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Abstract

The amplitude for the anomalous process — mx is evaluated to two loops in the chiral
expansion by means of a dispersive method. The two new coupling constants that enter at this order
are estimated via sum rules derived from a non-perturbative chiral approach. With these coupling
constants fixed, the numerical results are given and compared with the available experimental
information.d 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

At low energies, the strong interaction between pions can be described by the effective
field theory of QCD called chiral perturbation theory (ChPT) [1-4]. In this effective field
theory the interaction between pions is analyzed in terms of a systematic expansion in
powers of the low external momenta and the small pion mass. This chiral expansion is
equivalent to an expansion in the number of loops and works very well for processes
involving pions [5].

In the normal intrinsic parity sector, the chiral expansion start$(@f’) and is obtained
from the leading order chiral Lagrangian. In this sector the one-loap(ef*) corrections
were extensively treated in the works by Gasser and Leutwyler [2,3], and many processes
have now been calculated to this order. The further extension to two loop$6% has
also been undertaken with several two-flavour calculations already published in the normal
sector [6-10].

For the abnormal intrinsic parity sector, the chiral expansion start3(af) and is
obtained from the Wess—Zumino—Witten effective action [11]. In this sector the one-loop
corrections of0 (p®) have also been analyzed [12], and some anomalous processes have
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been calculated to this order [13]. However, contrary to the case in the normal sector, no
two-loop calculations o® (p®) have been published for processes in the anomalous sector.

In this paper the anomalous process — nw is calculated to two loops using a
dispersive method. This process is important for the theory of chiral anomalies and has
previously been calculated to both leading [14] and one-loop [15] order in the chiral
expansion. However, both of these results are somewhat below the present experimental
data [16]. This has motivated new and more precise experiments, which will be performed
at different facilities such as CERN [17], FNAL [18], and CEBAF [19].

Itis therefore important to evaluate the two-loop corrections and compare the result with
the experimental information. This is the purpose of the present paper, which is organized
as follows. In Section 2, the notation and kinematics of the progess> = are given,
whereas previous ChPT results are reviewed in Section 3. The general dispersive formula
is derived in Section 4, together with the explicit calculation of the two-loop corrections.

In Section 5, this two-loop result is used in a non-perturbative chiral approach in order to
estimate the two new coupling constants from sum rules. The numerical results are given
in Section 6, including the comparison with experiments, and Section 7 consists of a short
conclusion.

2. Kinematics

The amplitude for the anomalous process

y(@)m (p) — 7~ (p2)7°(po) 1)
is given in terms of the scalar functidmy; (s, ¢, u) as

A =iF3(s,1,u)e""*P e, p1yp2a pop, )

wheres = (p1+ q)?, t = (p1 — p2)?, andu = (p1 — po)? are the Mandelstam variables.
In the following it is assumed that all particles are real. In this case + u = 3M?2, so
that in the center of mass system one has

t = %[3M7§—s+(s—M§)‘/l—4M7§/sCOSG],
u = %[3M§—s—(s—MjE),/l—4M§/sCOSQ], (3)

with 6 the center of mass scattering angle. Because of isospin symmetry, the other
ym — s reactions are given by the same scalar functti@p(s, 7, u), which is fully
symmetrical in its arguments. The total cross section is obtained from the expression
T
( _ M2 in3
s —MZ) | dO Sin®0|Fax (s, t,u)
0
and the partial wave expansion of the scalar funcfigqn(s, ¢, u) is of the form

Faz(s,t,u) =Y _ fi(s)P/(COSO). (5)
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The projection onto the lowegt partial wave is given by

fi1(s) = i/d!? SiNP 0 Far (s, 1, u), (6)
87

and the higher partial waves can be projected out in similar ways. This partial wave
expansion contains only oddsince the pions in the final state have the total isospin

I = 1. In the unitarity relation, the complete set of intermediate states are the same as for
nr scattering. Within the elastic approximation containing only the two-pion intermediate
state, the unitarity relation is

Im fi(s) = o () £ ()t (5), @)

with o (s) = /(s — 4M2) /s the phase-space factor an;’rdhenn partial wave with isospin

I =1 and angular momentuim This unitarity relation implies that the phase gfwill
coincide with therr phase shiftSl1 in accordance with Watson’s final-state theorem [20].
Inelasticities due to other intermediate states such as the four-pion Kikhetates remain
very small below 1 GeV and are completely negligible at low energies.

3. Chiral expansion

Anomalous processes start @i(p*) in the chiral expansion and are obtained from
the Wess—Zumino-Witten effective action at tree level. With only the electromagnetic
interaction as external fields, these anomalous processes contain exclusively an odd
number of pseudoscalars, i.e., they have abnormal or odd intrinsic parity. For the process
yn — nm, the leading order chiral result for the scalar functiBgy (s, ¢, u) is given
by [11,14]

. (0) o ENC
FSN(S’I’M)_Fsﬂ_]_ZT[ZFj?’ (8)
where N, = 3 is the number of colors anB, = 92.4 MeV is the pion decay constant.
Another related anomalous process is the decfy- yy, where theF;,, coupling

obtained at leading order is of the form [11,21]

o _ oNe ©)

VY 3 Fy
These two results are exact in the soft pion and soft photon limit where they are related
to each other by the low-energy theord®), = an/eij. For the decayr® — yy, the
prediction from Eq. (9) is in excellent agreement with the experimental information, thus
providing important evidence for the three-color nature of the strong interaction. However,
for the process'w — 7, the corresponding predictiofs, = 9.7 GeV 2 is somewhat
lower than the experimental measuremégt = 129+ 0.9 + 0.5 GeV 2 [16], which
could even be said to favor the valie = 4.

It is therefore of importance to calculate the corrections to the soft pion and soft photon

limit. Within ChPT these corrections can indeed be calculated in a systematic manner. The
first correction is the one-loop contribution©f( p®), which has previously been calculated
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for both processes. In the case of the det8y> yy, these one-loop corrections turn out

to be very small [22], i.e., they do not spoil the excellent agreement with the experimental
information. On the other hand, for the process — n ., the one-loop contributions are
larger and they will therefore be of importance when comparing with the experimental
measurement. The expression for the scalar fundiigs, ¢, u) to this order in the chiral
expansion is [15]

647

2
an(s,t,u)zFég)[]_— 3% CE(M)(s+t+u)+Cl”j|, (10)

where the tern€;" contains the contributions from the loops and is given by

. 1 M2 5
Cl = W —(S+t+M)|OgF+§(S+t+M)

+ F(s) + F(1) + Fw)], (11)

24712F3[

with F(x) expressed in terms of the standard one-loop function as
- 1
F(x)=4r%(x — 4M2)J (x) — > (12)

The expression (10) converges to the chiral anom@gg) in the soft pion and soft
photon limit and is given in terms of the renormalized low-energy constgnfrom

the O(p® anomalous chiral Lagrangian [12]. This low-energy constant depends on
the renormalization scalgc and is needed to absorb divergences in the one-loop
calculation. In principleC; should be determined phenomenologically, preferably from
other observables, but at present this appears to be rather out of reach. Therefore, this low-
energy constant has been estimated using the assumption of vector resonance saturation,
which is known to work well for theo (p*) non-anomalous low-energy constants [23].
Assuming that the same is the case for the®) anomalous low-energy constants, one

has [15]

Ch(u) = —ﬁim, (13)

with the renormalization scale typical chosen at the resonancescal&f, = 770 MeV.

Having fixed the value of this low-energy constant, it is possible to obtain the prediction

for the one-loop expression (10). This improves the agreement with the experimental

measurement [16]. However, the prediction is still on the lower side of the data [15,17,18].
Therefore, it is important with both theoretical and experimental improvements.

Indeed, significant improvements on the experimental side are expected from several new

experiments [17-19]. A similar improvement on the theoretical side would involve the

calculation of the two-loop corrections. This could be done by a full field theory calculation

to two loops. However, these two-loop corrections can also be calculated by a dispersive

method, which will be the subject of the next section.
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4. Dispersive representation

4.1. Derivation of the dispersive formula

The anomalous processr — o is in many ways similar to ther%z° — 7070

scattering process. They are both described in terms of a single scalar function, which is
fully symmetrical in thes, ¢, andu variables. Thern scattering process can be described
by Roy equations [24] derived from the fundamental principles of analyticity, crossing, and
unitarity. When these Roy equations are combined with the chiral expansion, the general
structure of therr scattering amplitude can be obtained from a dispersive representation
to two loops in the chiral expansion [8,25].

The same is also the case for the process— m . In order to show this, one starts
with a fixed+ dispersion relation for the scalar functidia, (s, r, u). Fixed+ dispersion
relations with two subtractions are known to exist for scattering due to the Froissart
bound. Assuming that the same is also the case for the preeess =, one has the
fixed dispersion relation

o0
1 Im Fay (s', ¢ 2 2
an(s,t)zC(t)—i——/ds/ 3 (8 )< ,S + = ) (14)
T S

572 -5 S
4M2
whereu = 3M§ — s —t. Thes <> u symmetry of F3, (s, ¢, u) implies that there is no
subtraction constant linear in Therefore, the only subtraction constanti¢), where
the+ dependence can be obtained from the- r symmetryFs; (0, 1) = F3,(¢,0). This
implies thatC () can be written as

1 [ ImF (s',0) [ 1? (BM2 —1)?
B 1 ,Im Fa, (s, t s —t
o =cO+ T / ds 52 (s’—t + s’—3M§+t>

4M2

o0
1 / 4 Im Fa (s, 1) (3M2 —1)?

T 572 s’—3M§+t’

(15)
4M2
which can be inserted in Eq. (14). By construction, the resulting dispersion relation exhibits
s <> u symmetry for fixed, whereas <>+ symmetry for fixed: is not manifest. In order
to impose this latter symmetry one can expand the absorptive p&g,of’, r) in partial
waves using Eq. (5). Writing this expansion in the form
Im Far (s", 1) = Im fa(s) +Im@(s', 1), (16)
the higher partial waves with> 3 are contained in the function Ié(s’, r), which is given
by
Im& (s, t) = Z Im fi(s") P/ (cosd). (17)
>3

With this decomposition of the partial waves, it is possible to rewrite Eq. (14) @ith
given by Eq. (15) as
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Far (s, t, 1) = Fa (s, 1, u) + ®3 (s, 1, 1), (18)

Wherefgﬂ (s,t,u) anddsz, (s, t, u) are given by

17 Y 2 2
- m /
F3r (s, t,u) = C(0) + — f ds' f/lz(s )< /s " Lo )

s'—s s'—t s —u
4Mm2

1 F (s’ 1) 2 2 (3BM2 — 1)2
m s, t s u —t

Dz, (s, t,u) = — ds’' . + — T

3 ) b4 / 572 <s’—s s'—u s’—3M§+t>

am2

1 [ Ime. 0/ 2  3M2—1)?
m S t —1
= [ ay : 7 . 19
+n/ g 572 <s’—t+s/—3M7%+t) (19)

4M2

This is the Roy equation for the anomalous process — ww. One observes that
Far (s, 1, u) is NOW fully symmetrical ins, ¢, andu, whereas this symmetry is not manifest
in @3, (s, t,u). However, at low energies, the absorptive part of the higher partial waves
with [ > 3 is negligible. This implies that in practie®s, (s, ¢, u) can be treated in a simple
way as a small, real correction at low energies. This fact makes the corresponding Roy
equations forrr scattering very useful.

In ChPT the absorptive part of the higher partial waves is indeed suppressed. Within this
methodology, these higher partial waves only star® gb°) in the chiral expansion. Since
the corresponding = partial waves start a® (p*), perturbative unitarity implies that the
absorptive part of the higher partial waves witk 3 is of O (p*©) or higher in the chiral
expansion. Thus, up to this order, the tedrg, (s, ¢, u) in Eq. (18) vanishes, and the full
amplitude is given entirely by the functiafs, (s, £, ). In order for the full amplitude to
formally satisfy the chiral anomaly in the soft pion and soft photon limit, one may write
the subtraction constant 850) = F?Eg)[1+ C(s+1+u)], wheres +1+u= 3M§. Thus,
assuming for the moment that two subtractions are indeed sufficient, the full amplitude to
O (p®) in the chiral expansion may be written as

Fan(s,t,u) = FO[14Cls +1+u)]

1 7 | / 2 2 2
m t
+ = / FRALFICOY 1), (20)
T 572 s'—s =t s
4M2

In this dispersive representation, the absorptive part of the lowest partial wave can be
determined from unitarity. In the general unitarity relation, thep?on invariant phase
space is of0 (p*—*), the amplitude for multi-pion scattering is dominantly 6 p?),

and the amplitude for multi-pion photo-production is at leastafp?). Consequently,
intermediate states containing more than two pions are suppressed at leas? (4p-%

in the chiral expansion. Therefore, within SU(2) ChPT, the absorptive part of the lowest
partial wave is given by elastic unitarity 1 (p®) as

Im %) = 0,
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Im £17(s) = o) ;)17 7 (s,

Im £2(s) = a()[ /2 (s)Rer; P (s) + Re fP ()1 P (5)], (21)
where f(”) is the P partial wave ofO (p?+%) andt " the corresponding  partial
wave ofO(p2”+2) [2]. In SU(3) ChPT, one must also include the inelasticity fromkhk

intermediate state. However, since this inelasticity is completely negligible at low energies,
only SU(2) ChPT will be considered in the following.

1(n)

4.2. The amplitude to two loops

From the dispersive representation (20), one obtains straightforwardly the one-loop
ChPT formula (10) by setting Iy = Im fl(l). In this case the subtraction constant
can be expressed in terms of the low-energy congtgrand chiral logarithms. However,
in order to calculate the amplitude to two loops, it is necessary to use one subtraction more
in the dispersive representation. This is due to the fact that the absorptive pﬁft?t) of
behaves as? modulo log factors. Thus, the amplitude to two loops can be obtained from
the following dispersion relation:

Fan(s,t,u) = Fy2[14 C(s +1 4 u) + D(s? + 12+ u?)]

1 7 / 3 3 3
m t
+—/ds’ f};”( AL A ) (22)
T ) S

—s =t s —u

4M2
whereC andD are the two subtraction constants andfhis given by Imf; = Im f(l)
Im f(z) with Im f(l) and Imfl(z) determined from Eq. (21). This dispersion relation can
be evaluated with the same methodology as has been applied in the calculation af the
scattering amplitude [8] and the pion form factors [6] to two loops. With the use of this
methodology, the result can be written as

Fan(s,t,u) = FO[14Cls +1 4 u) + D(s? + 2 +u?) + UM(s) + UL (1)
+UAu) + UA(s) + U0 + U2 )], (23)

where thel/4 term can be expressed in the compact analytic form:

A 2 2.2 x? Mz ?
U = s 1+ 24 J a
) 16712F7${9M2[ + 2475000 ()] - 60M4}+<167r2F2)
{[12—11+ = }271\/14 [14 247°%6°(x)J (x)]
x? - x? 3191x% 223 x 16

_ I — S Wit g e
3002 "~ 20m3 ' " Gasom? T 216MZ 9
wx X 4r? [ x? X -
-T2 (372 +15 75 151> 4+ 99)J
540M2< M2 * ) 27 ( M2 Mz ) -
212M?
Ox

2 X _

e
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x? 13 x —

The explicit expressions for the functiofig (x) and K4(x) are given in Ref. [8], where
these functions were introduced in the evaluation ofstlescattering amplitude to two
loops. They are analytic functions with cuts starting at #hve threshold and can be
expressed in terms of the standard one-loop funcian). As for the other termi/4,

this part does not have a compact analytic representation in terms of elementary functions.
However, it can be obtained numerically from the dispersive representation:

.x3 ].?ds/ G(S/) Refl (S )tl(o)(s/)

A —_
vt = T §3(s" — x)

(25)
4M2

In this dispersive formulall(o) is the lowest orderrr P partial wave ancj”lA is given by

5
) = —/d.Q sin 0 96ﬂ2F2{§(I+u)+4[F(t) +F(u)]}, (26)

with ¢ and u determined from Eq. (3) and'(x) given by Eq. (12). The size of the
corrections fromU4 are very small at low energies and they can therefore in practice
be neglected at these energies.

In the dispersive representation, Eq. (23), the full amplitude to two loops is determined
up to the subtraction constarttsand D. These subtraction constants may be parameterized
in terms of the coupling constanis, ¢», andd, as

1 Ly, oMp oo
= 1602r2 |\ T 6) T 1e2E2 )
1 1 1
— &, 27
16n2F3[60M3 T Ter2r2 2] 7)

where the coupling constant can be expressed in terms of the p®) anomalous low-
energy constant’;, and chiral logarithms:

aQl

S|

647 1 M?
2
¢1=1672F |:—3—C2(//,) 6712F2 log—=- i| (28)

The coupling constantg, and d» enter at t\No-Ioop order in the chiral expansion and
contain contributions both from two-loop diagrams and from the unknown renormalized
low-energy constants, which parameterize thg®) anomalous chiral Lagrangian.

5. Non-perturbative chiral approach

5.1. The lowest partial wave

From the two-loop expression for the amplitude, Eq. (23), one may project out the lowest
P partial wave with the use of Eq. (6). This gives the expansion

fs) = 7260 + 1P 6) + £2s), (29)
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which will satisfy the perturbative unitarity relations (21). These relations work very
well at low energies, whereas the deviation from exact unitarity, Eq. (7), becomes more
pronounced as the energy is increased. At these energies, still higher order unitarity
corrections will start to be of importance in the chiral expansion. This is particularly the
case in thep(770) resonance region, where unitarity corrections are essential.

In the presence of the(770) resonance, unitarity will therefore be of the utmost
importance. There are different ways to combine exact unitarity and the chiral expansion
in order to try to account for this resonance. One such method, which has been
successfully applied to many different processes, is the so-called non-perturbative inverse
amplitude method (IAM) [26—29]. Since this is a rather general method, it can also be
straightforwardly applied to the present case. The starting point for the IAM is to write
down a dispersion relation for the inverse of the partial waven this dispersion relation,
exact unitarity and the chiral expansion are used to compute the important right cut,
whereas the left cut and the subtraction constants are approximated by ChPT. If one writes
down a similar dispersion relation for the chiral expansion using perturbative unitarity on
the right cut, it is possible to express the result of the IAM in a simple way in terms of the
chiral partial waves. With the two-loop ChPT expansion (29), the result of the IAM can be
written as

F%)

120 = 1) + 12106 - 12 5)
This is formally equivalent to th€0, 2] Padé approximant applied to ChPT and will
therefore coincide with the chiral expansion up to two loops. However, since exact unitarity
was used in the derivation of the 1AM, it is expected that this result will improve ChPT at
higher energies. The IAM applied to two-loop ChPT has been extensively discussed in
Ref. [28], where the detailed derivation of the general result can also be found.

The result of the 1AM, Eq. (30), depends on the pion mass and pion decay constant,
which will be set equal toM, = 1396 MeV and F, = 924 MeV, respectively.
Furthermore, the 1AM is also given in terms of the low-energy constantsi; and/y.
These low-energy constants appear in the CRRTP partial wave to one loop order and
can been determined phenomenologically from other sources. However, since the 1AM
contains higher order unitarity corrections, the phenomenological values of these low-
energy constants in the IAM do not necessarily coincide precisely with the values obtained
in ChPT. For the combinatida— /1, this has been determined by applying the IAM to one-
loop ChPT in the case ofr scattering with the resulp — /; = 5.8 [28]. The other low-
energy constarii has been determined in ChPT from the pion scalar form factor with the
central valudy = 4.4 [7]. Since the IAM (30) does not depend much on the precise value
of this low-energy constant, the same value can also be applied in the IAM. Finally, this
result also depends on the one-loop coupling constarithis coupling constant is related
to the low-energy constar;, which has been estimated from the assumption of vector
resonance saturation, Eq. (13) [15]. With the valuecéfchosen at the renormalization
scaleyn = My, one findsc; = 1.71. Therefore, in the IAM (30), the values

Io—11=5.8, Ia =44, c1=171, (31)

f1(s) = (30)
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Fig. 1. The phase of the lowest partial waye obtained from the IAM, Eq. (30), compared to
the experimentalrn phase shiftﬁ% from Ref. [31] (circles), Ref. [32] (squares), and Ref. [33]
(diamonds).

will be used throughout. Having fixed these constants, it is possible to determine the
remaining two-loop coupling constanis andd> in the IAM from the mass and width

of the p(770) resonance. The mass of this resonance can be defined as the energy where
the phase passed 9and the width can be determined from the slope of the phase at the
resonance. Witld/, = 7700 MeV andl, = 1507 MeV [30], this gives the values

G =217, dr =3.477, (32)

where the IAM depends rather stronglyénand to a lesser extent @p. With these values

the IAM gives the phase shown in Fig. 1. It is observed that the result agrees very well
with the experimental phase shifts all the way up to 1 GeV. Therefore, the IAM satisfies

unitarity at least up to this energy. In Fig. 2, the normalized absolute square of the IAM

partial wave is shown. In this case there is no experimental data to be compared with.
However, assuming that the full amplitude is completely dominated by the lowest partial

wave in the resonance region, the cross section (4) can be expressed in tefpits This

cross section is usually parameterized in the resonance region in terms @fthe y

partial widthI';,, by using the Breit-Wigner form

247 s M/%Fprny

o(s)= .
(s — M2)? (s — M2)%2 + M2I'?

(33)

Equating the two expressions for the cross section at the resonance energy, the value
I'z, =96 keV is obtained from the IAM. Experimentally, the value Bf, has been
extracted from the production op via the Primakoff effect by incident pion on
nuclear targets. The present experimental data are, however, not very consistent with
each other [30]. The latest experiment gave the vdllig = 81+ 4 + 4 keV [34],
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Fig. 2. The lowest partial wa\/g‘l/fl(o)lz obtained from the IAM, Eq. (30).

whereas two earlier experiments gave somewhat lower valuedfor [35]. From

the process™e™ — 7y, this partial width has also been obtained giving the value
Iz, =121+ 31 keV [36]. Therefore, at present it can only be concluded that the value
for I';,, obtained from the IAM is not in conflict with the experimental situation, but new
experiments in the resonance region are definitely needed.

5.2. The full amplitude

If the absorptive part of the higher partial waves witk 3 is neglected, it was shown
in Section 4.1 that the full amplitude could be constructed from the absorptive part of the
lowest partial wave. Since the IAM gives a good description of this partial wave up to
a least 1 GeV, one may use the absorptive part of this partial wave in the Roy equation
for ym — nw, EqQ. (20). With the lowest partial wave approximated by the IAM, the Roy
equation may be written with only one subtraction, which is fully determined by the chiral
anomaly result. Therefore, the non-perturbative chiral result for the full amplitude can be
written as

o
1 Im ! t
Pt =+ [ as ff(S)(f + ;UZ)’ (34)

N — S s —

4M2
where Imf1 is given by the absorptive part of the IAM result (30). The full amplitude is
by construction fully symmetrical in, ¢, andu. However, if the lowest partial wavé
is projected out from Eq. (34), the result does not agree exactly with the 1AM result (30).
This is due to the fact that the left cut is now fully determined from crossing symmetry
instead of being approximated by the chiral expansion. In the elastic region below 1 GeV,
the difference is, however, negligible. From the full amplitude, Eq. (34), it is also found
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that the higher partial waves are very small below 1 GeV. Therefore, the cross section
can indeed be expressed in termg Afi2 to a very good approximation. For a somewhat
different evaluation of the Roy equation fprr — 7, see Ref. [37].

As the IAM was derived using elastic unitarity, it is expected that this result is only
applicable in the elastic region. The high energy part of the dispersion relation (34)
is therefore not expected to be very well approximated by the 1AM. Still, at low and
moderate energies the dispersion relation should be almost completely saturated by the
p(770) contribution. Therefore, at these energies the high energy part of the dispersion
relation should not be very important. Furthermore, at these energies it is also expected
that the contribution from the higher partial waves to the Roy equation should be negligible.
Therefore, the non-perturbative chiral result (34) should give a rather accurate description
of the full amplitude at low and moderate energies. From this result, it is possible to
determine the subtraction constatsand D in the two-loop ChPT result (23) via the
sum rules

oo

)
— 11 Im ! — 11 Im !
C = —0 — S/ 7](12(5 ), D= —— / dS/ 7](1(5 ) (35)
F( ) T S/ F(O) T S/3
3T am2 3T am2

Evaluating these sum rules, one obtains the valies0.93 GeV2 andD = 2.12 GeV 4,
respectively. These sum rules are indeed almost completely saturated by the dispersion
relation up to 1 GeV, as the higher energy part only contributes by approximately 2% for
and approximately 1% fob. With the one-loop coupling constafit determined from the
assumption of vector resonance saturation, Eq. (31), this gives the following values for the
two-loop coupling constants

o =—20, dr=21. (36)

These values are slightly different from the values determined directly from the IAM (32).
As it has already been stated, this is indeed to be expected since the IAM contains higher
order unitarity effects, which will effect the determination of these coupling constants.
Another way to combine unitarity and the chiral expansion has been proposed by
Holstein [38]. In this model, vector meson dominance is combined with one-loop ChPT
in order to account for rescattering effects. Projecting out the lowest partial wave, it is
found that unitarity is approximately satisfied and thatshe- =y partial width is given
by Iz, = 84 keV. Within this model, one obtains the values

Gr=—19, dy =209, (37)

which agree very well with the determination given in (36). However, from the model
proposed by Holstein, all higher partial waves have the same phase as the lowest partial
wave, which is in contradiction with the experimental facts. In order to remedy this, the
lowest partial wave obtained in this model may be inserted in the dispersion relation
(34). The resulting amplitude still agrees well with the experimental information, but now
implies that all the higher partial waves are real. This gives the valpes —16 and

dy = 2.8 from the sum rules (35), which is also fully consistent with the values given
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in (36). Therefore, it seems that the solution of the sum rules is rather robust against small
variations of the input.

In the numerical results for two-loop ChPT (23), the valueg,odndd, determined in
(36) will be used together with the value ®f given in (31). For the low-energy constants
I1 andl, these have been determined in ChPT. With the use of the two-loop result for
the 77t scattering amplitude and fitting the partial wave scattering lengths, the value
I, — I3 = 6.0 has been obtained [9]. Similar values have also recently been obtained from
a two-loop calculation of the&;4 form factors [39]. These values are rather consistent
with the value given in (31) but are somewhat lower than the valuel; = 7.8 obtained
from a dispersive improved one-loop calculation of t&ig form factors [40]. However,
the numerical result only depends very slightly on the exact valig-of. Therefore, the
values given in Eq. (31) for both — /1 andl, will also be used for ChPT.

6. Numerical results
6.1. Amplitude and cross section

Fig. 3 shows the absolute square of the amplitude normalized to the chiral anomaly. In
the sub-threshold region, the two-loop result is rather close to the one-loop result, whereas
the corrections start to be of importance slightly above threshold. As for the one-loop
result, this gives an almost constant correction to the leading order chiral anomaly result.
This is due to the fact that the only variation comes fromsthee andu dependency of the

22 T T T T T T T T T T T T T T

2.0 |- /|
YT—>TRT J

u)/Fs t=u)’

|F(s,t

T RS .

0.8 . | . | . | . | . ! . L . L .
0 2 4 6 8 10 12 14 16

Fig. 3. The amplitudeth,7,/F?(ﬂ?)|2 evaluated at = « as a function ofs/M,%. The solid line is the
two-loop result, Eq. (23), the dashed line the one-loop result, Eq. (10), and the dotted line the leading
order chiral anomaly result, Eq. (8). Finally, the long-dashed line is the non-perturbative chiral result,
Eq. (34), and the dash-dotted line is the contribution from the subtraction constants.
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function F' in the one-loop expression (10). The contribution from the subtraction constants
is also shown in the figure, where this contribution is obtained from the expression
Far (s, t,u) = Fég)[lJr C(s+1t4+u)+ D(s2+ 12 +u?)]. Itis observed that this part gives

the main contribution to the two-loop result, which is due to the presence of(T1&D)
resonance. However, the unitarity corrections coming fromUlie) terms are also of
some importance in the numerical result. In fact, these unitarity corrections are essential in
the non-perturbative chiral result, Eq. (34), which is also shown in the figure. The deviation
between this result and the two-loop chiral result gives an estimate of the range of validity
of the truncated chiral expansion. From this deviation, it is observed that still higher order
chiral corrections should begin to be of some importance somewhat asouritDMjf,

which is also observed in other two-loop calculations.

In Fig. 4, the total cross section is shown as a function/af2, where the total cross
section is given by Eqg. (4). Since the one-loop expressiorFQ(s, 7, u) is more or less
constant in the whole phase space, the one-loop result for the cross section gives an almost
constant correction to the leading order result of approximately 20%. Close to threshold,
the additional two-loop correction is rather small compared to the one-loop correction,
whereas this is not the case for higher energies. The additional two-loop correction amounts
to approximately 75% of the one-loop correctionsat 1OM§, and even more at higher
energies. This indicates that even higher order terms in the chiral expansion should begin
to be of importance at this energy. This is also observed in the figure, where the non-
perturbative chiral result begins to deviate from the two-loop result around this energy.

2.0 T T T T T T T T T T

YT

0.8 |-
0.6 -

04

0.0 : ' ; ' ; :

4 6 8 10 12 14 16
sIM.?

Fig. 4. The total cross section as a functions¢M§. The solid line is the two-loop result, the

dashed line the one-loop result, the dotted line the leading order result and the long-dashed line the

non-perturbative chiral result.
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6.2. Comparison with experiments

The processynr — nr has been investigated at low energies by the Serpukhov
experiment [16]. This experiment used the Primakoff reaction of pion pair production by
pions in the nuclear Coulomb field

T4+ (Z,A) > 7 +7°+(Z, A). (38)

The cross section for this process is related tojthe— 7w cross section through the
equivalent photon method

do _ Z°a[¢®—ghn] 1 doyaonx (39)
dsdidg?  x q* ls—-M2 dr
where
doyn—nn  |Fax(s.t,u)[? 2\ i
- — 4M?)sirfo, 40
o 5120 M) o)
and
212
5 s—M

and E is the energy of the incident pion beam. Neglecting tfe dependency in
Faz (s, t,u), i.e., setting;® ~ 0 so thats 4 4+ u = 3M2, the total cross section is given by

Smax
2 2,3/2 2 2
Zca / ds (s —4M7) / [In Qmax+ 9min 1j|

o =
10247 J. 5172 ipin  Dinax

T
x /de S0 | Fa (s, 1, u)|°. (42)
0

The Serpukhov experiment was carried out with a 40 GeV pion beam and the maximum
momentum transfer wag?,, = 2 x 10°3 GeV? « M2. Thus, theq? dependency in
F3 (s, t,u) can indeed be neglected when one compares with this experiment.

The kinematical region studied in the Serpukhov experiment was restrictgghte=
10M§. Three different targets (C, Al, and Fe) were used and the measured total cross
sections were found to agree well with the theoreti€atiependence. Averaging the values
of o/ Z? obtained from the three different targets, the experimental result given in Table 1
was obtained. This experimental result has to be compared with the theoretical predictions,
which are also given in Table 1. It is observed that the two-loop contribution gives a sizable
correction to the one-loop result, whereas the further correction from the non-perturbative
chiral result is rather small. Nevertheless, all results are still somewhat below the central
experimental value, which, however, also has rather large error bars.

From the experimental result of/Z2, it is possible to extract the value of the chiral
anomaIyFég), if this is regarded as a free parameter. These extracted values are shown
in Table 2, where the statistical and systematic errors have been added. The theoretical
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Table 1

The total cross section for the Primakoff reaction (38) dividedBy The theoretical predictions are
obtained from Eq. (42) withz, (s, 7, u) given by the leading order chiral anomaly resuk(p?)),

the one-loop result@(p®)), the two-loop result @ (p®)), and the non-perturbative chiral result
(NPCR). The experimental result is the average value obtained in Ref. [16], where the first (second)
error is statistical (systematic)

op™ o(p® o(p® NPCR Experiment

o/Z2 (nb) 0.92 1.09 1.18 1.21 .834+0.23+0.13

Table 2

The chiral anomaIyF?ES) extracted from the experimental data. The different values correspond to
setting F3; (s, ,u) in EQ. (42) equal to the leading order chiral anomaly resale*)), the one-

loop result 0(p6)), the two-loop I’eSU|t(()(p8)), and the non-perturbative chiral result (NPCR).
The theoretical result is from Eq. (8) with; =924 + 0.3 MeV [30]

o(p* 0(p% ) NPCR Theory

FY (Gev3)  129+14  119+13  114+£13  113+13  97+01

prediction obtained from Eq. (8) is also shown in this table. Wigh(s, ¢, u) given by the
leading order chiral anomaly result, one obtains a valué*ﬁ? which is 2.3 too high
compared with the theoretical prediction. This resultﬁ“éi) is the value generally quoted
from the analysis in Ref. [16]. However, with the one-loop expressionFigi(s, ¢, u),
one obtains a value 01‘3(2) which is only 1.% too high, and with the two-loop result the
disagreement is only at the .3evel.

Since the non-perturbative chiral result is close to the two-loop result, the uncertainty
coming from yet higher orders in the chiral expansion should be rather small, at least in
the kinematical region probed by the Serpukhov experiment. There is of course also some
uncertainty due to the uncertainty in the determination of the coupling congaantsld>.
However, as already discussed, this uncertainty should also be rather small. Therefore,
in view of the disagreement between the theoretical predictions and the Serpukhov
experiment, new improved Primakoff experiments are definitely needed.

The procesym — nr has also been investigated at low energies at CERN [41]. This
experiment used the reactian e — 7~ 7% with 300 GeV pions and measured the total
cross section for this process. It was found that the cross section obtained agreed with the
chiral anomaly prediction with three number of colors. However, since the error bars were
rather large, it was not possible to observe any systematic deviations from the soft pion and
soft photon limit in this experiment.

Therefore, new precision experiments are necessary in order to investigate the process
ynr — nrr and thus the theory of chiral anomalies in greater detail. Indeed, such
new experiments are under way at different facilities. In the COMPASS experiment
at CERN [17] and in the SELEX experiment at FNAL (E781) [18], the Primakoff
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reaction (38) will be measured with 600 and 50-280 GeV pion beams, respectively. In
these two experiments, the expected number of near threshold two-pion events is several
orders of magnitude higher than previously obtained. This will allow analysis of the data
separately in different intervals ofwith small statistical errors.

The SELEX experiment will also measure the reactiore — 7~ 7% in order to obtain
independent information on thgr — wx amplitude. For this reaction, the expected
number of events is also significantly larger than previously obtained, which would give
excellent complementary information @#, (s, 7, u).

Finally, at CEBAF the procesgr — n7 is investigated by measuringg — 7 +t7%
cross sections using tagged photons [19]. Since the resonance region will also be measured
in this experiment, this could give new information on the> wy partial width I';,,.
However, as the incident pion is virtual in the CEBAF experiment, this has to be taken into
account when comparing with theory.

7. Conclusion

The anomalous processr — mxr plays an important role in the theory of chiral
anomalies. At leading order in the chiral expansion, which corresponds to the soft pion
and soft photon limit, the amplitude for this process is given in terms of the humber of
colors N, of the strong interaction. Comparing the leading order result with the present
experimental information [16], one finds that the valje= 4 is favored.

In order to test this important conclusion more precisely, it is necessary with both
experimental and theoretical improvements. Indeed, significant improvements on the
experimental side are expected from several new experiments [17—19]. On the theoretical
side, the one-loop correction to the leading order result has previously been calculated [15].
However, in view of the new precision experiments, it is important also to calculate the
additional two-loop correction to the amplitude.

This has been the purpose of the present paper, where the amplitude for the anomalous
processyr — nmr has been evaluated to two loops in the chiral expansion by means
of a dispersive method. The two new coupling constants that enter at two-loop order
were determined from sum rules with the use of a non-perturbative chiral approach. The
uncertainty in the numerical results due to this determination was estimated to be rather
small. Moreover, the still higher order terms in the chiral expansion were also estimated to
be small at low energies.

The two-loop result improves the agreement with the present experimental informa-
tion [16] compared to both the leading order and the one-loop results. However, the two-
loop prediction is still significantly below the central experimental dataMoe= 3. This
fact is not likely to be due to theoretical uncertainties. Therefore, should the new exper-
iments [17-19] confirm the present central experimental value with better precision, it
would be a serious problem for QCD.
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