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Abstract

With the aim of generating new constraints on the OZI suppressed couplings of chiral
perturbation theory a set of six equations of the Roy and Steiner type for the S- and P -
waves of the πK scattering amplitudes is derived. The range of validity and the multiplicity
of the solutions are discussed. Precise numerical solutions are obtained in the range E <∼ 1
GeV which make use as input, for the first time, of the most accurate experimental data
available at E >∼ 1 GeV for both πK → πK and ππ → KK amplitudes. Our main result is
the determination of a narrow allowed region for the two S-wave scattering lengths. Present
experimental data below 1 GeV are found to be in generally poor agreement with our results.
A set of threshold expansion parameters, as well as sub-threshold parameters are computed.
For the latter, a matching with the SU(3) chiral expansion at NLO is performed.
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1 Introduction

Scattering amplitudes of pseudo-Goldstone bosons at low energies probe with a unique sensitiv-
ity the scalar-source sector of Chiral Perturbation Theory (ChPT) [1, 2]. For instance, recent
progress in the domain of ππ scattering has provided valuable information on the SU(2) chiral
limit where the masses of the u, d quarks are set to zero. For this purpose, the ππ Roy equations,
which have been extensively studied in the past [3, 4, 5], were re-analyzed [6] (in particular, a
formulation as a boundary value problem was developped) and solved numerically [6, 7] (see
also [8]). These equations constrain the low-energy ππ-scattering amplitude by exploiting si-
multaneously theoretical requirements and data at higher energies. New data on Kl4 decays
from the E865 experiment [9] could thus be studied with the help of the solutions to the Roy
equations and a bound on the coupling constant ℓ̄3 of the SU(2) chiral Lagrangian [10] was
derived for the first time. Constraints on the SU(2) quark condensate were also obtained along
similar lines [11].

In a parallel way, scattering amplitudes involving both pions and kaons at very low energy
should allow one to unveil features of the SU(3) chiral vacuum, i.e. that in the limit where
mu, md and ms vanish. The structure of the SU(3) chiral vacuum is worth studying for its
own sake, since SU(3) ChPT provides relations between many low-energy processes involving
π-, K- and η-mesons. In addition, it is interesting to compare SU(2) and SU(3) chiral limits,
especially in the scalar sector. A sizable difference between the two limits would indicate that
sea-quark effects are particularly significant in the case of the strange quark [12, 13]. In previous
works [14, 15] it was shown that the ratio of the pion’s decay constant in SU(2) and SU(3) chiral
limits could be determined from a sum rule based on πK scattering amplitudes. The deviation
of this ratio from 1 would indicate a violation of the large-Nc approximation. Let us emphasize
that the latter is often relied upon to attribute values to some O(p4) couplings arising in the
scalar sector of the chiral Lagrangian [2, 16]. Our work is motivated by the desire of determining
from πK-scattering experimental data as many chiral couplings as possible (in principle, five
out of the ten independent O(p4) couplings of the SU(3) chiral Lagrangian [17, 18]), without
relying on the large-Nc approximation. In this paper, we provide the first step of this analysis,
by deriving the analogue of Roy equations for the πK system and solving them numerically. A
simple matching with the SU(3) expansion is performed while more detailed comparisons with
SU(2) and SU(3) expansions are left for future work. Further motivation for the study of πK
scattering can be found in refs. [19, 20].

In the case of ππ scattering, Roy observed [21] that general properties of analyticity, unitarity,
combined with crossing symmetry, lead to a set of non-linear integral equations that the S- and
P -partial waves must satisfy. A similar program was carried out by Steiner for πN scattering [22].
Given experimental input at high energies (typically E >∼ 1 GeV), Roy-Steiner (RS) equations
constrain the low-energy behaviour of partial-wave amplitudes. In the present paper, we derive
and perform a detailed analysis of a system of RS equations for πK scattering. In this case,
s − t crossing relates the πK → πK and the ππ → KK amplitudes, leading to six coupled

equations that involve the four πK S and P partial-wave amplitudes f
1/2
0 , f

1/2
1 , f

3/2
0 , f

3/2
1

and the two ππ → KK amplitudes g0
0 , g

1
1 . Equations of a similar kind have been considered

earlier [23, 24, 25]. However, some approximations were invoked in the treatment of these
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equations and, moreover, no accurate experimental input data were available at that time. Since
then, high-statistics production experiments have been performed for both πK → πK [26, 27]
and ππ → KK amplitudes [28, 29]. These experiments provide the necessary input data for the
RS equations with a level of accuracy comparable to the case of ππ scattering. Experimental
data at lower energies should also be available in the near future: the FOCUS experiment [30]
has demonstrated the feasibility of determining the πK S-wave phase shifts at energies lower
that 1 GeV from the weak decays of D mesons [31], P-wave phase shifts should be measured
soon in τ decays [32] and finally, direct determinations of combinations of S-wave scattering
lengths are expected from planned experiments on kaonic atoms [33].

The plan of the paper is as follows. After reviewing the notation, we derive the set of RS
equations that we intend to solve. The setting is similar to a previous work [25] but we differ in
the number of subtractions used in the dispersive representations. We aim here at an optimal
use of the energy region where accurate experimental data are available, while avoiding to rely
on slowly convergent sum rules. After discussing the domains of validity of such equations, we
explain our treatment of the available experimental input and of the asymptotic regions. Next,
we start solving the equations. One first eliminates g0

0 and g1
1 and the remaining four equations

then have a similar structure to the ππ Roy equations such that recent results concerning
the multiplicity of the solutions [34, 35] can be exploited. Finally, we turn to the numerical
resolution and discuss the resulting constraints on the S-wave scattering lengths. Finally, the
πK amplitudes near and below threshold are constructed and estimates for the O(p4) chiral
coupling constants obtained from matching with the SU(3) expansion are given.

2 Derivation of the equations

2.1 Notation

Let us recall briefly some standard notation [36]. Firstly, we define from the pion and kaon
masses

m± = mK ±mπ, Σ = m2
K +m2

π, ∆ = m2
K −m2

π . (1)

In this paper, exact isopin symmetry will always be assumed. In the isospin limit, there are
two independent πK amplitudes F I(s, t), with isospin I = 1

2 and I = 3
2 . Making use of s − u

crossing, the I = 1
2 amplitude can be expressed in terms of the I = 3

2 one,

F
1
2 (s, t, u) = −1

2
F

3
2 (s, t, u) +

3

2
F

3
2 (u, t, s) . (2)

It is convenient to introduce the amplitudes F+ and F− which are, respectively, even and odd
under s− u crossing. In terms of isospin amplitudes, they are defined as

F+(s, t, u) =
1

3
F

1
2 (s, t, u) +

2

3
F

3
2 (s, t, u)

F−(s, t, u) =
1

3
F

1
2 (s, t, u) − 1

3
F

3
2 (s, t, u) . (3)
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The partial-wave expansion of the πK isospin amplitudes is defined as

F I(s, t) = 16π
∑

l

(2l + 1)Pl(zs)f
I
l (s) . (4)

where Pl(z) are the standard Legendre polynomials and zs is the cosine of the s-channel scat-
tering angle

zs = 1 +
2st

λs
with λs = (s −m2

+)(s −m2
−) . (5)

In a similar way we can expand F+ and F−, and the corresponding partial-wave projections are
denoted by f+

l (s) and f−l (s). The amplitudes can be projected over the partial waves through

f I
l (s) =

s

16πλs

∫ 0

−λs/s
dt Pl(zs)F

I(s, t) . (6)

The values of the amplitudes at threshold define the S-wave scattering lengths, with the following
conventional normalization

aI
0 =

2

m+
f I
0 (m2

+) (7)

(and similarly for a±0 in terms of f±0 (m2
+)).

Under s− t crossing, one generates the I = 0 and I = 1 ππ → KK amplitudes,

G0(t, s, u) =
√

6F+(s, t, u)

G1(t, s, u) = 2F−(s, t, u) . (8)

The partial-wave expansion of the ππ → KK amplitudes is conventionally defined as

GI(t, s) = 16π
√

2
∑

l

(2l + 1)[qπ(t)qK(t)]lPl(zt)g
I
l (t) , (9)

where the summation runs over even (odd) values of l for I = 0 (I = 1) due to Bose symmetry in
the ππ channel. In this expression the momenta qπ, qK and the cosine of the t-channel scattering
angle zt are given by

qP (t) =
1

2

√

t− 4m2
P , zt =

s− u

4qπ(t)qK(t)
. (10)

The relations between these partial-wave amplitudes and the S-matrix elements are easily
worked out

[

SI
l (s)

]

πK→πK
= 1 + 2i

√
λs

s
θ(s−m2

+)f I
l (s)

[

SI
l (t)

]

ππ→KK
= 4i

(qπ(t)qK(t))l+1/2

√
t

θ(t− 4m2
K)gI

l (t) . (11)
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2.2 Fixed-t based dispersive representation

To derive RS equations, we assume the validity of the Mandelstam double-spectral representa-
tion [37] from which one can derive a variety of dispersion relations (DR’s) for one variable 4.
According to the Froissart bound [40], two subtractions are needed at most for F+ and one sub-
traction for F− (because s−u can be factored out in the latter case). More detailed information
about asymptotic behaviour is provided by Regge phenomenology [41], according to which two
subtractions are indeed necessary for F+ while an unsubtracted DR is expected to converge
for F−. However, convergence is rather slow in the latter case since the integrand behaves like
(s′)−3/2 asymptotically. Therefore, we choose to make use of a once-subtracted DR for F− in
order to improve the convergence and reduce the sensitivity to the high-energy domain.

Fixed-t DR’s for F+ and F−, with the number of subtractions as discussed above can be
written in the following form

F+(s, t) = c+(t) +
1

π

∫ ∞

m2
+

ds′
[

1

s′ − s
+

1

s′ − u
− 2s′ − 2Σ − t

λs′

]

ImF+(s′, t) .

F−(s, t)

s− u
= c−(t) +

1

π

∫ ∞

m2
+

ds′
[

1

(s′ − s)(s′ − u)
− 1

λs′

]

ImF−(s′, t) . (12)

These expressions involve two unknown functions of t: c+(t) and c−(t). The basic idea for
determining these functions is to invoke crossing [21, 22], which can be implemented in various
ways: for instance, one can use fixed-s or fixed-(s − u) DR’s. After trying several possibilities,
we found that DR’s at fixed us provide the largest domain of applicability (these relations,
sometimes called hyperbolic DR’s, were exploited in ref. [25]). We start with a special set of
hyperbolic DR’s (more general hyperbolic DR’s will be considered later) in which

us = ∆2 . (13)

The condition above fixes s and u to be functions of t

s ≡ s∆(t) =
1

2

(

2Σ − t+
√

(t− 4m2
π)(t− 4m2

K)

)

u ≡ u∆(t) =
1

2

(

2Σ − t−
√

(t− 4m2
π)(t− 4m2

K)

)

. (14)

According to Regge theory, the function F+(s∆, t) satisfies a once-subtracted DR which is
slowly converging. Like in the case of the fixed-t DR for F−, we choose to improve the conver-
gence by using a twice-subtracted representation. On the other hand, the function F−(s∆, t) is
expected to satisfy an unsubtracted DR which is well converging. Making use of the fact that
s∆(0) = m2

+, these DR’s can be written in the following way

F+(s∆, t) = 8πm+a
+
0 + b+t+

1

π

∫ ∞

m2
+

ds′
[

2s′ − 2Σ + t

λs′ + s′t
− 2s′ − 2Σ − t

λs′

]

ImF+(s′, t′∆)

4For the πK amplitude, the existence of fixed-t DR can be established on more general grounds in a finite
domain of t [38, 39].
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+
t2√
6π

∫ ∞

4m2
π

dt′

(t′)2(t′ − t)
ImG0(t′, s′∆)

F−(s∆, t)

s∆ − u∆
=

8πm+a
−
0

m2
+ −m2

−
+

1

π

∫ ∞

m2
+

ds′
[

1

λs′ + s′t
− 1

λs′

]

ImF−(s′, t′∆)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′∆)
√

(t′ − 4m2
π)(t′ − 4m2

K)
. (15)

In these equations, we have used the following notation

s′∆ = s∆(t′), t′∆ = 2Σ − s′ − ∆2

s′
, (16)

together with the relation (s′ − s∆(t))(s′ − u∆(t)) = λs′ + s′t .

These representations involve three subtraction constants: the two scattering lengths a+
0 , a−0

and an additional parameter denoted b+. Let us now show that the latter can be computed
through a rapidly convergent sum rule. We notice first that a−0 and b+ satisfy slowly convergent
sum rules,

8πm+a
−
0

m2
+ −m2

−
=

1

π

∫ ∞

m2
+

ds′

λs′
ImF−(s′, t′∆) +

1

2π

∫ ∞

4m2
π

dt′

t′
Im

G1(t′, s′∆)
√

(t′ − 4m2
π)(t′ − 4m2

K)
.

b+ =
−1

π

∫ ∞

m2
+

ds′

λs′
ImF+(s′, t′∆) +

1√
6π

∫ ∞

4m2
π

dt′

(t′)2
ImG0(t′, s′∆) . (17)

By combining these two sum rules, we can express the parameter b+ as a sum rule which has
better convergence property:

b+ =
8πm+a

−
0

m2
+ −m2

−
− 1

π

∫ ∞

m2
+

ds′

λs′
Im

[

F+(s′, t′∆) + F−(s′, t′∆)
]

+
1

π

∫ ∞

4m2
π

dt′

t′
Im





G0(t′, s′∆)√
6t′

− G1(t′, s′∆)

2
√

(t′ − 4m2
π)(t′ − 4m2

K)



 . (18)

Why does this sum rule converge more quickly ? In the first integral, the combination F+ +F−

appears, which is the amplitude for the process π+K− → π+K−. The asymptotic region of
the integrand corresponds to s → ∞, u → 0. The amplitude in this region is controlled by the
Regge trajectories in the u−channel which is exotic, leading to a fast decrease of the integrand.
In the second integral, the high-energy tail involves the combination 1√

6
G0(t′, s′) − 1

2G
1(t′, s′)

for t′ → ∞ and s′ → 0. The leading Regge contributions are generated by the K∗∗ and K∗

trajectories

lim
t→∞, s→0

Im

[

1√
6
G0(t, s) − 1

2
G1(t, s)

]

= βK∗∗(s)tαK∗∗ (s) − βK∗(s)tαK∗ (s) . (19)

This difference would vanish if Regge trajectories satisfied exactly the property of exchange de-
generacy. In nature, this property is not exact but it has long been observed to be approximately
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fulfilled 5 (see e.g. [41] ), which should lead to a significant suppression of the integrand at high
energies. Therefore, the two integrals involved in eq. (18) are expected to converge quickly,
providing a determination of b+ with only a mild sensitivity to high energies.

Combining the two dispersive representations eqs. (12) and (15) for the amplitudes F+ and
F−, the subtraction functions in eqs. (12) get determined in terms of the two S-wave scattering
lengths and we obtain the following representation for the two amplitudes

F+(s, t) = 8πm+a
+
0 + b+t+

1

π

∫ ∞

m2
+

ds′
[

1

s′ − s
+

1

s′ − u
− 2s′ − 2Σ + t

λs′ + s′t

]

ImF+(s′, t)

+
1

π

∫ ∞

m2
+

ds′
[

2s′ − 2Σ + t

λs′ + s′t
− 2s′ − 2Σ − t

λs′

]

ImF+(s′, t′∆)

+
t2√
6π

∫ ∞

4m2
π

dt′

(t′)2(t′ − t)
ImG0(t′, s′∆) ,

F−(s, t) =
8πm+a

−
0

m2
+ −m2

−
(s− u) +

1

π

∫ ∞

m2
+

ds′
[

1

s′ − s
− 1

s′ − u
− s− u

λs′ + s′t

]

ImF−(s′, t)

+ (s− u)

{

1

π

∫ ∞

m2
+

ds′
[

1

λs′ + s′t
− 1

λs′

]

ImF−(s′, t′∆)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′∆)
√

(t′ − 4m2
π)(t′ − 4m2

K)

}

(20)

where the parameter b+ is to be expressed in the terms of the sum rule eq. (18). The domain
of applicability of this representation is limited by the domain of validity of the fixed−t DR’s,
eq. (12). In sec. 3, we will show that the fixed-t DR’s hold for t < 4m2

π, which enables us to
perform the projection of eq. (20) on πK → πK partial waves. We will also need a representation
which is valid for t ≥ 4m2

π in order to obtain equations for the ππ → KK̄ partial waves. For
this purpose, we now consider a family of hyperbolic DR’s.

2.3 Fixed us dispersive representation

Let us consider a general family of hyperbolic DR’s for which

us = b (21)

is fixed. b is a parameter with (a priori) arbitrary values and should not be confused with the
subtraction constant b+ introduced in the previous section. We write down a twice-subtracted
representation for F+(sb, t) and a once-subtracted one for F−(sb, t),

F+(sb, t) = f+(b) + th+(b) +
1

π

∫ ∞

m2
+

ds′
[

2s′ − 2Σ + t

λb
s′ + s′t

− 2s′ − 2Σ − t

λb
s′

]

ImF+(s′, t′b)

5The underlying reason for this property is not understood but could be related to the possibility that the
large-Nc limit of QCD is described by a string theory [42, 43].
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+
t2√
6π

∫ ∞

4m2
π

dt′

t′2(t′ − t)
ImG0(t′, s′b) ,

F−(sb, t)

sb − ub
= f−(b) +

1

π

∫ ∞

m2
+

ds′
[

1

λb
s′ + s′t

− 1

λb
s′

]

ImF−(s′, t′b)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′b)

s′b − u′b
(22)

with the notation

s′b =
1

2

(

2Σ − t′ +
√

(2Σ − t′)2 − 4b

)

t′b = 2Σ − s′ − b

s′
(23)

λb
s′ = (s′)2 − 2Σs′ + b .

The representations eqs. (22) are a generalization of the DR’s eqs. (15) derived for us = ∆2. They
involve three unknown functions of b: f+(b), f−(b) and h+(b) (which generalize the subtraction
constants of eqs. (15) ) The two functions f+(b), f−(b) can be determined by matching eqs. (22)
with the representations eqs. (20) at the point t = 0 (which lies inside their domain of validity).
Next, the function h+(b) can be expressed as a rapidly convergent sum rule analogous to eq. (18).
Putting things together, one finally obtains the following representations involving the two S-
wave scattering lengths a+

0 , a−0 as the only arbitrary constants,

F+(sb, t) = 8πm+

(

a+
0 + t

a−0
m2

+ −m2
−

)

+
1

π

∫ ∞

m2
+

ds′
{

2s′ − 2Σ + t

λb
s′ + s′t

ImF+(s′, t′b) −
2s′ − 2Σ

λb
s′

Im [F+(s′, t′b) − F+(s′, 0)]

− t

λb
s′

Im [F−(s′, t′b) − F−(s′, 0)]

− 2s′ − 2Σ

λs′
ImF+(s′, 0) − t

λs′
ImF−(s′, 0)

}

+
t

π

∫ ∞

4m2
π

dt′

t′

[

ImG0(t′, s′b)√
6(t′ − t)

− Im
G1(t′, s′b)

2(s′b − u′b)

]

.

F−(sb, t)

sb − ub
=

8πm+a
−
0

m2
+ −m2

−
+

1

π

∫ ∞

m2
+

ds′
{

1

λb
s′ + s′t

ImF−(s′, t′b) −
1

λs′
ImF−(s′, 0)

− 1

λb
s′

Im [F−(s′, t′b) − F−(s′, 0)]

}

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′b)

s′b − u′b
(24)

These representations will allow us to perform projections on the t-channel partial waves for
t ≥ 4m2

π.
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2.4 RS equations for f I
l (s)

RS equations can now be obtained by performing the partial-wave projections of the dispersive
representations obtained above. Projecting eqs. (20) on the l = 0, 1 πK → πK amplitude we
get the first four equations,

Re f
1
2
l (s) = k

1
2
l (s)

+
1

π
−
∫ ∞

m2
+

ds′
∑

l′=0,1

{

(

δll′
λs

(s′ − s)λs′
− 1

3
Kα

ll′(s, s
′)

)

Im f
1
2
l′ (s

′) +
4

3
Kα

ll′(s, s
′)Im f

3
2
l′ (s

′)

}

+
1

π

∫ ∞

4m2
π

dt′
{

K0
l0(s, t

′)Im g0
0(t

′) + 2K1
l1(s, t

′)Im g1
1(t

′)
}

+ d
1
2
l (s)

Re f
3
2
l (s) = k

3
2
l (s)

+
1

π
−
∫ ∞

m2
+

ds′
∑

l′=0,1

{

(

δll′
λs

(s′ − s)λs′
+

1

3
Kα

ll′(s, s
′)

)

Im f
3
2
l′ (s

′) +
2

3
Kα

ll′(s, s
′)Im f

1
2
l′ (s

′)

}

+
1

π

∫ ∞

4m2
π

dt′
{

K0
l0(s, t

′)Im g0
0(t

′) −K1
l1(s, t

′)Im g1
1(t

′)
}

+ d
3
2
l (s) . (25)

The domain of validity in s of these equations is given by eq. (53) below. In these equations,
the terms kI

l (s) contain the contributions associated with the subtraction constants,

kI
0(s) =

1

2
m+a

I
0 +

λs

32πs

(

−b+ + (−3I +
7

2
)

8πm+a
−
0

m2
+ −m2

−

3s+m2
−

s−m2
−

)

kI
1(s) =

λs

96πs

(

b+ + (−3I +
7

2
)

8πm+a
−
0

m2
+ −m2

−

)

. (26)

The equations involve three kinds of kernelsKα
ll′(s, s

′),KI
ll′(s, t

′), andKσ
ll′(s, s

′) (which appear
only in the driving terms dI

l ). The kernels Kα
ll′ read, for l, l′ = 0, 1,

Kα
00(s, s

′) = −λs + 2s(s′ − s)

2sλs′
+ L(s, s′)

Kα
01(s, s

′) =
3(λs + 2s(s′ + s))

2sλs′
− 3(λs′ + 2ss′ − 2∆2)

λs′
L(s, s′)

Kα
10(s, s

′) =
λ2

s + 12s2λs′

6sλsλs′
− (λs + 2ss′ − 2∆2)

λs
L(s, s′)

Kα
11(s, s

′) = −12s2(λs′ + 2ss′ − 2∆2) + λ2
s

2sλsλs′

+
3(λs + 2ss′ − 2∆2)(λs′ + 2ss′ − 2∆2)

λsλs′
L(s, s′) (27)

with

L(s, s′) =
s

λs

[

log(s′ + s− 2Σ) − log

(

s′ − ∆2

s

)]

(28)
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Next, the kernels K0
0l′ , K

0
1l′ (with l′ even) read,

K0
0l′(s, t

′) =
2l′ + 1√

3
(q′πq

′
K)l

′ s

λs

{

log

(

1 +
λs

st′

)

− λs

st′

(

1 − λs

2st′

)}

K0
1l′(s, t

′) =
2l′ + 1√

3
(q′πq

′
K)l

′ s

λs

{

(

1 +
2st′

λs

)

log

(

1 +
λs

st′

)

− 2 − 1

6

(

λs

st′

)2
}

. (29)

Finally, the kernels K1
0l′ , K

1
1l′ (with l′ odd) read

K1
0l′(s, t

′) =

√
2(2l′ + 1)

8
(q′πq

′
K)l

′−1
{

s(2s− 2Σ + t′)

λs

[

log

(

1 +
λs

st′

)

− λs

st′

]

+
λs

2st′

}

K1
1l′(s, t

′) =

√
2(2l′ + 1)

8
(q′πq

′
K)l

′−1 ×
{

s(2s− 2Σ + t′)

λs

[(

1 +
2st′

λs

)

log

(

1 +
λs

st′

)

− 2

]

− λs

6st′

}

. (30)

The analyticity properties of the partial-wave amplitudes f I
l (s) were established in ref. [44].

They can be recovered by considering the various kernels. In particular, the circular cut is
generated by the kernels KI

ll′(s, t
′).

The terms dI
l (s) are the so-called driving terms in which the contributions from the partial

waves with l′ ≥ 2 are collected

dI
l (s) =

1

π

∫ ∞

m2
+

ds′
∑

l′≥2

{

(

Kσ
ll′(s, s

′) +
2

3
(I − 1)Kα

ll′(s, s
′)

)

Im f
1
2
l′ (s

′)

+
1

3
(−2I + 5)Kα

ll′(s, s
′)Im f

3
2
l′ (s

′)

}

+
1

π

∫ ∞

4m2
π

dt′
∑

l′≥1

{

K0
l2l′(s, t

′)Im g0
2l′(t

′) + (−3I +
7

2
)K1

l2l′+1(s, t
′)Im g1

2l′+1(t
′)
}

. (31)

The kernels Kσ
ll′(s, s

′) appear in the driving terms only; the first few which are non-vanishing
read

Kσ
02(s, s

′) =
5λs

s(λs′)2

Kσ
03(s, s

′) =
−35(λs)

2s′(ss′ − ∆2)

3s2(λs′)3

Kσ
13(s, s

′) =
7λs(ss

′ − ∆2)((s + s′)(ss′ + ∆2) − 4ss′Σ)

3s2(λs′)3
. (32)

2.5 RS equations for g0
0(t), g1

1(t)

In order to obtain a closed system of equations we now need two equations yielding the real
parts of g0

0(t) and g1
1(t) valid for positive values of t. They can be obtained from the family of
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fixed−us DR’s of eqs. (24). Using the relation between the cosine of the t-channel scattering
angle zt and the parameter b,

z2
t =

(2Σ − t)2 − 4b

(2Σ − t)2 − 4∆2
, (33)

the projection is carried out by using

g0
0(t) =

√
3

16π

∫ 1

0
dzt F

+(sb, t)

g1
1(t) =

4
√

2

16π

∫ 1

0
dzt z

2
t

F−(sb, t)

sb − ub
. (34)

This yields the following two equations for g0
0 , g

1
1 ,

g0
0(t) =

√
3m+

2

(

a+
0 +

ta−0
m2

+ −m2
−

)

+
t

π

∫ ∞

4m2
π

dt′

t′
Im g0

0(t
′)

t′ − t

− 3
√

6

8

t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t′)

+
1
∑

l′=0

1

π

∫ ∞

m2
+

ds′
[

G+
0l′(t, s

′)Im f+
l′ (s′) + tG−

0l′(t, s
′)Im f−l′ (s′)

]

+ d0
0(t) .

g1
1(t) =

2
√

2m+a
−
0

3(m2
+ −m2

−)
+
t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t
′)

(t′ − t)

+
1

π

∫ ∞

m2
+

ds′ [G−
10(t, s

′)Im f−0 (s′) +G−
11(t, s

′)Im f−1 (s′)] + d1
1(t) . (35)

The two equations (35) together with the four equations (25) form a complete set of Roy-Steiner
type equations. The domain of validity of the equations for g0

0 , g
1
1 is given in eq. (54) below.

The equation for g0
0 involves three kinds of kernels: G±

0l′(t, s
′), GI

0l′(t, t
′). The kernels

G±
0l′(t, s

′) have the following form

G+
0l′(t, s

′) =
√

3(2l′ + 1)

{

2G(x)

s′ − Σ + t/2
Pl′(zs′) −

(2s′ − 2Σ + t)

λs′
Al′(t, s

′) − tBl′(t, s
′)

λs′

}

G−
0l′(t, s

′) =
√

3(2l′ + 1)
Bl′(t, s

′)

λs′
(36)

where Pl′ are Legendre polynomials and

G(x) =
arctanh(x)

x
, x =

√
Qt

2s′ − 2Σ + t
, Qt = (t− 4m2

π)(t− 4m2
K) . (37)

We collect below the expressions for the first few of the terms Al(t, s
′), Bl(t, s

′)

A0(t, s
′) = 1, B0(t, s

′) = −1
A1(t, s

′) = 1, B1(t, s
′) = 1

A2(t, s
′) = 1 + 6s′t

λs′
, B2(t, s

′) = −
(

1 + Qt
λs′

)

A3(t, s
′) = 1 + 10s′t

λs′
+

10s′t(−Qt + 6s′t)
3λ2

s′
, B3(t, s

′) = 1 + 5Qt
3λs′

+
2Q2

t

3λ2
s′
.

(38)
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Lastly, we quote a few of the kernels G0
02l′(t, t

′), G1
02l′+1(t, t

′),

G0
02(t, t

′) =
5

16
(t′ + t− 4Σ)

G0
04(t, t

′) =
3

256
(t′ + t− 4Σ) [3t′(t′ − 4Σ) − 7t(t− 4Σ) − 64m2

πm
2
K ]

G1
03(t, t

′) =
−7

√
6

384
[3t′(t′ − 4Σ) − 5t(t− 4Σ) − 32m2

πm
2
K ] . (39)

In the RS equation for g1
1 , eq. (35), one finds two kinds of kernels G−

1l′(t, s
′) and G1

1l′(t, t
′). The

kernels G−
1l′(t, s

′) have a structure similar to G±
0l′(t, s

′) encountered above,

G−
1l′(t, s

′) = 4
√

2(2l′ + 1)

{

F (x)

(s′ − Σ + t/2)2
− 1

3λs′
+ Cl′(t, s

′)

}

(40)

with

F (x) =
1

x2
(G(x) − 1) . (41)

G(x) is defined in eq. (37) and both F and G are smooth functions around 0. The pieces Cl′(t, s
′)

vanish for l′ = 0, 1 and, for l′ = 2, 3, read

C2(t, s
′) = −2s′t

λ2
s′
, C3(t, s

′) =
2s′t [(2s′ − 2Σ + t)2 − 9λs′ − 14s′t]

3λ3
s′

. (42)

Finally, we display the first few kernels G1
12l′+1(t, t

′)

G1
13(t, t

′) =
7

48
(t′ + t− 4Σ)

G1
15(t, t

′) =
11

3840
(t′ + t− 4Σ)[5t′(t′ − 4Σ) − 9t(t− 4Σ) − 64m2

πm
2
K ] . (43)

These kernels are seen to be polynomials in t, t′.

The driving terms, d0
0(t), d

1
1(t), in eqs. (35) have the following expressions

d0
0(t) =

∞
∑

l′=2

{ 1

π

∫ ∞

m2
+

ds′
[

G+
0l′(t, s

′)Im f+
l′ (s′) + t G−

0l′(t, s
′)Im f−l′ (s′)

]

+
t

π

∫ ∞

4m2
π

dt′

t′

[

G0
02l′−2(t, t

′)Im g0
2l′−2(t

′) +G1
02l′−1(t, t

′)Im g1
2l′−1(t

′)
] }

d1
1(t) =

∞
∑

l′=2

{ 1

π

∫ ∞

m2
+

ds′G−
1l′(t, s

′)Im f−l′ (s′) +
t

π

∫ ∞

4m2
π

dt′

t′
G1

12l′−1(t, t
′)Im g1

2l′−1(t
′)
}

. (44)

This completes the derivation of a system of equations of the Roy-Steiner type for πK scattering.
Let us now discuss the domain of validity of these equations.
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3 Domains of validity

It is important to assess precisely the domains of validity of the dispersive representations dis-
cussed in the preceding section. For this purpose, we will adapt the methods reviewed by
Höhler for the πN system [45]. The discussion is based on the assumption that the scattering
amplitudes satisfy the Mandelstam double spectral representation [37], i.e., a spectral represen-
tation in terms of two variables which involves three spectral functions ρst(s

′, t′), ρut(u
′, t′) and

ρus(u
′, s′). The boundaries of the support of these spectral functions are shown in fig.1. This

representation and the expressions for these boundaries are obtained from the consideration of
box diagrams (see for instance [46]). For the πK amplitude, the st boundary is described by
the two equations

(t− 4m2
π)λ(s,m2

K , 4m
2
π) − 16m4

π(s+ 3m2
K − 3m2

π) = 0

(t− 16m2
π)λ(s,m2

K ,m
2
π) − 64m4

πs = 0 (45)

(the ut boundary is obtained by replacing s by u) while the us boundary is defined by the
following set of equations

λ(u,m2
K , 4m

2
π)λ(s,m2

K ,m
2
π) − 16m2

πm
2
Kus+ 16m2

π∆2(m2
K − t) = 0

λ(u,m2
K ,m

2
π)λ(s,m2

K , 4m
2
π) − 16m2

πm
2
Kus+ 16m2

π∆2(m2
K − t) = 0 , (46)

with
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (47)

Let us consider first the fixed−t DR’s. The spectral functions arising in these DR’s must be
real, which implies that the lines of constant t must not cross the double-spectral boundaries.
From fig. 1 one sees that this condition confines t in the region,

−48m2
π < t < 4m2

π , (48)

where the lower bound comes from the boundary associated with ρus and the upper bound from
the one associated with ρst. The second restriction on the domain of validity arises from the
fact that the spectral function ImF (s′, t) is needed in an unphysical region (except if t = 0)
and must thus be defined using the partial-wave expansion. The domain of convergence of this
expansion is the large Lehman ellipse (see for instance [46]). In terms of the cosine of the s-
channel scattering angle zs′ , this ellipse has focal points zs′ = ±1 and it is limited by the st
spectral boundary,

zmax
s′ = 1 +

2s′Tst(s
′)

λs′
. (49)

The function Tst(s) is obtained by solving eq. (45) which describes the stboundaryfor t as
a function of s. The point −zmax

s′ of the ellipse corresponds to another value of t given by
T ′

st(s) = −λs/s − Tst(s). For each value of s′, the convergence of the partial-wave expansion is
ensured if −zmax

s′ ≤ zs′ ≤ zmax
s′ , i.e., T ′

st(s
′) < t < Tst(s

′). The us boundary provides another
similar constraint, but it turns out to be weaker than that obtained from the st boundary.
The conjunction of the two constraints (reality of the spectral functions and convergence of the

12
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Figure 1: Boundaries of the support of the Mandelstam double spectral functions for the πK
system. The variables s, t, u are displayed in units of m2

π.

partial expansion) leads to the fact that the fixed-t dispersion relation for πK scattering is valid
in the range

−23m2
π < t < 4m2

π . (50)

A similar discussion can be carried out for the set of dispersion relations with us fixed,
us = b. Firstly, the criterion that the hyperbolas us = b do not intersect a spectral function
boundary yields

−700m4
π < b < 1420m4

π (51)

where the lower bound comes from the st boundary and the upper bound from the us boundary.
For the hyperbolic DR’s, the spectral functions ImF±(s′, t′b), ImGI(t′, s′b) are also needed in
unphysical regions (unless b = ∆2), so that the values of b must be restricted to ensure the con-
vergence of the partial-wave expansion. Considering the Lehman ellipse related to ImF±(s′, t′b)
restricts the range to

−700m4
π < b < 450m4

π , (52)

and no further restriction arises from the Lehman ellipse related to ImGI(t′, s′b).

We can now derive the ranges of validity of the RS equations, which are obtained by pro-
jecting the DR’s over partial waves. Let us start with the fixed-t DR’s, the projection over πK
partial waves is legitimate provided the range of integration of eq. (6) is included inside the
range of validity in t of the DR’s. One deduces that the RS equations for s-channel partial
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waves (25) are valid for
3m2

π ≤ s ≤ 48m2
π . (53)

In the same way, the projection on ππ → KK̄ partial waves is allowed only if the range of
integration of eq. (34) lies within the range of validity in b of the fixed−us DR’s. The last two
RS equations eq. (35) are thus valid for:

−15m2
π ≤ t ≤ 70m2

π . (54)

The range of validity in t is significantly larger than that in s. This difference stems from Bose
symmetry, which applies only to the ππ → KK̄ channels and implies that only even (odd) partial
waves appear when the isospin is zero (one). Thus, the t-channel projections can be obtained by
integrating over the limited range 0 ≤ zt ≤ 1, whereas the projection on s-channel partial waves
requires integrating over the whole range −1 ≤ zs ≤ 1. One notes that it is possible to project
the hyperbolic DR’s over s-channel partial waves as well. However, the resulting partial-wave
equations are valid in the range s ≤ 43m2

π, which is somewhat smaller than the range of validity
of the partial-wave equations obtained from the fixed−t DR’s.

4 Experimental input

In the previous sections, we have derived a set of RS equations for the s-channel partial waves
for I = 1

2 ,
3
2 and l = 0, 1, and the t-channel partial waves for (I, l) = (0, 0) and (1, 1), which

we call “lowest” partial waves from now on. Let us consider these equations in the ranges
m2

+ ≤ s ≤ sm and 4m2
π ≤ t ≤ tm. The upper limits of which sm, tm (which will be taken such

that the equations are valid i.e. sm ≤ 48m2
π, tm ≤ 70m2

π) will be called matching points. A
simple examination of the RS equations shows that in order to be able to solve for the lowest
partial waves below the matching points the following input must be provided: 1) the imaginary
part of the lowest partial waves for s ≥ sm, t ≥ tm, 2) the imaginary parts of the l ≥ 2 partial
waves above the thresholds and 3) the phases of g0

0(t), g
1
1(t) in the range 4m2

π ≤ t ≤ tm. We will
discuss below the experimental status of this input.

For the s-channel partial waves, we choose the matching point at the border of the range of
validity:

sm = 0.935 GeV2 . (55)

The reason for this choice is that the experimental data available at present comes from pro-
duction experiments. One expects the precision to decrease as the energy goes down below 1
GeV. We will see, for instance, that the I = 3

2 S-wave phase shifts seem rather unreliable below
1 GeV. In the t−channel the range of validity extends, as we have seen, up to tval ≃ 1.36 GeV2

and one could, in principle, choose the matching point anywhere between the KK threshold
and tval. In practice, we choose a value slightly above the KK̄ threshold (see sec. 6.1)

tm = 1.04 GeV2 (56)

For the lowest partial waves above the matching point, and for the higher partial waves, we
exploit experimental data at intermediate energies

E ≤ √
s2 = 2.5 GeV (57)
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and Regge models for E >
√
s2. We aim at determining the lowest partial waves below the

matching point. For this purpose, an additional information is needed concerning unitarity. We
will make the usual assumption that elastic unitarity holds exactly below the matching points [6].
In other terms, in the πK channel the possible couplings to ππK and πππK are assumed to be
negligibly small in the low-energy region. For the S-wave the validity of elastic unitarity was
observed experimentally up to the η′K threshold. In principle, the P -wave can couple to the
ππK state but no such coupling has been detected for the K∗ [53], and potentially important
two-body channels like K∗π, Kρ lie above the matching point. Similarly, in the ππ channel we
assume that the coupling to 4π can be neglected below the KK threshold.

We discuss now the experimental input used to solve the RS equations, before explaining in
detail their resolution.

-28
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-16
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-8

0.6 0.8 1 1.2 1.4 1.6 1.8 2

δ3/
2

0

E (GeV)

I=3/2 S-wave

Estabrooks

Figure 2: Experimental data from ref. [27] for the I = 3
2 S-wave phase shift

4.1 πK → πK data

Phase shift analyses of the πK → πK amplitude have been performed based on high-statistics
production experiments KN → KπN by Estabrooks et al. [26] and by Aston et al. [27]. Earlier
results are much less precise and we will not use them in our analysis. The amplitude π+K+ →
π+K+ which is purely I = 3

2 has been measured by Estabrooks et al. [26]. In practice the I = 3
2

phase shifts are very small in the range E <∼ 2 GeV except for the S-wave. This phase shift is
shown in fig.2 together with our fit, where a simple parametrization with three parameters is
used

tan
(

δ
3/2
0 (s)

)

=
αq

1 + βq2 + γq4
(58)
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This parametrization is analogous to the one used in ref [19]. Inelasticity is neglected in this
channel.

The amplitude π+K− → π+K− which involves the following isospin combination

F c ≡ F 1/2 +
1

2
F 3/2 , (59)

was measured both in ref. [26] and ref. [27] – the latter experiment has better statistics and
covers a larger energy range. The amplitude F c can be expanded over partial-waves in the same
way as eq. (4) and refs. [26, 27] provide the phase Φl(s) and the modulus al(s) of these partial
waves,

f c
l (s) ≡

√
2l + 1 al(s)e

iΦl(s) . (60)
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Figure 3: Experimental data from ref. [27] for the phase Φ0 and the fit used in the calculations.

Performing a combined fit of the I = 3
2 partial waves [26] and of the parameters al, Φl [26, 27]

one can separate the two isospin partial waves. The data of Aston et al. for the phases Φ0 and
Φ1 and our fits are displayed in figs. 3 and 4 respectively in the range 0.9 ≤ E ≤ 1.5 GeV
(this energy region plays an important role in our analysis). The fits shown here correspond
to a parametrization of the partial-wave S-matrices as products of Breit-Wigner S-matrices,
allowing for inelasticity in the I = 1

2 amplitude to set in at the ηK threshold. Inelasticity is
found to remain quite small up to E ≃ 1.5 GeV. We also tried different fits based on K-matrix
parametrizations.
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Figure 4: Experimental data from ref. [27] for the phase Φ1 and the fit used in the calculations.

The data of Aston et al. and the fits for both al and Φl for l = 0 to l = 5 and energy up
to E = 2.5 GeV are shown in figs. 5, 6 and 7. At energies E ≥ 1.8 GeV, ref. [27] found two
different solutions A and B for the phase shifts, between which we choose sol A (it was pointed
out in ref. [19] that solution B violates the unitarity bound). These fits allow us to compute the
relevant integrals up to E = 2.5 GeV. Above that point, we use a Regge-model parametrization
discussed in sec. 4.3.

4.2 ππ → KK input

For our purposes, a key role is played by the l = 0 and l = 1 ππ → KK amplitudes, which
can be determined from πN → KKN production experiments in the range t ≥ 4m2

K . We
will make use of the two high-statistics experiments described in Cohen et al. [28] and Etkin
et al. [29, 47]. The experiment of Cohen et al. [28] determines the charged amplitude π+π− →
K+K−, thereby providing results for both g0

0 and g1
1 . There are several possible solutions but

physical requirements select a single one, called solution II b in ref. [28]. Close to the KK
threshold, the presence of the l = 1 phase allows the authors to accurately determine the l = 0
phase. The experiment of Etkin et al. concerns the amplitude π+π− → KSKS which is purely
I = 0. Because of the absence of the P -wave in this channel, their determination of the phase of
g0
0 close to the threshold (where the D-wave phase is very small) is likely to be less reliable than

that of ref. [28]. Their determination of the magnitude of g0
0 close to the threshold disagrees

with that of Cohen et al. and also with earlier experiments [48]. Consequently, we make the
choice to use the results of Etkin et al. only in the range

√
t ≥ 1.2 GeV.
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Figure 5: Modulus and phase of the S- and P -partial-waves amplitudes from ref. [27] and the
fits in the region 0.9 ≤ E ≤ 2.5 GeV which are used in the calculations.

Our input for the phase of g0
0 is determined as follows. Below the KK threshold this phase

is identical to the ππ phase shift because of the elastic unitarity assumption. In the range
2mπ ≤ E ≤ 0.8 GeV we use solutions of the ππ Roy equations. Simple parametrizations
were provided recently in refs. [6, 11]. We use the parametrization of ref. [11] together with
the scattering lengths corresponding to the “extended” fit, with the central values a0

0 = 0.228,
a2

0 = −0.0382. In the range E ≥ 2mK we perform piecewise-polynomial fits of the data of
refs. [28, 29] and fixing the threshold value to Φ0

0 = 200± 15 degrees. This range is an educated
guess based on considering the data of Cohen et al. as well as ππ data. Finally in the range
0.8 GeV ≤ E ≤ 2mK we perform a fit to the CERN-Munich data as given by Hyams et al. [49]
and to the polarized target production data recently analyzed by Kaminski et al. [50]. For the
modulus of g0

0 , we have performed piecewise polynomial fits to the data of refs. [28, 29]. The
data and these fits are shown in fig.8.

As far as g1
1 is concerned, we use the experimental determination of the ππ P -wave phase in

the range 2mπ ≤ E ≤ 2mK obtained from the pion vector form factor measured by CLEO [51].
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Figure 6: Same as fig.5 for the D- and F -partial waves.

This determination is compatible with the results of the analysis of ππ Roy equations and has
a comparable accuracy. At larger energies, we use the experimental results from Cohen et al.
for the phase and the magnitude of g1

1 . The whole energy range where data are available can be
fitted using the following form

g1
1(t) =

C

(1 + r1q2π(t))
1
2 (1 + r1q2K(t))

1
2

×
{

BW (t,mρ) + (β + β1q
2
K(t))BW (t,mρ′) + (γ + γ1q

2
K(t))BW (t,mρ′′)

}

(61)

with

BW−1(t,mV ) = m2
V − t− i

√
t ΓV

2Gπ(t) +GK(t)

2Gπ(m2
V )

, GP (t) =
√
t

(

2qP (t)√
t

)3

. (62)

Below the KK threshold, q2K(t) vanishes and expression (61) reduces to the Kühn and Santa-
maria [52] form used in ref. [51]. We take the values of the parameters β, γ, mρ, mρ′ , mρ′′

determined by CLEO and we fit the parameters C, r1, β1, γ1 to the data above the KK thresh-
old. The data and the fits are shown in fig. 9.
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Figure 7: Same as fig.5 for the G- and H-partial waves.

The amplitudes with l ≥ 2 play a much less significant role in our analysis and are suppressed
at low energies. They will be described by simple Breit-Wigner parametrizations associated with
the resonances f2(1200), f

′
2(1525), ρ3(1690), f4(2050). Masses and partial decay widths of these

resonances were taken from the PDG [53].

4.3 Asymptotic regions

As discussed above, we can make use of the partial-wave expansion and experimental data up
to energies E =

√
s2 = 2.5 GeV for the s- as well as the t-channel. Above that point we use a

description of the amplitudes based on Regge phenomenology. We will content ourselves with
very unsophisticated models because this energy region turns out to play a very minor role in
our analysis. In the regime s′ → ∞, t fixed, we use the following expression for the amplitudes
suggested by dual models à la Veneziano [54, 55, 56, 57] (where exact exchange degeneracy is
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built in)

ImF−(s′, t)|asy ∼ πλ

Γ(αρ + α1t)
(α1s

′)α
ρ+α1t (63)

and

ImF+(s′, t)|asy ∼ σs′exp

(

bt

2

)

+ ImF−(s′, t)|asy . (64)

For the parameter λ and the Pomeron parameters σ, b we adopt values inspired by the discussion
in App. B.4 of ref. [6] with large errors

λ = 14 ± 5 , σ = 5 ± 2.5 mb , b = 8 ± 3 GeV−2 . (65)

The intercept and slope parameters of the Regge trajectories are determined from the experi-
mental spectrum of the ρ and K∗ resonances,

αK∗

= 0.352, αρ = 0.475, α1 = 0.882 GeV−1 . (66)

For illustration we compare in fig. 10 the imaginary part of F−(s, 0) resulting from our fit to
the experimental data and the Regge asymptotic form with λ = 14 .

Making use of this, it is easy to evaluate the contributions to the various dispersive integrals
in the range [s2,∞]. In the fixed-t DR’s we obtain

F+(s, t)|s2 =
2(λs + st)

(s2)2

[

σs2
π

exp
bt

2
+

λ

(2 − αρ − α1t)Γ(αρ + α1t)
(α1s2)

αρ+α1t
]

+
t2

(s2)2

[

λ

(2 − αK∗)Γ(αK∗)
(α1s2)

αK∗
]

(67)
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and

F−(s, t)|s2 =
s− u

(s2)2



t
λ(α1s2)

αK∗

(2 − αK∗)Γ(αK∗)
+
λs + st

s2

λ(α1s2)
αρ+α1t

(3 − αρ − α1t)Γ(αρ + α1t)



 (68)

In the same manner we can obtain the asymptotic contributions in the amplitudes described
through hyperbolic DR’s

F−(sb, t)

sb − ub

∣

∣

∣

∣

∣

s2

=
∆2 − b

(s2)3
λ(α1s2)

αρ

(3 − αρ)Γ(αρ)
+

t

(s2)2
λ(α1s2)

αK∗

Γ(αK∗)

[

1

2 − αK∗

− b α1

s2(3 − αK∗)

(

log(α1s2) − ψ(αK∗

) +
1

3 − αK∗

)

]

(69)

and

F+(sb, t)|s2 =
2(∆2 − b)

(s2)2

[

σs2
π

+
λ(α1s2)

αρ

(2 − αρ)Γ(αρ)

]

+
t(t− 2Σ)

(s2)2
λ(α1s2)

αK∗

Γ(αK∗)

[

1

2 − αK∗

− b α1

s2(3 − αK∗)

(

log(α1s2) − ψ(αK∗

) +
1

3 − αK∗

)

]

(70)

To derive these contributions, we have used the following expression for ImGI(t′, s′b) in the
regime where t′ → ∞

1√
6
ImG0(t′, s′b)|asy =

1

2
ImG1(t′, s′b)|asy =

πλ

Γ(αK∗
)
(α1t

′)α
K∗
{

1 +
α1b

t′
(− log(α1t

′) + ψ(αK∗

))

}

(71)
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in which an expansion to first order in the parameter b has been performed.

5 Initial steps in the resolution

5.1 Solving for g0
0, g1

1

We have now all the ingredients to solve the set of RS equations. The first step consists in solving
eqs. (35) for g0

0 , g
1
1 . This problem was discussed a long time ago [58, 59] and we recall the main

ideas here for completeness. Elastic unitarity implies that the phases ΦI
l of these amplitudes

gI
l (t) ≡ eiΦI

l
(t)|gI

l (t)| (72)

can be identified with the ππ phase shifts δI
l in the unphysical region t < 4m2

K according to
Watson’s theorem [60], and therefore they are known in principle. In the physical region t ≥ 4m2

K

the phases are determined from experiment as was discussed above.

On the other hand, the modulus of the t-channel partial waves is not known below the KK̄
threshold, and must be determined using the equations (35) satisfied by g0

0 and g1
1 which have

the following simple form

g0
0(t) = ∆0

0(t) +
t

π

∫ ∞

4m2
π

dt′

t′
Im g0

0(t
′)

t′ − t
,
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g1
1(t) = ∆1

1(t) +
t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t
′)

t′ − t
. (73)

In sec. 3, we have shown that these relations can be used up to t ≃ 1.4 GeV2, which includes the
whole region inaccessible to experiment where |g0

0 |, |g1
1 | are needed. The quantities ∆I

l (t) are
analytic functions with a left-hand cut along the negative t axis and no right-hand cut, as can be
easily verified using eqs. (35) and the explicit form of the kernels provided in sec. 2. Therefore,
determining the moduli |gI

l (t)| in the range 4m2
π ≤ t ≤ tm from eqs. (73) while the phase is

known is a standard Muskhelishvili-Omnès problem [61, 62]. The most general solution involves
arbitrary parameters, the number of which depend on the value of the phase at the matching
point [61]. We have chosen tm to be slightly larger than 4m2

K . The l = 1 phase Φ1
1(tm) is lower

than π, which implies that the solution for g1
1 involves no free parameter. The l = 0 phase, as

we argued in the previous section, satisfies π ≤ Φ0
0(tm) < 2π, such that one free parameter is

involved in the solution. Let us recall the explicit form of the solutions. One first introduces
the Omnès function

ΩI
l (t) = exp

(

t

π

∫ tm

4m2
π

ΦI
l (t

′) dt′

t′(t′ − t)

)

≡ ΩI
l R(t) exp[iΦI

l (t)θ(t− 4m2
π)θ(tm − t)] (74)

where ΩI
l R(t) is real. Then, the solutions of eqs. (73) read

g0
0(t) = ∆0

0(t) +
tΩ0

0(t)

tm − t

[

α0 +
t

π

∫ tm

4m2
π

dt′
(tm − t′)∆0

0(t
′) sin Φ0

0(t
′)

Ω0
0R(t′)(t′)2(t′ − t)

+
t

π

∫ ∞

tm
dt′

(tm − t′)|g0
0(t′)| sin Φ0

0(t
′)

Ω0
0R(t′)(t′)2(t′ − t)

]

(75)

g1
1(t) = ∆1

1(t) + tΩ1
1(t)

[

1

π

∫ tm

4m2
π

dt′
∆1

1(t
′) sin Φ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

+
1

π

∫ ∞

tm
dt′

|g1
1(t

′)| sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

]

(76)

Notice that the integrands are singular when t′ → tm, since the Omnès function behaves as

ΩI
l R(t′) ∼ |t′ − tm|

φI
l
(tm)

π (77)

but the singularity is integrable. When t → tm the integrands diverge but this is compensated
by the factor of ΩI

l (t) multiplying the integrals. It can be shown that the solution satisfies
automatically the first matching condition (details of the proof are given in App. A)

lim
ǫ→0

gI
l (tm ± ǫ)|sol = gI

l (tm)|input . (78)

Here, g0
0(t), g

1
1(t) are treated in a somewhat different way from that in ref. [15]. In that work,

an additional subtraction constant was introduced and the values of the subtraction parameters
were fixed by imposing that the values of g1

1(0), g
0
0(0) and d

dtg
0
0(0) be equal to the ChPT pre-

diction at order p2. Now, the behaviour around t = 0 is entirely determined by solving the full
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set of equations with the appropriate boundary conditions – our constraints are dispersive and
do not rely on ChPT results.

At this stage, the formulas (75),(76) for g0
0(t), g

1
1(t) involve three parameters: the two S-wave

scattering lengths a
1/2
0 , a

3/2
0 that appear in the expressions for ∆0

0(t), ∆1
1(t) and an additional

parameter α0. We will now clarify their role.

5.2 Matching conditions and uniqueness

Once g0
0(t), g

1
1(t) are expressed according to eqs. (75),(76), the set of four RS equations (25)

becomes a closed set of equations for the four πK partial waves f I
l (s), l = 0, 1, I = 1

2 ,
3
2 .

The structure of these equations is similar to that of ππ Roy equations: the kernels consist of
a singular Cauchy part and a regular part, and elastic unitarity provides a non-linear relation
between Re f I

l (s) and Im f I
l (s). The equations must be solved with the boundary condition

that the solution phase shifts must equate the input phase shifts at the frontier of the region
of resolution (matching condition). Therefore, we can apply the results derived recently [34,
35] concerning the number of independent solutions in the vicinity of a given solution. The
multiplicity index of one solution is determined by the values of the input phase shifts at the
matching point s = sm (with sm ≃ 0.935 GeV2). The experimental phase shifts at s = sm lie in
the following ranges

0 < δ
1/2
0 (sm) <

π

2
,
π

2
< δ

1/2
1 (sm) < π, δ

3/2
0 (sm) < 0, δ

3/2
1 (sm) < 0. (79)

According to the discussion in ref. [35], the multiplicity index in this situation is m = 0 + 1 −
1 − 1 = −1, to be compared with m = 0 in the case of ππ. This means that our situation
corresponds to a constrained system: a solution will not exist unless the two S-wave scattering
lengths lie on a one dimensional curve.

In practice, however, the phase shift for the I = 3
2 , P -wave is extremely small below 1

GeV and the experimental input is not precise enough to implement matching conditions in this
channel in any meaningful way (see fig. 17 below). This leads us to treat the I = 3

2 P-wave on the
same footing as the partial waves with l ≥ 2. For instance, the dispersive representations can be

projected on l = 2 and used to compute the real part of f
1/2
2 (s) for s ≤ sm while the contribution

of Im f
1/2
2 (s′) for s′ ≤ sm in the integrands is negligibly small compared to contributions from

S- and P -waves; it can be evaluated approximately or even ignored 6. Dropping one matching
condition, the effective multiplicity index becomes m = 0 for πK. The fact that the multiplicity
index vanishes means that solutions should exist for arbitrary values of the two S-wave scattering

lengths a
1/2
0 , a

3/2
0 lying in some two dimensional region, and each solution is unique.

However, not all solutions are physically acceptable. An acceptable solution must satisfy
the further requirement that it displays no cusp at the matching point [6]. This condition leads
to constraints on the subtraction parameters. First, let us consider the t-channel, for which
we choose the matching point tm to be slightly larger than the KK threshold. As discussed

6A second argument to neglect the low-energy contribution of the imaginary part of this partial wave is provided
by the chiral counting Im f

3/2
1 = O(Im fI

l≥2) = O(p8).
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in the previous section, the solution for g0
0(t) involves one parameter α0. While the equality

g0
0 |sol = g0

0 |input is automatically guaranteed by eq. (75), the solution g0
0 |sol exhibits a sharp cusp

at the matching point in general. Therefore, the no-cusp condition fixes the value of α0. The
same reasoning can be applied to the πK partial waves: imposing the no-cusp condition to
the I = 1

2 S- and P -waves provides two equations which should determine, in principle, the two

scattering lengths a
1/2
0 , a

3/2
0 . In other words, given ideal experimental input data7 with no errors

in the ranges s ≥ sm and t ≥ tm, one should be able to fix exactly the two scattering lengths
by solving the RS equations with the appropriate boundary conditions on the values and the
derivatives of the phase shifts. Obviously, the actual situation is different from that ideal view:
the input data are known with errors and only for discrete values of the energy, which introduces
uncertainties on the boundary conditions and thus on the solutions of the RS equations. This
point will be addressed in the following section.

6 Numerical solutions and results

6.1 Numerical determination of the solutions

We have described how to solve the RS equations for the ππ → KK̄ partial waves. Assuming
that the input for s > sm is given as well as the input for l ≥ 2 at all energies, our purpose is to
determine the three phase shifts

δ0(s) ≡ δ
1/2
0 (s), δ1(s) ≡ δ

1/2
1 (s) δ2(s) ≡ δ

3/2
0 (s) (80)

in the range m2
+ ≤ s ≤ sm, so that the Roy-Steiner equations represented symbolically as

Re fa(s) ≡ s

λs
sin(2δa(s)) = Φa[δb, s] (81)

are satisfied up to a certain accuracy. We introduce a set of N mesh points m2
+ < si ≤ sm (N

was varied between 16 and 30, the results were very stable) and characterize the accuracy of an
approximate solution by the measure

ǫ = max
i,a

|Re fa(si) − Φa[δb, si]| . (82)

An exact solution, of course, satisfies ǫ = 0. While it is possible to search directly for minimums
of ǫ, a more appropriate quantity for minimization algorithms is the chi-square

χ2 =
N
∑

i=1

2
∑

a=0

|Re fa(si) − Φa[δb, si] |2 , (83)

which we have minimized using the MINUIT package [63]. Approximations to the πK phase
shifts δa(s) are constructed in the form of polynomials or piecewise polynomial parametrizations

7The data are assumed to be ideal also in the sense that they ensure the existence of a solution to the
equations[35].
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(we tried several forms) similar to that proposed by Schenk [64]. This is essentially the same
method as in ref. [6] for the ππ Roy equations. The parameters are constrained so that the phase
shifts are continuous at the matching point and the no-cusp condition applies to δ0(s) and δ1(s).
As discussed in sec. 5.2, these additional conditions fix the values of the two S-wave scattering
lengths, which are therefore included as two additional parameters in the minimization of the
chi-square.

Let us denote by n(a) the number of parameters in the representation of δa. Taking n(0) = 3,
n(1) = 2, n(2) = 1 we obtain an approximation to the equation with ǫ ≃ 5 · 10−3. Adding one
more parameter with n(2) = 2 makes ǫ go down to ǫ ≃ 2·10−3 and with still one more parameter,
n(2) = 3, one obtains ǫ ≃ 1 · 10−3. This provides good evidence that the approximations are
converging to a true solution. Seeking a much higher accuracy would be difficult: all integrals
must be evaluated with a numerical precision better than ǫ, and the computation of the phase
shifts involve up to three successive numerical integrations (see eqs. (25),(74),(75),(76)).
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Figure 11: Left-hand sides of the RS equations. (25) (lines) compared to the right-hand sides
(points) after minimization in the range m2

+ ≤ s ≤ 0.93 GeV2 .

The accuracy of the solutions is illustrated in fig. 11. In particular, the figure shows that
the left- and right-hand sides of the RS equations still agree with a good accuracy well above
the matching point8. This constitutes a consistency condition as discussed in ref. [6]. We have
checked that its fulfilment is a direct consequence of imposing the no-cusp conditions. At this
level, there is a notable difference between the ππ and the πK RS equations. In the case of ππ
scattering [6], it is found that imposing a single no-cusp condition for the P -wave is sufficient

8We are then exceeding the strict domain of applicability of the equations but they are still expected to be
satisfied approximately.
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to ensure that the no-cusp condition holds to a good approximation for the S-waves as well,
and the consistency conditions are well satisfied. In the πK case, we find that it is necessary to

impose no-cusp conditions for the two phase shifts δ
1/2
0 (s) and δ

1/2
1 (s). In fact, even after doing

so, we find that a (small) cusp remains for the third phase shift δ
3/2
0 (s). This does not represent

a serious problem, in practice, because this phase shift is not determined very precisely in the
vicinity of the matching point.
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Figure 12: Comparison of the absolute values of g0
0 and g1

1 obtained from solving the RS equations
and the corresponding experimental input from ref. [28].

Further consistency conditions ought to be considered in the ππ → KK sector. Here as
well, one expects that the RS equations should be approximately satisfied above the matching
point. This point is illustrated in fig.12 which compares the moduli of g0

0(t) and g1
1(t) computed

from the RS equations to the experimental input for these quantities. Very good agreement is
observed for g1

1(t). In contrast, we find that the agreement for g0
0(t) is moderately good. In the

range t ≥ 4m2
K we have checked that the unitarity bound |Sππ→KK| ≤ 1 is obeyed. Adopting

a larger value for the matching point tm improves the input-output agreement for t > tm but
leads to violation of unitarity for t < tm close to the KK threshold.

Another consistency check can be performed. In the region where t ≤ 4m2
π, g0

0(t) and g1
1(t)

can be obtained not only from eqs. (35) which are based on the fixed−us dispersion relations
but also from the fixed−t ones which are valid in this domain. Both kinds of DR’s agree by
construction at t = 0, the fact that they should continue to agree for negative values of t is not
trivial and constitutes a check of consistency of the experimental input and of the RS solutions.
We show these results for t ≤ 0 in fig.13.
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6.2 Error evaluations and the S-wave scattering lengths

Our general procedure for evaluating the errors consists in performing variations of the param-
eters which enter in the description of the input – making use of the errors on these parameters
and their covariance matrices as provided by running the MINUIT package [63]. The experi-
mental errors are assumed to be essentially of statistical origin and the errors at different energy
points are assumed to be independent. Let us discuss first the case of the I = 1

2 S- and P -waves.
It is clear that this part of the input plays a crucial role as it controls the boundary conditions
which determine the two S-wave scattering lengths. To begin with, one notes that variations of
the input in the energy region E >∼ 1.5 GeV has a negligibly small influence, so we will consider
only the energy region

√
sm ≤ E ≤ 1.5 GeV. We have performed two different kinds of fits

in order to check the validity of the determination of the phase shifts, their derivatives, and
the errors obtained from varying the parameters at the matching point E =

√
sm. Firstly, we

perform “global” fits based on a K-matrix parametrization with six parameters for the S-wave
and seven parameters for the P -wave. These parameters are determined such as to minimize
the chi-square in the energy region 0.90 ≤ E ≤ 1.50 GeV. Secondly, we have performed “local”
fits in which one considers separately a small energy region surrounding the matching point
0.90 ≤ E ≤ 1.1 GeV and the remaining energy region. In the small region we approximate the
S-wave phase shift by a quadratic polynomial,

δ
1/2
0 (s) = a+ b(s− sm) + c(s− sm)2, 0.90 ≤ E ≤ 1.1 GeV (84)
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while for the P -wave we use a linear approximation after subtracting the tail of the K∗ resonance

δ
1/2
1 (s) − arctan

mK∗ΓK∗

m2
K∗ − s

= a+ b(s− sm) . (85)

The results from these two fits concerning the input at the matching point are shown in table 1.
One observes that the determinations of the phases at the matching point are in good agreement
as well as that of the errors. The determinations of the derivative of the P -wave agree while
those of the derivative of the S-wave are only in marginal agreement. In this case, we consider
the determination from the global fit to be somewhat more reliable as it has continuity and
smoothness built in.

phase error derivative error

l = 0 global 46.5 0.6 44.1 5.8
l = 0 local 46.2 0.6 56.9 6.6

l = 1 global 155.8 0.4 148.0 2.8
l = 1 local 156.2 0.3 147.4 2.9

Table 1: S- and P -waves inputs at the matching point as determined from two different types
of fit to the data of Aston et al. [27] (see text). Phases are in degrees and their derivatives in
degrees×GeV−1.

We can now derive the constraints on the S-wave scattering lengths which arise upon solving
the RS equations making use of the available experimental input above the matching point. Let
us first quote some results concerning the errors. Table 2 shows how the errors affecting the
various pieces of input propagate to the two S-wave scattering lengths. One can see that the
two main sources of uncertainty are a) the πK I = 1

2 S-wave and b) the ππ → KK I = 0
S-wave. In contrast, the influence of the partial waves with l ≥ 2 (in which the Regge region
is also included) is rather modest. Finally, this analysis generates the following results for the
scattering lengths aI

0,

mπ a
1/2
0 ≃ 0.224 ± 0.022, mπ a

3/2
0 ≃ (−0.448 ± 0.077) 10−1 . (86)

There is a significant correlation between these two quantities, the correlation parameter is
positive and its value is

ρ 1
2

3
2

= 0.908 . (87)

The one-sigma error ellipse corresponding to the above results for the S-wave scattering lengths

is represented in fig.14. Our results are compatible with the band obtained for a
1/2
0 , a

3/2
0 in

ref. [25]. We find a much smaller allowed region for the scattering lengths simply because we
have used considerably better experimental input for the S- and P -waves: in the work of ref. [25]
no data at all were available for E ≥ 1.1 GeV. Predictions from ChPT at O(p4) for the S-wave
scattering lengths were presented in ref. [18]. They are recalled below

mπa
1/2
0 = 0.19 ± 0.02 mπa

3/2
0 = −0.05 ± 0.02 (ref. [18]) (88)
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f
1/2
0 f

1/2
1 f

3/2
0 g0

0 g1
1 l ≥ 2

102∆a
1/2
0 1.89 0.28 0.40 0.79 0.05 0.23

102∆a
3/2
0 0.55 0.09 0.39 0.32 0.14 0.11

102∆(a
1/2
0 − a

3/2
0 ) 1.35 0.18 0.10 0.55 0.10 0.15

Table 2: Sources of error arising from different parts of the input and the resulting errors in the
determination of the l = 0 scattering lengths in units of m−1

π .

Within the errors these results appear compatible with those from the RS equations. A
more refined comparison, however, should take the correlation into account. Computing the
correlation parameter under the same assumptions as used in ref. [18] for the evaluation of the
errors one obtains the standard error ellipse shown in fig. 14. One observes that the ChPT
ellipse is very narrow and does not intersect the corresponding error ellipse resulting from the
RS equations 9. If one judges from the size of the O(p4) corrections as compared to the current
algebra result, it seems not unreasonable to attribute the remaining discrepancy to O(p6) effects.
We quote also our results for the two combinations of scattering lengths proportional to a−0 , a+

0

mπ (a
1/2
0 − a

3/2
0 ) ≃ 0.269 ± 0.015, mπ (a

1/2
0 + 2a

3/2
0 ) ≃ 0.134 ± 0.037 (89)

which are of interest in connection with the πK atom: the square of the first combination
is proportional to the inverse lifetime of the atom and the sum of the two combinations is
proportional to the energy shift of the lowest atomic level [65]. The correlation parameter for
a−0 , a+

0 is also positive and its value is

ρ−+ = 0.925 . (90)

For comparison, let us mention the results for the combinations proportional to a−0 , a+
0 in ChPT,

mπ (a
1/2
0 − a

3/2
0 ) ≃ 0.238± 0.002, mπ (a

1/2
0 + 2a

3/2
0 ) ≃ 0.097± 0.047 [ChPT O(p4)] . (91)

The uncertainty affecting a−0 is remarkably small. This, however, could be an artifact of the
O(p4) approximation. It remains to investigate how O(p6) corrections affect this result.

As discussed above, the fact that the two S-wave scattering lengths are determined indepen-
dently (to some extent) comes from imposing the no-cusp matching conditions. The difference

of the two scattering lengths, a
1/2
0 − a

3/2
0 , can be determined in an alternative way from a sum

rule [66] (see eq. (17)). Using this sum rule one finds

mπ(a
1/2
0 − a

3/2
0 ) = 0.251 ± 0.014 [sum rule] . (92)

In the evaluation, we use our results for the RS solutions in the integration regions s′ ≤ sm,
t′ ≤ tm. The propagation of the experimental errors is studied in the same way as explained

9This particular shape reflects two features of the scattering lengths a−
0 and a+

0 in the chiral expansion at order
p4: a) they are essentially uncorrelated (the correlation parameter is ρ−+ ≃ −0.15), b) the error on a−

0 is very
small because it involves a single chiral coupling (L5) which is multiplied by m4

π while a+
0 involves seven chiral

parameters which are multiplied by m2
πm2

K .
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Figure 14: Standard error ellipse for the S-wave scattering lengths obtained from solving the
RS equations with boundary conditions. The corresponding ellipse in the ChPT calculation at
O(p4) and the current-algebra result are also plotted.

above. A rather small error is found, but one must keep in mind that the dependence on the
asymptotic region is significant here and it is difficult to evaluate the error from this region in a
very reliable way. The central value arising from the sum rule is smaller than what is obtained
from the RS solution, but the two results are compatible within their errors. We also note that
the output of the sum rule is significantly influenced by the values of the scattering lengths used
as input in the integrand. For this reason, the result obtained here differs from the one quoted
in ref. [15].

Before we present the results for the amplitudes in the threshold region, a few remarks are
in order concerning the intermediate energy region, that ranges from the threshold up to the
matching point. Experimental data from production experiments exist below 1 GeV, but one
has to keep in mind the possibility that systematic errors may have been underestimated in this
energy region in such experiments (a discussion of the ππ case can be found in ref. [67]). Fig. 15
shows the I = 1

2 P -wave phase shift from the RS equations compared to experiment. The central

curve correspond to solving with a
1/2
0 , a

3/2
0 taken at the center of the ellipse fig.14 while the

upper and lower curves are obtained by using the points on the ellipse with the maximal and

the minimal values for a
1/2
0 respectively. The experimental results are seen to deviate from the

solutions as the energy decreases from the matching point. In particular, the mass of the K∗

which is predicted from the RS equations is

mK∗ = (905 ± 2) MeV (93)
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Figure 15: The I = 1
2 P -wave phase shift obtained from solving the RS equations. The central

curve corresponds to solving with a
1/2
0 , a

3/2
0 taken at the center of the ellipse fig. 14. The upper

(lower) curves are obtained by using the points with the maximal (minimal) values for a
1/2
0 on

this ellipse.

(where mK∗ is defined such that δ
1/2
1 (mK∗) = π/2) is nearly 10 MeV larger than the mass quoted

in ref. [27] (mK∗0 = 896 ± 0.7 MeV). This discrepancy may appear worrying at first sight. It is
caused, in part, by isospin breaking which is not taken into account by the RS equations. This
could generate an uncertainty of a few MeV as to the value of the K∗ mass that should come
out from solving the equations10. Besides, it cannot be excluded that the mass of the K∗ may
not be as accurately known as one might believe. The determinations of the K∗+, K∗0 masses
used by the PDG are all based on hadronic production experiments. Recently, a measurement
of the K∗+ mass based on the τ decay mode τ → KSπντ indicated of shift by 4 − 5 MeV as
compared to the PDG value [68]. In principle, this method is more reliable because it is free of
any final state interaction problem, but better statistics are needed to clarify this issue.

The two S-wave phase shifts predicted by the RS equations are shown in fig. 16. For the
isospin I = 1

2 the RS solution does not exhibit any of the oscillations appearing in the data
of ref. [26]. For the isospin I = 3

2 phase shift, the experimental data for E < 0.9 GeV lie
systematically below the RS curve, by 2-3 standard deviations. The RS equations also predict
the I = 3

2 P -wave phase shift, the result is shown in fig.17. This phase shift displays the unusual
feature that it is positive at very low energy and changes sign as the energy increases. In the
region around 1 GeV the results are in qualitative agreement with the experimental data of

10For instance, the result depends on the input values for mπ and mK for which we used mπ = 0.13957 GeV,
mK = 0.4957 GeV.
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Figure 16: Same as fig. 15 for the I = 1
2 S-wave phase shift (curves in the upper half of the

figure) and the I = 3
2 S-wave phase shift (curves in lower half).

6.3 Results for threshold and sub-threshold expansion parameters

The behaviour of amplitudes at very small energies is conveniently characterized by sets of
expansion parameters, which are particularly useful for making comparisons with chiral expan-
sions. We consider first the set obtained by performing an expansion around the πK threshold.
These parameters are conventionally defined from the partial-wave amplitudes as follows

2√
s
Ref I

l (s) = q2l
(

aI
l + bIl q

2 + cIl q
4 + . . .

)

(94)

with

s = m2
+ +

m2
+q

2

mπmK
− m2

+m
2
−q

4

4m3
πm

3
K

+ . . . (95)

Once a solution of the RS equations is obtained, all the threshold parameters are predicted. The
two S-wave scattering lengths are determined from the matching conditions, as explained above.
The other threshold parameters may be obtained from the dispersive representation eq. (20) in
the form of sum rules. These are obtained by projecting the DR’s over the relevant partial wave
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and then expanding the variable s in powers of q2. Divergences may appear in this process
because derivatives are discontinuous at threshold and it must be specified that the limit is to
be taken from above. This problem is easily handled by computing some pieces of the integrals
analytically as explained in ref. [6]. The sum rules are evaluated by using RS solutions below the
matching points and the fits to the experimental data above. For l = 0, 1 we have computed
the parameters al, bl and cl in an alternative manner by using our solution for Re f I

l (s) for
three values of s and solving a linear system of equations. The two methods were in very good
agreement and the results for the threshold parameters are summarized in table 3. The values
of the P -waves scattering lengths in ChPT at NLO was given in ref.[18]

m3
πa

1/2
1 = 0.016 ± 0.003 m3

πa
3/2
1 = (1.13 ± 0.57) 10−3 (ref. [18]) . (96)

Within the errors, these values are compatible with our corresponding results displayed in table 3.

ChPT expansions of the amplitude are expected to have best convergence properties in
unphysical regions away from any threshold singularity. The dispersive representations derived
in sec. 2 allow us to evaluate the amplitude in such regions. A first domain considered in the
literature is the neighbourhood of the point s = u, t = 0. The following set of expansion
parameters are conventionally introduced

F+(s, t) =
∑

C̃+
ij t

iν2j

F−(s, t) = ν
{

∑

C̃−
ij t

iν2j
}

(97)
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I = 1
2 I = 3

2

(

I = 1
2

)

−
(

I = 3
2

)

m3
π a

I
1 (0.19 ± 0.01)10−1 (0.65 ± 0.44)10−3 (0.18 ± 0.01)10−1

m5
π a

I
2 (0.47 ± 0.03)10−3 (−0.11 ± 0.27)10−4 (0.48 ± 0.01)10−3

m7
π a

I
3 (0.23 ± 0.03)10−4 (0.91 ± 0.30)10−5 (0.14 ± 0.01)10−4

m3
π b

I
0 (0.85 ± 0.04)10−1 (−0.37 ± 0.03)10−1 0.12 ± 0.01

m5
π b

I
1 (0.18 ± 0.02)10−2 (−0.92 ± 0.17)10−3 (0.27 ± 0.01)10−2

m7
π b

I
2 (−0.14 ± 0.03)10−3 (−0.96 ± 0.26)10−4 (−0.48 ± 0.02)10−4

m5
π c

I
0 (−0.45 ± 0.04)10−1 (0.18 ± 0.02)10−1 (−0.62 ± 0.06)10−1

m7
π c

I
1 (0.71 ± 0.11)10−3 (0.51 ± 0.09)10−3 (0.20 ± 0.03)10−3

Table 3: Results for the threshold expansion parameters (see eq. (94) ) computed from the
dispersive representations and the RS equations solutions. The third column shows the difference
of the I = 1

2 and the I = 3
2 parameters

where

ν =
s− u

4mK
. (98)

It is customary to quote the values of the dimensionless parameters C±
ij which are related to C̃±

ij

by
C+

ij = (mπ+)2i+2j C̃+
ij , C−

ij = (mπ+)2i+2j+1 C̃−
ij . (99)

The results for the subthreshold expansion parameters are collected in table 4. The table also
shows for comparison results from ref. [69], which used fits to the experimental data of Estabrooks
et al. [26] combined with earlier sets of data (taking into account the data points below 1 GeV
as well as above). The authors of ref. [69] observed that the low-energy part of the data of
Estabrooks et al leads to inconsistencies with a dispersive representation of F−. The agreement
with our results is reasonable for the coefficients C−

ij . For the coefficients C+
ij the results are

compatible within the errors, except for the coefficient C+
10, for which we find a somewhat larger

value. Another point of interest is the Cheng-Dashen point s = u, t = 2m2
π. The value of the

amplitude F+ at this point can be related to the kaon sigma-term [70] (see [71] for a recent
review). We obtain for this quantity

F+(m2
K , 2m

2
π) = 3.90 ± 1.50 . (100)

6.4 Some implications for the O(p4) chiral couplings

In this section we present some results on the O(p4) couplings of the SU(3) chiral expansion,
which are easily derived from the subthreshold parameters obtained above. More detailed com-
parisons between chiral expansions and dispersive representations of the πK scattering amplitude
should be performed, but this is left for future work. The expression for this amplitude in ChPT
at order p4 was presented in ref. [17]. More specifically, we will make use of a reformulation of the
expression of ref. [17] in which F0 is expressed in terms of Fπ only (and not FK) as in ref. [15] (a
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ref. [69] SU(3) SU(2)

C−
00 8.92 ± 0.38 7.31 ± 0.90 2 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
00 2.01 ± 1.10 −0.52 ± 2.03 2 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
10 0.87 ± 0.08 0.55 ± 0.07 2 2

C+
01 2.07 ± 0.10 2.06 ± 0.22 4 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C−
10 0.31 ± 0.01 0.21 ± 0.04 4 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
20 (0.24 ± 0.06)10−1 4 4

C−
01 0.62 ± 0.06 0.51 ± 0.10 6 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
11 (−0.66 ± 0.10)10−1 −0.04 ± 0.02 6 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C−
20 (0.85 ± 0.01)10−2 6 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
30 (0.34 ± 0.08)10−2 6 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C+
02 0.34 ± 0.03 8 4

Table 4: Results for the dimensionless subthreshold expansion parameters defined in eqs. (97)
and (99). The last two columns indicate the chiral order of the leading tree-level contribution
to each parameter in SU(3) and SU(2) ChPT respectively.

factor J̄πK(s) is missing in eq. (41) of that reference). From this, it is straightforward to obtain
the chiral formulas for the subthreshold expansion parameters. We present these in numerical
form below, in which we use the following values for the masses, the pion decay constant and
the renormalization scale µ

mπ = 0.13957, mK = 0.4957, mη = 0.5473, Fπ = 0.0924, µ = 0.77 (all in GeV) . (101)

The dimensionless subthreshold parameters C+
ij then have the following numerical expressions

in ChPT at NLO

C+
00 = 0.14985 +

8m2
πm

2
K

F 4
π

[4L1 + L3 − (4L4 + L5) + 2(L8 + 2L6)]

C+
10 = 0.45754 +

4(m2
K +m2

π)m2
π

F 4
π

[−(4L1 + L3) + 2L4] +
2m4

π

F 4
π

L5

C+
20 = 0.02554 +

2m4
π

F 4
π

[

4L1 + L2 +
5

4
L3

]

C+
01 = 1.67285 +

8m2
Km

2
π

F 4
π

[4L2 + L3] (102)

while the subthreshold parameters C−
ij read

C−
00 = 8.42568 +

8mKm
3
π

F 4
π

L5

C−
10 = −0.02533 − 4mKm

3
π

F 4
π

L3 . (103)

In order to lighten the notations we have denoted the renormalized couplings Lr
i (µ = 0.77)

simply by Li. It is now easy to solve for the Li’s making use of the results from table 4, the
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results for L1, ..., L4 are collected in table 5. The errors are obtained, as before, by varying all
the parameters of the fits to the input data and taking into account the correlations. These
errors appear to be rather small but they only reflect the uncertainty coming from the input
data. The dominant source of uncertainty in the determination of the Li’s comes from the
unknown higher-order terms in the chiral expansion, this uncertainty is expected to be of the
order of 30-40% . This can be seen from the table which shows the results of some alternative
determinations based on the Kl4 form factors [72, 73, 16] and on πK sum rules [15]11. We also
quote the results that we get for L5 and for L8 + 2L6 which have rather large errors

103L5 = 3.19 ± 2.40 103(L8 + 2L6) = 3.66 ± 1.52 . (104)

The coupling L5 is determined, in principle, from C−
00 but its contribution turns out to be

suppressed, as it appears multiplied by a factor m2
π. In order to determine L8 + 2L6 we used

C+
00 and the value L5 ≃ 1.4 · 10−3 derived from FK/Fπ. The large uncertainty for L8 + 2L6

reflects that affecting the coefficient C+
00 or, alternatively, the uncertainty in the combination of

scattering lengths a
1/2
0 + 2a

3/2
0 . This could improve considerably once experimental results from

πK atoms are available. Our result for L4, though affected by a sizeable error, agrees with the
evaluations [74, 75] based on a dispersive method for constructing scalar form factors [76] and
is suggestive of a significant violation of the OZI rule in the scalar sector.

πK Roy-Steiner πK sum-rules Kl4, O(p4) Kl4, O(p6)

103 L1 1.05 ± 0.12 0.84 ± 0.15 0.46 ± 0.24 0.53 ± 0.25
103 L2 1.32 ± 0.03 1.36 ± 0.13 1.49 ± 0.23 0.71 ± 0.27
103 L3 −4.53 ± 0.14 −3.65 ± 0.45 −3.18 ± 0.85 −2.72 ± 1.12
103 L4 0.53 ± 0.39 0.22 ± 0.30 −0.2 ± 0.9

Table 5: Chiral couplings Lr
i (µ), µ = 0.77 GeV obtained by matching the dispersive results for

the subthreshold expansion parameters (see table 4) with their chiral expansion at order p4.
Also shown are the results from ref. [15] (col. 3) as well as those from ref. [16] in which fits to
the Kl4 form factors were perfomed using chiral expansions at order p4 (col. 4) as well as p6

(col. 5).

7 Conclusions

In this paper, we have set up and then solved a system of equations à la Roy and Steiner for
the S- and P -partial waves of the πK → πK and the ππ → KK amplitudes. These equations
are necessary consequences of analyticity and crossing, together with plausible assumptions
concerning the range of effective applicability of elastic unitarity. In treating these equations,
the approach advocated recently in ref. [6] was followed, which consists in choosing a matching
point around 1 GeV and enforcing a set of boundary conditions at this point. As input for this

11In that paper, terms of order p6 were dropped in the dispersive representations and the phase shifts used
below 1 GeV in the sum rules were not constrained to obey the RS equations.
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analysis, we have exploited for the first time the high-statistics data which are now available
from KN → KπN as well as πN → KKN production experiments.

The main result obtained from solving the RS equations together with the boundary condi-
tions is the determination of an allowed region for the two S-wave scattering lengths which is
shown, as a one-sigma ellipse, in fig. 14. This region is much smaller than the ones resulting from
older analyses, e.g. ref. [25]; this simply reflects the better accuracy of the experimental input
data used here. Using this result together with the dispersive representations one can determine
the πK scattering amplitude in regions of very low energies inaccessible to experiment. We have
computed a set of sub-threshold expansion parameters and then matched the result with the
SU(3) ChPT expansion of the amplitude at NLO [17, 18]. This leads to a determination of the
Gasser-Leutwyler coupling constants L1, L2, L3, and L4. Comparisons with previous results
is suggestive of significant O(p6) effects but certainly not so large as to invalidate the SU(3)
expansion. The bounds that we have obtained for the S-wave scattering lengths constrain the
combination 2L6 + L8.

The value of L4 is of particular interest. Since this low-energy constant violates the Zweig
rule in the scalar channel, its value is related to the role of sea-quark effects and to the link
between the SU(2) and SU(3) chiral limits [12, 13]. Moreover, it was recently pointed out that
the value of L4 can be used to discriminate between different assignments for the scalar-meson
multiplets [77], such a connection was also illustrated in ref. [74]. The value that we found is
in agreement with the determination based on the scalar form-factors [75, 74, 78] but disagrees
with the prediction from the chiral unitarization model [79]. More detailed comparisons with
ChPT expansions should be performed but this is left for future work. At present, the amplitude
has been computed at order p4 in the three-flavour expansion and, more recently, in the two-
flavour expansion [80] (see also [81]). The latter is expected to have better convergence but it is
less predictive: let us however remark that the expression of the antisymmetric amplitude F−

involves only three SU(2) chiral parameters.

Another topic of interest in connection with πK scattering is the problem of localizing
unambiguously a possible κ meson (see ref. [82] for a review of the literature). A naive test
based on the collision time concept [83] applied to our results for the S-wave phase shift gives
no indication for a resonance. In principle, our results provide an improved and more complete
input for an analysis such as performed in ref. [82].

Dispersive analyses, of course, cannot replace low energy measurements. Much more strin-
gent constraints on the S-wave scattering lengths could be derived from the RS equations if
reliable data were available at low energy. For instance, the analysis could be much improved
soon, once low-energy data on the P -wave phase shifts are obtained from the τ → Kπντ decay.
In the long term, S-wave phase shifts could be measured in D → Kπlνl decays [30]. Finally,
direct measurements of combinations of S-wave scattering lengths are planned, based on form-
ing πK atoms and measuring their lifetime and the shift of the lowest atomic level [33] (see
refs. [84, 85] for a discussion of related theoretical issues).
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A Continuity of g1
1(t) at t = tm

In this appendix we prove the validity of eq. (78)

lim
ǫ→0

gI
l (tm ± ǫ)|sol = gI

l (tm)|input (105)

for g1
1(t). We will consider the limit from below, t → t−m, the other limit can be handled in an

exactly similar way. Let us start from eq. (76) for g1
1(t) which expresses the solution in terms of

the input values for the phase Φ1
1(t

′) and the modulus |g1
1(t

′)|.

g1
1(t)|sol = ∆1

1(t) + I1(t) + I2(t) (106)

with

I1(t) = Ω1
1(t)

t

π

∫ tm

4m2
π

d t′
∆1

1(t
′) sin Φ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

,

I2(t) = Ω1
1(t)

t

π

∫ ∞

tm
d t′

|g1
1(t

′)| sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

, (107)

which behaviour when t→ t−m has to be investigated. In a first step, one writes I1,2 as

I1(t) = Ω1
1(t)

t

π

{

∫ tm

tm−a
d t′

∆1
1(t

′) sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

+

∫ tm−a

4m2
π

d t′
∆1

1(t
′) sin Φ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

}

,

I2(t) = Ω1
1(t)

t

π

{

∫ tm+a

tm
d t′

|g1
1(t′)| sin Φ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

+

∫ ∞

tm+a
d t′

|g1
1(t

′)| sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

}

, (108)

where a is a small positive number. When t→ t−m the modulus of Ω1
1 goes like

|Ω1
1(t)| ∼ |t− tm|

Φ1
1(tm)

π (109)

and thererefore vanishes since Φ1
1(tm) > 0. This implies that the second terms of I1,2(t) in

eqs. (108) also vanish when t→ t−m because the integrals multiplied by Ω1
1 remain finite.

I1(t→ t−m) = Ω1
1(t)

t

π

∫ tm

tm−a
d t′

∆1
1(t

′) sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

I2(t→ t−m) = Ω1
1(t)

t

π

∫ tm+a

tm
d t′

|g1
1(t

′)| sin Φ1
1(t

′)

Ω1
1R(t′)t′(t′ − t)

. (110)

Assuming that a is small enough we can replace Ω1
1R(t′) by its leading behaviour when t′ → tm

(eq. (77) ) and we make the same replacement for Ω1
1(t). Next, we perform the following change

of variables in the integrals
t′ = (tm − t)v + tm , (111)
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the limits are then expressed in the following way,

I1(t → t−m) = ∆1
1(tm) exp(iΦ1

1(tm)) sin Φ1
1(tm)

1

π

∫ ∞

0

dv

vα(1 − v)

I2(t → t−m) = g1
1(tm) sin Φ1

1(tm)
1

π

∫ ∞

0

dv

vα(1 + v)
. (112)

with

α =
Φ1

1(tm)

π
. (113)

The result on the value of g1
1(t)|sol at the matching point follows from the values of the two

definite integrals [86] (which are well defined for 0 < α < 1)

1

π

∫ ∞

0

dv

vα(1 − v)
= −cos(πα)

sin(πα)
+ i,

1

π

∫ ∞

0

dv

vα(1 + v)
=

1

sin(πα)
(114)

as this implies
I1(t→ t−m) = −∆1

1(tm), I2(t→ t−m) = g1
1(tm) (115)

which proves the continuity equation (105) for g1
1 when tm is approached from below. Similar

arguments can be used to prove continuity when tm is approached from above. Finally, the proof
is easily generalized to the case of g0

0 which involves one more subtraction.
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