(x) ≡
π

2x

1
2

J1+ 1
2
(x)

nl(x) ≡
π

2x

1
2

N1+ 1
2
(x)

h
(1,2)
l (x) ≡ π

2x

1
2
[
J1+ 1

2
(x) ±N1+ 1

2
(x)
]

(162)

For real values of x, h
(1)
l (x) = [h

(2)
l (x)]∗. The explicit forms of the first three spherical

Hankel functions are

h
(1)
0 (x) =

eıx

ıx
(163)

h
(1)
1 (x) =

−eıx
(
1 +

ı

x

)

x
(164)

h
(1)
2 (x) = ı

eıx
(

1 +
3ı

x
− 3

x2

)

x
(165)
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The asymptotic behavior of the spherical Hankel functions for small arguments x ≪ l

may be inferred from the forms of the spherical Bessel functions

jl(x) →
xl

(2l + 1)!!
(166)

nl(x) →
−(2l − 1)!!

xl+1

where the double factorial is defined as x!! = x(x − 2)(x − 4) . . .. The eq. 163–165 then

translate into

Fl(q) = Fl(x =
q

qscale

) =

√√√√ |h(1)
l (x)|2

|h(1)
l (x = 1)|2

Fl(q)
q→qscale

= 1(167)

Fl(q)
q→0
= ql.

And finally we obtain the damping functions for l = 0 to 3.

F0(x) = 1

F1(x) =

√
x

x+ 1

F2(x) =

√
13x2

(x − 3)2 + 9x
(168)

F3(x) =

√
277x3

x(x − 15)2 + 9(2x− 5)2

They are applied to the natural width with the factor B2
l which are defined as

Bl(q, qR) =
Fl(q)

Fl(qR)
(169)

3
.
2.4. Required Properties for T . The main requirement is the analyticity of T . An

empirical fact is the appearance of singularities, e.g. poles, which are accommodated

by allowing a finite number of poles in T , thus T is meromorph (or has maximum an-

alyticity). In addition T is unitary and fulfills a dispersion relation which is discussed

below.

Unitarity. Starting from the optical theorem eq. 129 it follows that

ℑ
[
T l
]

= |T l|2(170)
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or for multiple channels and dropping L

ℑ [Tjj ] =
n∑

j=0

|Tij |2(171)

ı

2
(T ∗

jj − Tjj) =

n∑

j=0

T ∗
ijTij .(172)

Collecting terms on the left-hand side, we have

1 − 2ıT ∗
jj + 2ıTjj + 4

n∑

j=0

T ∗
ijTij = 1

n∑

j=0

(δij − 2ıT ∗
ij)(δij + 2ıT ∗

ij) = 1(173)

This becomes equal to

n∑

j=0

S∗
ijSij = 1(174)

Since the outgoing channels are different they cannot interfere (〈i|j〉 = 0) when i 6= j.

Therefore, we can write the unitarity condition on the S-matrix

n∑

j=0

S∗
kjSij = δik(175)

and obtain

ℑ [Tij ] =
∑

n

T ∗
njTni.(176)

Dispersion Relations . The derivation of the dispersion relation requires a lot of complex

variable analysis, so we present only a sketch how to obtain the relations. A detailed

description can be found in [13].

From the assumption of analyticity we deduce the integral around a closed contour

(C) for a point inside the contour. This is done with a Cauchy integral

Tl(s) =
1

2ıπ

∫

C

Tl(s
′)ds′

s′ − s
(177)

which can be expressed in terms of the individual parts of the contour as

Tl(s) =
1

2ıπ

∫ sL

−∞
ds′

Tl(s
′ + ıη) − Tl(s

′ − ıη)

s′ − s

+
1

2ıπ

∫ ∞

(m1+m2)2
ds′

Tl(s
′ + ıη) − Tl(s

′ − ıη)

s′ − s
+

1

2ıπ

[∫

C0

+

∫

C1

+

∫

C2

]
(178)
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where C0, C1, C2 are the infinite circle and the small circles surrounding sL and (m1 +

m2)
2. sL is where the left-hand cuts start and are process dependent. (m1 +m2)

2 defines

the right-hand cuts (see sec.3
.
5.1 for details) We have assumed η is small so that it can

be neglected in the denominators. One can show that if

|Tl(s)| → 0 |s| → ∞
< O((s− sL)−1) s→ sL(179)

< O((s − (m1 +m2)
2)−1) s→ (m1 +m2)

2

independently of the direction in the complex plane from which the limits are taken, then

the integrals over C0, C1, and C2 make a vanishing contribution in the limit as the circles

get very large or very small respectively; We shall assume this behavior to hold, as it does

in analytic potential theory. Using the hermitian analyticity (e.g. Tl(s+ ıε)−Tl(s− ıε) =

2ıℑ [Tl(s+ ıε)]) we have

Tl(s) =
1

π

∫ sL

−∞

ℑ [Tl(s
′)]

s′ − s
ds′ +

1

π

∫ ∞

(m1+m2)2

ℑ [Tl(s
′)]

s′ − s
ds′(180)

where the imaginary parts are evaluated at s′ + ıη, η → 0 (the physical amplitude is

Tl(s+ ıε), ε→ 0. s is greater than (m1 +m2)
2) which may be written

Tl(s) =
1

π

∫

−∞
∞ ℑ [Tl(s

′)]

s′ − s− ıε
ds′(181)

since ℑ [Tl(s)] = 0 between two cuts, sL < s < (m1 +m2)
2.

3
.
2.5. Factorization. Eq. 142 and eq. 146 show that resonances are related to singu-

larities of the T -matrix. The task of this section is to show that the T -matrix factorizes in

the case of many open channels. From eq. 146 follows that the T -matrix has a singularity

at

cot δ =
ER − E

Γ
2

⇒ E = ER − ı
Γ

2
.(182)

The determinant of the inverse matrix T−1 has a zero at the singularity of T :

Det

[
T−1

(
E = ER − ı

Γ

2

)]
= 0(183)

After diagonalization of the inverse T -matrix with a unitary matrix U we get

T−1
D =




λ1 0 0

0 λ2 0

0 0
. . .



⇒ Det
[
T−1

D

]
= λ1λ2 . . .(184)
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For a single singularity there only one Eigen-value vanishes. For a singularity of higher

order several Eigen-values can be zero. For λ1 = C(E − ER) we get

T−1
D =




C(E − ER) 0 0

0 λ2 0

0 0
. . .



⇒ TD =





1
C(E−ER) 0 0

0 1
λ2

0

0 0
. . .



 .(185)

For RD being a matrix with

RD ≡ lim
E→ER

(E − ER)TD

= lim
E→ER





1
C

0 0

0 E−ER

λ2
0

0 0
. . .



 =





1
C

0 0

0 0 0

0 0
. . .



(186)

the transformation

R = UT 1

C
U hence Rij =

∑

k

Uik

1

C
Ukj(187)

proves that R can be factorized:

Rij =
∑

k

1√
C
Uik

1√
C
Ukj(188)

Therefore also T can be factorized like

Tij =

√
Γi
2

√
Γj

2

ER − E − ı
∑n

r=1
ΓR
2

=

√
ΓiΓj

4

ER − E − ı
∑n

r=1
ΓR
2

.(189)

3
.
3. K-Matrix Formalism. –

3
.
3.1. Definitions and Properties. The K-matrix formalism provides an elegant way

of expressing the unitarity of the S-matrix for the processes of the type ab→ cd. It has

been originally introduced by Wigner [14] and Wigner and Eisenbud [15] for study of

resonances in nuclear reactions. The first use in particle physics goes back to an analysis

of resonance production in Kp scattering by Dalitz and Tuan [16]. A comprehensive

review is found in [17]. In this paper we give a concise description of the K-matrix

formalism for ease of reference. Its generalizations to arbitrary production processes are

covered in some detail.

The reader is referred to the text book by Martin and Spearman [12] for some of the

material covered in this note. However, one must note that the definitions given in this
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Fig. 9. – Scattering process using a K-matrix propagator. The boxes hide the actual process.

paper are different from those used by Martin and Spearman. From the unitarity of the

S, one gets

T − T † = 2ı T †T = 2ı TT †(190)

In terms of the inverse operators, eq. 190 can be rewritten

(T †)−1 − T−1 = 2ıI(191)

which may further be transformed into

(T−1 + ıI)† = T−1 + ıI.(192)

One is now ready to introduce the K operator via

K−1 = T−1 + ıI(193)

From eq. 192 one finds that the K operator is Hermitian, i.e.

K = K†.(194)

From time reversal invariance of S and T it follows, that the K operator must be sym-

metric, i.e. the K-matrix may be chosen to be real and symmetric. One can eliminate

the inverse operators in eq. 193 by multiplying by K and T from left and right and vice

versa, to obtain

T = K + ıTK = K + ıKT(195)

which shows that K and T operators commute, i.e.

[K,T ] = 0(196)
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and that, solving for T , one gets

T = K(I − ıK)−1 = (I − ıK)−1K(197)

and

S = (I + ıK)(I − ıK)−1 = (I − ıK)−1(I + ıK).(198)

Note that the T -matrix is complex only through the ı that appears in this formula, i.e.

T−1 has been explicitly broken up into its real and imaginary parts, see equation eq. 193.

It is also useful to split T into its real and imaginary part. From eq. 195 one finds,

noting that K is a real matrix,

ℜ [T ] = (I +K2)−1K = K(I +K2)−1(199)

ℑ [T ] = (I +K2)−1K2 = K2(I +K2)−1(200)

Combining this result with eq. 190, one finds that the unitarity takes on the simple form

ℑ [T ] = T ∗T = TT ∗(201)

or, from eq. 193, one gets

ℑ
[
T−1

]
= −I.(202)

Consider now an isoscalar ππ scattering in S-wave below
√
s = 1 GeV. This is a

single-channel problem and unitarity is rigorously maintained. From eq. 207, one may

set

S = e2ıδ(203)

where δ is the familiar phase shift. The transition amplitude T is given, from eq. 110,

T = eıδ sin δ(204)

Note that the factors 2 and ı in eq. 110 make the T attain the simple, familiar form. This

formula shows that the trajectory of T in the complex plane (Argand diagram) is a circle

of a unit diameter with its center at (0, ı/2). This is the so-called unitarity circle and the

physically allowed T should remain at or within this circle. The S-wave cross section is,

from eq. 105,

σ =

(
4π

q2i

)
sin2 δ.(205)

The K-matrix for this case is simply

K = tan δ(206)
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and a pole in K is therefore associated with δ = π/2.

Consider next a two-channel problem in which the S-matrix may be expressed as 2×2

matrices. Let Sij be symmetric; then it would take six parameters to represent three

complex variables: S11, S12, and S22. The unitarity relationship

SikS
∗

jk = δij(207)

imposes three independent equations. This shows that the S-matrix depends on just

three parameters. It can be shown readily that the matrix elements are

S11 = η e2iδ1

S22 = η e2iδ2(208)

S12 = ı
√

1 − η2 eıΦ12 , Φ12 = δ1 + δ2

where δi is the phase shift for channel i and η is the inelasticity (η ≤ 1). Note that there

exists only one inelasticity in the two-channel case.

Turning to the K-matrix representation of the T -matrix, let

K =

(
K11 K12

K21 K22

)
(209)

where K12 = K21 and Kij = real. Then, from eq. 193, one finds

T =
1

1 −D − ı(K11 +K22)

(
K11 − iD K12

K21 K22 − iD

)
(210)

where

D = K11K22 −K2
12.(211)

3
.
3.2. Lorentz-invariant Description. The transition amplitudes T as defined in

eq. 110 is not Lorentz invariant. The invariant amplitude is defined through two-body

wave functions for the initial and the final state, and the process of the derivation involves

proper normalizations for the two-particle states (see Section 5.1, Chung [11]). The re-

sulting invariant amplitude contains the inverse square-root of the two-body phase space

elements in the initial and the final states. The Lorentz-invariant amplitude, denoted T̂ ,

is thus given by

Tij = {ρi}
1
2 T̂ij {ρj}

1
2 .(212)

In matrix notation, one may write

T = {ρ} 1
2 T̂ {ρ} 1

2(213)



A Primer on Partial Wave Analysis 43

and

S = I + 2ı {ρ} 1
2 T̂ {ρ} 1

2(214)

where the phase-space ‘matrix’ is diagonal by definition, i.e.

ρ =

(
ρ1 0

0 ρ2

)
(215)

and

ρ1 =
2q1
m

and ρ2 =
2q2
m
.(216)

The qi is the breakup momentum in channel i. (Here one considers a two-channel problem

for simplicity without loss of generality.) The unitarity demands that, from eq. 201 and

eq. 202,

ℑ
[
T̂
]

= T̂ ∗ρT̂ = T̂ ρT̂ ∗(217)

and

ℑ
[
T̂−1

]
= −ρ(218)

It is in this form one encounters most frequently the unitary conditions of the transition

matrix in the literature.

The cross section in the Jth partial wave is given by, from eq. 105,

σJ
fi =

(
16π

s

)(
ρf

ρi

)
(2J + 1)|T̂ J

fi(s)|2(219)

Note that this formula embodies the familiar presence of the flux factor of the initial

system and the phase-space factor of the final system in the process ab → cd. In the

K-matrix formalism, one allows for ρ to become imaginary below a given threshold;

however, the cross section above has no meaning below a threshold, and one could then

modify the expression above by multiplying it with two step functions: θ(ρ2
i ) and θ(ρ2

f ).

One may recapitulate the expressions for the differential cross section and its partial-

wave expansion in terms of the invariant amplitudes T̂ J
fi(s). For the purpose, one defines

the ‘invariant scattering amplitude’

T̂fi(Ω) =
∑

J

(2J + 1)T̂ J
fi(s)D

J ∗
λµ (φ, θ, 0)(220)

and the differential cross section is given by

dσfi

dΩ
=

(
4

s

)(
ρf

ρi

)
|T̂fi(Ω)|2.(221)
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The initial and final density of states are, with s = m2,

ρi =

√√√√
[
1 −

(
ma +mb

m

)2
][

1 −
(
ma −mb

m

)2
]

(222)

ρf =

√√√√
[
1 −

(
mc +md

m

)2
][

1 −
(
mc −md

m

)2
]

(223)

in terms of the particle masses involved in the scattering ab → cd. Note that these

phase-space factors are normalized such that

ρi → 1 as m2 → ∞.(224)

The invariant amplitude T̂fi(Ω) is dimensionless, and has a partial-wave expansion

eq. 220. The partial-wave amplitude T̂ J
fi(s) is related to the K̂-matrix via eq. 228, and

unitarity is preserved if the K̂-matrix is taken to be real and symmetric. It should be

noted that the formula for the differential cross section eq. 221 has no ‘arbitrary’ nu-

merical factors. The ‘conventional’ invariant amplitude, introduced in eq. 103, is given

by

Mfi = 16π T̂fi(Ω)(225)

One may consider again the isoscalar ππ scattering in S-wave below 1.0 GeV. In terms

of the phase-shift δ, the invariant amplitude is given by, from eq. 204,

T̂ =
1

ρ
eıδ sin δ(226)

and when substituted into eq. 219 the cross section eq. 205 results. These expressions are

very familiar, and they demonstrate clearly the interplay between the phase shifts, the

invariant amplitudes and the cross sections.

One can similarly define the invariant analogue of the K-matrix through

K = {ρ} 1
2 K̂ {ρ} 1

2(227)

translating the inverse K-matrix to (eq. 193)

K̂−1 = T̂−1 + ıρ(228)

which leads to

T̂ = K̂ + ıK̂ρT̂ = K̂ + ıT̂ ρK̂(229)
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and

T̂ ρK̂ = K̂ρT̂(230)

Solving for T̂ , one obtains

T̂ = K̂(I − ıρK̂)−1 = (I − ıK̂ρ)−1K̂(231)

and, from eq. 198,

S = (I + ı{ρ} 1
2 K̂{ρ} 1

2 )(I − ı{ρ} 1
2 K̂{ρ} 1

2 )−1

= (I − ı{ρ} 1
2 K̂{ρ} 1

2 )−1(I + ı{ρ} 1
2 K̂{ρ} 1

2 ).(232)

Note that K̂ and ρ do not commute. The Lorentz-invariant T -matrix is then given by

T̂ =
1

1 − ρ1ρ2D̂ − ı(ρ1K̂11 + ρ2K̂22)

(
K̂11 − ıρ2D̂ K̂12

K̂21 K̂22 − ıρ1D̂

)
(233)

where

D̂ = K̂11K̂22 − K̂2
12.(234)

3
.
3.3. Implementation of Dynamics (and/or Resonances). There are two possibil-

ities for parameterizing resonances in K-matrix formalism: Resonances can arise from

constant K-matrix elements with the energy variation supplied by phase space or from

strongly varying K-matrix elements (pole terms) supplying a phase motion [24]. They

differ in their dynamical character. The former are assumed to arise from exchange forces

in the corresponding hadronic channels (molecular resonances), so that great effects are

expected near corresponding thresholds, whereas the latter (normal resonances) corre-

spond to dynamical sources at the constituent level, coupling to the observed hadrons

through decay [24]. The dynamical origin of resonances has to be determined by ex-

periment. In the approximation of resonance domination for the amplitudes, one has

therefore

Kij =
∑

R

gRi(m)gRj(m)

m2
R −m2

+ cij(235)

and

K̂ij =
∑

R

gRi(m)gRj(m)

(m2
R −m2)

√
ρiρj

+ ĉij(236)

where the sum on R goes over the number of poles with masses mR, and the residue

functions (expressed in units of energy) are given by

g2
Ri(m) = mRΓRi(m)(237)
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where gRi(m) is real (but it could be negative) above the threshold for channel i. The

constant K-matrix elements have to be dimensionless and real to preserve unitarity. The

corresponding width ΓR(m) is

ΓR(m) =
∑

i

ΓRi(m)(238)

for each pole R.

Consider now a normal resonance R coupling to n open two-body channels, i.e. the

mass mR is above the threshold of all the two-body channels. The partial widths may

be given an expression

ΓRi(m) =
g2

Ri(m)

mR

= γ2
RiΓ

0
R

[
Bl

Ri(q, qR)
]2
ρi(239)

and the residue function by

gRi(m) = γRi

√
mRΓ0

R Bl
Ri(q, qR)

√
ρi.(240)

The B(m)’s are ratios of usual centrifugal barrier factors in terms of the breakup mo-

mentum in channel i and the resonance breakup momentum qR for the orbital angular

momentum l:

Bl
Ri(q, qR) =

Fl(q)

Fl(qR)
(241)

Widely used are Blatt-Weisskopf barrier factors [22] (see 3
.
2.3) for more details The γ’s

are real constants (but they can be negative) and may be given the normalization

∑

i

γ2
Ri = 1.(242)

In practice, it is probably better to avoid this normalization condition by using the

parameters

g0
Ri = γRi

√
mRΓ0

R(243)

as variables in the fit. The residue function is then given by

gRi(m) = g0
RiB

l
Ri(q, qR)

√
ρi.(244)

We define a K-matrix total width Γ̃R and the K-matrix partial widths Γ̃Ri by

Γ̃R =
∑

i

Γ̃Ri = ΓR(mR) = Γ0
R

∑

i

γ2
Ri ρi(mR)(245)
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From these one finds

Γ0
R =

∑

i

Γ̃Ri

ρi(mR)
,(246)

γ2
Ri =

Γ̃Ri

Γ0
Rρi(mR)

,(247)

g0
Ri =

√
mRΓ̃Ri

ρi(mR)
.(248)

Note that the K-matrix width do not need to be identical with the width which is

observed in an experimental mass distribution nor with the width of the T̂ -matrix pole

in the complex energy plane. We will refer the former as Γobs, the latter as Γpole. In the

limit in which the masses of the decay particles can be neglected compared to mR, one

has ΓR(mR) ≃ Γ0
R.

In terms of the γ’s and g0’s, the invariant K-matrix now has a simpler form

K̂ij =
∑

R

γRiγRjmRΓ0
RB

l
Ri(q, qR)Bl

Rj(q, qR)

m2
R −m2

(249)

=
∑

R

g0
Rig

0
RjB

l
Ri(q, qR)Bl

Rj(q, qR)

m2
R −m2

allowing for the possibility that γ’s and g0’s can be negative.

Consider now an isovector P -wave ππ scattering at or near the ̺ mass. Then the ππ

elastic scattering amplitude is given by

K =
m0Γ(m)

m2
0 −m2

= tan δ(250)

where m0 is the mass of the ̺ and δ is the usual phase shift. The mass-dependent width

is given by

Γ(m) = Γ̃0

(
ρ

ρ0

)[
B1(q, q0)

]2
(251)

where Γ̃0 is the K-matrix width and q (q0) is the ππ break-up momentum for the ππ

mass m (m0). Neglecting the angular dependence of the amplitude, one obtains

T = eıδ sin δ =

[
m0Γ̃0

m2
0 −m2 − im0Γ(m)

]
[B1(q, q0)]

2

(
ρ

ρ0

)
(252)

The first bracket in eq. 252 contains the usual Breit-Wigner form and the last bracket

expresses the two-body phase-space factor. In this simple case, the K-matrix width
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and the observed width are identical. Note that the phase-space factor is absent in the

Lorentz-invariant amplitude T̂ given by eq. 212. The q2 dependence of the amplitude (in

[B1(q, q0)]
2) reflects the fact that both the initial and the final ππ systems are in P -wave.

The normalization for the transition amplitude has been chosen such that

T = +i and T̂ =
+i

ρ
at m = m0.(253)

It is seen that the invariant amplitude T̂ is not normalized to 1 but to ρ−1. It is for this

reason that the Argand diagram is usually plotted with T and not T̂ .

3
.
3.4. Some Examples.

Coupled Channel Case. In this example we investigate the influence of coupling of a reso-

nance to a second open channel at the T -matrix parameters (phase-shift δ and inelasticity

η). Consider an S-wave resonance at 1500 MeV/c2 decaying into ππ and KK̄ with a total

width of 100 MeV/c2. In the first example we haven chosen the K-matrix widths to be

Γ̃ππ = 20 MeV/c2 and Γ̃KK̄ = 80 MeV/c2,in the second one we choose Γ̃ππ = 80 MeV/c2

and Γ̃KK̄ = 20 MeV/c2. The change of the coupling to the channel KK̄ has no influence

on the inelasticity η and on the line shape of |T |2. The only visible difference is the

behavior of the phase motion δ (see fig. 10(b)). In the case of a strong coupling to the

KK̄ channel (Γ̃KK̄ = 80 MeV/c2 ) one cannot decide whether there is a resonance or not

by measuring the first channel only (here ππ), if the errors of the phase-shift are large.

Note the different scales for the phase-shift δ for the two examples.

Nearby Resonances . Consider again a ππ scattering at mass m. But suppose there exist

two resonances with masses ma and mb coupling to the isoscalar D-wave channel. The

prescription for the K-matrix in this case is that

K =
maΓa(m)

m2
a −m2

+
mbΓb(m)

m2
b −m2

(254)

i.e. the poles are summed in the K-matrix. The mass-dependent widths are given by

ΓR(m) = Γ̃0
R

(ma

m

)( q

qR

)
[B2(q, qR)]2(255)

where r = a or r = b and Γ̃0
a and Γ̃0

b are the two observed widths in the problem. qr
is the ππ breakup momentum at m = mr. If ma and mb are far apart relative to the

widths, then K is dominated either by the first or the second resonance depending on

whether m is near ma or mb. The transition amplitude is then given merely by the sum

T ≃
[

maΓ̃0
a

m2
a −m2 − imaΓa(m)

][(ma

m

)( q

qa

)]
[B2(q, qa)]2(256)
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Fig. 10. – ππ dominated decays of a resonance at 1500 MeV/c2 with a total with of 100 MeV/c2.
(light curve KK̄ dominates, black curve ππ dominates). In the case of a dominant ππ width,
the phase (a) looks normal in ππ, while it changes dramatically and gets tiny if the KK̄ channel
dominates. (b) shows the line shape and (c) the Argand plot for both channels

+

[
mbΓ̃

0
b

m2
b −m2 − imbΓb(m)

][(mb

m

)( q

qb

)]
[B2(q, qb)]

2.(257)

In the limit in which the two states have the same mass, i.e. m0 ≡ ma = mb, then the

transition amplitude becomes

T =
m0[Γa(m) + Γb(m)]

m2
0 −m2 − im0[Γa(m) + Γb(m)]

.(258)

This shows that the result is a single Breit-Wigner form but its total width is now the

sum of the two individual widths. In case of two nearby resonances eq. 257 is not strictly

valid. For a specific example fig. 11 shows the transition amplitude T from the correct

equation eq. 254 and from the approximate eq. 257. Note that eq. 257 exceeds the unitary

circle.

Flatté Formula. As a next example we take the isovector S-wave scattering with the

a0(980) coupling to the πη (channel 1) and KK̄ (channel 2) final states. Then the
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Fig. 11. – Nearby resonances in K-matrix formalism compared to sum of Breit-Wigner. The
light curves show the sum of Breit-Wigner functions and the black curves demonstrate the
effect of a unitarized K-matrix approach. The masses are ma=1.275 MeV/c2, Γ0

a=185 MeV/c2

and ma=1.565 MeV/c2, Γ0

a=150 MeV/c2. Both resonances decay only to ππ. It is clearly visible
how the sum of Breit-Wigner functions violate unitarity (c), while the K-matrix formalism leads
to a nice circle. The effect is also visible in the phases (a) which moves backward for while and
in the intensity (b) where it exceeds unity.

elements of the invariant K-matrix eq. 249 are

K̂11 =
γ2
1m0Γ0

m2
0 −m2

(259)

K̂22 =
γ2
2m0Γ0

m2
0 −m2

(260)

K̂12 = K̂21 =
γ1γ2m0Γ0

m2
0 −m2

.(261)

The normalized couplings are denoted by γ2
1 and γ2

2 , which are both dimensionless and

satisfy

γ2
1 + γ2

2 = 1.(262)
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Then the T̂ -matrix eq. 233 is given as

T̂ =
m0Γ0

m2
0 −m2 − im0Γ0(ρ1γ2

1 + ρ2γ2
2)

(
γ2
1 γ1γ2

γ1γ2 γ2
2

)
(263)

If one sets eq. 243

gi = γi

√
m0Γ0(264)

so that

g2
1 + g2

2 = m0Γ0(265)

then

T̂ =

(
g2
1 g1g2

g1g2 g2
2

)

m2
0 −m2 − ı(ρ1g2

1 + ρ2g2
2)
.(266)

This is the Flatté formula [23].

The a0(980) appears as a ‘regular’ resonance in the πη system (channel 1). The com-

parable Breit-Wigner denominator, for m near mr, is m2
r −m2 − imrΓr in the resonance

approximation. One finds, therefore,

m2
0 = m2

r +

(
γ2

γ1

)2 [ |ρ2(mr)|
ρ1(mr)

]
mrΓr(267)

Γ0 =
mrΓr

m0ρ1(mr)γ2
1

(268)

in terms of the mass mr and width Γr. Note that ρi’s have been evaluated at m = mr

where T̂ is expected to attain its maximum value. The above formulas give merely a

good starting point; in practice one must vary m0 and Γ0 to fit the πη spectrum. The

ratio (γ2/γ1)
2 is an unknown (commonly fixed at the SU(3) value of 1.5), but the shape

of the square of the amplitudes depends only weakly on this value. Once the ratio is

fixed, then γ2
1 and γ2

2 are fixed through the normalization condition eq. 262. Now we

turn to few examples how K-matrices have actually been used in various analysis.

Example: ππ S-Wave á la Au, Morgan and Pennington. [24] The work from Au, Morgan

and Pennington combines most of the data on ππ and KK̄ scattering at that time. For

the I = ππ S-wave the following parametrization was chosen

Kij =
s− s0
4m2

K

∑

r

gr,igr,j

(sr − s)(sr − s0)
+
∑

n

cnij

[
s

4m2
K

− 1

]
(269)

≡ (s− s0)K̂ij(270)
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Fig. 12. – Difference between Flatté and Breit-Wigner. (a) The Breit-Wigner function (grey
curve) shows a unit circle, while in the Flatté function (black curves) one sees in channel 1
a drop in elasticity at threshold of channel 2 and a small circle for channel 2 starting at the
respective threshold. (b) Interestingly the line shape for channel 1 does not change very much,
while for channel 2 there is a dramatic effect at threshold.

Alternatively they parametrize also an M -matrix. The M -matrix approach is defined by

T = (M − iρ)−1. They use

Mij =
aij

s− s0
+
∑

r

g′r,ig
′
r,j

s′r
+
∑

n

c′nij

[
s

4m2
K

− 1

]
(271)

As we will see in most parameterizations of the ππ S-wave a parameter like s0 appears

to satisfy the condition of the Adler zero.

Example: ππ S-Wave á la Crystal Barrel . This parametrization was used to analyze

the Crystal Barrel data of the channels pp → 3π0, 2π0η and 2ηπ0 with an open KK̄
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Fig. 13. – Effect of coupling variations in the Flatteé formula. The stronger the coupling the
more dramatic are the effects on the line shape. The solid, dashed and dotted curves represent
coupling ratios from γ2

1/γ2

2=10 to 1 and 0.1. respectively for the two channels.
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channel [25] being constrained by scattering data [26, 27]. A K-Matrix formalism was

applied using

Kij =
∑

r

gr,igr,jB
l
i(qi)B

l
i(qj)

m2
r −m2

+ cij(272)

with K being a 3×3 matrix with the channels 1=ππ, 2=KK̄ and 3=ηη. The centrifugal

barrier was chosen according to the work of Hippel and Quigg [22]. For scalars this factor

is equal to one.

Example: ππ S-Wave á la Anisovich and Sarantsev . The work of Anisovich and Sarantsev

is the most sophisticated so far and combines all Crystal Barrel data as well as scattering

data and other information. The parametrization is very complex and involves a lot of

parameters to accomodate the different reactions [28].

Kij(s) =

(
∑

r

gr,igr,j

m2
r − s

+ fij

s1 + s0
s+ s0

)
s− sA

s+ sA0
(273)

where Kij is a 5×5 matrix (i, j=1,2,3,4,5), with the following notations for meson states:

1=ππ, 2=KK̄, 3=ηη, 4 =ηη′ and 5= multi-meson states (like dominant four-pion state

for s <1.6 GeV/c2). The gr,i is the the coupling constant of the bare state r to a particular

channel i. The parameters fij and s0 describe a smooth part of the K-matrix elements.

The factor (s− sA)/(s− sA0) is used to suppress the false kinematic singularity at s = 0

in the physical region near the ππ threshold. The parameters sA and sA0 are kept to be

small.

P1 P2

p

p

K

K

Fig. 14. – Production process. The boxes hide the actual process. The source of production is
unknown and therefore replaced by a strength parameter.

3
.
4. P-Vector Approach. – So far one has considered s-channel resonances, or ‘for-

mation’ of resonances, observed in the two-body scattering of the type ab → cd. The

K-matrix formalism can be generalized to cover the case of ‘production’ of resonances

in more complex reactions. The key assumption is that the two-body system in the final

state is an isolated one and that the two particles do not simultaneously interact with

the rest of the final state in the production process.

According to Aitchison [29], the production amplitude P should be transformed into

F in the presence of two-body final state interactions, as follows:

F = (I − ıK)−1P = TK−1P(274)
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Or, taking the invariant form, it may be written

F̂ = (I − iK̂ρ)−1P̂ = T̂ K̂−1P̂(275)

where P̂ characterizes production of a resonance and F̂ is the resulting invariant ampli-

tude. Note the following relationships:

F = {ρ} 1
2 F̂ and P = {ρ} 1

2 P̂(276)

Consider first a single-channel problem, e.g. the isoscalar ππ system in S-wave below

KK̄ threshold. Then, the K is simply given by eq. 206 and one finds

F̂ = eıδ cos δ P̂ .(277)

Unitarity demands that in this case the phase of the total amplitude F̂ and the ππ

scattering phase δ should be identical. Thus the final-state interaction brings in a factor

eıδ—this is the familiar Watson’s theorem [30] and the production amplitude P̂ has to

be a real function. It is emphasized that P̂ must have the same poles as those of the

K-matrix; otherwise F̂ would vanish at the pole position (δ = π/2).

In general, P̂ and F̂ are both column vectors, n-dimensional for an n-channel problem.

If the K-matrix is given as a sum of the poles as in eq. 235, then the corresponding P -

vector is

Pi =
∑

R

β0
R gRi(m)

m2
R −m2

(278)

and

P̂i =
∑

R

β0
R gRi(m)

(m2
R −m2)

√
ρi

(279)

where β0
R (expressed in units of energy), carries the production information of the reso-

nance R. The constant β0
R is in general complex, but it can be set to be real under certain

assumptions. One should note, that Longacre [31, 32, 33] used complex β throughout

his analysis. This ansatz was heavily criticize by Morgan and Pennington [20]

The P -vector should contain the same set of poles as those found in the K-matrix.

However, according to Aitchison, constant terms (or a polynomial in energy) can always

be added to the poles in the P -vector (as in the K-matrix) elements, without destroying

the unitarity of the F -vector (or T -matrix),

Pi → Pi + di(280)

where the constant di is in general complex.

In [34] the production process pp → π+π−π0 was described by a production amplitude

for the ρ ππ and f2(1270) ππ intermediate states. The data required introduction of
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an additional constant amplitude which was interpreted as that for direct three-pion

production. This direct production amplitude can be described in our formalism with

an additional constant in the F -vector.

It is often more convenient to rescale β0’s

β0
R = βR

√
mRΓ0

R(281)

so that β’s are dimensionless. Then the P̂ -vector reads, from eq. 243, eq. 244,

P̂i =
∑

R

βRγRi mRΓ0
RB

l
Ri(q, qR)

m2
R −m2

(282)

where, once again, γ’s are real but β’s could be complex. If the production process has

some known dependence on momentum or angular momentum, the production strength

β should be modified accordingly.

It is instructive to work out the above formula in the case of a single resonance in a

single channel. Then one has P̂ =
βm0Γ0

m2
0 −m2

Bl(q, q0) so that, with K̂ρ given by eq. 250,

F̂ (m) = β
m0Γ0

m2
0 −m2 − im0Γ(m)

Bl(q, q0).(283)

This is exactly what one writes down for a Breit-Wigner form, except that one has mul-

tiplied by an arbitrary constant β and the centrifugal damping factor Bl(q, q0). This

provides a K-matrix justification of the traditional ‘isobar’ model. Note that the numer-

ator is a constant (independent of m).

The scattering process may involve particle exchange in the t-channel (see fig. 15)

and the left-hand singularities reach into the physical region. Since the formalism does

not have any left-hand-cuts, they lead to artificial poles in a P -vector approach. Since

these artificial poles depend on the physical processes involved and differ from reaction

to reaction. If such poles exist, they can be different in the definition of the K-matrix

and the P -vector.

a

b

c

d

t

Fig. 15. – t-Channel scattering.

Cahn and Landshoff [18] state that in some approximations the column vector

Q = K−1P and {ρ} 1
2Q = Q̂ and Q̂ = K̂−1P̂(284)



56 K. Peters

may be considered a constant in a given limited energy range. Then, one has

F = TQ and F̂ = T̂ Q̂(285)

i.e. the two-body final-state interaction may be expressed as a product of the T̂ -matrix

and a constant column vector. The Q̂-vector is devoid of the threshold singularities (i.e.,

no dependence on ρ) and does not contain pole terms. It therefore depends in general on

s = m2 only. In a single-channel problem, e.g. the isoscalar ππ system in S-wave below

1 GeV, we now obtain, instead of eq. 277 derived for the P vector approach:

F̂ =
1

ρ
eıδ sin δ Q̂(286)

This amplitude contains the familiar scattering amplitude eıδ sin δ.

The P - and Q-vector approaches, even though both being approximations for produc-

tion of multi particle final states, correspond to different interpretations of the physical

processes. For clarity we consider a specific reaction, e.g. channel 1: p̄p → ππη and

channel 2: p̄p→ KK̄η from which we want to extract information on (ππ) interactions.

In the Q-vector approach, the amplitude is given by F1 = T11Q1 + T12Q2: the ππ

system is produced with an amplitude Q1(s). The two–pion interactions are then taken

into account by the scattering amplitude T11. Alternatively, a K and a K̄ are produced

with amplitudes Q2 which scatter via T12 into the outgoing pions. This picture has to

be contrasted to that which one may have in mind in applying the P -vector approach,

F = (I − ıK)−1P . A resonance is produced with an amplitude P, the term (I − ıK)−1

may be considered as propagator for this particle which then decays.

3
.
5. N/D-Method by Example. – The parametrization in terms of K-matrices with or

without production vectors is only one approach to describe two-body scattering. Under

the assumption of unitarity and maximum analyticity it is possible to derive the N/D

method from the dispersion relations. The amplitude Tl for a given angular momentum

fulfills a dispersion relation derived from the optical theorem. This is an integral equation

for which has no explicit solution. But Tl can be expressed in terms of a nominator Nl

and a denominator Dl

Tl(s) =
Nl(s)

Dl(s)
(287)

where Nl contains only left-side singularities and Dl only right-side singularities. The

functions Nl and Dl are correlated by a system of integral equations. The advantage

is, that this system can be reduced to a differential equation of the the Fredholm type,

which is known to be solvable. The solution is a infinite series, where the actual form

depend on the integration kernel. In practice this method is realized by a finite sum,

with parameters being tuned to fit the experimental data.

The work by Anisovich, Bugg, Sarantsev and Zou [35] may serve as an example for

such an analysis. In order to fit the Crystal barrel data on pp → 3π0, and 2ηπ0 they
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used the following Ansatz below 1.1 GeV/c2

Kij =

(
s− 2m2

π

s

)(
αiαj

sA − s

βiβj

sB − s

γiγj

sC − s
+ aij + bijs

)

Nππ(s) = N11(s) = (c1 + c2s)K11 + iρ2(c3 + c4s)(K11K22 −K12K21)(288)

Nηη(s) = N22(s) = c1K22 + iρ2c3(K11K22 −K12K21)

where ρi are the usual phase space factors and aij , bij and ci are arbitrary complex

parameters and si are pole positions. αi, . . ., γi are coupling constants.

3
.
5.1. What is a Resonance. So far we collected several approaches to obtain a

dynamical function. But all formalisms are only parameterizations which are more or

less motivated by models. The main physical content is hidden in the T -matrix, however

it was obtained.

The instructive Breit-Wigner function is well suited for low statistics, where compli-

cated methods fail because of the many unconstrained parameters, or in the case of very

well separated resonances. In this case the fitted mass and width are easily mapped to

the physical properties of the state. In general this is more complicated and lead s to

the investigation of the singularities of the meromorph T -matrix.

The K-matrix poles as well as other parameterization deliver only in rare cases sin-

gularities which are near to them of the T -matrix. This is for example the case for

• resonances which are very far apart,

• minimal coupling to sub-dominant channels and

• far away from thresholds.

If at least one of those is violated interference terms appear which move the unphysical

poles.

Sheet ℑ [q1] ℑ [q2]

I + +
II - +
III - -
IV + -

Table II. – Definition of Riemann sheets (2 channels).

The energy of a particle is function of p2. The inverse function, the root, has no

unique solution. The sign can be positive or negative. If the momentum is a complex

number, the two roots lie π apart on the same circle. This is easily illustrated for w = z2.

If z = eıϕ then w = e2ıϕ. If ϕ moves only from 0 to π then w moves around the whole
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circle. If ϕ moves on w starts a second turn. The difference between the lower and upper

function value is

√
w −

√
w∗ = ±

√
|w|
(
e
ı
ϕ

2 + e
−ıϕ

2

)
= cosh

ϕ

2

∣∣∣
ϕ=0

6= 0.(289)

To resolve this ambiguity one introduces for each threshold involved in the process a

new pair of Riemann sheets, which represent each one possible root of the breakup

momentum. The convention is (1) that every crossing of the real energy axis involves a

sign change for the open channel and (2) that for every passed threshold the sign of the

threshold channel changes. Please see tbl. II and fig. 16 for illustration. This means for

a two channel problem

(
T̂ III

)−1

=
(
T̂ II

)−1

+ ıρ2(290)

where (III) and (II) denote Riemann sheets according to the definitions in tbl. II. The

(a) pp-threshold
K -tK hreshold

I

II III

IV

Re(E)

Im(E)

(b)

Re(q )2

Im( )q2

II

IV III

I

K -tK hreshold

Fig. 16. – Numbering of Riemann-sheets (2 channels).

different sheets in the complex energy and momentum plane are shown in fig. 16. The

different sheets are separated by cuts. The convention is that the cuts lie on the real

axis and start at the threshold. In s-channel it is common to defines the real axis

above the threshold to be the right-hand cut (RHC). It contains all singularities of the s-

channel scattering processes. The t- and u-channel can have resonances and bound-states

too, which depend upon the reaction under investigation and are defined as left-hand

cuts (LHC), since they appear usually below threshold (see fig. 17 for illustration). One

should note, that these singularities are not taken into account in K-matrix formalisms.

Furthermore, the LHC may reach far out into the physical region, where they might
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imitate resonances. This has dramatic effects for the interpretation of poles in a transition

left-hand cuts

right-hand cuts

Re(E)

Im(E)

4m -4m
2 2

i

4m -m
2 2

i

Fig. 17. – Illustration of left-hand and right-hand cuts.

amplitude. To clearly identify resonances it is mandatory to investigate the convergence

radius of the pole. The convergence radius has to reach out to the real axis. Unfortunately

the amplitude on the real axis is dominated by the nearest singularity and effects from

the LHC if they influence the physical region. In summary this means, that the question

of resonances is translated into the question of how many poles does the T -matrix have

in the complex energy plane and what are their properties.

The basic idea is simple. The T -matrix contains a complex denominator D. A

singularity appears if D vanishes. The mass of a resonance is then the real part of this

point and the width is twice the imaginary part

T (E + ı
Γ

2
) = 0(291)

which has a similar singularity as a non-relativistic Breit-Wigner. The fundamental

statement is fact that the relation between the position of the pole and the according

Riemann sheet characterize the resonance [20]. The cross section (real axis) is mainly

influenced by the nearest pole (see fig. 18). In principle all poles influence the real axis,

which is easily seen if they are close together. In general the following approximation

holds near the threshold (at the boundary between sheets II and III)

ΓBW

r ≈ 1

2

(
ΓII

r + ΓIII
r

)
(292)

where ΓIII
r is usually larger than ΓII

r . The empirical principle of meromorph functions

for T (maximum analyticity or analytic with a finite number of poles) requires that only

physical singularities are allowed in the analytic continuation into the complex energy

and momentum plane like

• kinematic singularities which are defined via unitarity relations. They appear at

every threshold, where the two-body breakup gets real,
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• dynamic singularities due to the interaction, like in exchange processes, and

• poles which correspond to resonances or bound states.

Re(q)

Im( )q

Fig. 18. – From a pole to a real Breit-Wigner. The nearest pole dominates the properties of a
point on the real axis.

The time dependence of a decay amplitude is the Fourier transform of an exponential

decay (∝ eıqrt). Thus, the imaginary part of qr is negative, which means, that the pole

lies in the unphysical half of the momentum plane (ℑ [q] < 0, see fig. 19a). In contrast to

that, a bound state lies on the positive imaginary axis. Due to unitarity and hermitian

analyticity the analytic continuation leads to

T̂l(q) = T̂ ∗
l (−q∗) and T̂l(s) = T̂ ∗

l (s∗).(293)

Therefore we have two poles for a resonance symmetric around the imaginary axis. In

the energy plane they lie symmetric around the real axis.

(a)

physical plane - Sheet I

Re(E)

Im(E)

1 1

unphysical plane - Sheet II

Re(E)

Im(E)

2

3*

3 (b)

Re(q)

Im( )q

33

2

1

Fig. 19. – Singularities in the (a) complex energy and (b) momentum plane. (1) bound states,
(2) anti-bound states and (3) resonances.

Let’s go back to poles at threshold, since they are the most complicated ones and

the respective resonances remain a mystery in meson spectroscopy. If the poles are far
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away from thresholds, they are no really affected by them (see fig. 20a). This is true

even for the ρ(770) which lies exactly between two threshold. For the a0/f0 at the KK̄

threshold, the situation is more puzzling. Without thresholds, the poles on sheet II and

III are usually identical and lie on top of each other. At threshold, they do not and it is

important to verify that the two poles which one finds near the threshold correspond to

each other. A resonance can only be quoted if the poles belong to each other. Since the

two sides of the threshold correspond to a different sign for ρ (sheet II: (ı
√
ρ)2 = −ρ and

sheet III:
√
ρ2 = +ρ) it is sufficient to show, that while changing ρ smoothly to −ρ the

poles can be connected (see fig. 20b).

(a)

I

II III

IV
r(770)

I

II III

IV
f0(980)

I

II III

IV
f2(1270)

(b)

pp-threshold

K -tK hreshold

II III

Re(E)

Im(E)

Fig. 20. – Normal poles (a,c) and shadow poles at threshold (b).
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