
ar
X

iv
:0

80
6.

16
01

v3
  [

he
p-

ph
] 

 3
 M

ar
 2

00
9

The analysis of reactions πN → twomesons +N within

reggeon exchanges.

1. Fit and results.

V.V. Anisovich and A.V. Sarantsev
Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia

March 3, 2009

Abstract

The novel point of this analysis is a direct use of reggeon exchange technique for the
description of the reactions πN → twomesons + N at large energies of the initial pion.
This approach allows us to describe simultaneously distributions over M (invariant mass
of two mesons) and t (momentum transfer squared to nucleons). Making use of this
technique, the following resonances (as well as corresponding bare states), produced in
the πN → π0π0N reaction are studied: f0(980), f0(1300) (f0(1370) in PDG notation),
f0(1200 − 1600), f0(1500), f0(1750), f2(1270), f2(1525), f2(1565), f2(2020), f4(2025).
Adding data for the reactions pp̄(at rest, from liquid H2) → π0π0π0, π0π0η, π0ηη and
pp̄(at rest, from gaseous H2) → π0π0π0, π0π0η, π0ηη, we have performed simultaneous K-
matrix fit of two-meson spectra in all these reactions. The results of combined fits to
the above-listed isoscalar fJ -states and to isovector ones, a0(980), a0(1475), a2(1320), are
presented.

PACS numbers: 11.25.Hf, 123.1K

1 Introduction

The study of the mass spectrum of hadrons and their properties is the key point for the
understanding of colour particle interactions at large distances. But even the meson sector,
though less complicated than the baryon one, is far from being completely understood. We
mean that
(i) there is no sufficient information about states above 2 GeV,
(ii) certain quark–antiquark states below 2 GeV (e.g. 2−− states) are still missing,
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(iii) there is no clear understanding of the glueball spectrum (although strong candidates in
the 0++ and 2++ sectors exist, we have no definite information about the 0−+ sector),
(iv) some analyses reported the observation of other exotics (e.g. hybrid) states,
(v) in the scalar sector not only the properties but also the existence of states like σ, κ, f0(1300)
(f0(1370) in PDG notation) is under discussion.

So, there is indeed a strong demand for new data which can help us to identify the meson
states in a more definite way. However, the situation is only partly connected with the lack
of data. In the lower mass region there is a lot of data taken from the proton–antiproton
annihilation at rest (Crystal Barrel, Obelix), from the γγ interaction (L3), from the proton–
proton central collisions (WA102), from J/Ψ decay (Mark III, BES), from D- and B-meson
decays (Focus, D0, BaBar, Belle, Cleo C) and from πN → twomesons + N reactions with
high energy pion beams (GAMS, VES, E852). Most of these data are of high statistics, thus
allowing us to determine resonance properties with a high accuracy (though, let us emphasize,
in the reactions πN → twomesons+N polarized-target data are lacking).

Nevertheless, in many cases there are significant contradictions between analyses performed
by different groups. The ambiguities originate from two circumstances.

First, in the discussed sectors the analyses of data taken from a single experiment cannot
provide us with a unique solution. A unique solution can be obtained only from the combined
analysis of a large set of data taken in different experiments.

Second, there are some simplifications inherent in many analyses. The unitarity was ne-
glected frequently even when the amplitudes were close to the unitarity limit. A striking
example is that up to now there is no proper K-matrix parametrization of the 1−− and 2++

waves which are considered by many physicists as mostly understood ones. As to multipartical
final states, only a few analyses have ever considered the contributions of triangle or box singu-
larities to the measured cross sections. However, these contributions can simulate the resonant
behavior of the studied distributions, especially in the threshold region (for more detail, see [1]
and references therein).

In the analysis of meson spectra in high energy reactions πN → twomesons + N , many
results are related to the decomposition of the cross sections into natural and unnatural ampli-
tudes that is based on certain models developed for the two-pion production at small momenta
transferred, (e.g., see [2, 3, 4]). However, as was discussed by the cited authors, a direct applica-
tion of these methods at large momenta transferred to the analysis of data may lead to a wrong
result. In addition, the πN → twomesons+N data were discussed mostly in terms of t-channel
particle exchange, though without proper analysis of the t-channel exchange amplitudes.

A decade ago our group performed a combined analysis of data on proton–antiproton anni-
hilation at rest into three pseudoscalar mesons, together with the data on two-meson S-waves
extracted form the πN → ππN , ηηN , KK̄ and ηη′N reactions [5, 6, 7]. The analysis has
been carried out in the framework of the K-matrix approach which preserves unitarity and
analyticity of the amplitude in the two-meson physical region. Although the two-meson data
extracted from the reaction πN → twomesons+N at small momentum transfer appeared to
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be highly compatible with those found in proton–antiproton annihilation, we have faced a set
of problems, describing the πN → twomesons + N data at large momentum transfer. As we
have seen now, the problems were owing to the use of partial wave decomposition which was
performed by the E852 Collaboration and showed a huge signal at 1300 MeV in the S-wave.

The strategy of our present approach is as follows. The analysis of a large set of experimental
data on proton–antiproton annihilation at rest is carried out together with the analysis of the
πN → twomesons + N data based on the t-channel reggeized exchanges. For the πN →
twomesons+N reactions, the data at small and large momentum transfers are included. Here,
as the first step, we perform the analysis in the framework of the K-matrix parametrization
for all fitting channels (K-matrix approach insures the unitarity and analyticity in the physical
region). At the next stage, we plan to use the N/D method for two-meson amplitudes satisfying
these requirements in the whole complex plane.

In this paper, we present the method for the analysis of the πN interactions based on the
t-channel reggeized exchanges supplemented by a study of the proton–antiproton annihilation
at rest. The method is applied to a combined analysis of the πN → π0π0N data taken by E852
at small and large momentum transfers and Crystal Barrel data on the proton–antiproton
annihilation at rest into three neutral pseudoscalar mesons. The even waves, which contributed
to this set of data, are parametrized within the K-matrix approach. To check a strong S-wave
signal around 1300 MeV, which has been reported by E852 Collaboration from the analysis of
data at large momentum transfers, is a subject of a particular interest in the present analysis.

We present the results of the new K-matrix analysis of two-meson spectra in the scalar,
JP = 0+, and tensor, JP = 2+, sectors: these sectors need a particular attention because just
here we meet with the low-lying glueballs, f0(1200 − 1600) and f2(2000). The situation with
the tensor glueball is rather transparent allowing us to make a definite conclusion about the
gluonium structure of f2(2000), while the status of the broad state f0(1200 − 1600) requires a
special discussion: this state is nearly flavour-blind but the corresponding pole of the amplitude
dives deeply into the complex-M plane. It is definitely seen only in the analysis of a large number
of different reactions in broad intervals of mass spectra (for example, see [1] and references
therein).

So, here we consider the following reactions:
(i) πp → π0π0n at high energies of initial pion and small and large momenta transferred to
nucleon, and
(ii) pp̄(at rest H2) → π0π0π0, π0π0η, π0ηη in liquid and gaseous H2 — the data on these reac-
tions give us the most reliable information about scalar and tensor sectors.
As was stressed above, the novel point of the performed K-matrix analysis is the use of reggeon
exchange technique for the description of πp→ ππn at high energies that allows us to analyze
the two-meson invariant mass spectra and nucleon momentum transfer distributions simulta-
neously.

The paper is organized as follows.

In Section 2, we consider meson–nucleon collisions at high energies and present formulas
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for peripheral two-meson production amplitudes in terms of reggeon exchanges. Amplitudes
for the description of low-energy three-meson production in the K-matrix approach are given
in Section 3. The fitting procedure is described in Section 4. In Conclusion we summarize the
results. Technical aspects of the fitting procedure are discussed in [8].

2 Meson–Nucleon Collisions at High Energies: Periph-

eral Two-Meson Production in Terms of Reggeon Ex-

changes

The two-meson production reactions πp → ππn, KK̄n, ηηn, ηη′n at high energies and small
momentum transfers to the nucleon are used for obtaining the S-wave amplitudes ππ → ππ,
KK̄, ηη, ηη′ at |t| < 0.2 (GeV/c)2 because, as commonly believed, the π exchange dominates
this wave at such momentum transferred. At larger momentum transfers, |t| >∼ 0.2 (GeV/c)2,
we observe definitely a change of the regime in the S-wave production — a significant con-
tribution of other reggeons is possible (a1-exchange, daughter-π and daughter-a1 exchanges).
Nevertheless, the study of the two-meson production processes at |t| ∼ 0.5−1.5 (GeV/c)2 looks
promising, for at such momentum transfers the contribution of the broad resonance (the scalar
glueball f0(1200− 1600)) vanishes. Therefore, the production of other resonances (such as the
f0(980) and f0(1300)) appears practically without background – this is important for finding
out their characteristics as well as a mechanism of their production.

What we know about the reactions πp→ ππn, KK̄n, ηηn, ηη′n allows us to suggest that a
consistent analysis of the peripheral two-meson production in terms of reggeon exchanges may
be a good tool for studying meson resonances. Note that investigation of two-meson scattering
amplitudes by means of the reggeon exchange expansion of the peripheral two-meson production
amplitudes was proposed long ago [9] but was not used because of the lack of data until now.

The K-matrix amplitude of the peripheral production of two mesons with total angular
momentum J reads:

(
ψ̄N (k3)ĜRψN(p2)

)
R(sπN , t)K̂πR(t)(s)

[
1 − ρ̂(s)K̂(s)

]−1

Q(J)(k1, k2) , (1)

This formula is illustrated by Fig. 1 for the production of ππ, KK̄, ηη, ηη′ systems. Here the
factor (ψ̄N (k3)ĜRψN (p2)) stands for the reggeon–nucleon vertex, and ĜR is the spin operator;
R(sπN , t) is the reggeon propagator depending on the total energy squared of colliding particles,
sπN = (p1 +p2)

2, and the momentum transfer squared t = (p2−k3)
2, while the factor K̂πR(t)[1−

iρ̂(s)K̂(s)]−1 is related to the block of two-meson production; s ≡ M2 = (k1 + k2)
2, and

ρ̂(s) is the phase space matrix . In the reactions πp → ππn, KK̄n, ηηn, ηη′n, the factor
K̂πR(t)(s)[1 − iρ̂(s)K̂(s)]−1 describes transitions πR(t) → ππ, KK̄, ηη, ηη′: in this way the

block K̂πR(t) is associated with the prompt meson production, and [1 − iρ̂(s)K̂(s)]−1 is the
K-matrix factor for meson rescattering (of the type of ππ → ππ, ππ → KK̄, KK̄ → ηη, and
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π−

ππ, KK
−
, ηη , ηη′

R

p n

Figure 1: Example of a reaction with the production of two mesons (here ππ, KK̄, ηη, ηη′ in
π−p collision) due to reggeon (R) exchange.

so on). The prompt-production block for transition πR → b (where b = ππ, KK̄, ηη, ηη′, 4π,
...) is parameterized with singular (pole) and smooth terms [5, 7, 10]:

(
K̂πR(t)

)
πR,b

=
∑

n

G
(n)
πR(t)g

(n)
b

µ2
n − s

+ fπR,b(t, s) . (2)

The pole singular term, G
(n)
πR(t)g

(n)
b /(µ2

n −s), determines the bare state: here G
(n)
πR(t) is the bare

state production vertex while the parameters g
(n)
b and µn are the coupling and the mass of the

bare state – they are the same as in the partial wave transition amplitudes ππ → ππ, KK̄,
ηη, ηη′, 4π, .... The smooth term fπR,b stands for the background production of mesons. The

G
(n)
πR(t), fπR,b, g

(n)
b , µn are free parameters of the fitting procedure, while the characteristics of

resonances are determined by poles of the K-matrix amplitude (remind that the position of
poles is given by zeros of the amplitude denominator, det|1 − ρ̂(s)K̂(s)| = 0).

Below we explain in detail the method of analysis of meson spectra using as an example the
reactions πN → ππN , KK̄N , ηηN , ηη′N , ππππN .

2.1 Reggeon exchange technique and the K-matrix analysis of me-
son spectra in the waves JPC = 0++, 1−−, 2++, 3−−, 4++ in high

energy reactions πN → two mesons +N

Here we present the technique of the analysis of high-energy reaction π−p→ mesons+n, with
the production of mesons in the JPC = 0++, 1−−, 2++, 3−−, 4++ states at small and moderate
momenta transferred to the nucleon.

The following points are to be emphasized:
(1) The technique can be used for performing the K-matrix analysis not only for 0++ and 2++

wave, as in [5, 7, 10], but simultaneously in 1−−, 3−−, 4++ waves as well.
(2) We use the reggeon exchange technique for the description of the t-dependence in all an-
alyzed amplitudes. This allows us to perform a partial wave decomposition of the produced
meson states directly on the basis of the measured cross sections without using the published
moment expansions (which were done under some simplifying assumptions – it is discussed
below in more detail).
(3) The mass interval of the analyzed spectra is extended up to 2500 MeV thus overlapping
with the mass region studied in reactions pp̄(in flight)→ mesons [11].
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We discuss in detail the reactions at incident pion momenta 20–50 GeV/c, such as measured
in [12, 13, 14, 15, 16, 17]: (i) π−p→ π+π−+n, (ii) π−p→ π0π0 +n, (iii) π−p→ KSKS +n, (iv)
π−p→ ηη+ n. At these energies, the mesons in the states JPC = 0++, 1−−, 2++, 3−−, 4++ are
produced via t-channel exchange by reggeized mesons belonging to the leading and daughter
π, a1 and ρ trajectories.

But, first, let us present notations used below.

2.1.1 Cross sections for the reactions πN → ππN , KKN , ηηN

We consider the process of the Fig. 1 type, that is, πN interaction at large momenta of the
incoming pion with the production of a two-meson system with a large momentum in the beam
direction. This is a peripheral production of two mesons.

The cross section is defined as follows:

dσ =
(2π)4|A|2

8
√
sπN |~p2|cm(πp)

dφ(p1 + p2; k1, k2, k3),

dφ(p1 + p2; k1, k2, k3) = (2π)3dΦ(P ; k1, k2) dΦ(p1 + p2;P, k3) ds , (3)

where |~p2|cm(πp) is the pion momentum in the c.m. frame of the incoming hadrons. Taking into
account that invariant variables s and t are inherent in the meson peripheral amplitude, we
rewrite the phase space in a more convenient form:

dΦ(p1 + p2;P, k3) =
1

(2π)5

dt

8|~p2|cm(πp)
√
sπN

, t = (k3 − p2)
2,

dΦ(P ; k1, k2) =
1

(2π)5
ρ(s)dΩ , ρ(s) =

1

16π

2|~k1|cm(12)√
s

. (4)

Momentum |~k1|cm(12) is calculated in the c.m. frame of the outgoing mesons: in this system one
has P = (M, 0, 0, 0, ) ≡ (

√
s, 0, 0, 0) and g⊥P

µν k1ν = −g⊥P
µν k2ν = (0, k sin Θ sinϕ, k cos Θ sinϕ,

k cos Θ k) while dΩ = d(cosΘ)dϕ. We have:

dσ =
(2π)4|A|2(2π)3

8|~p2|cm(πp)
√
sπN

1

(2π)5

dt dM2 dΦ(P, k1, k2)

8|~p2|cm(πp)
√
sπN

=
|A|2ρ(M2)MdM dt dΩ

32(2π)3|~p2|2cm(πp) sπN

. (5)

The cross section can be expressed in terms of the spherical functions:

d4σ

dtdΩdM
= N(M, t)

∑

l

(
〈Y 0

l 〉Y 0
l (Θ, ϕ) + 2

l∑

m=1

〈Y m
l 〉ReY m

l (Θ, ϕ)
)
. (6)

The coefficients N(M, t), 〈Y 0
l 〉, 〈Y m

l 〉 are subjects of study in the determination of meson
resonances.

Before describing the results of analysis based on the reggeon exchange technique, let us
comment methods used in other approaches.
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2.1.2 The CERN-Munich approach

The CERN-Munich model [15] was developed for the analysis of the data on the π−p →
π+π−n reaction. It is based partly on the absorption model but mainly on phenomenological
observations. The amplitude squared is written as

|A|2 =
∣∣∣∣
∑

J=0

A0
JY

0
J (Θ, ϕ) +

∑

J=1

A
(−)
J ReY 1

J (Θ, ϕ)
∣∣∣∣
2

+
∣∣∣∣
∑

J=1

A
(+)
J ReY 1

J (Θ, ϕ)
∣∣∣∣
2

, (7)

and additional assumptions are made:
1) The helicity-1 amplitudes are equal for natural and unnatural exchanges A

(−)
J = A

(+)
J ;

2) The ratio of the A
(−)
J and the A0

J amplitudes is a polynomial over the mass of the two-pion

system which does not depend on J up to the total normalization, A
(−)
J = A0

J

(
CJ

3∑
n=0

bnM
n

)−1

.

Then, in [15], the amplitude squared was rewritten using density matrices ρnm
00 = A0

nA
0∗
m ,

ρnm
01 = A0

nA
(−)∗
m , ρnm

11 = 2A(−)
n A(−)

m as follows:

|A|2 =
∑

J=0

Y 0
J (Θ, ϕ)

(
∑

n,m

d0,0,0
n,m,Jρ

nm
00 + d1,1,0

n,m,Jρ
nm
11

)

+
∑

J=0

ReY 1
J (Θ, ϕ)

(
∑

n,m

d1,0,1
n,m,Jρ

nm
10 + d0,1,1

n,m,Jρ
mn
11

)
,

di,k,l
n,m,J =

∫
dΩReY i

n(Θ, ϕ)ReY k
m(Θ, ϕ)ReY l

J(Θ, ϕ)
∫
dΩReY l

J(Θ, ϕ)ReY l
J(Θ, ϕ)

. (8)

Using this amplitude for the cross section, the fitting to the moments < Y m
J > has been carried

out.

The CERN–Munich approach cannot be applied to large t, it does not work for many other
final states either.

2.1.3 GAMS, VES, and BNL approaches

In GAMS [12, 13], VES [16], and BNL [17] approaches, the πN data are described by a sum of
amplitudes squared with an angular dependence defined by spherical functions:

|A2|=
∣∣∣∣
∑

J=0

A0
JY

0
J (Θ, ϕ)+

∑

J=1

A
(−)
J

√
2ReY 1

J (Θ, ϕ)
∣∣∣∣
2

+
∣∣∣∣
∑

J=1

A
(+)
J

√
2 ImY 1

J (Θ, ϕ)
∣∣∣∣
2

(9)

The A0
J functions are denoted as S0, P0, D0, F0 . . ., the A

(−)
J functions are defined as P−, D−, F−, . . .

and the A
(+)
J functions as P+, D+, F+, . . .. The equality of the helicity-1 amplitudes with natural

and unnatural exchanges is not assumed in these approaches.

However, the discussed approaches are not free from other assumptions like the coherence
of some amplitudes or the dominance of the one-pion exchange. In reality the interference of
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the amplitudes being determined by t-channel exchanges of different particles leads to a more
complicated picture than that given by (9), this latter may lead (especially at large t) to a
misidentification of quantum numbers for the produced resonances.

For example, in [17] the S-wave appears in an unnatural set of amplitudes only. Natural
exchanges have moments with m=1,2,3.... However, the a1-exchange is a natural one, therefore
it contributes into the S-wave and does not interfere with unnatural exchanges – in this point
the moment expansion [17] does not coincide with formula with reggeon exchanges.

2.2 The t-channel exchanges of pion trajectories in the reaction
π−p→ ππ n

Consider now in more detail the production amplitude for the ππ system with I = 0 and
JPC = 0++, 2++ and show the way of its generalization for higher J .

2.2.1 Amplitude with leading and daughter pion trajectory exchanges

The amplitude with t-channel pion trajectory exchanges can be written as follows:

A(π−trajectories)
πp→ππn =

∑

R(πj)

A
(
πR(πj) → ππ

)
Rπj

(sπN , q
2)
(
ϕ+

n (~σ~q⊥)ϕp

)
g(πj)

pn (t) (10)

The summation is carried out over the leading and daughter trajectories. Here A(πR(πj) → ππ)

is the transition amplitude for meson block in Fig. 1, g
(πj)
pn is the reggeon–NN coupling and

Rπj
(sπN , q

2) is the reggeon propagator:

Rπj
(sπN , q

2)=exp
(
−iπ

2
α(j)

π (q2)
)

(sπN/sπN0)
α

(j)
π (q2)

sin
(

π
2
α

(j)
π (q2)

)
Γ
(

1
2
α

(j)
π (q2) + 1

) . (11)

The π–reggeon has a positive signature, ξπ = +1. Following [1, 18, 19, 20], we use for pion
trajectories:

α(leading)
π (q2) ≃ −0.015 + 0.72q2, α(daughter−1)

π (q2) ≃ −1.10 + 0.72q2, (12)

where the slope parameters are given in (GeV/c)−2 units. The normalization parameter sπN0

is of the order of 2–20 GeV2. To eliminate the poles at q2 < 0 we introduce Gamma-functions
in the reggeon propagators (recall that 1/Γ(x) = 0 at x = 0,−1,−2, . . .).

For the nucleon–reggeon vertex Ĝ(π)
pn we use in the infinite momentum frame the two-

component spinors ϕp and ϕn (see, for example, [1, 18, 21]):

gπ(ψ̄(k3)γ5ψ(p2)) −→
(
ϕ+

n (~σ~q⊥)ϕp

)
g(π)

pn (t) . (13)
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As to the meson–reggeon vertex, we use the covariant representation [1, 18, 22]. For the
production of two pseudoscalar particles (let it be ππ in the considered case), it reads:

A
(
πR(πj) → ππ

)
=
∑

J

A
(J)
πR(πj)→ππ(s)X(J)

µ1...µJ
(p⊥) (−1)JOµ1...µJ

ν1...νJ
(⊥ P )X(J)

ν1...νJ
(k⊥) ξJ ,

ξJ =
16π(2J + 1)

αJ

, αJ =
J∏

n=1

2n− 1

n
. (14)

The angular momentum operators are constructed of momenta p⊥ and k⊥ which are orthogonal
to the momentum of the two-pion system P = k1 + k2:

g⊥µν = gµν −
PµPν

P 2
, k⊥µ =

1

2
(k1 − k2)νg

⊥

µν p⊥µ =
1

2
(p1 + q)νg

⊥

µν . (15)

The coefficient ξJ normalizes the angular momentum operators, so that the unitarity condition
appears in a simple form (for details see Appendix A).

2.2.2 The t-channel π2-exchange

The R(πj)-exchanges dominate the spin flip amplitudes, and the amplitudes with m = 1 are
here suppressed, see (6). However, their contributions are visible in the differential cross sections
and should be taken into account. The effects appear owing to the interference in the two-meson
production amplitude because of the reggeized π2 exchange in the t-channel. The corresponding
amplitude is written as:

∑

a

Aαβ

(
πR(π2) → ππ

)
ε
(a)
αβRπ2(sπN , q

2)
ε
(a)+
α′β′

s2
πN

X
(2)
α′β′(k

⊥q
3 )

(
ϕ+

n (~σ~q⊥)ϕp

)
g(π2)

pn (t) , (16)

where Aαβ

(
πR(π2) → ππ

)
is the meson block of the amplitude related to the π2-reggeized

t-channel transition, g(π2)
pn is the reggeon–pn vertex, Rπ2(sπN , q

2) is the reggeon propagator, and

ε
(a)
αβ is the polarization tensor for the 2−+ state. Let us remind that k3 is the momentum of the

outgoing nucleon.

k⊥q
3µ = g⊥q

µν k3ν g⊥q
µν = gµν −

qµqν
q2

. (17)

The π2 particles are located on the pion trajectories and are described by a similar reggeized
propagator. But in the meson block, the 2−+ state exchange leads to vertices different from
those in the 0−+-exchange, so it is convenient to single out these contributions. Therefore, we
use for Rπ2(sπN , q

2) the propagator given by (11) but with eliminated π(0−+)-contribution:

Rπ2(sπN , q
2) = exp

(
−iπ

2
α(leading)

π (q2)
)

(sπN/sπN0)
α

(leading)
π (q2)

sin
(

π
2
α

(leading)
π (q2)

)
Γ
(

1
2
α

(leading)
π (q2)

) . (18)

9



Taking into account that

5∑

a=1

ε
(a)
αβε

(a)+
α′β′ =

1

2

(
g⊥q

αα′g
⊥q
ββ′ + g⊥q

βα′g
⊥q
αβ′ − 2

3
g⊥q

αβg
⊥q
α′β′

)
, (19)

one obtains:

X
(2)
α′β′(k

⊥q
3 )

2s2
πN

(
g⊥q

αα′g
⊥q
ββ′ + g⊥q

βα′g
⊥q
αβ′ − 2

3
g⊥q

αβg
⊥q
α′β′

)
=

3

2

k⊥q
3α k

⊥q
3β

s2
πN

− 4m2
N − q2

8s2
πN

(
gαβ − qαqβ

q2

)
. (20)

In the large momentum limit of the initial pion, the second term in (20) is always small and
can be neglected, while the convolution of k⊥q

3α k
⊥q
3β with the momenta of the meson block results

in the term ∼ s2
πN . Hence, the amplitude for π2-exchange can be rewritten as follows:

A(π2−exchange)
πp→ππn =

3

2
Aαβ(πR(π2) → ππ)

k⊥q
3α k

⊥q
3β

s2
πN

Rπ2(sπN , q
2)
(
ϕ+

n (~σ~q⊥)ϕp

)
g(π2)

pn . (21)

A resonance with spin J and fixed parity can be produced owing to the π2-exchange with three
angular momenta L = J − 2, L = J and L = J + 2, so we have:

Aαβ(πR(π2) → ππ) =
∑

J

A
(J)
+2 (s)X

(J+2)
αβµ1...µJ

(p⊥)(−1)JOµ1...µJ
ν1...νJ

(⊥ P )X(J)
ν1...νJ

(k⊥)ξJ

+
∑

J

A
(J)
0 (s)Oαβ

χτ (⊥ q)X(J)
χµ2...µJ

(p⊥)(−1)JOτµ2...µJ
ν1ν2...νJ

(⊥ P )X(J)
ν1...νJ

(k⊥)ξJ

+
∑

J

A
(J)
−2 (s)X(J−2)

µ3...µJ
(p⊥)(−1)JOαβµ3...µJ

ν1ν2ν3...νJ
(⊥ P )X(J)

ν1...νJ
(k⊥)ξJ . (22)

The sum of the two terms presented in (10) and (21) gives us an amplitude with a full set of
the πj-meson exchanges.

Let us emphasize an important point: in the K-matrix representation the amplitudes
A

(J)
πR(πj)→ππ(s) (Eq. (14), j = leading, daughter-1) and A

(J)
+2 (s), A

(J)
0 (s), A

(J)
−2 (s) (Eq. (22))

differ only due to the prompt-production K-matrix block (the term K̂πR(t)(s) in (1)) while the

final state interaction factor ([1 − ρ̂(s)K̂(s)]−1 in (1)) is the same for each J .

2.3 Amplitudes with aJ-trajectory exchanges

Here we present formulae for for leading and daughter a1-trajectories and leading a2-trajectory.

2.3.1 Amplitudes with a1-trajectory exchanges

The amplitude with t-channel a1-exchanges is a sum of leading and daughter trajectories:

A(a1−trajectories)
πp→ππn =

∑

a
(j)
1

A
(
πR(a

(j)
1 ) → ππ

)
R

a
(j)
1

(sπN , q
2)i
(
ϕ+

n (~σ~nz)ϕp

)
g(a1j)

pn (t) , (23)
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where g
(a1j)
pn is the reggeon–NN coupling and the reggeon propagator R

a
(j)
1

(sπN , q
2) has the form:

R
a
(j)
1

(sπN , q
2) = i exp

(
−iπ

2
α(j)

a1
(q2)

)
(sπN/sπN0)

α
(j)
a1

(q2)

cos
(

π
2
α

(j)
a1 (q2)

)
Γ
(

1
2
α

(j)
a1 (q2) + 1

2

) .

(24)

Recall that the a1 trajectories have a negative signature, ξπ = −1. Here we take into account
the leading and first daughter trajectories which are linear and have a universal slope parameter
[18, 19, 20]:

α(leading)
a1

(q2) ≃ −0.10 + 0.72q2, α(daughter−1)
a1

(q2) ≃ −1.10 + 0.72q2. (25)

As previously, the normalization parameter sπN0 is of the order of 2–20 GeV2, and the Gamma-
functions in the reggeon propagators are introduced in order to eliminate the poles at q2 < 0.

For the nucleon–reggeon vertex we use two-component spinors in the infinite momentum
frame, ϕp and ϕn, so the vertex reads (ϕ+

n i(~σ~nz)ϕp) g
(a1)
pn where ~nz is the unit vector directed

along the nucleon momentum in the c.m. frame of colliding particles.

At fixed partial wave JPC = J++, the πR(aj
1) channel (j = leading, daughter-1) is charac-

terized by two angular momenta L = J + 1, L = J − 1, therefore we have two amplitudes for
each J :

A
(
πR(a

(j)
1 ) → ππ

)
=

∑

J

ǫ
(−)
β

[
A

(J+)

πa
(j)
1 →ππ

(s)X
(J+1)
βµ1...µJ

(p⊥) + A
(J−)

πa
(j)
1 →ππ

(s)Zµ1...µJ ,β(p⊥)
]

×(−1)JOµ1...µJ
ν1...νJ

(⊥ P )X(J)
ν1...νJ

(k⊥) , (26)

where the polarisation vector ǫ
(−)
β ∼ n

(−)
β ; the GLF-vectors [23] defined in the c.m. system of

the colliding particles as follows:

n
(−)
β = (1, 0, 0,−1)/2pz, n

(+)
β = (1, 0, 0, 1)/2pz (27)

with pz → ∞.

The products of Z and X operators can be expressed through vectors V
(J+)
β and V

(J−)
β :

X
(J+1)
βµ1...µJ

(p⊥)(−1)JXµ1...µJ
(k⊥) = αJ(

√
−p2

⊥
)J+1(

√
−k2

⊥
)JV

(J+)
β ,

V
(J+)
β =

1

J+1


P ′

J+1(z)
p⊥β√
−p2

⊥

− P ′

J(z)
k⊥β√
−k2

⊥


 ,

Zµ1...µJ ,β(p⊥)(−1)JX(J)
µ1...µJ

(k⊥) = αJ(
√
−p2

⊥
)J−1(

√
−k2

⊥
)JV

(J−)
β ,

V
(J−)
β =

1

J


P ′

J−1(z)
p⊥β√
−p2

⊥

− P ′

J(z)
k⊥β√
−k2

⊥


 . (28)

Here, k2
⊥
, p2

⊥
and z are defined as: k2

⊥
= (k⊥k⊥), p2

⊥
= (p⊥p⊥), z =

(
−(k⊥p⊥)

)
/
(√

−k2
⊥

√
−p2

⊥

)
.
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2.3.2 The amplitude with a2-trajectory exchange

The amplitude with t-channel a2-trajectory exchange reads:

A(a2)
πp→ππn =

∑

a

Aαβ (πR(a2) → ππ) ε
(a)
αβRa2(sπN , q

2)
ε
(a)+
α′β′

s2
πN

×

X
(2)
α′β′(k

⊥q
3 )

(
ψ̄(k3)ψ(p2)

)
g(a2)

pn (q2) , (29)

where g(a2)
pn is the reggeon–NN coupling and the reggeon propagator Ra2(sπN , q

2) has the form:

Ra2(sπN , q
2) = exp

(
−iπ

2
αa2(q

2)
)

(sπN/sπN0)
αa2 (q2)

sin
(

π
2
αa2(q

2)
)

Γ
(

1
2
αa2(q

2)
) . (30)

Recall that the leading a2 trajectory has a positive signature, ξπ = +1, it is linear with the
following slope parameter [18, 19, 20]:

αa2(q
2) = 0.45 ± 0.05 + (0.72 ± 0.05)q2 . (31)

As previously, the normalization parameter sπN0 is of the order of 2–20 GeV2, and the Gamma-
function in the reggeon propagator is introduced in order to eliminate the poles at q2 < 0.

Using Eqs. (19), (20), we obtain:

A(a2)
πp→ππn =

3

2
Aαβ (πR(a2)→ππ)

k⊥q
3α k

⊥q
3β

s2
πN

Ra2(sπN , q
2)
(
ψ̄(k3)ψ(p2)

)
g(a2)

pn (q2) . (32)

Due to a2 exchange, the resonance with spin J can be produced from orbital momentum
either J − 1 or J + 1. Thus,

Aαβ(πR(a2) → ππ) =
∑

J

(
A

(J)
−1 (s)T

(J−1)
αβ + A

(J)
+1 (s)T

(J+1)
αβ

)
, (33)

where

T
(J−1)
αβ = εξατη

Pη√
s
X

(J−1)
ξµ3...µJ

(p⊥)Oτβµ3...µJ
ν1...νJ

(⊥ P )(−1)JX(J)
ν1...νJ

(k⊥),

T
(J+1)
αβ = εξατη

Pη√
s
X

(J+1)
ξβµ2...µJ

(p⊥)Oτµ2...µJ
ν1...νJ

(⊥ P )(−1)JX(J)
ν1...νJ

(k⊥). (34)

Taking into account that the tensors T
(J±1)
αβ convolute with symmetrical tensor k⊥q

3α k
⊥q
3β , we

obtain:

T
(J−1)
αβ k⊥q

3α k
⊥q
3β =

εpαkP√
s

αJ−1

J(J − 1)

(
√
p2
⊥
k2
⊥
)J−1

√
−p2

⊥


P ′′

J (z)
k⊥β√
−k2

⊥

− P ′′

J−1

p⊥β√
−p2

⊥


 k⊥q

3α k
⊥q
3β ,

T
(J+1)
αβ k⊥q

3α k
⊥q
3β = −αJ+1

J
εpαkP

(
√
p2
⊥
k2
⊥
)J−1

√
s

p⊥β P
′

J(z)k⊥q
3α k

⊥q
3β − p2

⊥
(J−1)αJ

(J+1)αJ−1

T
(J−1)
αβ k⊥q

3α k
⊥q
3β . (35)
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2.3.3 Calculations in the Godfrey–Jackson system

In the c.m. system of the produced mesons, which is used for the calculation of the meson
block (the GJ system), we write:

ǫ
(−)
β =

1

sπN

(
k3µ − qµ

2

)
. (36)

In this system the momenta are as follows:

p⊥P
1 ≡ p⊥ = (0, 0, 0, p), p2 =

(s+m2
π − t)2

4s
−m2

π , k2 =
s

4
−m2

π , (37)

k⊥P
1 ≡ k⊥ = (0, k sin Θ cosϕ, k sin Θ sinϕ, k cos Θ),

q = (q0, 0, 0, p), q0 = (s−m2
π + t)/(2

√
s) ,

k3 = (k30, k3x, 0, k3z), k30 = (sπN − s−m2
n)/(2

√
s), k3z = (2k30q0 − t)/(2p) .

Recall that we use the notation A = (A0, Ax, Ay, Az) and cos Θ ≡ z = −(k⊥p⊥)/(
√
−k2

⊥

√
−p2

⊥
).

For the a1-exchange the convolutions V
(J+)
β (k3β − qβ/2), V

(J−)
β (k3β − qβ/2) give us the am-

plitude for the transition πR(a
(j)
1 ) into two pions (in a GJ-system the momentum ~k3 is usually

situated in the (xz)-plane). We write the amplitude in the form

A
(
πR(a

(j)
1 ) → ππ

)
=

∑

J

αJp
J−1kJ

(
W

(J)
0 (s)Y 0

J (Θ, ϕ) +W
(J)
1 (s)ReY 1

J (Θ, ϕ
)
,

where the coefficients W
(J)
0 (s), W

(J)
1 (s) are easily calculated:

W
(J)
0 =

∑

i

−NJ0

(
k3z −

|~p|
2

)(
|~p|2A(J+)

πa
(i)
1 →ππ

− A
(J−)

πa
(i)
1 →ππ

)
,

W
(J)
1 =

∑

i

− NJ1

J(J+1)
k3x

(
|~p|2J A(J+)

πa
(i)
1 →ππ

+ (J+1)A
(J−)

πa
(i)
1 →ππ

)
. (38)

For a2-exchange, one has:

T
(J−1)
αβ k⊥q

3α k
⊥q
3β =

αJ−1

J
pJ−1kJk3x[(k3z−

p

2
)N1J ImY 1

J (Θ, ϕ) − k3x

2

N2J

J−1
ImY 2

J (Θ, ϕ)] (39)

For the amplitude with orbital momentum J + 1, we write:

T
(J+1)
αβ k⊥q

3α k
⊥q
3β = −αJ+1p

J+1kJ(k3z−
p

2
)
N1J

J
ImY 1

J (Θ, ϕ) − p2
⊥
(J−1)αJ

(J+1)αJ−1
T

(J−1)
αβ k⊥q

3α k
⊥q
3β . (40)

The final expression for the a2-exchange amplitude can be written as follows:

A(a2)
πp→ππn =

3k3x

2s2
πN

∑

J

pJ−1kJ [W 1J
a2
ImY 1

J (Θ, ϕ) +W 2J
a2
ImY 2

J (Θ, ϕ)] ×

Ra2(sπN , q
2)
(
ψ̄(k3)ψ(p2)

)
g(a2)

pn (q2) , (41)
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where

W 1J
a2

=
N1J

J
(k3z −

p

2
)
[
− p2αJ+1A

(J)
+1 +

(
αJ−1

J−1
A

(J)
−1 +

p2αJ

J+1
A

(J)
+1

)
(J − 1)

]

W 2J
a2

= − N2J

J

k3x

2

[ αJ−1

J−1
A

(J)
−1 +

p2αJ

J+1
A

(J)
+1

]
. (42)

For the unpolarized cross section, the amplitude related to a2 exchange does not interfere
with either π, π2 or a1 exchange amplitudes. If the highest moments are small in the cross
section, one can assume that the combination in front of Y 2

n is close to 0. Then

W 1J
a2

= −N1J (k3z −
p

2
)p2αJ+1A

(J)
+1 ,

W 2J
a2

= 0, (43)

and, as a result, we have:

A(a2)
πp→ππn = − 3k3x

2s2
πN

∑

J

ξJ
J
pJ+1kJ [N1J(k3z −

p

2
)αJ+1A

(J)
+1 ImY 1

J (Θ, ϕ)]

× Ra2(sπN , q
2)
(
ψ̄(k3)ψ(p2)

)
g(a2)

pn (q2) . (44)

2.3.4 Partial wave decomposition

The partial wave amplitude πR(a
(j)
1 ) → ππ with fixed J++ is presented in the K-matrix form:

A
(L=J±1,J++)

πR(a
(j)
1 ),ππ

(s) =
∑

b

K
(L=J±1,J++)

πR(a
(j)
1 ), b

(s, q2)

[
Î

Î − iρ̂(s)K̂(J++)(s)

]

b,ππ

,

(45)

where K
(L=J±1,J++)

πR(a
(j)
1 ),b

(s, q2) is the following vector (b = ππ, KK̄, ηη, ηη′, ππππ):

K
(L=J±1,J++)

πR(a
(j)
1 ), b

(s, q2) =
(∑

α

G
(L=J±1,J++, α)

πR(a
(j)
1 )

(q2)g
(J++, α)
b

M2
α − s

+ F
(JL=J±1,++)

πR(a
(j)
1 ), b

(q2)
1 GeV2 + sR0

s+ sR0

)
s− sA

s+ sA0
. (46)

Here G
(L=J±1,J++, α)

πR(a
(j)
1 )

(q2) and F
(JL=J±1,++)

πR(a
(j)
1 ), b

(q2) are the q2-dependent reggeon form factors.

2.4 π−p→ KK̄ n reaction with KK̄-exchange by ρ-meson trajectories

In the case of the production of a KK̄ system the resonance in this channel can have isospins
I = 0 and I = 1, with even spin (production of states of the types φ and a0). Such processes
are described by ρ-exchanges.
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2.4.1 Amplitude with exchanges by ρ-meson trajectories

The amplitude with t-channel ρ-meson exchanges is written as follows:

A
(ρ−trajectories)

πp→KK̄n
=
∑

ρj

A
(
πR(ρj) → KK̄

)
Rρj

(sπN , q
2)ĝ(ρj)

pn , (47)

where the reggeon propagator Rρj
(sπN , q

2) and the reggeon–nucleon vertex ĝ
(ρj)
pn read, respec-

tively:

Rρj
(sπN , q

2) = exp
(
−iπ

2
α(j)

ρ (q2)
)

(sπN/sπN0)
α

(j)
ρ (q2)

sin
(

π
2
α

(j)
ρ (q2)

)
Γ
(

1
2
α

(j)
ρ (q2) + 1

) ,

ĝ(ρj)
pn = g(ρj)

pn (1)(ϕ+
nϕp) + g(ρj)

pn (2)
(
ϕ+

n

i

2mN

(~q⊥[~nz, ~σ])ϕp

)
. (48)

The ρj-reggeons have positive signatures, ξρ = +1, being determined by linear trajectories
[18, 19, 20]:

α(leading)
ρ (q2) ≃ 0.50 + 0.83q2, α(daughter−1)

ρ (q2) ≃ −0.75 + 0.83q2. (49)

The slope parameters are in (GeV/c)−2 units, sπN0 ∼ 2 − 20 GeV2. Two vertices in ĝ
(ρj)
pn cor-

respond to charge- and magnetic-type interactions (they are written in the infinite momentum
frame of the colliding particles).

The meson–reggeon amplitude can be written as

A
(
πR(ρj) → KK̄

)
=
∑

J

εβǫ(−)pPZµ1µ2...µJ ,β(p
⊥)A

(J++)

πRρ(q2),KK̄
(s)X(J)

µ1µ2...µJ
(k⊥)(−1)J , (50)

where the polarisation vector ǫ
(−)
β was introduced in (36).

We use the convolution of the Z and X operators in the GJ-system (see notations in (37):

Zµ1...µJ ,β(p⊥)(−1)JX(J)
µ1...µJ

(k⊥) =
αJ

J
(
√
−p2

⊥
)J−1(

√
−k2

⊥
)J


P ′

J−1(z)
p⊥β√
−p2

⊥

− P ′

J(z)
k⊥β√
−k2

⊥


.(51)

The convolution of the spin–momentum operators in (50) gives:

A(πρj → ππ) =
∑

J

αJ

J
pJkJk3x

√
sNj1Im Y 1

J (Θ, ϕ)A
(J++)

πRρ(q2),KK̄
(s). (52)

Let us remind that in the GJ-system the vector ~k3 is situated in the (xz)-plane.
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2.4.2 Partial wave decomposition

The amplitude for the transition πRρj
(q2) → KK̄ in the K-matrix representation reads:

A
(J++)

πR(ρj),KK̄
(s) =

∑

b

K
(J++)
πR(ρj ), b(s, q

2)

[
Î

Î − iρ̂(s)K̂(J++)(s)

]

b,KK̄

, (53)

where K
(J++)
πR(ρj),b

(s, q2) is the following vector (b = ππ, KK̄, ηη, ηη′, ππππ):

K
(J++)
πR(ρj), b

(s, q2) =
(∑

α

G
(J++, α)
πR(ρj ) (q2)g

(J++, α)
b

M2
α − s

+ F
(J++)
πR(ρj ), b(q

2)
1 GeV2 + sR0

s+ sR0

)
s− sA

s+ sA0
. (54)

Here G
(J++, α)
πR(ρj ) (q2) and F

(J++)
πR(ρj ), b(q

2) are the reggeon q2-dependent form factors.

3 Low-energy three-meson production in the K-matrix

approach

Here we present elements of theK-matrix technique for the low-energy reactions pp̄→ πππ, πηη,
πKK̄. The K-matrix technique provides a compact and, hence, a convenient way for studying
resonances in multiparticle processes of such a type. However, we have to pay a price for the
simplifications the K-matrix technique gives us: we cannot take into account in a full scale
the partial wave left singularities as well as the singularities related to the rescattering of all
particles (for example, the singularities of the triangle type diagrams)

The use of the K-matrix approach to the combined analysis of different processes is based
on the fact that the denominator of the K-matrix two-particle amplitude, [1−ρ̂K̂]−1 is common
for all processes, depending only on quantum numbers of the considered two-meson system.

Let us illustrate this statement using as an example the amplitude of the pp̄ annihilation from
the 1S0 level: pp̄(1S0) → threemesons. In the K-matrix approach, the production amplitude
for the resonance with the spin J = 0 in the channel (1 + 2) reads:

A3(s12)ca =
∑

b

(
K

(prompt)
3 (s12)

)

cb

(
1

1 − iρ̂12K̂12(s12)

)

ba

, (55)

where c = pp̄(1S0) and a, b ∈ ππ, ηη,KK̄. The denominator [1 − iρ̂12K̂12(s12)]
−1 depends on

the invariant energy squared of mesons 1 and 2 and it coincides with the denominator of the
two-particle scattering amplitude. The factor K̂

(prompt)
3 (s12) stands for the prompt production

of particles and resonances in this channel:

(
K

(prompt)
3 (s12)

)

cb

=
∑

n

Λ(n)
c g

(n)
b

µ2
n − s12

+ ϕcb(s12) , (56)
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where Λ(n)
c and ϕcb are the parameters of the prompt-production amplitude, and g

(n)
b and µn

are the same as in the two-meson scattering amplitude.

The whole amplitude for the production of the (J = 0)-resonances is defined by the sum of
contributions from all channels:

A3(s12) + A2(s13) + A1(s23). (57)

The amplitudes A2(s13) and A1(s23) are given by formulae similar to (55), (56) but with different
sets of final and intermediate states.

To take into account the resonances with non-zero spins J , one has to substitute in (55)

A3(s12) →
∑

J

A
(J)
3 (s12)X

(J)
µ1µ2...µJ

(k⊥p12
12 )X(J)

µ1µ2...µJ
(k⊥P

3 ), (58)

where the K-matrix amplitude A
(J)
3 (s12) is determined by an expression similar to (55).

The analysis performed in [24, 25] showed that in the reactions pp̄(at rest) → π0π0π0, π0π0η,
π0ηη the determination of parameters of resonances produced in the two-meson channels does
not require the explicit consideration of the triangle diagram singularities — it is important
to take into account only the complexity of parameters Λ(n)

a and ϕab in (56) which are due
to multiparticle final-state interactions. Note that this is not a universal rule for the meson
production processes in the pp̄ annihilation – for example, in the reaction pp̄ → ηπ+π−π+π−

[26], the triangle singularity contribution is important.

4 Fitting procedure

Here we present results of the combined fit for low energy annihilation reactions pp̄ → πππ,
ππη, πηη and high energy peripheral production π−p→ π0π0 + n.

4.1 The K-matrix fit of annihilation reactions at rest pp̄ into πππ,

ππη, πηη

We have included into the fit procedure the following data sets for the production of three
mesons in pp̄ annihilation:
(1) Crystal Barrel data on pp̄(at rest, from liquid H2) → π0π0π0, π0π0η, π0ηη [27] and
(2) the data in gas pp̄(at rest, from gaseous H2) → π0π0π0, π0π0η [28, 29].

The considered K-matrix amplitude takes into account ππππ, KK̄ and ηη′ channels as well
– parameters for these channels are taken from [10].

First, we present the formulae for the reactions pp̄ → π0π0π0, π0π0η, π0ηη from the liquid
H2, when annihilation occurs from the 1S0pp̄ state and scalar resonances, f0 and a0, are formed
in the final state. This is a case which represents well the applied technique of the three-meson
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production reactions. A full set of amplitude terms taken into account in the analysis [10]
(production of vector and tensor resonances, pp̄ annihilation from the P -wave states 3P1,

3P2,
1P1) is constructed in an analogous way.

(i) Production of the S-wave resonances.

For the transition pp̄ (1S0) → π0π0π0 with the production of two pions in a (00++)-state,
we use the following amplitude:

App̄ (11S0)→π0π0π0 =

(
ψ̄(−q2)

iγ5

2
√

2mN

ψ(q1)

)
(59)

×
[
App̄ (11S0)π0,π0π0(s23)+App̄ (11S0)π0,π0π0(s13)+App̄ (11S0)π0,π0π0(s12)

]
.

The four-spinors ψ̄(−p2) and ψ(p1) refer to the initial antiproton and proton in the I(2S+1)LJ =
11S0 state. For the produced pseudoscalars we denote amplitudes in the left-hand side of (59)
as App̄ (11S0)Pℓ ,PiPj

(sij).

The amplitudes for the transitions pp̄ (01S0) → ηπ0π0, pp̄ (11S0) → π0ηη have a similar
form:

App̄ (01S0)→ηπ0π0 =

(
ψ̄(−p2)

iγ5

2
√

2mN

ψ(p1)

)
(60)

×
[
App̄ (01S0)η,π0π0(s23) + App̄ (01S0)π0,ηπ0(s13) + App̄ (01S0)π0,ηπ0(s12)

]
,

and

App̄ (11S0)→π0ηη =

(
ψ̄(−p2)

iγ5

2
√

2mN

ψ(p1)

)
(61)

×
[
App̄ (11S0)π0,ηη(s23) + App̄ (11S0)η,ηπ0(s13) + App̄ (11S0)η,ηπ0(s12)

]
.

For the description of the S-wave interaction of two mesons in the scalar–isoscalar state (index
(00)) the following amplitudes are used in (59), (60) and (61):

App̄ (I1S0)π0,b(sij) =
∑

a

K̃
(00)
pp̄(I1S0)π0,a(sij)

[
Î − iρ̂

(0)
ij (sij)K̂

(00)(s23)
]−1

ab
.

(62)

Here b = π0π0, ηη and a = π0π0, ηη, KK̄, ηη′, π0π0π0π0. The K-matrix term is responsible
for the two-meson scattering. The K̃-matrix terms which describe the prompt resonance and
background meson production in the pp̄ annihilation read:

K̃
(00)
pp̄(11S0)π0,a(s23) =

(∑

α

Λ
(00,α)
pp̄(11S0)π0g(α)

a

M2
α − s23

+ φ
(00)
pp̄(11S0)π0,a

1 GeV2 + s̃0

s23 + s̃0

)(
s23 − s̃A

s23 + s̃A0

)
. (63)
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The parameters Λ
(00,α)
pp̄(11S0)π0,a and φ

(00)
pp̄(11S0)π0,a are complex-valued, with different phases due to

three-particle interactions. Let us recall: the matter is that in the final state interaction term
we take into account the leading (pole) singularities only. The next-to-leading singularities are
accounted for effectively, by considering the vertices pp̄→ mesons as complex-valued factors.

(ii) Three-meson amplitudes with the production of spin-non-zero resonances.

In the three-meson production processes, the final-state two-meson interactions in other
states are taken into account in a way similar to what was considered above.

The invariant part of the production amplitude A
(I,tj)
pp̄ (I 1S0,b)(23) for the transition pp̄ (I 1S0) →

1 + (2 + 3)tj , where the indices tj refer to the isospin and spin of the meson in the channel
b = 2 + 3, is as follows:

A
(tj)
pp̄ (I 1S0)1,b(23) =

∑

a

K̃
(tj)
pp̄ (I 1S0)1,a(s23)

[
Î − iρ̂

(j)
23 K̂

(tj)(s23)
]−1

ab
,

K̃
(tj)
pp̄ (I 1S0)1,a(s23) =

(∑

α

Λ
(tj,α)
pp̄ (I 1S0)1g

(α)
a

M2
α − s23

+ φ
(tj)
pp̄ (I 1S0)1,a

1 GeV2 + s̃tj0

s23 + s̃tj0

)
Da(s23) . (64)

The parameters Λ
(tj,α)
pp̄ (I 1S0)1, φ

(tj)
pp̄ (I 1S0)1,a may be complex-valued, with different phases due to

three-particle interactions.

The K-matrix elements for the scattering amplitudes (which enter the denominator of (64))
are determined in the partial waves 02++, 10++, 12++ as follows:

(1) Isoscalar–tensor, 02++, partial wave.

The D-wave interaction in the isoscalar sector is parametrized by the 4×4 K-matrix where
1 = ππ, 2 = KK̄, 3 = ηη and 4 = multi − meson states:

K
(02)
ab (s) = Da(s)


∑

α

g(α)
a g

(α)
b

M2
α − s

+ f
(02)
ab

1 GeV2 + s2

s+ s2


Db(s) . (65)

Factor Da(s) stands for the D-wave centrifugal barrier. We take this factor in the following
form:

Da(s) =
k2

a

k2
a + 3/r2

a

, a = 1, 2, 3 , (66)

where ka =
√
s/4 −m2

a is the momentum of the decaying meson in the c.m. frame of the

resonance. For the multi-meson decay the factor D4(s) is taken to be 1. The phase space
factors we use are the same as those for the isoscalar S-wave channel.

(2) Isovector–scalar, 10++, and isovector–tensor, 12++, partial waves.
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For the amplitude in the isovector-scalar and isovector-tensor channels we use the 4×4
K-matrix with 1 = πη, 2 = KK̄, 3 = πη′ and 4 = multi-meson states:

K
(1j)
ab (s) = Da(s)


∑

α

g(α)
a g

(α)
b

M2
α − s

+ f
(1j)
ab

1.5 GeV2 + s1

s+ s1


Db(s) . (67)

Here j = 0, 2; the factors Da(s) are equal to 1 for the 10++ amplitude, while for the D-wave
partial amplitude the factor Da(s) is taken in the form

Da(s) =
k2

a

k2
a + 3/r2

3

, a = 1, 2, 3, D4(s) = 1 . (68)

The results of the fit for the two solutions discussed below are shown in Figs. 2–13.

4.2 The K-matrix fit of high-energy meson production: the π- and

a1-trajectory exchanges

The leading contribution from the π-exchange trajectory can contribute only to the moments
with m = 0, while the a1-exchange can contribute to the moments up to m = 2. The char-
acteristic feature of the a1 exchange is that moments with m = 2 are suppressed compared to
moments with m = 1 by the ratio k3x/k3z which is small for the system of two final mesons
propagating with a large momentum in the beam direction.

The amplitudes defined by the π and a1 exchanges are orthogonal if the nucleon polarisation
is not measured. This is due to the fact that the pion trajectory states are defined by the
singlet combination of the nucleon spins while the a1 trajectory states are defined by the triplet
combination. This effect is not taken into account for the S-wave contribution in (9) which can
lead to a misidentification of this wave at large momenta transferred.

The π2 particle is situated on the pion trajectory and therefore should be described by the
reggeized pion exchange. However, the π2-exchange has next-to-leading order contributions
with spherical functions at m ≥ 1. The interference of such amplitudes with the pion exchange
can be important (especially at small t) and is taken into account in the present analysis.

4.3 Results of the fit

To reconstruct the total cross section of the reaction π−p→ π0π0n which is not available to us
we have used two partial wave decompositions provided by the E852 collaboration [17]. The
cross section was reconstructed by Eq. (9) and decomposed over moments. The two partial
wave decompositions produced very close results for the moments and we included the small
differences between them as systematical errors.

The π−p → π0π0n moments can be described successfully with only π, a1 and π2 leading
trajectories taken into account and a simple assumption about the t-dependence of form factor
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for all partial waves. Moreover, we have found two solutions which differ by their contributions
from these exchanges. Such an ambiguity is likely to be connected with the lack of polarisation
data and can be resolved by data from future experiments.

The quality of the description of the Crystal Barrel data by both solutions is shown in Figs.
2-13 and the χ2 is given in Table 1. Here we also provide χ2 values for the ππ → ηη and
ππ → ηη′ S-wave extracted by the GAMS collaboration [12],[13] from the π−N data taken at
small transfer energies. It is seen that both solutions describe Crystal Barrel and GAMS data
with the same quality. The main reason that the K-matrix parameters for the S and D-waves as
well as P-vectors for the p̄p annihilation into three mesons are very similar in the two solutions.
However the P-vectors for description of the E852 data are different in solutions 1 and 2.

In a more detail: these two solutions differ by the fraction of the π, a1 and π2 exchanges
already in the region of small energy transferred. The first solution has a very large, practically
dominant contribution from the a1 exchange to the D-wave (see Fig. 14). The contribution
from the a1 exchange to the S-wave is small. In this solution there is no notable signal from
the f0(1300) state either at small or at large energy transferred. If f0(1300) is excluded from
this solution, only the description of the Crystal Barrel and GAMS data is deteriorated while
the description of the E852 data has the same quality.

In the second solution the D-wave at small energies transferred is dominantly produced
from the π exchange. The fraction a1 exchange at |t| < 0.1 is about 2.5 − 3%. At large
energy transferred, like in solution 1, the contribution from a1 exchange becomes comparable
and even dominant. The S-wave has a well known structure at small |t|. At intermediate
energies the contribution from the a1 exchange becomes dominant and a signal from the f0(1300)
state is well seen in this wave. At very large |t| (−1.5 < t < −0.4 GeV2) the contribution
from a1 exchange is rather small. The dominant contribution comes from the f0(980) state
produced from π exchange. Here our analysis is in contradiction with the result reported by the
E852 collaboration which observed a strong S-wave signal around 1300 MeV in this t-interval.
However, the contribution from f0(1300) at intermediate energies transferred is important for
the description of data with this solution. If this state is excluded from the fit the description
is notably deteriorated, see Table 1, solution 2(-). This subject is considered in the following
section in detail.

The Krakow group reported from the analysis of the polarized data that at small t the
dominant contribution comes from the π-exchange [30]. They point out that the second solution
is possibly a physical one. However, the final conclusion can be made only after including these
(yet unavailable to us) data in the present combined analysis which uses reggeon exchanges.

The description of the moments at small and large |t| for the two solutions is shown in
Figs. 16 and 17, correspondingly. The second solution produces a systematically better overall
description except for the Y 1

4 moments at large energies transferred.

The S-wave was fitted to 5 poles in the 5-channel K-matrix, described in detail in previous
sections. The parameters for the first solution are very close to those for the second one, e.g.
the parametrization given in Table 2 describes both solutions, and the given errors cover a
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Table 1: The χ2 per data point for the description of the Crystal Barrel and GAMS data. Two
solutions are given as well as that with f0(1300) excluded from the fit, solution 2(-). For the
E852 data the χ2 is calculated for all moments in the given t-interval
Data Solution 1 Solution 2 Solution 2(-) (no f0(1300))
p̄p→ π0π0π0 (Liq) 1.360 1.356 1.443
p̄p→ π0π0π0 (Gas) 1.238 1.242 1.496
p̄p→ ηπ0η (Liq) 1.350 1.442 1.446
p̄p→ ηπ0η (Gas) 1.503 1.371 1.315
p̄p→ π0ηπ0 (Liq) 1.210 1.236 1.412
p̄p→ π0ηπ0(Gas) 1.099 1.119 1.227
ππ → ηη (S-wave) 1.08 1.19 1.38
ππ → ηη′ (S-wave) 0.26 0.41 0.45

marginal change in both descriptions.

The D-wave was fitted to 4 poles in the 5-channel (ππ, KK̄, ηη, ωω and 4π) K-matrix. The
position of the first two D-wave poles was found to be 1270 − i97 MeV and 1530 − i72 MeV
which corresponds to the well-known resonances f2(1270) and f2(1525). The third state has
a Flatté-structure near the ωω threshold and is defined by two poles on the sheets defined by
the ωω cut. Due to the fact that we do not fit directly the ωω production data these positions
can not be defined unambiguously. For example, in the framework of the solution 1 (dominant
a1-exchange in the D-wave) we found at least two solutions for the pole structure in the region
of 1560 MeV. In the first the pole is situated at 1565 − i140 MeV on the sheet above the ωω
threshold and 1690 − i290 MeV on the sheet below the ωω threshold. In the other solution
the position of the pole is 1530 − i262 and 1699 − i216, correspondingly. The closest physical
region is for both poles the beginning of the ωω threshold M ∼1570 MeV, where they form
a relatively narrow (220–250 MeV) structure which is called the f2(1560) state, see Fig. 18.
A similar situation was observed in the solution 2. The K-matrix D-wave parameters for the
solution 2 are given in Table 3.

The fourth D-wave K-matrix pole, f bare
2 (1980) cannot be rigidly fixed by the present data.

The position of the corresponding pole is also not stable: one can easily increase the mass of
the pole with the simultaneous increase of the width, spoiling only slightly the description of
data. Because of that we consider this pole as some effective contribution of resonances located
above 1900 MeV.

The ππ → ππ S-wave elastic amplitude for the second solution is shown in Fig.19. The
structure of the amplitude is well known, it is defined by the destructive interference of the
broad component with f0(980) and f0(1500). Neither f0(1300) nor f0(1750) provide a strong
change of the amplitudes. However, this is hardly a surprise: both these states are relatively
broad and dominantly inelastic.

The ππ → ππ D-wave elastic amplitude is shown in Fig. 20. The amplitude squared is
dominated by the f2(1270) state. Neither of f2(1560) and f2(1510) (which are included into
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Table 2: Masses and couplings (in GeV units) for the S-wave K-matrix poles (f bare
0 states) as

well as the amplitude pole positions (given in MeV). The II sheet is defined under the ππ and
4π cuts, the IV sheet is under ππ, 4π, KK̄ and ηη cuts, and the V sheet is determined by ππ,
4π, KK̄, ηη and ηη′ cuts.

α = 1 α = 2 α = 3 α = 4 α = 5

M 0.720+.50
−.080 1.220+.040

−.030 1.210 ± 030 1.550+.030
−.020 1.850 ± .040

g
(α)
0 0.760+.080

−.060 0.820 ± 0.090 0.470 ± .050 0.360 ± .050 0.440 ± .050

g
(α)
5 0 0 0.850 ± .100 0.570 ± .070 −0.900 ± .070

ϕα -(60 ± 12) 28 ± 12 30 ± 14 8 ± 15 -(52 ± 14)

a = ππ a = KK̄ a = ηη a = ηη′ a = 4π

f1a 0.180 ± .120 0.150 ± .100 0.240 ± .100 0.300 ± .100 0.0 ± .060
fba = 0 b = 2, 3, 4, 5

Pole position

II 1030+30
−10

sheet −i(35+10
−16)

III 850+80
−50

sheet −i(100 ± 25)

IV 1290 ± 50 1486 ± 10 1510 ± 130

sheet −i(170+20
−40) −i(57 ± 5) −i(800+100

−150)

V 1800 ± 60
sheet −i(200 ± 30)
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Table 3: Masses and couplings (in GeV units) for D-wave K-matrix poles (f bare
2 states) for the

solution 2. The III sheet is defined by ππ and 4π and KK̄ cuts, the IV sheet by ππ, 4π, KK̄
and ωω cuts. The values marked by ∗ were fixed in the fit.

α = 1 α = 2 α = 3 α = 4
M 1.286 ± 0.025 1.540 ± 0.015 1.560 ± 0.020 2.200+0.300

−0.200

g(α)
ππ 0.920 ± 0.020 −0.05 ± 0.080 0.280 ± 0.100 −0.30 ± 0.15
g(α)

ηη 0.420 ± 0.060 0.27 ± 0.15 0.400 ± 0.200 1.2 ± 0.6∗

g
(α)
4π −0.150 ± 0.200 0.370 ± 0.150 1.170 ± 0.450 1.0 ± 0.4
g(α)

ωω 0∗ 0∗ 0.540 ± 0.150 −0.05 ± 0.2
a = ππ a = ηη a = ωω a = 4π

f1a 0.03 ± 0.15 −0.11 ± 0.10 0∗ 0∗

f2a −0.11 ± 0.10 −1.8 ± 0.60 0∗ 0∗

fba = 0 b = 3, 4, 5
Pole position

III sheet 1.270 ± 0.008 1.530 ± 0.012
−i 0.097 ± 0.008 -i 0.064 ± 0.010

III sheet 1.690 ± 0.015
−i 0.290 ± 0.020

IV sheet 1.560 ± 0.015
−i 0.140 ± 0.020

the KK̄ channel of the K-matrix) show a meaningful structure in the amplitude squared. The
K-matrix parameters found in the solution are given in Table 3.

4.4 The f0(1300) state

In the solution 2 the fit of the E852 data shows a large contribution from the f0(1300) state to
Y 0

0 moment due to a1 exchange at −0.2< t<−0.1 and −0.4< t<−0.2 GeV2. At very small
(−0.1<t<−0.01 GeV2) and large (−1.5<t<−0.4 GeV2) energy transferred the contribution
of this state to the Y 0

0 moment is less pronounced. If the K-matrix pole which corresponds to
the f0(1300) state is excluded from the fit (all couplings are put to zero) the total χ2 changes
rather appreciably. The corresponding values for the description of the Crystal Barrel and
GAMS data are given in the last column of Table 1 (solution 2(-)). The mass slices made in
the region of the state show systematical discrepancies in this case (see Fig.21).

For the description of the E852 data the main effect is seen, as expected, for the second
and third t intervals. The comparison of the solutions with and without f0(1300) for these t
regions is shown in Fig. 22. Here the description of the Y 1

4 moment is systematically worse for
the fit where f0(1300) is excluded. The χ2 per data points change for this moment from 1.84 to
3.63 for the −0.2<t<−0.1 GeV2 interval and from 2.07 to 4.90 for the −0.4<t<−0.2 GeV2

interval. The fit without f0(1300) produces a worse description also for Y 0
2 and Y 0

4 . At intervals
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of small and large t the description has the same quality and can hardly be distinguished on
the pictures. The contribution of the S-wave to the moment Y 0

0 from this solution is shown
in Fig. 23. It is seen that an appreciable contribution from a1 exchange at the mass region
1300-1500 MeV is needed and the fit tries to simulate it (although not very successfully) by an
interference between the broad component and the f0(1500) state.

Below we present the pole positions of the S-wave amplitude (in MeV units) and couplings
calculated as pole residues (in GeV units): Aa→b ≃ GaGb[(M − iΓ/2)2 − s]−1 + smooth terms
with a, b = ππ,KK̄, ηη, ηη′, ππππ; the couplings are written as Ga = ga exp(iϕa), the phases
are given in degrees. For resonances f0(980), f0(1300), f0(1500), f0(1200 − 1600), f0(1750) we
obtain:

f0(980)1st pole f0(980)2ndpole f0(1300) f0(1500) f0(1200 − 1600) f0(1750)
M 1030+30

−10 850+80
−50 1290±50 1486±10 1510±130 1800±60

Γ/2 35+10
−16 100±25 170+20

−40 57±5 800+100
−150 200±30

Sheet II III IV IV IV V
gππ 0.42±0.07 0.39±0.05 0.28±0.08 0.24±0.05 0.82±0.06 0.55±0.05
ϕππ −71±8 45±7 27±10 65±8 10±12 15+6

−15

gKK̄ 0.62±0.06 0.68±0.12 0.15±0.05 0.17±0.04 0.84±0.08 0.11±0.04
ϕKK̄ 3±8 155±6 35±15 48±8 2±10 55±20
gηη 0.51±0.07 0.58±0.10 0.14±0.06 0.10±0.03 0.40±0.06 0.18±0.05
ϕηη 10±8 157±10 57±8 96±6 16±7 40±12
gηη′ 0.42±0.08 0.46±0.12 0.17±0.07 0.18±0.06 0.14±0.05 0.35±0.07
ϕηη′ 18±8 160±10 75±15 143±15 80±17 18±6
g4π 0.16±0.05 0.29±0.10 0.80±0.15 0.47±0.08 1.30±0.20 0.85±0.20
ϕ4π 25+8

−15 155±12 205±12 156±10 5±12 150±14
(69)

4.5 Isovector scalar and tensor resonances below 1.7 GeV

The isovector states are contributing strongly to the p̄p→ ηηπ0 and p̄p→ π0π0η amplitude.

The a0(980) is clearly seen on the ηηπ0 Dalitz plot and on the πη mass projection. A success-
ful description of these data can be obtained with the Flatté parametrization of this resonance
(pole parametrization with decays into channels πη and KK̄). Within this parametrization
(for more detail see [31]) we obtain the following masses and couplings for a0(980):

M (MeV) g2
πη (GeV) R = g2

KK̄
/g2

πη

986 ± 4 0.175 ± 0.015 1.20 ± 0.15
(70)

These parameters result in the following two poles on the I-st sheet (under the πη cut) and the
II-nd sheet (under the πη and KK̄ cuts) for a0(980):

I-st sheet II-nd sheet
1000 ± 6−i(35 ± 4) MeV, 940 ± 20−i(85 ± 15) MeV

(71)
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The second isovector scalar state a0(1474) [1] (defined as a0(1450) in PDG) is situated in
the 1500 MeV region. We found:

Pole position of a0(1474) : M = 1515 ± 30 − i(115 ± 18) MeV. (72)

This state is highly inelastic with a branching ratio into the πη channel less than 10%. We
have not found any indications for an extra isovector scalar state in the mass region between
a0(980) and a0(1474).

The resonance a2(1320) contributes to the p̄p→ π0π0η strongly, here we see also a2(1675)-
signal. We parametrized these resonances in the Breit-Wigner form and have found the following
amplitude poles:

a2(1320) a2(1675)
M = 1309 ± 4 − i(55 ± 2) MeV, M = (1675 ± 25) − i(135+25

−10) MeV
(73)

For a2(1320) we have found a mass 1309 ± 4 MeV which is lower by 9 MeV than the average
PDG value but corresponds very well to the analysis of high statistical data performed by the
VES collaboration [39]. The observed width of the state 111 ± 4 corresponds well to other
observations from the πη decay mode.

The a2(1675) state improves the fit; however, the mass and width of this state can not be
well defined from these data because the resonance is situated on the phase volume boundary
and is suppressed by the D-wave centrifugal barrier. The obtained values are compatible with
previous findings of the Crystal Barrel collaboration [34]. Let us mention that the mass and
width of this state can be much better defined from the L3 data on γγ interaction into π+π−π0

[35].

5 Summary for isoscalar resonances

We develop a method for the analysis of the reactions πN → twomesons+N at large energies
of the initial pion. The approach is based on the use of the reggeized exchanges that allow
us to analyze simultaneously the data obtained at small and large momentum transfers. In
the present article the method is applied to the analysis of the π−N → π0π0N data measured
by the E852 experiment. The inclusion of the Crystal Barrel data on the proton-antiproton
annihilation at rest into the 3π0, π0ηη and π0π0η channels helps to reduce ambiguities in the
isoscalar sector and investigate the properties of the isovector scalar and tensor states.

As the result of the analysis the K-matrix parameters of the isoscalar-scalar and isoscalar-
tensor states was obtained up to the invariant mass 2 GeV and pole positions of corresponding
amplitudes are defined.
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5.1 Isoscalar-scalar sector

In the scalar sector the contribution of the f0(1300) is necessary to get a consistent description
for the data set analyzed:

Pole position of f0(1300) : M = 1290 ± 50 − i(170+20
−40) MeV. (74)

According to our fit, the strong signal in the ππ spectrum in the region 1300 MeV is formed
by two contributions, by f0(1300) (dominantly the a1 reggeized exchange) and f2(1275) (the π
and a1 reggeized exchanges).

The position of the f0(980) is defined very well. The resonance reveals a double pole
structure around the KK̄ threshold.

Pole positions of f0(980) : (75)

sheet II (under ππ and ππππ cuts) : M = 1030+30
−10 − i(35+10

−16) MeV,

sheet III (under ππ, ππππ and KK̄ cuts) : M = 850+80
−50 − i(200 ± 50) MeV.

The f0(1500) is defined from the combined fit with a good accuracy:

Pole position of f0(1500) : M = 1486 ± 10 − i(57 ± 5) MeV. (76)

The broad state f0(1200 − 1600) (the scalar glueball descendant) gives contribution in ππ
scattering amplitudes in region up to 2 GeV; the following pole position is found

Pole position of f0(1200 − 1600) : M = (1510 ± 130) − i(800+100
−150) MeV. (77)

The f0(1750) is a dominantly ss̄ state [1] and is needed to describe ππ → ππ and ππ → ηη
amplitudes above 1750 MeV.

Pole position of f0(1750) : M = 1800 ± 60 − i(200 ± 30) MeV. (78)

Parameters of this state differ from that observed by the BES [36] and WA102 [37] collaborations
(denoted as f0(1710)); one should, however, have in mind that in the case of strong interferences
characteristics of a peak in the data does not correspond to the resonance position. A combined
fit of the Crystal Barrel, CERN-Munich, E852, GAMS and BES data is needed and it is one
of our future objectives.

5.2 Isoscalar-tensor sector

The D-wave reveals the resonances f2(1275), f2(1525), f2(1565), and f2(1950) with the following
pole positions:

f2(1275) : M = 1270 ± 8 − i(97 ± 8) MeV,

f2(1525) : M = 1530 ± 12 − i(64 ± 10) MeV,

f2(1565) (2nd solution) : MI = 1690 ± 15 − i(290 ± 20) MeV,

MII = 1560 ± 15 − i(140 ± 20) MeV, (79)
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In the case of f2(1565) the K-matrix fit can be obtained only with the large coupling of this
state to ωω (and, possibly, to ρρ) channel (note that this result is in a very good agreement
with the analysis of the proton-antiproton annihilation into ωωπ [38]). The large coupling to
ωω leads to the double pole structure of f2(1565), see Fig. 18.

The state f2(1980) can not be identified unambiguously from the present data due to its
large inelasticity. It plays the role of some broad contribution needed for the description of the
πN data

5.3 Isoscalar sector JPC = 4++

For the description of high moments in the πN → π0π0N data a contribution from a 4++ state
is needed. This state is identified as f4(2025). Due to the lack of data at high masses this state
was fitted as a two channel (ππ and 4π) one pole K-matrix.

M (GeV) gππ g4π fππ→ππ

1.970 ± 30 0.550 ± 0.050 0.490 ± 0.080 −0.025 ± 0.050
(80)

Here, as previously, masses and couplings are in GeV units. The position of the pole is equal to
(1966± 25)− i (130± 20). The amplitude phase and the Argand diagram for the isoscalar 4++

state is shown in Fig.24. The ππ → ππ 4++ amplitude has a peak at 1995 MeV and is slightly
asymmetrical: the half height is reached at the mass 1880 and 2165 MeV. The branching ratio
of the ππ channel at the pole position is 20 ± 3% which is in agreement with the PDG value
within the error.
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6 Appendix A. Angular Momentum Operators

The angular-dependent part of the wave function of a composite state is described by operators
constructed for the relative momenta of particles and the metric tensor. Such operators (we
denote them as X(L)

µ1...µL
, where L is the angular momentum) are called angular momentum

operators; they correspond to irreducible representations of the Lorentz group. They satisfy
the following properties:
(i) Symmetry with respect to the permutation of any two indices:

X(L)
µ1...µi...µj ...µL

= X(L)
µ1...µj ...µi...µL

. (81)
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(ii) Orthogonality to the total momentum of the system, P = k1 + k2:

Pµi
X(L)

µ1...µi...µL
= 0. (82)

(iii) Tracelessness with respect to the summation over any two indices:

gµiµj
X(L)

µ1...µi...µj ...µL
= 0. (83)

Let us consider a one-loop diagram describing the decay of a composite system into two spinless
particles, which propagate and then form again a composite system. The decay and formation
processes are described by angular momentum operators. Owing to the quantum number
conservation, this amplitude must vanish for initial and final states with different spins. The
S-wave operator is a scalar and can be taken as a unit operator. The P-wave operator is a
vector. In the dispersion relation approach it is sufficient that the imaginary part of the loop
diagram, with S- and P-wave operators as vertices, equals 0. In the case of spinless particles,
this requirement entails

∫ dΩ

4π
X(1)

µ = 0 , (84)

where the integral is taken over the solid angle of the relative momentum. In general, the result
of such an integration is proportional to the total momentum Pµ (the only external vector):

∫ dΩ

4π
X(1)

µ = λPµ . (85)

Convoluting this expression with Pµ and demanding λ = 0, we obtain the orthogonality con-
dition (82). The orthogonality between the D- and S-waves is provided by the tracelessness
condition (83); equations (82), (83) provide the orthogonality for all operators with different
angular momenta.

The orthogonality condition (82) is automatically fulfilled if the operators are constructed
from the relative momenta k⊥µ and tensor g⊥µν . Both of them are orthogonal to the total
momentum of the system:

k⊥µ =
1

2
g⊥µν(k1 − k2)ν , g⊥µν = gµν −

PµPν

s
. (86)

In the c.m. system, where P = (P0, ~P ) = (
√
s, 0), the vector k⊥ is space-like: k⊥ = (0, ~k, 0).

The operator for L = 0 is a scalar (for example, a unit operator), and the operator for L = 1
is a vector, which can be constructed from k⊥µ only. The orbital angular momentum operators
for L = 0 to 3 are:

X(0)(k⊥) = 1, X(1)
µ = k⊥µ , (87)

X(2)
µ1µ2

(k⊥) =
3

2

(
k⊥µ1

k⊥µ2
− 1

3
k2
⊥
g⊥µ1µ2

)
,

X(3)
µ1µ2µ3

(k⊥) =
5

2

[
k⊥µ1

k⊥µ2
k⊥µ3

− k2
⊥

5

(
g⊥µ1µ2

k⊥µ3
+ g⊥µ1µ3

k⊥µ2
+ g⊥µ2µ3

k⊥µ1

) ]
.
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The operators X(L)
µ1...µL

for L ≥ 1 can be written in the form of a recurrency relation:

X(L)
µ1...µL

(k⊥) = k⊥αZ
α
µ1...µL

(k⊥) ,

Zα
µ1...µL

(k⊥) =
2L− 1

L2

( L∑

i=1

X(L−1)
µ1...µi−1µi+1...µL

(k⊥)g⊥µiα

− 2

2L− 1

L∑

i,j=1
i<j

g⊥µiµj
X(L−1)

µ1...µi−1µi+1...µj−1µj+1...µLα(k⊥)
)
. (88)

The convolution equality reads

X(L)
µ1...µL

(k⊥)k⊥µL
= k2

⊥
X(L−1)

µ1...µL−1
(k⊥). (89)

On the basis of Eq.(89) and taking into account the tracelessness property of X(L)
µ1...µL

, one can
write down the orthogonality–normalisation condition for orbital angular operators

∫
dΩ

4π
X(L)

µ1...µL
(k⊥)X

(L′)
µ1...µ′

L
(k⊥) = δLL′αLk

2L
⊥
,

αL =
L∏

l=1

2l − 1

l
. (90)

Iterating equation (88), one obtains the following expression for the operator X(L)
µ1...µL

:

X(L)
µ1...µL

(k⊥) = αL

[
k⊥µ1

k⊥µ2
k⊥µ3

k⊥µ4
. . . k⊥µL

− k2
⊥

2L− 1

(
g⊥µ1µ2

k⊥µ3
k⊥µ4

. . . k⊥µL
+ g⊥µ1µ3

k⊥µ2
k⊥µ4

. . . k⊥µL
+ . . .

)

+
k4
⊥

(2L−1)(2L−3)

(
g⊥µ1µ2

g⊥µ3µ4
k⊥µ5

k⊥µ6
. . . k⊥µL

+g⊥µ1µ2
g⊥µ3µ5

k⊥µ4
k⊥µ6

. . . k⊥µL
+ . . .

)
+ . . .

]
. (91)

The projection operator Oµ1...µL
ν1...νL

(or Oµ1...µL
ν1...νL

(⊥ P )) is constructed of the metric tensors g⊥µν .
It has the properties as follows:

X(L)
µ1...µL

Oµ1...µL
ν1...νL

= X(L)
ν1...νL

,

Oµ1...µL
α1...αL

Oα1...αL
ν1...νL

= Oµ1...µL
ν1...νL

. (92)

Taking into account the definition of projection operators (92) and the properties of the X-
operators (91), we obtain

kµ1 . . . kµL
Oµ1...µL

ν1...νL
=

1

αL

X(L)
ν1...νL

(k⊥). (93)

This equation is the basic property of the projection operator: it projects any operator with L
indices onto the partial wave operator with angular momentum L.
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For the lowest states,

O = 1 , Oµ
ν = g⊥µν ,

Oµ1µ2
ν1ν2

=
1

2

(
g⊥µ1ν1

g⊥µ2ν2
+g⊥µ1ν2

g⊥µ2ν1
−2

3
g⊥µ1µ2

g⊥ν1ν2

)
. (94)

For higher states, the operator can be calculated using the recurrent expression:

Oµ1...µL
ν1...νL

=
1

L2

( L∑

i,j=1

g⊥µiνj
Oµ1...µi−1µi+1...µL

ν1...νj−1νj+1...νL
(95)

− 4

(2L− 1)(2L− 3)
×

L∑

i<j
k<m

g⊥µiµj
g⊥νkνm

Oµ1...µi−1µi+1...µj−1µj+1...µL
ν1...νk−1νk+1...νm−1νm+1...νL

)
.

The product of two X-operators integrated over a solid angle (that is equivalent to the inte-
gration over internal momenta) depends only on the external momenta and the metric tensor.
Therefore, it must be proportional to the projection operator. After straightforward calcula-
tions we obtain

∫ dΩ
4π
X(L)

µ1...µL
(k⊥)X(L)

ν1...νL
(k⊥)=

αL k
2L
⊥

2L+1
Oµ1...µL

ν1...νL
. (96)

Let us introduce the positive valued |~k|2:

|~k|2 =−k2
⊥

=
[s−(m1+m2)

2][s−(m1−m2)
2]

4s
. (97)

In the c.m.s. of the reaction, ~k is the momentum of a particle. In other systems we use this

definition only in the sense of |~k| ≡
√
−k2

⊥
; clearly, |~k|2 is a relativistically invariant positive

value. If so, equation (96) can be written as

∫
dΩ

4π
X(L)

µ1...µL
(k⊥)X(L)

ν1...νL
(k⊥)=

αL |~k|2L

2L+1
(−1)LOµ1...µL

ν1...νL
. (98)

The tensor part of the numerator of the boson propagator is defined by the projection operator.
Let us write it as follows:

F µ1...µL
ν1...νL

= (−1)LOµ1...µL
ν1...νL

, (99)

with the definition of the propagator

F µ1...µL
ν1...νL

M2 − s
. (100)

This definition guarantees that the width of a resonance (calculated using the decay vertices)
is positive.
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Figure 2: The acceptance-corrected Dalitz plot for the pp̄ annihilation into π0π0π0 in liquid H2

and the result of the two solutions.

Figure 3: Mass projection of the acceptance-corrected Dalitz plot and angular distributions for
specific mass slices. The data are taken from the pp̄ annihilation into 3π0 in liquid H2. Solid
curves correspond to the solution 1 and dashed curves to the solution 2.
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Figure 4: The acceptance-corrected Dalitz plot for the pp̄ annihilation into π0π0π0 in gaseous
H2 and the result of the two solutions.

Figure 5: Mass projection of the acceptance-corrected Dalitz plot and angular distributions for
specific mass slices. The data are taken from the pp̄ annihilation into π0π0π0 in gaseous H2.
Solid curves correspond to the solution 1 and dashed curves to the solution 2.
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Figure 6: The acceptance-corrected Dalitz plot for the pp̄ annihilation into ηπ0η in liquid H2

and the result of the two solutions.

Figure 7: Mass projections of the acceptance-corrected Dalitz plot and angular distributions
for specific mass slices. The data are taken from the pp̄ annihilation into ηπ0η in liquid H2.
Solid curves correspond to the solution 1 and dashed curves to the solution 2.37
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Figure 8: The acceptance-corrected Dalitz plot for the pp̄ annihilation into ηπ0η in gaseous H2

and the result of the two solutions.

Figure 9: Mass projections of the acceptance-corrected Dalitz plot and angular distributions
for specific mass slices. The data are taken from the pp̄ annihilation into ηπ0η in gaseous H2.
Solid curves correspond to the solution 1 and dashed curves to the solution 2.38
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and the result of the two solutions.

Figure 11: Mass projections of the acceptance-corrected Dalitz plot and angular distributions
for specific mass slices. The data are taken from the pp̄ annihilation into π0π0η in liquid H2.
Solid curves correspond to the solution 1 and dashed curves to the solution 2.39
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Figure 12: The acceptance-corrected Dalitz plot for the pp̄ annihilation into π0π0η in gaseous
H2 and two solutions.

Figure 13: Mass projections of the acceptance-corrected Dalitz plot and angular distributions
for specific mass slices. The data are taken from the pp̄ annihilation into π0π0η in gaseous H2.
Solid curves correspond to the solution 1 and dashed curves to the solution 2.
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Figure 14: Solution 1. The contributions of S-wave (two left columns) and D-wave (three
right columns) to Y00 moment integrated over t intervals. First line: −0.1< t<−0.01 GeV2,
second line: −0.2 < t < −0.1 GeV2, third line: −0.4 < t < −0.2 GeV2 and the bottom line:
−0.4<t<−1.5 GeV2.
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Figure 15: Solution 2. The contributions of S-wave (two left columns) and D-wave (three
right columns) to Y00 moment integrated over t intervals. First line: −0.1< t<−0.01 GeV2,
second line: −0.2 < t < −0.1 GeV2, third line: −0.4 < t < −0.2 GeV2 and the bottom line:
−0.4<t<−1.5 GeV2.
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Figure 16: The description of the moments extracted at −0.1< t<−0.01 GeV2 (the left two
columns) and −0.2<t<−0.1 GeV2 (the right two columns). Dashed curves correspond to the
solution 1 and full curves to the solution 2.

Y0
0

Y0
2

Y1
2

Y0
4

Y1
4

Y0
6 Y0

8

Y0
0

Y0
2

Y1
2

Y0
4

Y1
4

Y0
6 Y0

8

Figure 17: The description of the moments extracted at −0.4<t<−0.2 GeV2 (two left columns)
and −1.5< t <−0.4 GeV2 (two right columns). Dashed curves correspond to the solution 1
and full lines to the solution 2.
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Figure 18: Pole structure of the 2++-amplitude in the region of the ωω-threshold: the resonance
f2(1560): a) solution 1(i), b) solution 1(ii)
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Figure 19: From left to right: a) The ππ → ππ S-wave amplitude squared, b) the amplitude
phase and c) the Argand diagram for the S-wave amplitude ππ → ππ.

0

0.2

0.4

0.6

0.8

1

1 2
√s

−
 (GeV)

|A
|2

0

20

40

60

80

100

120

140

1 2
√s

−
 (GeV)

δ D
 (

de
g)

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5

1200

1290

1410

1600

2000

Re A

Im
 A

Figure 20: From left to right: The ππ → ππ D-wave amplitude squared, the amplitude phase
and the Argand diagram for the amplitude.
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Figure 21: Angular distributions for specific mass slices. a) p̄p → 3π0 (gas) b) p̄p → π0ηη
(liquid), c,d,e) p̄p → π0ηη (gas). Solid curves correspond to the solution 2 and dashed curves
to the solution 2(-) with excluded f0(1300).
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Figure 22: The description of the moments extracted at −0.1<t<−0.2 GeV2 (two left columns)
and −0.4<t<−0.2 GeV2 (two right columns). Solid curves correspond to the solution 2 and
dashed line to the solution 2(-) with excluded f0(1300).
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Figure 23: Solution 2(-) with f0(1300) excluded from the fit. The contributions of S-wave
to Y00 moment integrated over different t intervals. First line: t < −0.1 GeV2, second line:
−0.1<t<−0.2 GeV2, third line: −0.2<t<−0.4 GeV2 and the bottom line: −1.5<t<−0.4
GeV2.
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Figure 24: From left to right: The ππ → ππ G-wave amplitude squared, the amplitude phase
and the Argand diagram for the amplitude.
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