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Abstract

In this work, the complete one loop calculation of meson-meson scattering amplitudes within U(3)⊗
U(3) chiral perturbation theory with explicit resonance states is carried out for the first time. Partial
waves are unitarized from the perturbative calculation employing a non-perturbative approach based
on the N/D method. Once experimental data are reproduced in a satisfactory way we then study the
resonance properties, such as the pole positions, corresponding residues and their NC behaviors. The
resulting NC dependence is the first one in the literature that takes into account the fact that the η1
becomes the ninth Goldstone boson in the chiral limit for large NC . Within this scheme the vector
resonances studied, ρ(770), K∗(892) and φ(1020), follow an NC trajectory in agreement with their
standard q̄q interpretation. The scalars f0(1370), a0(1450) and K

∗(1430) also have for large NC a q̄q
pole position trajectory and all of them tend to a bare octet of scalar resonances around 1.4 GeV. The
f0(980) tends asymptotically to the bare pole position of a singlet scalar resonance around 1 GeV. The
σ, κ and a0(980) scalar resonances have a very different NC behavior. The case of the σ resonance is
analyzed with special detail.

1 Introduction

A completely reliable theory to describe the physics in the intermediate energy region (resonance region)
of QCD is still missing nowadays, since neither the low energy effective theory of QCD, namely chiral
perturbation theory (χPT) nor perturbative QCD is valid in this region. The appearance of very broad
resonances, such as σ and κ [1], makes the discussion even more difficult and thus poses a great challenge
for theorists. Several attempts have been done to address the question by implementing non-perturbative
methods inspired from the S-matrix theory [2, 3, 4], typically on the χPT results. One has approaches like
the Inverse Amplitude Method (IAM) [5, 6, 7, 8] to establish the unitarized amplitudes, others are based
on the N/D equations [9, 10, 11, 12, 13], Roy equations [14, 15, 16], or on building specific dispersion
relations for the scattering amplitudes [17, 18], etc. Although the different approaches determine values
for the pole positions of the broad resonances σ and κ in good agreement between each other, their
nature is still a controversial subject. One way to get insight into them is to track the NC trajectories of
resonance poles in the complex plane. All the previous works along this research line [19, 20, 21, 22, 23, 24]
are performed within SU(3) or SU(2) χPT [25]. In the former case the degrees of freedom correspond
to the lightest octet of pseudoscalar mesons, pions π, kaons K and the isoscalar η8, while the singlet
pseudoscalar η1 is considered as a heavy field buried in the chiral counterterms. In the case of SU(2)
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χPT only pions are taken as degrees of freedom. In Ref. [26] the scalar-isoscalar states, including the σ,
are investigated within the large-NC Regge approach.
U(3)⊗U(3) chiral symmetry in QCD is broken because of quantum effects that violate the conservation

of the singlet axial vector current by the UA(1) anomaly [27, 28, 29]. As a result the singlet pseudoscalar
η1 is not a pseudo-Goldstone boson [30]. Nevertheless, from the large NC QCD point of view, the quark
loop responsible for the UA(1) anomaly [27] is 1/NC suppressed, thus indicating that the η1 becomes
the ninth pseudo-Goldstone boson in the large NC limit [31, 32]. Hence it is necessary to include the
η1 meson as a dynamical degree of freedom if one attempts to discuss the NC trajectories of various
resonances. This important fact was lacking in previous studies and is one of the main motivations of
our current work.

Thanks to the large NC QCD, the singlet η1 field can be conveniently incorporated into the effective
field theory by enlarging the number of degrees of freedom of the theory from the octet of pseudo-
Goldstone bosons to the nonet, which is usually called U(3) χPT [33]. One advantage of foremost
importance in our work is to use U(3) χPT for considering the running with NC of resonance poles
because then one has a framework that conceptually admits to consider the large NC limit in χPT . E.g.
it has then the proper number of degrees of freedom.

Compared with SU(3) χPT, employed in the previous studies [19, 20, 21, 22, 23, 24], a novel ingredient
in U(3) χPT is the η1 mass term from the UA(1) anomaly, which has nothing to do with the current
quark masses. The appearance of this new scale in χPT could totally breakdown the well celebrated
chiral power counting. The introduction of the 1/NC expansion in U(3) χPT fixes the problem, since
the singlet mass squared M2

0 behaves as O(1/NC ) in the large NC limit. Thus, in U(3) χPT there are
three expansion parameters: momentum, quark masses and 1/NC , giving rise to a joint triple expansion
δ ∼ p2 ∼ mq ∼ 1/NC . However, one should bear in mind that the value of the singlet mass M0, mainly
determined from the masses of the physical states η and η′, is not a small quantity (for a review see
Ref. [34]). In connection with this problem Ref.[35] used the infrared regularization method (IR), which
is proposed to cure chiral violating terms from loop corrections in baryon chiral perturbation theory in the
low energy region [36, 37], to investigate the η′ physics within U(3) χPT. In IR the basic one loop scalar
integral is divided into the infrared singular and regular parts. The regular part is not considered in IR
because its effects are absorbed into the low energy constants of the theory. One only needs to consider
the infrared singular part. However, contrary to baryon chiral perturbation theory, nothing prevents the
appearance of large η′ masses in the vertices from derivatives acting on the external η′ fields, while this is
not an issue in baryon chiral perturbation theory because of baryon number conservation. By the same
token, in meson χPT the total energy squared in the center of mass frame (CM) is not restricted to be
around one, two, etc η′ masses, which could indeed spoil the validity of a loop calculation within IR.
Although there are some special processes, such as η′ → ηππ [35], which happens to be covered by the
constrained energy region of IR, in general one can not naively apply IR in the pure meson sector.

In the present discussion, we employ standard dimensional regularization, as in conventional SU(3)
χPT [25], already applied in U(3) χPT to calculate the pseudoscalar weak decay constants in Ref. [38].
Then, the triple chiral expansion scheme is necessary for preserving the power counting. Investigations
within U(3) χPT along this line mainly focused on the construction of higher order Lagrangians [39, 40]
and the tree level and one-loop calculations for η − η′ mixing [41, 38]. An important contribution of our
work is to offer the first complete one-loop calculation in U(3) χPT for meson-meson scattering, including
both the loop diagrams contributing to the pseudo-Goldstone masses and decay constants, as well as the
genuine ones of meson-meson scattering. A preliminary version of this calculation is given in Ref. [42].

Previous analyses from other groups only considered tree level amplitudes or performed partial one-
loop calculations [43, 44, 45]. The η′ → ηππ decay was studied in detail. Ref. [35] performed a one-loop

2



calculation within IR, and Ref. [46] undertook a two-loop calculation within the framework of non-
relativistic field theory. However, in this decay the three-momenta of the pions are not small compared
with their mass for some region of the kinematics. Recently, Ref. [47] discussed the same process within the
triple expansion scheme by considering tree level amplitudes and part of the s-channel loops, resumming
ππ final state interactions.

Since one of the main interests of our work is to study resonance properties, we will explicitly include
bare resonance fields in the Lagrangian within the framework of resonance chiral theory [48, 49]. However,
including resonances as dynamical degrees of freedom is not enough to guarantee that one can safely apply
the perturbative results up to the resonance region, since the loops of pseudo-Goldstone bosons, specially
the unitarity or the s-channel loops, start to play an important role around the energy region where
resonances emerge. Thus, a proper way to resum unitarity loops is crucial to study resonance properties.
We use in this work the method provided in Ref. [10] to accomplish this resummation. Notice also that
not all the resonances that stem in our study correspond to bare fields because new resonances come out
when strong enough interactions are resummed.

The present paper is organized as follows. Section 2 is devoted to the introduction of the relevant
chiral Lagrangian. The structure of the perturbative scattering amplitudes is elaborated in Section 3,
which is followed by the partial wave projection and its unitarization in Section 4. The phenomenological
discussion, including the fit quality and features of resonances, such as masses, widths, residues and NC

behavior, is given in detail in Section 5. We conclude in Section 6.

2 Relevant Chiral Lagrangian

The chiral Lagrangian at leading order in U(3) χPT reads [33]

Lχ =
F 2

4
〈uµuµ〉+

F 2

4
〈χ+〉+

F 2

3
M2

0 ln
2 det u , (1)

where 〈. . .〉 denotes the trace in flavor space and the last term corresponds to the UA(1) anomaly η1 mass
term. The definitions for the chiral building blocks are

uµ = iu+DµUu
+ ,

χ+ = u+χu+ + uχ+u ,

U = u2 = ei
√

2Φ

F ,

DµU = ∂µU − irµU + iUlµ ,

χ = 2B(s+ ip) , (2)

where rµ , lµ , s , p stand for external sources and the pseudo-Goldstone bosons are collected in the matrix

Φ =




1√
2
π0 + 1√

6
η8 +

1√
3
η1 π+ K+

π− −1√
2
π0 + 1√

6
η8 +

1√
3
η1 K0

K− K̄0 −2√
6
η8 +

1√
3
η1


 . (3)

In addition, F is the axial decay constant of the pseudo-Goldstone bosons in the simultaneous chiral
and large NC limit. In the same limit the parameter B is related to the quark condensate through
〈0|q̄iqj|0〉 = −F 2Bδij . The explicit chiral symmetry breaking is implemented by taking the vacuum
expectation values of the scalar external source field s = diag(mu,md,ms), with mq the light quark
masses. Throughout we always work in the isospin limit, i.e. taking mu = md.
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We follow the framework in Ref.[48] to include bare resonance fields, where the interaction terms
of pseudo-Goldstone bosons and resonances are invariant under chiral symmetry [50] and the discrete
symmetries of charge conjugation C and parity P . Due to the presence of heavy resonance states, the
momentum expansion is not valid any more in this theory. Nevertheless the 1/NC expansion provides
another guided principle to construct the Lagrangian. The generic NC leading structure of the interacting
operator in resonance chiral theory has only one flavor trace and in a schematic way can be written as

Oi ∼ 〈R1R2 . . . Rj χ
(n) 〉 , (4)

where χ(n) denotes the chiral building block with chiral order O(pn), that only incorporates the pseudo-
Goldstone bosons and the external source fields, and Ri stands for the resonance fields. Although in the
resonance chiral theory the interacting terms with higher chiral orders (n ≥ 4) are not suppressed in
general, many of them are absent if one invokes the short distance constraints from QCD in large NC [49]
and does not allow fine tuning between different operators [51]. To be practical in the phenomenological
discussion we restrict ourselves by including the full set of operators with n ≤ 2. Concerning the number
of resonance states in the interacting vertices, the most relevant ones in meson-meson scattering consist
of one single resonance field.

In regards to the operators attached only to the interactions between the pseudo-Goldstone bosons
beyond leading order, it is commonly believed that they encode the high energy dynamics of the under-
lying theory, which could be represented by the heavier states, such as resonances. It has been shown
that at O(p4) in SU(3) χPT the low energy constants (LECs) are saturated in good approximation by
the lowest multiplet of resonances and thus no additional pieces of LECs seem to be typically needed in
the theory [48, 49].

In the present work, we exploit this assumption on the saturation of the LECs by the lightest reso-
nances, so that, instead of local chiral terms contributing to meson-meson scattering we take the tree
level exchanges of the scalar and vector resonances. In this way we keep all local contributions to meson-
meson scattering up to and including O(δ3), while also generating higher order ones. We also calculate
in addition the one-loop contributions that count one order higher in δ.

The relevant resonance operators for the interactions with the pseudo-Goldstone bosons read [48]

LS = cd〈S8uµuµ 〉+ cm〈S8χ+ 〉+ c̃dS1〈uµuµ 〉+ c̃mS1〈χ+ 〉
+ĉd〈S9uµ 〉〈uµ 〉+ ĉmS1 ln

2 detu , (5)

LV =
iGV

2
√
2
〈Vµν [uµ, uν ]〉 , (6)

where the resonance states are collected in the building block R = S, V ,

S1 = σ1 ,

S8 =




a00√
2
+ σ8√

6
a+0 κ+

a−0 − a0
0√
2
+ σ8√

6
κ0

κ− κ̄0 −2σ8√
6


 ,

S9 = S8 +
1√
3
S1 ,

Vµν =




ρ0√
2
+ 1√

6
ω8 +

1√
3
ω1 ρ+ K∗+

ρ− − ρ0√
2
+ 1√

6
ω8 +

1√
3
ω1 K∗0

K∗− K̄∗0 − 2√
6
ω8 +

1√
3
ω1




µν

. (7)

4



The corresponding kinetic terms for resonance states read [48]

LV
kin = −1

2
〈∇λVλµ∇νV

νµ − 1

2
M2

V VµνV
µν 〉 , (8)

LS
kin =

1

2
〈∇µS8∇µS8 −M2

S8
S2
8 〉+

1

2

(
∂µS1∂µS1 −M2

S1
S2
1

)
, (9)

where

∇µR = ∂µR+ [Γµ, R] , R = V, S,

Γµ =
1

2

[
u†(∂µ − i rµ)u+ u(∂µ − i lµ)u

†
]
. (10)

Compared with Ref. [48] two additional 1/NC suppressed operators appear in LS due to the inclusion
of the singlet η1. These are the monomials proportional to ĉd and ĉm in Eq. (5). From the exchange of
the scalar resonances these terms give rise to tree-level meson-meson contributions that are higher order,
at least O(δ4). In addition, these new operators mainly contribute to processes involving the η′ meson1

and since we deal with experimental data related to π, K and η in the present discussion, as shown
explicitly below, the states with η′ only enter through an indirect way. So their effects are rather tiny in
the current discussion and we discard these two new terms throughout. We have checked that if included
our results barely change. For the remaining parameters of scalar resonances, instead of imposing the
large NC relations to the couplings and masses of the octet and singlet, such as c̃d ,m = cd ,m/

√
3 and

Mσ1
=Mσ8

[48], we free them in our discussion. In this way, we consider effects beyond leading order of
1/NC in the scalar resonance Lagrangian implicitly.

The antisymmetric tensor formalism is used to describe the vector resonance since, as it is demonstrated
in Ref.[49], only in this way one does not need to include extra terms in the pseudo-Goldstone Lagrangian
to fulfill the QCD short distance constraints. For the vector resonances ω and φ, we assume ideal mixing
throughout

ω1 =

√
2

3
ω −

√
1

3
φ , ω8 =

√
2

3
φ+

√
1

3
ω , (11)

and we do not include any 1/NC suppressed operators in this respect. Nonetheless, we employ different
bare masses for the ρ(770) and K∗(892) in order to obtain a good fit to data.

Before finishing this section, we introduce the last pieces of the chiral Lagrangian involving only
pseudo-Goldstone bosons at O(δ) [40]

LΛ = Λ1
F 2

12
DµψD

µψ − iΛ2
F 2

12
〈U+χ− χ+U 〉ψ ,

ψ = −i ln detU ,

Dµψ = ∂µψ − 2〈aµ〉 , (12)

with aµ = (rµ− lµ)/2. The inclusion of such operators does not improve our fits to data indeed. However,
we take into account the monomial proportional to Λ2 to bring our prediction for the masses of η and
η′ at their physical values [1]. This is necessary in the present work, since in the fit all of the pseudo-
Goldstone masses have their physical values, while we need to use our prediction for the masses when

1The term with ĉm is purely proportional to η2
1 while that with ĉd requires at least one η1, which mainly becomes an η′

because the η1 contribution to the η is suppressed by the pseudoscalar mixing angle, as it is shown later.
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we discuss the NC dependence of our results, in particular the movement of resonance poles with NC .
Thus, it is necessary to match our prediction for the masses of the pseudoscalars as a function of NC

with their physical values for NC = 3. Precisely the Λ2 term leads to an important contribution to
the η and η′ masses and in the triple expansion scheme its chiral order is lower than the one of chiral
loops. Though this operator contributes to meson-meson scattering as well, it mainly contributes to the
processes involving η′ and the inclusion of this term barely affects the global fit. Unlike the Λ2 operator
the monomial proportional to Λ1 in Eq. (12) only contributes to the masses and the scattering amplitudes
in an indirect way, i.e. through the normalization of the η′ field, and its influence in the global fit is tiny.
Indeed, if we include this counterterm in our fits to data the resulting fitted value tends to vanish. As
a result, we do not consider any further the Λ1 term neither in scattering nor for the η − η′ mixing and
masses.

Finally, we want to point out that there is no double counting problem by having both the resonance
Lagrangians in Eqs.(5)-(9) and the local pseudo-Goldstone operator Λ2, since the Λ2 term can be only
generated by integrating out the excited pseudo scalar resonances, instead of the scalar and vector ones
considered here.

3 Structure of the scattering amplitudes

Even in the leading order Lagrangian Eq.(1), the flavor eigenstates η8 and η1 are not mass eigenstates
and we use the angle θ to describe the mixing of η8 and η1 at this order

η8 = cθη + sθη
′ ,

η1 = −sθη + cθη
′ , (13)

with cθ = cos θ and sθ = sin θ. In our notation η and η′ are the fields that diagonalize the quadratic terms
of the Lagrangian Eq. (1). The η − η′ mixing at leading order is discussed in Appendix B, Eqs. (B.5)-
(B.7). The differences between η , η′ and the physical states η , η′ are caused by higher order operators,
including loops, and can be treated perturbatively within the triple expansion scheme.

Next we calculate the contributions beyond the leading order to the scattering amplitudes in terms
of the η and η′ fields, while for the leading order terms to meson-meson scattering, stemming from Lχ

Eq. (1), one has to take care of the full η−η′ mixing (see below). We also point out that for the calculation
of the basic amplitudes it is more reasonable to use the η and η′ fields than the η1 and η8 ones. This is
because the insertion of the leading order mixing of η8 and η1 does not increase the order of a diagram,
as illustrated in Fig. 1 for a one-loop contribution. The leading order mixing is proportional to m2

K−m2
π,

and is always accompanied by the inclusion of one extra η8 or η1 propagator that compensates the chiral
power of the vertex. As a result loop diagrams with an arbitrary number of insertions of η8 − η1 mixing
vertices have the same order. On the contrary, the mixing of η , η′ only receives contribution from higher
orders, which guarantees that diagrams with insertions from the η − η′ mixing are indeed suppressed.

Figure 1: The dot denotes the mixing of η8 and η1 at leading order, which is proportional to m2
K −m2

π.
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The calculation of the scattering amplitudes comprises the contact vertex from Lχ Eq.(1), the one
loop and resonance exchange graphs, as illustrated in Fig. 2. In addition, the mass and wave function
renormalization terms, displayed in Fig. 3, should also be included. The latter ones only affect the tree
level scattering amplitudes from Eq. (1) up to the order we attempt to calculate, as the contributions
from the resonances and the loop diagrams are already beyond the leading order. The decay constants
of the pseudo-Goldstone bosons, illustrated in Fig. 4, also give rise to one higher order contributions
by rewriting F in terms of the physical ones in the leading order scattering amplitudes. We express the
scattering amplitudes employing one single physical decay constant Fπ throughout. The relation between
F and Fπ is given in Eq. (C.2).

+

+ + crossed

(a)

+

(b)

+ crossed

(c)

S

(d)

S , V

(e)

Figure 2: Relevant Feynman diagrams in the scattering amplitudes up to one-loop order. In digram (d)
the coupling of the scalar resonances with the vacuum is indicated by a cross.

S

Figure 3: Relevant Feynman diagrams for the pseudoscalar self-energy.

S

Figure 4: Relevant Feynman diagrams for the pseudoscalar decay constants. The wiggly line corresponds
to the axial-vector external source.

Another subtle contribution to the scattering amplitudes is related to the η−η′ mixing, as commented
above. We recall that η , η′ result from the diagonalization of η8 , η1 at leading order, Eq. (13). After
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including the higher order contributions from resonances and chiral loops, η , η′ will mix again and the
physical states η , η′ can be obtained by diagonalizing η , η′. This extra diagonalization process contributes
relevant pieces to the scattering amplitudes through the leading order results from Eq. (1). Thus it is
necessary to work out the η−η′ mixing at the one loop level by calculating the diagrams in Fig. 3. However,
for the already next-to-leading order contributions and higher, namely, those amplitudes obtained from
the exchange of resonances and involving loops, we do not need to distinguish between η , η′ and η , η′, as
their differences only cause higher order effects that are beyond our current consideration.

We parameterize the higher order η − η′ mixing as

L =
1 + δη

2
∂µη∂

µη +
1 + δη′

2
∂µη

′∂µη′ + δk ∂µη∂
µη′

−
m2

η + δm2
η

2
η η −

m2
η′ + δm2

η′

2
η′η′ − δm2 η η′ . (14)

where mη and mη′ defined in Eqs.(B.5) and (B.6) stand for the leading order masses of η and η′ respec-
tively, while the different δi, given in Eq. (B.8), contain the higher order contributions. The physical
eigenstates η and η′ are related with the η and η′ fields by diagonalizing canonically the quadratic terms
in Eq. (14) in the following way

(
η
η′

)
=

(
cos θδ − sin θδ
sin θδ cos θδ

)(
1 +

δη
2

δk
2

δk
2 1 +

δη′
2

)(
η
η′

)
. (15)

We calculate the leading order contributions, corresponding to the diagram (a) of Fig. 2, in terms of
the physical η and η′ fields, so that we can directly use the physical values for the masses. Up to the
order considered in our calculation for meson-meson scattering, namely, up to O(δ3) for local tree level
contributions and up to O(δ4) for the one-loop graphs, we can invert Eq. (15) in a perturbative way.
Then we have

(
η
η′

)
=

(
1− δη

2 − δk
2

− δk
2 1− δη′

2

)(
cos θδ sin θδ
− sin θδ cos θδ

)(
η
η′

)
, (16)

where θδ is determined through

tan θδ =
δ̂m2

m2
η′ − m̂2

η

, (17)

with

m̂2
η = m2

η + δm2
η
−m2

η δη ,

m̂2
η′ = m2

η′ + δm2

η′
−m2

η′ δη′ ,

δ̂m2 = δm2 − 1

2
δk(m

2
η +m2

η′) ,

2m2
η′ = m̂2

η + m̂2
η′ +

√
(m̂2

η − m̂2
η′)

2 + 4δ̂2
m2 ,

2m2
η = m̂2

η + m̂2
η′ −

√
(m̂2

η − m̂2
η′)

2 + 4δ̂2
m2 . (18)

In the previous equations θδ and δi are originated by the higher order contributions from the resonances
and one loop graphs. Up to the precision we consider, it is safe to take only linear terms in the δi so that
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cos θδ =
√

1− sin2 θδ ≃ 1. From the relations between η , η′ and η , η′, given in Eqs.(15) and (16), there
are two ways to proceed for the calculation of the physical scattering amplitudes. One method, the one
that we follow, consists of writing the physical amplitudes by expressing η and η′ in terms of the physical
fields η and η′ in Eq.(1), and then calculate the tree level amplitudes. In this way, all the masses from
the kinematics are the physical ones, since they correspond to the η and η′ fields. Another method is to
determine the amplitudes with η and η′ by using Eq.(15) as a linear superposition of those calculated in
terms of the bar fields. However, one should bear in mind that for this case the masses of η and η′ from
the kinematics are those of the physical η and η′ fields to which they are attached [45].

The explicit expressions for the mass and wave function renormalization, mixing parameters entering
in Eq.(14), pion decay constant, and scattering amplitudes are given in the Appendices B–D.

4 Partial wave amplitude and its unitarization

Once the perturbative amplitudes are calculated from U(3) χPT, as done in the previous section, we can
proceed to perform the partial wave projections of the isospin amplitudes and construct the corresponding
unitarized amplitudes as well. The amplitudes T I with well-defined isospin I from different processes are
derived by assigning the following phase convention to the pseudoscalars in connection with the isospin
basis states. This convention is consistent with the one taken in Eq. (3),

|η 〉 = |0 0 〉 , |η′ 〉 = |0 0 〉 ,
|π+ 〉 = −|1 1 〉, |π− 〉 = |1 − 1 〉, |π0 〉 = |1 0 〉 ,
|K+ 〉 = −|1

2

1

2
〉 , |K0 〉 = |1

2
− 1

2
〉 , |K̄0 〉 = |1

2

1

2
〉 , |K− 〉 = |1

2
− 1

2
〉 , (19)

where |I I3〉 is a state with isospin I and third component I3.
For ππ → ππ scattering there are three isospin amplitudes, I = 0, 1, 2. They read

T 0(s, t, u) = 3A(s, t, u) +A(t, s, u) +A(u, t, s) ,

T 1(s, t, u) = A(t, s, u) −A(u, t, s) ,

T 2(s, t, u) = A(t, s, u) +A(u, t, s) , (20)

where A(s, t, u) stands for the process π+π− → π0π0 and s, t, u are the standard Mandelstam variables.
These equations, and other similar ones that follow, are obtained by invoking crossing symmetry [52].

For Kπ → Kπ and ππ → KK̄, the different isospin amplitudes can also be expressed in terms of one
single amplitude, again by using crossing symmetry. One then has

T
3

2 (s, t, u) = TK+π+→K+π+(s, t, u) ,

T
1

2 (s, t, u) =
3

2
T

3

2 (u, t, s)− 1

2
T

3

2 (s, t, u) ,

T 0(s, t, u) =

√
3

2

[
T

3

2 (t, s, u) + T
3

2 (u, s, t)

]
,

T 1(s, t, u) = T
3

2 (u, s, t)− T
3

2 (t, s, u) . (21)

For ππ → ηη and πη → πη, we have

T 0(s, t, u) = −
√
3C(s, t, u) ,

T 1(s, t, u) = C(t, s, u) , (22)
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with C(s, t, u) = Tπ0π0→ηη(s, t, u). For ππ → ηη′, η′η′ and πη(η′) → πη′, analogous formulas emerge and
the only difference is that C(s, t, u) is redefined accordingly to the scattering process.

The reactions Kπ → Kη and Kη′ are pure I = 1/2 and are given by

T
1

2 (s, t, u) = −
√
3TK+π0→K+η(s, t, u) (23)

and similarly when the η′ is in the final state. In terms of them one also has the scattering amplitudes
for the t-crossed processes KK̄ → πη and πη′, which is pure I = 1. It reads

T 1(s, t, u) = −
√
2TK+π0→K+η(t, s, u) , (24)

and analogously for KK̄ → πη′.
There are two isospin amplitudes in KK̄ → KK̄, that can be expressed as

T 0(s, t, u) = 2D(s, t, u) +D(t, s, u) ,

T 1(s, t, u) = D(t, s, u) , (25)

withD(s, t, u) = TK+K−→K0K̄0(s, t, u). Notice that here we have derived both isospin amplitudes in terms
of only one, while previous works used both TK+K−→K0K̄0(s, t, u) and TK+K−→K+K̄−(s, t, u) [53, 54, 55].

For KK̄ → ηη and Kη → Kη, the amplitudes involved read

T 0(s, t, u) = −
√
2E(s, t, u) ,

T
1

2 (s, t, u) = E(t, s, u) . (26)

with E(s, t, u) = TK0K̄0→ηη(s, t, u). For KK̄ → ηη′, η′η′ and Kη(η′) → Kη and Kη′, the formulas are
analogous and the only difference is that one needs to redefine E(s, t, u) for the corresponding process.

All the processes η(
′)η(

′) → η(
′)η(

′), with η(
′) either an η or an η′, are I = 0 and no crossing relation

can be invoked to reduce the number of amplitudes needed, one for each process.
Next we can perform the partial wave projection for the isospin amplitudes and the convention we use

is

T I
J (s) =

1

2(
√
2)N

∫ 1

−1
dxPJ (x)T

I
(
s, t(x), u(x)

)
, (27)

where x = cosϕ, with ϕ the scattering angle between the incoming and outgoing particles in the CM,
and PJ (x) stands for the Legendre polynomial. In the previous equation (

√
2)N is a symmetry factor to

account for identical particle states, such as ππ (with isospin 0, 1 or 2), ηη and η′η′. It corresponds to
the so-called unitary normalization of Ref. [9]. E.g. N = 1 for ππ → KK̄ and N = 2 for ππ → ηη, and
so on.

The unitarization method we follow was developed in Ref. [10] and is based on the N/D method [11].
The essential of this approach is to separate the crossed-channel cuts (LHC) and the right-hand cut
(RHC), due to unitarity, in two different functions, N(s) and g(s). The former does not contain the two-
particle unitarity cut but it has the LHC, while the later contains only the two-particle unitarity cut and
not the LHC. A more detailed account of this unitarization method can be found in Refs. [10, 56, 57, 58].
In the latter reference an explicit integral equation for the function N(s) in nucleon-nucleon scattering
is deduced.

Let us consider first the elastic case, its generalization to the coupled channel case is straightforward
and given below. Because of unitarity above the two-particle threshold sth a two-meson partial wave
amplitude T I

J (s), with well-defined isospin I and angular momentum J , fulfills

ImT I
J (s) = T I

J (s) ρ(s)T
I
J (s)

∗ ⇒ ImT I
J (s)

−1 = −ρ(s) . (28)
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In the previous equation

ρ(s) =

√
[s− (ma +mb)2][s− (ma −mb)2]

16πs

=
q

8π
√
s
, (29)

with ma and mb the masses of the two particles in the state and q the CM three-momentum. Eq. (28)
implies that the imaginary part of the inverse of a partial wave is known. This can be used to write down
a dispersion relation of the inverse of T I

J (s) taking as integration contour a circle of infinity radius that
engulfs the right hand cut [10]. It then results

T I
J (s)

−1 = N I
J (s)

−1 + g(s) , (30)

so that the function of N I
J (s), by construction, does not contain the RHC and g(s) results from the known

discontinuity along this cut, Eq. (28). In this way g(s) is given by the following dispersion relation,

g(s) = g(s0)−
s− s0
π

∫ ∞

sth

ρ(s′)
(s′ − s)(s′ − s0)

ds′ . (31)

with

Im g(s) = −ρ(s) , (32)

for s > sth = (ma+mb)
2. The dispersive integral in Eq. (31) can be represented by the typical two-point

one loop function [10]

x± =
s+m2

a −m2
b

2s
± 1

−2s

√
−4s(m2

a − i0+) + (s+m2
a −m2

b)
2 ,

16π2g(s) = aSL(µ) + log
m2

b

µ2
− x+ log

x+ − 1

x+
− x− log

x− − 1

x−
. (33)

For the case of equal mass scattering, g(s) reduces to the simple form

16π2 g(s) = aSL(µ) + log
m2

µ2
− σ(s) log

σ(s)− 1

σ(s) + 1
, (34)

with

σ(s) =

√
1− 4m2

s
. (35)

In order to determine the interacting kernel N I
J (s) we proceed as explained in Refs. [56, 57], so that

we match the unitarized amplitude Eq.(30) to the perturbative calculation, which is performed up to the
one-loop level.2 In this way, Eq. (30) should be expanded up to one power of g(s). It then results for
N I

J (s),

N I
J (s) = T I

J (s)
(2)+Res+Loop + T I

J (s)
(2) g(s) T I

J (s)
(2) . (36)

2Eq. (30) is valid below the first threshold of multi-particle states. Note that such states are further suppressed in the δ

counting beyond our present one-loop calculation for the interaction kernel (they at least imply a two-loop calculation) and
we do not consider them any longer.
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Here T I
J (s)

(2)+Res+Loop stands for the partial wave amplitude from the perturbative calculation, with the
superscripts (2), Res and Loop denoting the tree level amplitude from Eq. (1), resonance exchanges and
loop contributions, respectively, depicted in Fig. 2. The wave-function renormalization and η−η′ mixing
contributions are included in Res and Loop.

It can be easily checked that N I
J (s) from Eq. (36) does not contain the RHC. This is due to the fact

that the perturbative partial wave amplitudes satisfy unitarity perturbatively

ImT I
J (s)

(2)+Res+Loop = T I
J (s)

(2) ρ(s) T I
J (s)

(2)

= −T I
J (s)

(2) Im g(s) T I
J (s)

(2) , (37)

for s > sth. Regarding the LHC contribution, we would like to emphasize that it is perturbatively
treated and collected in the N I

J(s) function defined in Eq.(36), unlike the RHC that we take into account
non-perturbatively.

If the amplitude T I
J (s) has a zero in the complex plane, e.g. an Adler zero that appears in the

subthreshold region of some partial S-waves as a consequence of chiral symmetry [59], this is accounted
for in Eq. (30) by the corresponding zero of N I

J (s). The zeroes on the real axis correspond to poles of
the inverse of the amplitude, the so-called Castillejo-Dalitz-Dyson poles [60]. As discussed in detail in
Ref. [10] when the LHC contributions are neglected T̂ I

J (s) = T I
J (s)/q

2J(s) can be written as

T̂ I
J (s) =

1

D̂I
J(s)

,

D̂I
J(s) = −(s− s0)

J+1

π

∫ ∞

sth

ds′
q2J(s′)ρ(s′)

(s′ − s)(s′ − s0)J+1
+

J∑

m=0

ams
m +

M∑

i

Ri

s− si
. (38)

In the previous equation J + 1 subtractions at s0 have been taken, being the am, m = 1, . . . , J the
corresponding subtraction constants. The last sum accounts for the presence of poles in the inverse of
the partial wave, with si and Ri their locations and residues, respectively. For the S-waves one has the
location of non-trivial poles due to the Adler zeroes. For a given partial wave its position fixes one of
the si pole positions in the right-hand-side of Eq. (38). In the presence of LHC, D̂I

J(s) = N I
J (s)

−1 + g(s)
by comparing the previous equation with Eq. (30), the zero in N I

J (s) is moved according to the chiral
expansion, Eq. (36), from its leading position given by T I

J (s)
(2). In the case of the IAM one has to modify

the standard formula [5, 6, 7] to account properly for the Adler zero region [61], otherwise one has a
double zero instead of a simple Adler zero and a spurious pole in the partial wave amplitude in the same
subthreshold region [61, 62].

The previous formalism can be easily generalized to scattering processes with multiple coupled channels
by employing a matrix notation. In this way, T I

J (s), N
I
J (s) and g(s) → gIJ(s) are now matrices and Eq. (30)

still holds. Since phase space is diagonal then the matrix gIJ (s) is also diagonal, with its matrix elements
given by Eq. (33), evaluated with the appropriate masses for the corresponding channel. The matrix
T I
J (s) is symmetric, as required by time reversal invariance [3], which then implies from Eq. (30) that
N I

J (s) is also symmetric.
Explicitly, for the IJ = 00 case there are five channels and the corresponding matrices read

N0
0 (s) =




Nππ→ππ Nππ→KK̄ Nππ→ηη Nππ→ηη′ Nππ→η′η′

Nππ→KK̄ NKK̄→KK̄ NKK̄→ηη NKK̄→ηη′ NKK̄→η′η′

Nππ→ηη NKK̄→ηη Nηη→ηη Nηη→ηη′ Nηη→η′η′

Nππ→ηη′ NKK̄→ηη′ Nηη→ηη′ Nηη′→ηη′ Nηη′→η′η′

Nππ→η′η′ NKK̄→η′η′ Nηη→η′η′ Nηη′→η′η′ Nη′η′→η′η′



, (39)
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g00(s) =




gππ 0 0 0 0
0 gKK̄ 0 0 0
0 0 gηη 0 0
0 0 0 gηη′ 0
0 0 0 0 gη′η′



. (40)

For the IJ = 10 channel, the matrices are

N1
0 (s) =




Nπη→πη Nπη→KK̄ Nπη→πη′

Nπη→KK̄ NKK̄→KK̄ NKK̄→πη′

Nπη→πη′ NKK̄→πη′ Nπη′→πη′


 , (41)

g10(s) =




gπη 0 0
0 gKK̄ 0
0 0 gπη′


 . (42)

For the IJ = 1
2 0 channel, it results

N
1

2

0 (s) =




NKπ→Kπ NKπ→Kη NKπ→Kη′

NKπ→Kη NKη→Kη NKη→Kη′

NKπ→Kη′ NKη→Kη′ NKη′→Kη′


 , (43)

g
1

2

0 (s) =




gKπ 0 0
0 gKη 0
0 0 gKη′


 . (44)

Similar results hold for the IJ = 1
2 1 channel.

For the IJ = 11 quantum numbers we have

N1
1 (s) =

(
Nππ→ππ Nππ→KK̄

Nππ→KK̄ NKK̄→KK̄

)
, (45)

g11(s) =

(
gππ 0
0 gKK̄

)
. (46)

Let us consider now the purely elastic channels where N I
J(s) and g

I
J(s) are just functions, not matrices.

For IJ = 3
2 0, one has

N
3

2

0 (s) = NKπ→Kπ , (47)

g
3

2

0 (s) = gKπ . (48)

For IJ = 2 0,

N2
0 (s) = Nππ→ππ ,
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g20(s) = gππ . (49)

Finally, the appropriate functions for IJ = 0 1 are

N0
1 (s) = NKK̄→KK̄ ,

g01(s) = gKK̄ . (50)

After having the unitarized scattering amplitude from Eq. (30), the S-matrix for the IJ channel, SI
J(s),

can be defined straightforwardly in matrix notation

SI
J = 1 + 2i

√
ρIJ(s) · T I

J (s) ·
√
ρIJ(s) . (51)

with ρIJ(s) = −ImgIJ(s). From the matrix elements of the S-matrix we can read out the phase shifts δkk
and δkl, with k 6= l, since

Skk = |Skk|e2iδkk ,
Skl = |Skl|eiδkl . (52)

5 Discussion and results

In this section we first discuss the fit to experimental data in order to fix the free parameters in our
approach. Later we discuss the associated spectroscopy and its properties under variation of NC .

5.1 Fit Quality

We perform the fit for the IJ = 00 channel up to
√
s = 1300 MeV. The inclusion of the η′ meson is not

enough to guarantee that our current calculation can be applied higher in the energy region. There are
good phenomenological reasons to expect that the 4π state plays an important at this energy level and
its influence can not be simply neglected [12]. The observables fitted are shown in Fig. 5 and correspond
to the elastic ππ → ππ phase shifts, δ00ππ→ππ, the elasticity parameter, |S00

ππ→ππ|, and the phase and one
half of the modulus of the S-matrix element for the inelastic process ππ → KK̄ above the KK̄ threshold,
δ00
ππ→KK̄

and 1
2 |S00

ππ→KK̄
|, respectively. For references to the experimental data see Fig. 5.
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Figure 5: (Color online.) Plots of the fit to the IJ = 00 case. From top to bottom and left to right: the
phase shifts of ππ → ππ (δ00ππ→ππ), the modulus of the S-matrix element for ππ → ππ (|S00

ππ→ππ|), the
half modulus of the S-matrix element for ππ → KK̄ (|S00

ππ→KK̄
|/2) and the phase shifts of ππ → KK̄

(δ00
ππ→KK̄

). δ00ππ→ππ data correspond to Ref. [63] (triangle in green), [64] (square in blue) and the average
data from Refs. [65, 66, 67] (circle in black), as employed in Ref. [10]. |S00

ππ→ππ| is from Ref. [65].
|S00

ππ→KK̄
|/2 is from Refs. [68] (square in blue) and [69] (circle in black). The phase shifts δ00

ππ→KK̄
are

from Refs. [68] (square in blue), [70] (circle in black). The solid (red) line corresponds to the best fit,
Eq. (55), while the error bands are presented by the shadowed area. Finally, the more constrained fit of
Eq. (59) is given by the dashed line. This notation also applies in Figs. 6 and 7.

For the IJ = 1
2 0 channel, since there is no significant inelasticity above the Kη′ threshold, we fit the

data up to
√
s = 1600 MeV. Although for higher energies one already has the influence of the K∗

0 (1950)
resonance [45] which we have not included. The observables in the fit are the Kπ → Kπ phase shifts

δ
1

2
0

Kπ→Kπ. The reference to experimental data is given in Fig. 6.
For the IJ = 10 channel, there are no available data for scattering up to now and it is typical to use

a πη event distribution from other production processes to obtain information on the a0(980) resonance.
As the production mechanism is not under good theoretical control in our work, we decide to fit the
data around the resonance region up to 1050 MeV, as explained below. The experiment data for the πη
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distribution are illustrated in Fig. 6.
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Figure 6: (Color online.) From top to bottom and left to right: phase shifts of Kπ → Kπ with IJ = 1
2 0

(δ
1

2
0

Kπ→Kπ), πη event distribution with IJ = 10, phase shifts of ππ → ππ with IJ = 20 (δ2 0ππ→ππ) and

phase shifts of Kπ → Kπ with IJ = 3
2 0 (δ

3

2
0

Kπ→Kπ). δ
1

2
0

Kπ→Kπ corresponds to the average data from
Refs. [71, 72, 73] (square in blue), as used in Ref. [10], and Ref.[74] (circle in black). Data for the πη
event distribution are from Ref. [75] and the dotted line corresponds to the background [10]. δ20ππ→ππ is

from Refs. [76] (square in blue) and [77] (circle in black). The experimental data for δ
3

2
0

Kπ→Kπ are taken
from Refs. [78] (square in green), [79] (circle in blue) and [72] (triangle in black). For the meaning of
lines see Fig. 5.

For the exotic channels with IJ = 3
2 0 and IJ = 20, we fit the phase shifts of Kπ → Kπ and ππ → ππ,

respectively. The references for the experimental data are given in Fig. 6.
The observables we fit in IJ = 11 and IJ = 1

2 1 are the phase shifts of ππ → ππ and Kπ → Kπ,

δ11ππ→ππ and δ
1

2
1

Kπ→Kπ, in order. They are fitted up to 1200 MeV, as we only include the lowest multiplet of
vector resonances in the Lagrangian Eq.(6). The references to experimental data can be found in Fig. 7.

Before moving to the details of the phenomenological discussion, let us first comment on the free
parameters in our theory. Apart from the couplings in Eqs.(5), (6) and (12), there are the bare mass
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parameters of the resonances, the UA(1) anomaly mass M0 in Eq.(1) and the subtraction constants aSL
defined in Eq.(33) for different channels. One way to reduce the number of the subtraction constants
is to impose the isospin symmetry for them [80]. In this way, aSL of gππ in IJ = 00 and in IJ = 20
are the same. Similarly, gKK̄ in IJ = 00 and IJ = 10 are also equal. This also applies to gKπ in
IJ = 1

2 0 and in IJ = 3
2 0. In principle, the subtraction constants in the remaining channels are free.

Nevertheless, if one further assumes U(3) symmetry within each orbital angular momentum the values of
different subtraction constants should be also equal. For this result one should extend the proof given in
Appendix A of Ref. [80] in the SU(3) limit to the U(3) case, that holds for equal quark masses at leading
order in large NC . Notice that in this limit the quarks behave equivalently so that the equality of the
subtraction constants in SU(3) also implies that they are equal for the U(3) case. We indeed exploit this
feature as much as we can in the numerical discussion. We summarize the subtraction constants used in
the fits discussed below:

a00SL = a00 , ππSL = a00 ,KK̄
SL = a00 , ηηSL = a00 , ηη

′

SL = a00 , η
′η′

SL = a20 , ππSL ,

a
1

2
0

SL = a
1

2
0 , Kπ

SL = a
1

2
0 , Kη

SL = a
1

2
0 , Kη′

SL = a
3

2
0 ,Kπ

SL

a1 0 , πη
′

SL = a1 0 , KK̄
SL = a0 0 ,KK̄

SL ,

a1 0 , πηSL , (53)

and all of the subtraction constants in the vector channels are set equal to a00SL.
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Figure 7: (Color online.) Plots for the vector channels from the fits, Eqs. (55) and (59). The left panel
is for the IJ = 11 channel and the right one is for IJ = 1

21. The data of phase shifts for ππ → ππ with
IJ = 11, δ11ππ→ππ are from Refs. [81] (square in blue) and [82] (circle in black). The data of phase shifts

for Kπ → Kπ with IJ = 1
21, δ

1

2
1

Kπ→Kπ are from Refs. [71] (circle in black) and [72] (square in blue). For
the meaning of lines see Fig. 5.

In order to fit the πη mass distribution we need to introduce two additional parameters to parameterize
the production mechanism, N and c, that enter in the expression

dNπη

dEπη
= qπη N

∣∣TKK̄→πη(s) + c Tπη→πη(s)
∣∣2 . (54)
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Here, qπη is the three momentum of πη system in CM and Eπη =
√
s is the energy in the same frame. The

parameter N accounts for the fact that the event distribution is not normalized. The linear combination
of amplitudes in the previous equation originates because the a0(980) shows up differently in them. See
also Ref. [56] for a more detailed explanation of the derivation of Eq. (54) in connection with the invariant
mass distribution of K̄N around the Λ(1405) resonance.

In the end, we have 16 free parameters and the fitted results are

cd = (15.6+4.2
−3.4)MeV , cm = (31.5+19.5

−22.5)MeV ,

c̃d = (8.7+2.5
−1.7)MeV , c̃m = (15.8+3.3

−3.0)MeV ,

MS8
= (1370+132

−57 )MeV , MS1
= (1063+53

−31)MeV ,

Mρ = (801.0+7.0
−7.5)MeV , MK∗ = (909.0+7.5

−6.9)MeV ,

GV = (61.9+1.9
−1.9)MeV , a1 0 ,πηSL = 2.0+3.1

−3.4 ,

a00SL = (−1.15+0.07
−0.09) , a

1

2
0

SL = (−0.96+0.10
−0.16) ,

N = (0.6+0.3
−0.3)MeV−2 , c = (1.0+0.6

−0.4) ,

M0 = (954+102
−95 )MeV , Λ2 = (−0.6+0.5

−0.4) , (55)

with χ2/d.o.f = 714/(348 − 16) ≃ 2.15.
The corresponding figures from the fit are displayed in Figs. 5, 6 and 7. The width of the bands shown

and the errors given in the fitted parameters in Eq. (55) represent our statistical uncertainties at the
level of two standard deviations [70]

nσ = ∆χ2/(2χ2
0)

1/2 , (56)

being χ2
0 the minimum of the χ2 obtained corresponding to the best fit, nσ the number of standard

deviations and ∆χ2 = χ2 − χ2
0.

As one can see in Figs. 5, 6 and 7, most of the observables are well reproduced through the fit. The
phase shifts of ππ → ππ with IJ = 00 in the low energy region from the recent measurement of Ke4 decay
[64] are included in our fit and they can be perfectly reproduced. For the πη invariant mass distribution,
we explicitly subtract the background as analyzed in Ref. [75], which are mainly caused by the tail of
higher resonances. Compared with observables in the scalar channels, the errors in the vector channels
are rather small. Among all of the curves, the least satisfactory results from our fit correspond to the
channels with exotic quantum numbers with IJ = 20 and IJ = 3

20, which is also an important source for
the χ2 resulting from our fit. For example, with 42 data points, they contribute 281 to the total χ2, i.e.
12% of degrees of freedom carry 39% of the χ2. Nevertheless, one also has to remark that the different
experimental data in these channels are not always compatible at the level of one σ, which also makes the
χ2 to increase. On the other hand, since no resonances appear in those exotic channels, it may indicate
that unitarity is less important as compared with the other channels. In contrast, the LHC contribution
could play a more important role in this case [10, 45]. We recall that precisely our unitarization scheme
only incorporates the LHC effects perturbatively. Thus, an improvement on the treatment of the LHC
should provide a better fit for these two channels.

With the fitted parameters in Eq. (55) we can also calculate the values for the masses of the η and η′

that are obtained by diagonalizing Eq. (14). We then obtain from Eq. (18) the values

mη = (526+33
−41)MeV , mη′ = (951+47

−60)MeV . (57)

The leading order mixing angle of η − η′ that results from Eq. (1) is

θ = −16.2o+2.8o

−2.9o . (58)
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Concerning the resonance parameter cd in Eq.(55), the value from our fit is a bit smaller than the
previous determinations, such as cd = 19.1+2.4

−2.1 MeV given in Ref. [10], cd = 23.8 MeV reported in
Ref. [45] and cd = (26 ± 7) MeV in Ref. [83]. Nevertheless, they are compatible within the error bands.
For the coupling cm, though different approaches predict a broad range for its central value, they always
accompany a large error, for example cm = 31.5+19.5

−22.5 MeV in the present case, cm = (15 ± 30) MeV in
Ref. [10] and cm = (80±20) MeV given in Ref. [83]. Comparing the couplings related to the singlet scalar
with Ref. [10], our determination of c̃m is compatible with c̃m = 10.6+4.5

−3.5 MeV in Ref. [10], while for c̃d
the current fit leads to a smaller value, compared with c̃d = 20.9+1.6

−1.0 MeV given in the same reference.
For the bare masses of resonances, our present results agree well with the previous determinations:
MS8

= (1390 ± 20) MeV, MS1
= (1020+40

−20) MeV in Ref. [10] and MS8
= 1400 MeV in Ref. [45]. Our

values in Eq. (55) are compatible with the estimates c̃d ≃ cd/
√
3 and c̃m ≃ cm/

√
3 based on large NC

[48], however the bare masses for the singlet and octet scalar resonances are different, at around a 30%,
as obtained in previous studies [10, 12]. The current determination for the subtraction constant aSL is
consistent with the previous result in Ref.[10] as well. For the vector resonance coupling GV , our result
is in good agreement with GV = (63.9± 0.6) MeV determined in Ref. [83]. The UA(1) anomaly mass M0

carries a large error and agrees with the conclusion in Ref. [34]. The 1/NC suppressed parameter Λ2 is
poorly known in the literature and in Ref. [47] Λ2 = 0.3 is estimated, which is somewhat incompatible
with ours. Nevertheless in Ref. [47] the value of Λ2 is not determined by any physical observables, but
only by naive dimensional analysis. Moreover in their case the counterterm Λ2 is always accompanied by
the factor of m2

π, indicating the insensitivity of this parameter there.
We also show another more constrained fit by employing relations and values in the literature, already

commented above, for the parameters shown in the fit of Eq. (55). In particular we impose from the
beginning the large NC constraints [48] c̃d = cd/

√
3 and c̃m = cm/

√
3. We also take MS8

= 1390 MeV
and MS1

= 1020 MeV, according to Ref. [10]. For GV we take 60 MeV from the averages of values taken
from Refs. [49, 23, 83]. For M0 we take the value 850 MeV from Ref. [34]. The subtraction constant
a10,πηSL , given with large errors in Eq. (55), is now fixed at +2. The resulting fit is shown by the dashed
lines in Figs. 5-7, having now only 9 free parameters. We see that the reproduction of data is of similar
quality as the one achieved by the fit in Eq. (55) and the χ2/d.o.f = 843/(348 − 9) = 2.5 is not much
larger. The resulting values for the free parameters are now

cd = 17.4 MeV cm = 28.1 MeV
Mρ = 800.4 MeV MK∗ = 910.0 MeV

a00SL = −1.14 a
1

2
0

SL = −0.89
Λ2 = −0.22 N = 0.55 MeV−2

c = 0.84

(59)

Comparing with the values in Eq. (55) one observes rather similar values, compatible within the errors
given in Eq. (55). The biggest change occurs for the value of Λ2, although the new value lies well within
the error band given in Eq. (55). The resulting singlet couplings are c̃d = cd/

√
3 = 10.05 MeV and

c̃m = cm/
√
3 = 16.20 MeV.

5.2 Resonances generated from unitarized amplitudes

We summarize the masses, widths and residues of the various resonances in Table 1. Resonances are
characterized by their pole positions in the partial wave amplitudes in unphysical Riemann sheets. Around
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R M (MeV) Γ/2 (MeV) |Residues|1/2 (GeV) Ratios

σ 440+3

−3 258+2

−3 3.02+0.03
−0.03 (ππ) 0.51+0.03

−0.02 (KK/ππ) 0.06+0.03
−0.01 (ηη/ππ)

0.16+0.03
−0.02(ηη

′/ππ) 0.05+0.05
−0.03(η

′η′/ππ)

f0(980) 981+9

−7 22+5

−7 1.7+0.3
−0.3(ππ) 2.3+0.3

−0.2(KK/ππ) 1.6+0.3
−0.3(ηη/ππ)

1.2+0.1
−0.2(ηη

′/ππ) 0.7+0.4
−0.5(η

′η′/ππ)

f0(1370) 1401+58
−37 106+36

−23 2.4+0.2
−0.1(ππ) 0.62+0.04

−0.05(KK/ππ) 0.9+0.1
−0.1(ηη/ππ)

1.7+0.4
−0.6(ηη

′/ππ) 1.1+0.4
−0.6(η

′η′/ππ)

κ 665+9

−9 268+21

−6 4.2+0.2
−0.2(Kπ) 0.7+0.1

−0.1(Kη/Kπ) 0.5+0.1
−0.1(Kη

′/Kπ)

K∗

0 (1430) 1428
+56
−23 87+53

−28 3.3+0.5
−0.4(Kπ) 0.54+0.07

−0.02 (Kη/Kπ) 1.2+0.2
−0.3(Kη

′/Kπ)

a0(980) 1012+25

−7 16+50

−13 2.5+1.3
−0.8(πη) 1.9+0.2

−0.3 (KK/πη) 0.01+0.03
−0.01(πη

′/πη)

a0(1450) 1368+68
−68 71+48

−23 2.3+0.4
−0.5(πη) 0.6+0.7

−0.2(KK/πη) 0.6+0.2
−0.1(πη

′/πη)

ρ(770) 762+4

−4 72+2

−2 2.48+0.03
−0.05(ππ) 0.64+0.01

−0.01(KK/ππ)

K∗(892) 891+3
−4 25+2

−1 1.86+0.05
−0.05(Kπ) 0.91+0.03

−0.02(Kη/Kπ) 0.45+0.08
−0.08(Kη

′/Kπ)

φ(1020) 1019.5+0.3
−0.3 2.0

+0.04
−0.08 0.85+0.01

−0.02(KK̄)

Table 1: Pole positions for the different resonances in
√
s ≡ (M,−iΓ

2
). The mass (M) and the half width (Γ/2) are

given in units of MeV. The modulus of the square root of a residue is given in units of GeV, which corresponds to

the coupling of the resonance with the first channel (specified inside the parentheses). The last two columns are the

ratios of the coupling strengths of the same resonance to the remaining channels with respect to the first one. The

corresponding Riemann sheets where the resonance poles are located are explained in detail in the text. Note that

here the residues for ππ, ηη and η′η′ are given in the unitary normalization, due to the extra factors of
√
2 dividing

Eq. (27). Thus, one should multiply by
√
2 these couplings if one wishes to restore standard physical normalization

to 1 for these states. The error bands of the resonance parameters appearing in the table only correspond to the

statistical error from the fit in Eq.(55).

a resonance pole sR, corresponding to a resonance R, the partial wave amplitude T I
J (s)i→j tends to

T I
J (s)i→j → −gR→i gR→j

s− sR
. (60)

By calculating the residue of the resonance pole we then obtain the product of the couplings to the
corresponding decay modes. At the practical level we calculate the residues by applying the Cauchy
integral formula

gR→i gR→j = − 1

2πi

∮

|s−sR|→0
T I
J (s)i→j ds . (61)

For every pole one has further to indicate in which unphysical Riemann sheet it lies. Each function g(s)
has 2 sheets and their relation is given by [9]

gII(s) = gI(s) + 2iρ(s) , (62)

with gII(s) the function analytically extrapolated to its second Riemann sheet and gI(s) the function in its
first Riemann sheet, given in Eq. (33). Different Riemann sheets are easily accessed by deciding on which
sheet every gi(s) function, associated to channel i, is calculated. In this way, for an IJ channel there are
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2N possible sheets, with N the number of coupled states with the same IJ quantum numbers. Along the
real s-axis above threshold changing sheet implies to reverse the sign of the imaginary part of the gi(s)
function. In the following we conventionally label the physical or first Riemann sheet as (+,+,+, . . .).
The second Riemann sheet can be reached by changing the sign of the first momentum, which is labeled
as (−,+,+,+, . . .). The third, fourth and fifth sheets, also considered in this work, correspond to
(−,−,+,+, . . .), (+,−,+,+, . . .) and (−,−,−,+, . . .), in order. More sheets can be obtained by taking
more combinations of plus and minus signs between the brackets. At a given energy value

√
s, there is

one unphysical sheet to which one can directly access from the physical sheet by crossing from s+ i0+ to
s − i0+ the branch cut between the two thresholds Tn and Tn+1, with Tn <

√
s < Tn+1. In our current

notation, this specific unphysical sheet corresponds to changing the signs of all the three-momenta below
the considered energy point

√
s, i.e

(−,−, ..−︸ ︷︷ ︸
n

,+,+, . . .) (63)

In fact this is also the most relevant Riemann sheet where one should search the pole for a given resonance
affecting that energy region, although other shadow poles may also appear in other unphysical sheets [84].
Thus in the following, we mainly present our findings for a given resonance on the complex plane in this
specific sheet and simply comment the results appearing in other unphysical sheets.

Through the unitarization procedure described previously, we can simultaneously get the relevant
resonances in the considered energy region, such as σ, f0(980) and f0(1370) in the IJ = 00 channel, κ
and K∗

0 (1430) in IJ = 1
2 0, a0(980) and a0(1450) in IJ = 10, φ(1020) in IJ = 01, ρ(770) in IJ = 11 and

K∗(892) with IJ = 1
2 1. The pole positions and residues of these resonances are collected in Table 1. We

comment on them channel by channel next.

IJ = 00

Three kinds of resonance poles in the complex plane have been found, which we identify with the σ, f0(980)
and f0(1370) resonances. According to our previous discussion, the most relevant Riemann sheets for
σ, f0(980) and f0(1370) correspond to those with (−,+,+,+,+), (−,+,+,+,+) and (−,−,−,+,+),
respectively. Their pole positions are compatible within errors with those given in the PDG [1]. The pole
for the σ resonance in Table 1 is in close agreement with the pole position (484 ± 14 − 255 ± 10 i) MeV
of Ref. [85], and slightly narrower, considering errors, than that of Ref. [14] (441+16

−8 − 272+9
12 i) MeV.

From the residues given in Table 1, one can see that the biggest coupling of the σ resonance is to the
ππ channel. Nonetheless, it also has a large coupling to the KK̄ channel. From the value in Table 1 one
has

∣∣∣∣
gσ→K+K−

gσ→π+π−

∣∣∣∣ =
√
3

2

∣∣∣∣
gσ→KK̄

gσ→ππ

∣∣∣∣ = 0.44+0.03
−0.02 , (64)

compatible with 0.37±0.06 obtained in Ref. [86]. In this reference this value is interpreted as an indication
that the σ resonance has a strong glueball component.

One observes from Table 1 that the σ couples very weakly to ηη. This is typical of unitarized χPT
studies [87]. However, from QCD spectral sum rules [88, 89] the presence around 1 GeV of a broad glue-
ball, σB, together with a S2 = (ūu+ d̄d)/

√
2 quarkonium, is required in order to fulfill the corresponding

scalar sum rules. If the σ resonance were purely gluonium then it would be an SU(3) singlet and its
coupling to pseudoscalar pairs of π, K and η8 would be universal. In this case the coupling of the σ to
ηη would be the same as that to π+π−. On the other hand, in Ref. [89] a maximal mixing between σB
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and S2 is proposed, with a mixing angle θS ≃ (40− 45)o. In this case the size of the coupling of the σ to
ηη depends strongly on the value taken for the coupling of the σ to a kaon pair. E.g. if one takes as in
Ref. [89] that |gσ→π+π−/gσ→K+K−| & 1, for definiteness we employ 1.2, then

∣∣∣∣
gσ→η8η8

gσ→π+π−

∣∣∣∣ ≃ 0.8 . (65)

However, if the latest value 0.37 [86] for |gσ→K+K−/gσ→π+π− | is considered then

∣∣∣∣
gσ→η8η8

gσ→π+π−

∣∣∣∣ ≃ 0.15 . (66)

This result is remarkably close to our prediction from Table 1
∣∣∣∣
g̃σ→ηη

gσ→π+π−

∣∣∣∣ =
√
3

∣∣∣∣
gσ→ηη

gσ→ππ

∣∣∣∣ = 0.10+0.05
−0.02 . (67)

In the previous equation, as well as in the following, a tilde over a coupling of the σ to a state made of
identical mesons means that it is considered with physical normalization and not with the unitary one,
used in Table 1, see Eq. (27).

Up to the authors’ knowledge this is the first time in the literature that the couplings of the σ to states
involving the pseudoscalar singlet η1 are calculated. In Ref. [88] one has the upper limit

∣∣∣∣
gσ→ηη′

gσ→π+π−

∣∣∣∣ ≤ 0.23 . (68)

From this value one can obtain the corresponding upper limit for the coupling of the σ to η′η′ dividing
by tan θ the one to ηη′.3 Taking for θ our value given in Eq. (58) we then obtain the upper bound

∣∣∣∣
gσ→η′η′

gσ→π+π−

∣∣∣∣ ≤ 0.07 . (69)

From the values obtained in Table 1 we have
∣∣∣∣
gσ→ηη′

gσ→π+π−

∣∣∣∣ =
√

3

2

∣∣∣∣
gσ→ηη′

gσ→ππ

∣∣∣∣ = 0.20+0.04
−0.02 ,

∣∣∣∣
g̃σ→η′η′

gσ→π+π−

∣∣∣∣ =
√
3

∣∣∣∣
gσ→η′η′

gσ→ππ

∣∣∣∣ = 0.09+0.09
−0.05 , (70)

which are perfectly compatible with the bounds given in Eqs. (68) and (69) calculated from ef. [88].
We then obtain a remarkable compatibility between our results for the couplings of the σ in table 1

and those obtained from QCD spectral sum rules [88, 89], once the latest value for the ratio of couplings
|gσ→π+π−/gσ→K+K−| is taken from Ref.[86]. Nevertheless, in our approach there is no a corresponding
bare state at the Lagrangian from which the σ pole could stem, it is mainly generated by the strong
interactions between pseudo-Goldstone bosons.

The f0(980) resonance has its strongest coupling to KK̄, though it also couples almost as equally
strong to ηη. Notice that the ratios of the couplings to KK̄ and ππ between the σ and f0(980) are
nearly inverse each other. The importance of the ηη channel for understanding properly the f0(980) was
stressed in Ref. [10], because once this channel is considered the inclusion of a bare single state around

3We thank S. Narison for suggesting us this procedure.
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1 GeV is required [10, 12, 87]. The f0(980) pole in fact moves continuously to the bare state around
1 GeV if the g00(s) matrix is removed, e.g. by multiplying it with a factor λ ∈ [0, 1] and taking λ → 0.
But let us remark that the strong KK̄ interactions give rise to a bound state close to the actual mass of
this resonance [9, 90, 91, 92, 93], around the KK̄ threshold.

The f0(1370) resonance owns its origin to the octet scalar σ8 with the bare mass of 1370 MeV, as
already noticed in Ref. [12]. These bare poles gain their widths through the unitarization procedure. The
f0(1370) couples most strongly with the ηη′ channel. However, a deeper study of the f0(1370) resonance
requires to include explicitly the 4π channel [12].

These conclusions are further supported by the NC trajectories of those poles, which we will discuss
later.

IJ = 1
2 0

For these quantum numbers we obtain two poles corresponding to the κ and K∗
0 (1430) resonances.

The most relevant Riemann sheets correspond to (−,+,+) and (−,−,+) respectively, with poles at√
s = (665+9

−9 − 268+21
−6 i) MeV and

√
s = (1428+56

−23 − 87+53
−28 i) MeV, in order. Their pole positions are

compatible with those in the PDG [1]. For the κ resonance the pole position (658± 13− 279± 12 i) MeV
is found in Ref. [15] from a Roy-Steiner representation of Kπ scattering, also in good agreement with our
result. In the fourth Riemann sheet, i.e with (+,−,+), a shadow pole at

√
s = (717+8

−5 − 280+30
−24 i) MeV

is also found for the κ resonance. This resonance couples most strongly with the Kπ channel, although
it has also a large coupling to the other channels. In turn, the K∗

0 (1430) has its largest coupling to the
Kη′ channel, which has its threshold quite close to the resonance mass.

We also find a good agreement with the previous study of Ref. [45] that shares for this channel many
facts in common with ours. The κ resonance, similar to the case of σ, is generated mainly from the
pseudo-Goldstone interactions. The K∗

0 (1430) pole originates from the bare octet of scalar resonances in
the Lagrangian Eq. (5). Again, these conclusions are further supported below when discussing the NC

dependence of the pole positions.

IJ = 10

This is the most problematic channel in our analysis. By imposing the U(3) symmetry on the subtraction

constants, i.e. with the constraint of a10,πηSL = a10,KK̄
SL = a10,πη

′

SL , no good fit for this channel could be
obtained simultaneously with the other data. Within a reasonable range for the πη subtraction constant
the best fit prefers positive values, in contrast with the negative ones for the other channels, though the
error for this parameter is large. However, we notice that, similarly to previous studies [9, 10], if only
the tree level amplitudes are taken for the interacting kernel one can fit well the same data and get a
reasonable pole for the a0(980) resonance on the second sheet. Also a similar negative value for the πη

subtraction constant results then as in the other channels, with the constraint a10,πηSL = a10,KK̄
SL = a10,πη

′

SL

[10]. We have checked too that the influence of the πη′ channel to the mass distribution of πη Eq. (54) is
actually tiny. In addition, no two-body scattering data are available for this channel which also reduces
its statistical weight in the fits performed.

We show in Table 1 the a0(980) and a0(1450) pole positions and residues. For a0(980), the most
relevant sheet should correspond to the one with (−,+,+) or (−,−,+). However with our current best
fit, no reasonable poles are found in those Riemann sheets. Nevertheless, a pole located in the fourth
sheet, i.e. with (+,−,+), at

√
s = (1012+25

−7 − 16+50
−13 i) MeV appears. This rather indirect location of the

pole associated with the a0(980) resonance indicates that this resonance is to a large extent a dynamical
cusp effect within our approach. It couples mostly with the KK̄ channel as shown in Table 1.
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The most relevant Riemann sheet for the a0(1450) corresponds to the one with (−,−,−), since its
mass is larger than the πη′ threshold, where one has the pole

√
s = (1368+68

−68 − 71+48
−23 i). Other channels

are lacking at the typical energies for the a0(1450), as listed in the PDG [1] for its decay widths. This
lack of decay channels (e.g. ωππ and a0(980)ππ) explains why our pole position for this resonance gives
a smaller width than in [1], though the mass is compatible within errors. In our approach this resonance
dues its origin to the bare octet of scalar resonances in the Lagrangian of Eq. (5).

IJ = 11, 1
2 1 and 01

For the vector channels we find poles corresponding to the ρ(770) and K∗(892) in their respective 2nd
Riemann sheets at

√
s = (762+4

−4 − 72+2
−2 i) MeV and

√
s = (891+3

−4 − 25+2
−1 i) MeV, respectively. Data are

reproduced in a straightforward way, though we have to distinguish between the bare ρ and K∗ masses
with fitted values given in Eq. (55). The quality of the fit is the same regardless we free their subtraction
constants or fix them to the scalar channels. This indicates that unitarity effects are not so important,
though they provide the right widths to the bare poles [10]. The masses and widths from the resonance
poles agree well with the PDG values [1].

In addition, we have another pole corresponding to the φ(1020) resonance in the vector isoscalar
channel. We obtain a width for this resonance to two kaons of around 4 MeV, which is close to the
experimental partial decay width of the φ(1020) to this decay channel of 3.5 MeV [1]. Nonetheless,
another important decay channel for the φ(1020) is the πππ state which is not considered in our approach.

5.3 NC trajectories of the resonance poles

As discussed above in the Introduction, one of the important improvements of our current work is to
take into account the NC dependence of the pseudo-Goldstone boson masses when discussing the NC

trajectories for the resonances. This may potentially cause some significant effects because in the large
NC limit the UA(1) anomaly disappears and the η′ becomes also a pseudo-Goldstone boson [31].

Again we clarify that when fitting our theoretical formulas with the experimental data, all the masses
of the pseudo-Goldstone bosons are taken from PDG [1], which we summarize in the Appendix E for
completeness. Only when discussing the NC trajectories we start to use our prediction for the pseudo-
Goldstone masses. The leading order mass parameters mπ = 2Bmq and mK = B(mq +ms) in Eq.(1),
do not vary with NC because B ∼ O(N0

C). This follows from the expression for the quark condensate in
the chiral limit from Eq. (1), 〈0|q̄iqj |0〉 = −F 2Bδij , taking into account that both the quark condensate
and F 2 are proportional to NC . The bare masses are fixed in terms of the physical masses of the pion
and kaon by employing the expressions given in Eqs. (B.2) and (B.4), with the resulting values

mπ = 139.5+4.4
−4.6 MeV , mK = 519.6+12.0

−7.5 MeV . (71)

We summarize here the leading NC scalings of the remaining parameters entering in our equations [40, 48]

Λ2 ∼
1

NC
, M0 ∼

1√
NC

,
{
cd , cm , c̃d , c̃m , GV

}
∼
√
NC ,

{
MS1

,MS8
,Mρ ,MK∗ ,Mω ,Mφ , aSL

}
∼ O(1) . (72)

As commented above the U(3) large NC relations between the singlet and octet scalar couplings [48]

c̃d =
cd√
3
, c̃m =

cm√
3
, (73)
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are well fulfilled by our fitted values in Eq. (55), while the mass relation MS1
=MS8

is affected by a 30%
variation, still within expectations for a leading large NC prediction.

The weak pion decay constant Fπ deserves a special attention because we can also calculate the
subleading term in 1/NC . The piont is that we have a δ-expansion for this important parameter in terms
of F , the pseudoscalar weak decay constant in the chiral and large NC limit appearing in the chiral
Lagrangians, and that scales as

√
NC . The relation between Fπ and F is given in Eq. (C.2). From this

expression the subleading 1/
√
NC contribution to the running with NC of Fπ, is determined. This is, of

course, a specific feature of employing U(3) χPT with its associated δ-expansion.
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Figure 8: (Color online.) Masses for π, K, η and η′ as a function of NC from 3 to 30 with one unit
step. The different points are obtained by using the best fit given in Eq.(55) and the shadowed regions
correspond to the error bands. Squares (magenta) are for η′, diamonds (blue) for K, bursts (brown) for
η and circles (red) for π.

All the parameters in Eq. (72), except aSL, are present in chiral Lagrangians, namely in Eqs. (1), (5),
(6), (8), (9) and (12). It is important to notice that by construction, since U(3) χPT [33, 39, 40] is
a combined 1/NC and chiral expansion, every coefficient multiplying a monomial of the fields does not
contain any extra subleading piece in the 1/NC and chiral quark mass expansion. These extra terms
would be part of higher order monomials in the δ-expansion. However, when fitting data, the actual
numerical values in Eq. (55) certainly reabsorb de facto higher order contributions in this expansion.
This is also the case for the subtraction constant aSL.

We first consider the dependence on NC of our results by taking the leading scaling with NC of the
parameters in Eq. (72) (but keeping the full NC dependence of Fπ from Eq. (C.2), as follows from our
calculation.) Later, when considering the properties of the σ meson, we will also discuss variations in our
results by considering subleading terms in the running with NC for many of the parameters in Eq. (72).

Our full result for the NC dependence of the masses of π Eq. (B.2), K Eq. (B.4), η and η′ Eq. (18),
as well as the leading order mixing angle θ Eq. (B.7), are shown in Figs. 8 and 9, respectively. The most
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Figure 9: (Color online.) Leading order η− η′ mixing angle θ Eq. (B.7) as a function of NC from 3 to 30
with one unit step. Similar to Fig. 8, the circle (red) points are from the best fit given in Eq.(55) and
the shadowed area corresponds to the error bands.

streaking fact is the reduction by more than a factor of 2 of the mass of the η with NC . The mass of
the η′ also diminishes significantly. The K and π masses vary little, specially the latter. For large NC

all the masses of the pseudo-Goldstone bosons π ,K , η and η′ go to zero in the chiral limit. However, for
non-vanishing quark masses the η′ meson still gains a relatively large mass in the large NC limit while
the η becomes similarly light as the pion [94]. This can be easily understood by looking at the leading
order prediction in the large NC limit for the pseudoscalar masses,

m2
η = m2

π ,

m2
η′ = 2m2

K −m2
π , (74)

where mη and mη′ stand for the masses of the η and η′ mesons, corresponding to the notations of mη

and mη′ in Eqs.(B.5) and (B.6) with M0 → 0. Now, taking into account the values given in Eq. (71) for
mπ and mK we then end with the following prediction for the leading order masses of η and η′ in the
large NC limit

mη = 139.5+4.4
−4.6 MeV , mη′ = 721.5+17.4

−11.1 MeV . (75)

This leading order result already explains qualitatively the NC behaviors for the masses of η and η′

mesons shown in Fig. 8.
For the leading order mixing angle θ, its NC dependence is dominantly governed by the UA(1) anomaly

mass M0, as one can see from Eq.(B.7). It is also easy to demonstrate that in the large NC limit, i.e.
M0 = 0, the leading order mixing of η − η′ turns out to be the ideal mixing: θ = −54.7o, as it should.

It is worth stressing that previous works discussing the NC behaviors of resonances, such as Refs.[19,
21], directly identify the η meson with η8, since it is based on SU(3) χPT. The η1 is considered implicitly
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through higher order counterterms, as any other heavy field in χPT. In addition, all of the pseudo-
Goldstone masses are not changed in the variation of NC [19, 20, 21, 44]. However, as we have just
shown, the change with NC for the η mass is very pronounced.

Next we discuss our findings for the NC dependence of the resonance properties channel by channel.
As a clarifying remark let us mention that the following discussions are based mainly on the resonance
poles appearing in the most relevant Riemann sheets for the energy region under discussion, as previously
elaborated, unless a specific statement is given.

Poles in the IJ = 00 channel

We can easily track the pole trajectories for the σ, f0(980) and f0(1370) resonances while varying NC .
We first discuss the case of the σ in Fig. 10 and latter we will turn our attention to the more massive
f0(980) and f0(1370) resonances in Fig. 11.
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Figure 10: (Color online.) Dependence of the σ pole position, sσ as a function of NC from 3 to 30 with one
unit step. In the left panel we show

√
sσ and in the right one sσ. The full result (circle in red) corresponds to

our calculation without any approximation. The points labeled as vector reduced (triangle in blue) are obtained
by keeping only the leading local terms from the vector resonance propagators. The empty squares (in green)
correspond also to our full result but taking into account subleading terms in the running of NC for the resonance
couplings, according to the model of Eq. (88). The shadowed areas enveloping the circles and the triangles show
the error bands of our full result and vector reduced approximation.

Fig. 10 has two panels. In the left one we show the running with NC , starting with NC = 3 in one
unit steps, of the σ pole position in the variable

√
s, similarly as done in Refs. [19, 20, 95, 21], while

in the right panel the same is shown employing the variable s, as in Refs. [96, 21]. Our full results
correspond to the filled circles. The shadowed areas around every curve are generated by employing the
same configurations of parameters that we exploit before in calculating the error bands from our fits in
Eq. (55) and in Figs. 5-7. In this way we obtain the error bands for the shown NC trajectories of the
σ in Fig. 10. As one can see from this figure the resulting curves are quite stable even after taking into
account the uncertainties of the inputs. From the left panel we observe that the width increases very fast
with NC , so that already for NC = 7 it doubles as compared with its value at NC = 3. In regards to its
mass it first increases with NC but for NC above 7 it decreases. In the variable

√
s the pole stays deep

in the complex plane, as observed already in Refs. [19, 96, 21, 24]. However, there is no point to keep
interpreting the imaginary part of

√
sσ at the pole position as one half of the width when the mass is by
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far much smaller. The correct interpretation, as pointed out in Refs. [96, 21], is obtained by considering
the pole trajectory in the s complex plane: the mass square of the σ resonance becomes real negative.

In Refs. [21, 24] the large NC limit of the one-loop IAM is studied in the chiral limit and the following
condition in terms of the O(p4) SU(3) chiral counterterms L2 and L3 [25] is obtained

25L2 + 11L3





> 0 , sσ approaches positive real s axis ,
= 0 , sσ moves to ∞ ,
< 0 , sσ approaches negative s axis .

(76)

Making use of resonance saturation [48]

L2 =
G2

V

4M2
V

,

L3 = − 3G2
V

4M2
V

+
c2d

2M2
S8

, (77)

from the fitted values of Eq. (55), and taking MV as Mρ, we have

25L2 + 11L3 = −11.2+0.8
−0.6 × 10−3 < 0 . (78)

Thus, our curve with circles for sσ in the right panel of Fig. 10, bending towards negative large real
values of s, is in agreement with the condition Eq. (76) obtained in Ref. [21].

Compared with the one-loop IAM result of Ref. [21] our curve bends faster to the left in the s-complex
plane. It is interesting to point out that we can give rise to closer curves to those of Refs. [19, 21] if
we freeze out the full propagators of the vector resonances exchanged in the crossed channels and only
take the leading local terms generated by them. This in fact corresponds to integrating out the vector
resonance states in our theory and keeping only the leading contributions in the low energy sector, which
are O(p4). These terms are the ones incorporated in the one-loop χPT calculation used in NLO IAM
Refs.[19, 21], but not the higher order ones that arise by keeping the full vector resonance propagators
that enter in our full calculation. The corresponding trajectory within this approximation is shown in
Fig. 10 by the triangles, labeled as vector reduced throughout. Notice that now the mass of the σ keeps
increasing with NC , and the resulting trajectory is quite similar to that obtained in Ref. [19], particularly
for NC . 10. Let us remark also that Refs. [19, 95], within their estimated uncertainties, also have σ
pole trajectories in the

√
s variable with decreasing mass (all of them has increasing width as our case.)

One could also interpret the discrepancy between the circles and triangles in Fig. 10 arguing that
higher order effects in the expansion employed could potentially have a large impact on the results. Let
us first note that this criticism, from what we explicitly showed (the comparison between the triangles
and circles in Fig. 10), applies strictly to the IAM results. The higher orders included in our approach
give rise to a large variation with respect to the results obtained when only their local reduction is kept,
as done in the IAM. Second, from this one could of course infer the possibility that higher orders not
considered in our approach, as well in any of other unitarization methods, could give rise to quite different
σ pole trajectories for large enough NC . This is further discussed below, see also Ref. [95].

In contrast, to integrate out or keep the full contributions of the bare scalar resonance exchanges
from LS Eq. (5) does not change the NC trajectory of σ in a significant way. This also indicates that
the bare scalar nonet has little influence on the σ pole, as already pointed out in Ref. [10]. There it
was stressed that the σ, κ and a0(980) originate independently of whether the bare scalar singlet and
octet resonances are included in the formalism. This is also understandable by looking at how the
resonances contribute to the LECs in χPT. For example, L1 , L2 in SU(3) χPT are purely contributed
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by the vector resonances, which also dominate L3 [48]. For L4 , L5 , L6 , L8, they are dominated by the
scalar resonances [48]. Precisely in the ππ → ππ process, the factors accompanying L4 , L5 , L6 , L8 are
always proportional to sm2

π, tm
2
π or m4

π, which are less important in the resonance region than the terms
L1 , L2 , L3 that are accompanied by s2, st or t2. Indeed, in the chiral limit only the contributions to ππ
scattering proportional to L1, L2 and L3 survive and with those LECs σ and ρ were perfectly generated
in Ref. [21, 24].

To conclude we can say that our results for the trajectory of the σ resonance pole are in qualitative
agreement with those from the one-loop IAM [19, 21, 24] and differences can be understood in terms of
the higher orders included by using full resonance propagators for the crossed vector exchanges.

Indeed, one-loop IAM is a particular case of our approach that results by expanding4 N−1 = N (2)−1
(1−

N (4)N (2)−1
+ . . .). Then from Eq. (30) one has

T = N (2)
(
N (2) −N (4) +N (2)gN (2)

)−1
N (2) . (79)

In the previous expression the chiral order is indicated by the superscripts. For simplicity in the notation
we have removed the subscript J and superscript I present in Eq. (30). The derivations apply to any
specific partial wave. Now, reducing Eq. (30) to O(p4) and applying resonance saturation one has that

N (2) = T (2) ,

N (4) = T (4) +N (2)gN (2) ,

T = T (2)
[
T (2) − T (4)

]−1
T (2) , (80)

which is the one-loop IAM result.
However, our results are quite different from those obtained in Refs. [21, 20] by employing the IAM

with a two loop SU(2) χPT calculation for ππ scattering, where for large NC the σ pole falls down to
the positive real s-axis at around 1 GeV2. Indeed, as discussed in more detail below, we also obtain a
pole in the large NC limit at

√
s = MS1

≃ 1 GeV, but it comes from the bare singlet state which, for
NC = 3, is part of the f0(980) resonance. However, the σ pole is not affected by its presence in a first
approximation and this is not the reason for the different σ-pole trajectory obtained by us in comparison
with Refs. [21, 20].

In order to understand better this discrepancy with the two-loop IAM calculations [20, 21] let us
discuss the effects of several contributions particular to our approach. The first one corresponds to the
influence of having U(3) χPT. Compared with SU(3) χPT, where η is identified with the octet η8 and η1
is only implicitly included at O(p4) through the LEC L7 , the present discussion incorporates the explicit
contributions from the physical states of η and η′ within U(3) χPT with the δ counting. As a result we
take into account the drastic reduction of the η mass with NC as discussed above, see Fig. 8. However,
since the couplings of the σ to ηη, ηη′ and η′η′ are weak in our calculation (but not necessarily in others
[88, 89]), Table 1, one should then expect small effects on the σ-pole trajectory from this more exhaustive
treatment of the η and η′ pseudoscalars in U(3) χPT.5 To make this statement more quantitative it is
interesting to find a way to make closer our approach to the SU(3) one and then compare. This can
be achieved by imposing the following conditions when varying NC : (i) Freezing the mixing angle θ
at leading order in Eq.(13) to zero, together with the higher order mixing parameters in Eq.(14). (ii)
The masses of the η (then η8), π ,K are fixed to their physical values and do not vary with NC . (iii)

4This is also derived in Ref. [57].
5The weak couplings of the σ to states with η and η′ is kept when varying NC as we have explicitly checked, even though

the η mass decreases significantly with NC , as shown in Fig. 9.
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The η1 mass is also fixed by using the leading order result from Eq.(1) without mixing, which gives the
value 1040 MeV. In this way, the η meson in U(3) χPT resembles the η8 in SU(3) χPT and the η1 only
appears in the scattering amplitudes involving π ,K , η mesons through the loops, which is suppressed
by 1/NC . This mimics the role of L7 in SU(3) χPT [19], although one needs to be careful about the
NC counting for L7 [97]. The corresponding sσ NC trajectory within this approximation, named as
mimic SU(3), is so similar to our full results in Fig. 10 that we do not show it explicitly. Thus, for the
σ case differences that arise by having used the U(3) χPT in our approach are not significant and are
not certainly responsible for the differences with respect to the two-loop IAM results [21, 20]. However,
the situation could change dramatically for other resonances, e.g. for the f0(980) and f0(1370), and in
general for any other resonance that had large couplings to states including the η and η′ mesons. We
also want to point out that, by the same token, our study clarifies that previous results, e.g. those from
Refs. [19, 21, 20], are stable under the explicit inclusion of the η1 singlet when increasing NC .

Another issue to be considered is the fact, pointed out repeatedly in Refs. [95] regarding the IAM,
that the large NC limit is a weakly interacting limit while the phenomenological success of unitarization
methods, e.g. ours, typically rests on resumming infinite string of diagrams which are particularly
strong. In our approach two types of resummations are considered simultaneously: (i) At the tree-level,
by employing explicit resonance fields, so that infinite local terms are resummed by taking vector and
scalar bare resonance exchanges. (ii) At the loop level, by resumming the RHC. The former resummation
is leading in large NC while the latter is subleading. Point (i) is the most important for studying the
vector resonances, while point (ii) dominates for the scalar ones in real life [10, 95, 24].

Concerning the point (i), let us illustrate it by considering tree-level IJ = 11 ππ scattering from the
leading order Lagrangian in Eq.(1), required by current algebra, and the vector resonance Lagrangians
in Eqs.(6) and (8). It is well known the dominant role of the ρ resonance in IJ = 11 ππ scattering at
low and intermediate energies. These tree-level contributions are the ones that survive in the large NC

limit. The corresponding amplitude is

T 1ππ∞
1 (s) =

s− 4m2
π

6F 2
π

+
G2

V s(s− 4m2
π)

3F 4
π (M

2
ρ − s)

+
G2

V

6F 4
π (s− 4m2

π)
2

{
(4m2

π − s)
[
16m4

π + s2 − 8m2
π(6M

2
ρ + s)

+ 12M4
ρ + 24M2

ρ s
]
+ 6M2

ρ (4m
2
π − s− 2M2

ρ )(2s +M2
ρ − 4m2

π) log
M2

ρ

s+M2
ρ − 4m2

π

}
, (81)

where the first term in the right hand side of the above equation is from the current algebra in Eq.(1),
the second term corresponds to the s-channel exchange of a ρ resonance and the last term is contributed
by the ρ-exchanges in crossed channels, t and u.

Let us now calculate the local terms at O(p2), T 1ππ∞
1 (s)2, and O(p4), T 1ππ∞

1 (s)4 corresponding to
the chiral expansion of Eq.(81) at low energy. We have for these terms:

T 1ππ∞
1 (s)2 =

s− 4m2
π

6F 2
π

,

T 1ππ∞
1 (s)4 =

s(s− 4m2
π)G

2
V

2F 4
πM

2
ρ

. (82)

An interesting task is to apply the IAM at NLO [5, 6, 7, 21, 24] in order to reconstruct the full T 1ππ∞
1 (s)

amplitude from the contributions in Eq. (82). It results

T 1ππ∞
1 (s)22

T 1ππ∞
1 (s)2 − T 1ππ∞

1 (s)4
= −s− 4m2

π

18G2
V

M2
ρ

s− F 2
πM

2
ρ

3G2
V

. (83)
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Then, we see that only when

GV =
Fπ√
3

(84)

is fulfilled, one can reproduce the exact input s =M2
ρ . The relation in Eq.(84) is nothing but the so-called

KSRF relation [98]. Within chiral resonance Lagrangians it was derived originally in Ref. [23] by studying
ππ scattering and later in Ref. [99] considering the pion vector form factor. We confirm this relation here
from a different point of view. Due to the inclusion of the contributions from the crossed channels, the
current version differs from the original one with GV = Fπ√

2
. Nevertheless if the contributions from the

crossed channes are neglected, by dropping the last term in the right hand side of Eq.(81), we can then
recover the original KSRF relation GV = Fπ√

2
[49]

Another look at Eq. (83) can be obtained by employing the results of Ref. [24] which gives the ρ mass
square in the chiral and large NC limit from one-loop IAM at the position

sρ = − F 2
π

4L3
. (85)

Taking into account Eq. (77) (and keeping the vector contribution proportional to G2
V which is much

larger than the scalar one) one then has

sρ =
M2

V F
2

3G2
V

. (86)

Then only when GV = Fπ/
√
3 one can recover the exact position of s =M2

V =M2
ρ , which is the same as

Eq.(84).
This simple exercise shows that the success of the IAM in the vector channels [24] is intrinsically

related with the KSRF relation and Vector-Meson-Dominance [100]. This success is not related with
having resummed the RHC, as stated confusingly in Refs. [95], it occurs at the tree-level, and it is then
expected to occur at any order in large NC because loop corrections are even further suppressed with
increasing NC . Notice that the benefits of the tree-level IAM resummation of Eq. (83) is accomplished in
our approach by the explicit exchange of bare vector and scalar resonances. Indeed, if GV 6= Fπ/

√
3 the

IAM resummation would not be so accurate, while including explicit resonance exchanges is not affected
by tuning coupling or mass parameters. For an explicit example on this, corresponding to the exchange
of a Higgs particle in the spontaneous breaking of electroweak symmetry, see Ref. [57].

Regarding the RHC resummation, point (ii) above, the situation is the opposite since loops in general,
and unitarity loops in particular, become less relevant when NC increases. In this respect, the situation
is more worrisome than for the vector channels since when considering large values of NC one is testing
contributions not relevant in the physical NC = 3 case. Within one-loop IAM it was shown in Ref. [24]
that this could imply inconsistencies. In Ref. [95] it is argued that if IAM describes data and resonances
within a 10 to 20% errors, this means that the other contributions at NC = 3 are not badly approximated.
But since meson loops scale as 3/NC , while tree-level inadequacies scale as O(1), those 10 to 20% errors
at NC = 3 become 100% for values NC ∼ 30 and ∼ 15, respectively. This criticism also applies to
our approach because we rely in an expansion for the interacting kernel N I

J (s), Eqs. (30) and (36). In
this sense, at least, part of the differences between our results and two-loop IAM should correspond to
different treatment of higher order terms in the chiral expansion, that at NC = 3 are not so relevant
but become more important for large NC . Nevertheless, we think that the final reason why our results
differ with respect to the two-loop IAM ones should be deeper, since already from the very start our
curve for the full results on the right panel of Fig. 10 bends to the left while the analogous one for the
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two-loop IAM results of Ref. [21] bends to the right for NC ≥ 3. There is also a big qualitative change by
passing from one- to two-loop IAM results (which is not either properly understood yet in the literature
and that is related to the issue we are discussing.) Our calculation certainly resembles much more to
the one-loop case. On the one hand, we employ explicit resonance fields, with its associated tree-level
resummation as just discussed. Note that the tree-level resummation for the IAM only generates the
full resonance exchanges in the s-channel. E.g. taking again the toy model described above the IAM
result, Eq. (83), generates the ρ pole in the s-channel but no the cut due to ρ-exchanges in the crossed
channels. The latter correspond to the log in Eq. (81). However, on the other hand, standard χPT
two-loop calculations [101], as those used in two-loop IAM [21, 20] include more O(p6) operators than
those that can be reproduced by expanding the resonance propagators up to this order included in our
study [51] (but let us recall that up to O(p4), and also up to O(δ), we have all of them.) The situation in
regards to terms that become more important for the study of scalar resonances for large NC , but that
are not so important at NC = 3, is then still far from being settled.

Interestingly, in our approach one knows beforehand which is the resonance spectrum for NC → ∞.
The reason is just because in the equation that we use for calculating the T I

J -matrix, Eq. (30), N I
J (s)

−1

scales as O(NC) while g(s) scales as O(1). Then in the NC → ∞ limit T I
J (s) → N I

J (s) and the latter
only contains the poles included explicitly as bare resonances (vector and scalars) from the Lagrangians
Eq. (5) and Eq. (6). In this sense, when reproducing data we are at the same time directly testing an
NC → ∞ spectrum which is known beforehand. However, in the IAM due to the proliferation of higher
order counterterms when passing from one- to two-loop order is not so clear which are the resonance
poles that come up from the model for NC → ∞, since they depend on the specific values of the chiral
counterterms.

Another issue of interest on which we want to elaborate further about its possible implications is
the assumption of using the leading running with NC for the parameters in Eq. (72). The possible
impact of subleading terms in the running of NC for chiral counterterms was already pointed out in
Refs. [19, 20, 95, 24]. Refs. [19, 20, 95] estimated this uncertainty by varying the χPT renormalization
scale in which the counterterms are calculated. These values are then taken as the initial ones to engage
the simple leading large NC running. In our case, we include a subleading dependence on NC on the
coupling parameters. We think that for the bare masses this correction should be quite small because,
as discussed below, the displacement of the bare resonance mass to its final pole position (at NC = 3)
is quite short. Since both limits are so close it is then a good approximation to keep them as O(1) and
not to elaborate further on subleading contributions for the bare masses. For the subtraction constant
a00SL, we do not consider any subleading term because at NC = 3 it is already a common number, being
the same for all the five channels with IJ = 00 as required by the large NC U(3) symmetry. The
parameters Λ2 ∼ 1/NC and M0 ∼ 1/

√
NC already vanish in the large NC limit so that subleading terms

are not so interesting because they are even further suppressed. Then, their contributions in the large
NC should be marginal compared with those that we keep. Coming back to the resonance couplings
in Eq. (55) we take into account additional QCD-inspired assumptions of high-energy behavior, such
as unsubtracted dispersion relations for the pion electromagnetic form factor [23, 99] and for the scalar
strangeness changing scalar form factor [45, 102] one has the relations,

GV =
Fπ√
3
,

N∑

i=1

cd,icd,i =
F 2
π

4
. (87)

In the last equation the sum extends over the set of bare scalar resonances considered. In our approach we
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only include one scalar octet of resonances, N = 1. This is the so-called single resonance approximation
which is based on the 1/M2 suppression for more massive resonances. The single resonance approximation
was also employed in Ref. [24] for studying the ρ and σ resonance pole trajectories within one-loop IAM
in the chiral limit. Next we apply the large NC relations of Eq. (87) to the physical case. It follows then
the scaling with NC :

GV (NC) = GV (NC = 3)
Fπ(NC)

Fπ(NC = 3)
,

cd(NC) = cd(NC = 3)
Fπ(NC)

Fπ(NC = 3)
,

cm(NC) = cm(NC = 3)
Fπ(NC)

Fπ(NC = 3)
. (88)

In the last equation we have assumed the same subleading dependence on NC for cm as for cd. Note that
cm is poorly determined by the fit in Eq. (55) and it is not excluded that cm ≃ cd, as used e.g. in Ref. [45].
We also make use of the already discussed U(3) large NC relations c̃d = cd/

√
3 and c̃m = cm/

√
3 so that

the scaling with NC of all the couplings in Eq. (55) is driven by Fπ. Similar relationships were employed
in Ref. [24] to deduce constraints between resonance saturation and unitarization by one-loop IAM. But
note that here we now take advantage of the fact that we can calculate both the leading and subleading
terms in the 1/NC expansion of Fπ, Eq. (C.2), within the δ-expansion:6

Fπ(NC)

Fπ(NC = 3)
=

√
NC

3

{
1 +

1

16π2F 2
π (NC = 3)

[
A0(m

2
π) +

1

2
A0(m

2
K)

](
3

NC
− 1

)}
. (89)

We show by the empty squares in Fig. 10 the resulting σ trajectories taking into account the subleading
terms in the running with NC for the resonance couplings according to Eqs. (88) and (89). We observe
that the curve still bends to the left, and qualitatively speaking is not very different to the circles
obtained by considering the leading scaling with NC shown in Eq. (72) (we recall that we always include
the subleading term in 1/NC for Fπ, Eq. (89).) It seems plausible then that subleading terms in the large
NC expansion are not either responsible for the difference between our results and two-loop IAM [21, 20].

The NC trajectory for f0(980) is not reported in the IAM method due to the difficulty to track this
pole [19]. In contrast, in our case its variation when moving NC can be easily followed. The trajectories
of the f0(980) and f0(1370) also pose a strong evidence that they are originated from the singlet and
octet scalar states in the Lagrangian, respectively. However, one should also take into account that the
contribution to the physical f0(980) due to a KK̄ bound state [9, 10, 90, 91, 92] disappears in the large
NC limit. We see that the difference in the trajectories obtained in the full result and mimic SU(3) cases
differ significantly for the f0(980) and f0(1370) resonances. This is expected because these resonances
couple strongly to states with the η and η′. For the f0(980) and f0(1370) resonances, since in our case
their poles always fall down to the real axis at the masses of the singlet and octet bare resonances in the
Lagrangian, in order, we only show the pole trajectories from the best fit in Fig. 11. For NC → ∞ the
uncertainty is already given because their pole positions correspond to the bare masses of the singlet and
octet scalar resonances, in order, given in Eq. (55) together with their errors.

6However, note that in Eq. (C.2) we do not have all the counterterms of Lδ2 because we use resonance saturation from
the Lagrangians (5). Extra resonance operators would be needed which are beyond of our study [51].
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Figure 11: (Color online.) From top to bottom and left to right: Dependence on NC from 3 to 30 with
one unit step for the pole positions of the f0(908), f0(1370), K

∗
0 (1430) and a0(1450), respectively. The

notation is the same as that in Fig. 10. For the last panel dedicated to the a0(1450) the NC points for
NC ≤ 7 are indicated explicitly for clarifying purposes. All the points with the same color correspond to
the same framework (except the blue point in the a0(1450)-panel that corresponds to the mimic SU(3)
case with NC = 3.)

Poles in the IJ = 1
20 channel

The K∗
0 (1430) pole can be easily tracked in the complex plane, which we show in the third panel of

Fig. 11. Like the f0(1370), this pole falls down on the real axis for NC → ∞, at s =M2
S8
, indicating that

it originates from the bare octet scalar states with I = 1/2. At NC = 3, its pole is somewhat sensitive to
the different modifications of our results already discussed, while for large NC they run towards the same
point, as expected. From Table 1 we can see that the K∗

0 (1430) resonance couples to Kη′ as strongly as
to Kπ for NC = 3, while its coupling to Kη is suppressed. This behavior is also kept when varying NC .

For the κ pole trajectories, depicted in Fig. 12, the situation is more involved. After NC = 4, we could
not find its pole in the second Riemann sheet. However, switching to the fourth sheet, i.e. with (+,−,+),
we can then track the κ pole for any value of NC . This is due to the more complicated cut structures in
IJ = 1

20 case so that the trajectories of κ are not as smooth as for the σ in the IJ = 00 case. This is
the reason why the κ pole in the second Riemann sheet cannot be tracked because at NC = 5 the pole
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Figure 12: (Color online.) NC dependence of the κ pole position in the fourth Riemann sheet (+,−,+)
from NC = 3 to 30 with one unit step. The notation is the same as in Fig. 10.

moves to another Riemann sheet obtained by crossing the new cut in the complex plane, so that only a
bump remains in the second Riemann sheet. Indeed, for NC = 3 the κ pole position in the fourth sheet
is very similar to that in the second sheet for NC = 3 (as discussed above.) The resulting trajectory in
the fourth Riemann sheet is then shown by the circle points in Fig. 12. We show the κ pole trajectory
with NC both in the

√
s, left panel, and s variables, right panel. The same remark as for the σ is in order

also for the κ. The correct interpretation is obtained by considering the pole trajectory in the s complex
plane: the mass square of the κ resonance becomes negative, as stressed in Ref. [96] for the similar σ
case. From Fig. 12 one observes that the pole trajectory bends to the left for the final as well as for
the mimic SU(3) approximation. However, for the vector reduced approximation it tends to the right for
NC & 10 in the

√
s complex plane. In Fig. 12 the mimic SU(3) and vector reduced approximations are

not shown, they were already shown in Fig. 10 for the similar σ case.

Poles in the IJ = 10 channel

The trajectories for the a0(1450) pole position are shown in the last panel of Fig. 11. One can see that
for this resonance the trajectories bend and make a knot for NC < 7. In order to visualize this behavior
different symbols for the pole positions up to NC = 7 have been used in the figure. Independently from
this peculiar behavior the a0(1450) pole position trajectories can be followed easily in a smooth way as
NC varies. As expected, for large NC this pole moves to the real axis with zero width at s = M2

S8
,

the same position as for the f0(1370) and K∗
0 (1430). It corresponds to the bare isovector members of

the scalar octet S8, Eq. (7). All SU(3) breaking effects in the masses of these heavier scalar resonances
originate through pseudoscalar loops and disappear in the large NC limit.

For the a0(980) pole in the fourth sheet, we can track its trajectory up to NC = 18 without any
difficulty, which we display in Fig.(13). After NC = 19, only bumps appear in this sheet because there
is a cut in the complex plane that connects the fourth Riemann sheet with another one, that would be
obtained by crossing continuously this cut in the complex plane (not the real axis on which the standard
Riemann sheets based on unitarity are defined), where the pole is finally located. Contrary to the κ case
we cannot find a unique sheet where we can track the pole position from NC = 3 onwards to high values
of NC . Although similar poles can be tracked if we switch to other sheets for NC > 18, there is some
discontinuity when passing from one trajectory to another in different Riemann sheets. The trajectory
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Figure 13: (Color online.) Dependence on NC for the a0(980) pole position from 3 to 18 with one unit
step. The notation is the same as in Fig. 10.

shown in Fig. 13 corresponding to our full results clearly indicates that this resonance is dynamically
generated [92, 9, 10], since it moves further and further in the complex plane with a huge width increasing
very fast with NC .

Poles in the IJ = 11, 1
2 1 and 01 channels

The NC trajectories of the ρ(770) and K∗(892) vector resonances are shown in the left and right panels,
respectively, of Fig. 14. Both the ρ and K∗ move to the real axis with increasing NC , as one can see in
Fig.(14), indicating that their widths vanish in the large NC limit. Indeed they vanish exactly as 1/NC .
In addition their masses move very little. Both facts are in agreement with its standard interpretation
as q̄q resonances which implies an N0

C scaling with NC for the mass and 1/NC for the width.
Our results agree well with the previous conclusions on this respect [19, 20, 24]. Nevertheless, the

NC trajectories of the residues for the K∗(892) in our full calculation show a clearly different feature,
compared with the mimic SU(3) approximation. As one can see in Fig. 15, the residues of Kπ are
rather similar between the two frameworks, while the residues of Kη′ in the full result are obviously
larger than the Kη1 in the mimic SU(3) approximation, which can be attributed to the η − η′ mixing
angle. In contrast to the almost flat residue of Kη (in fact Kη8) in mimic SU(3) approximation, a more
complicated structure appears in the full result. We verify this structure is caused by the NC variation
of the η mass. As one can see the kink in the residue of Kη happens around NC = 14, where precisely
the Kη threshold becomes lighter than the K∗(892) mass.
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The NC trajectory for the φ(1020) pole position is completely analogous to those discussed for the
ρ(770) and K∗(892), but even simpler because it is an elastic channel and the width of the φ(1020) is
very small, Table 1. This is why we do not dedicate a separate figure for this case. This type of trajectory
is then in agreement with the standard q̄q interpretation for this resonance. Nevertheless, there is some
movement in the φ(1020) mass due to the small variation of the nearby KK̄ threshold with NC , see
Fig. 8.
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absolute value of the coupling to Kπ is given by the circular points, while for the other states the ratio
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panel corresponds to our full (mimic SU(3) ) results.

37



6 Conclusions

In this work, we complete the first one-loop calculation of meson-meson scattering in U(3) χPT in the
literature, that comprises simultaneously a chiral and an 1/NC expansion, the so-called δ counting. It
is also the first work in which the NC trajectories of resonance pole positions are studied taking into
account the fact that the η1 becomes the ninth Goldstone boson in the large NC limit. This has a large
impact in the hadron spectrum because the mass of the η pseudoscalar in large NC decreases drastically
and tend to be as light as the pion.

In our one-loop U(3) χPT calculation for scattering amplitudes, instead of the local terms at O(δ3),
we include explicit resonance fields whose exchange generates these terms, as well as higher order ones.
In order to compare with data, including the resonance region, we have unitarized the previous one-
loop amplitudes projected in partial waves. For the unitarization we employ a non-perturbative scheme
based on the N/D method, where the right-hand cut is resummed while the crossed-channel cuts are
perturbatively treated as given by the input partial waves from U(3) χPT. We achieve a good reproduction
of meson-meson scattering data from ππ threshold up to energies between 1.2-1.6 GeV, depending on the
particular partial wave.

We have then studied the spectroscopy content of our solution by considering the poles and related
residues of the different partial waves. Various resonance poles in the complex energy plane are then
found, namely, for the σ, f0(980), f0(1370), κ, K

∗
0 (1430), a0(980), a0(1450), ρ(770), K

∗(892) and φ(1020)
resonances. The pole positions agree remarkably well with the PDG values [1]. The corresponding residues
are calculated as well, which give us the coupling strengths of every resonance to the different channels.
The couplings of the σ resonances were studied in detail. We first discuss that the ratio of the couplings
of the σ to K+K− and π+π−. Our result for this quotient, 0.44+0.03

−0.02, is in close agreement with the
determination in Ref. [86], where its not-small size is interpreted as an indication in favor of the glueball
content of the σ. In our case, this resonance originates dynamically because of the ππ interactions
[9, 10, 24]. We further compared our results for the couplings of the σ to ηη, ηη′ and η′η′ with previous
results from Narison and collaborators. These authors obtain a coupling of the σ to ηη that depends
markedly on the value taken for the ratio of the couplings of the σ to K+K− and π+π−, while ours is
small. For the couplings to ηη′ and η′η′ our calculation is in agreement with the upper bounds from
Ref. [88].

We pay special attention to the NC dependences of the poles for these resonances as well as for their
residues. Our approach fills a gap in the literature because previous studies in the literature did not take
into account the Goldstone boson nature of the η1 field in the large NC limit, due to the vanishing of the
UA(1) anomaly with large NC . The trajectories for the pole positions are obtained by taking the leading
scaling with NC of the UA(1) anomaly mass, Λ2, the subtraction constants aSL and the bare resonance
parameters. The scaling with large NC of Fπ also includes subleading terms determined from our one-
loop calculation in U(3) χPT. The NC dependences of the pseudo-Goldstone masses have been taken
into account for determining the resulting trajectories. It is specially remarkable the large reduction of
the η mass with NC , that becomes similarly light as the pion for large NC . We discussed in depth the
particular case of the σ resonance. We show that our results are in qualitative agreement with the ones
of one-loop IAM. We obtain that sσ, the pole position of the σ resonance in the variable s, bends towards
the real negative axis. This behavior is the expected one according to a relation obtained in Refs. [21, 24],
given the values of the large NC leading O(p4) counterterms L2 and L3 that follow from our calculation
making use of resonance saturation. We also find that higher order terms arising within our approach by
keeping the full resonance propagators in the crossed vector resonance exchanges give rise to a qualitative
different behavior in the

√
s-complex plane for the σ case for not too large NC values (NC & 7). This is

easily understood because for increasing NC the loop contributions from crossed diagrams tend to vanish
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faster with NC than those from the resonance exchange diagrams. In this way, the cancellation between
both contributions found in Ref. [10] at NC = 3 for the resonant scalar channels below 1 GeV, is spoilt
for higher values of NC and then there is more sensitivity to crossed channel dynamics. As a result, we
find that the pole position for the σ resonances has a mass that typically decreases with NC , while this is
not the case if the vector resonance exchanges are reduced to the leading local term contribution. Similar
results are also obtained for the κ resonance.

The last point is one of the most problematic issues in determining the large NC trajectory for the σ
resonance pole. As stressed in Refs. [95] one is sensitive in this case to terms that are not so significant
at NC = 3 so that a testing ground for the model is lacking. Particularly taking into account that the
tendency for |sσ| is to increase with NC at around or above 1 GeV2, so that model dependence becomes
more important. Indeed, our results are quite different from the two-loop IAM ones [21, 20] where sσ
bends towards real positive values of s, falling down to the real axis at around 1 GeV2. Surely the most
important reason for such disagreement has to do with the different way higher orders are treated within
two-loop IAM and our approach. In addition, we have argued about other reasons. We have excluded
that the explicit consideration from our side of the η1 as a degree of freedom, by extending SU(2) or
SU(3) χPT framework to U(3) χPT, is not responsible for such disagreement. The basic reason is that
the σ resonance within our approach couples weakly to states containing the η and η′ and, then, is not
so sensible to any improvement in the treatment related to those states. This is an interesting result
by itself because then our calculation establishes that previous studies [19, 21, 20], are stable under the
explicit inclusion of the η1 singlet even when increasing NC . However, this is not the case for all the
other resonances studied that have large couplings to states with η and/or η′ and that it is a necessary
step forward to consider U(3) χPT.

We also considered the possible presence of subleading terms in the large NC running of the resonance
parameters in the resonance Lagrangians by employing model results in the literature that are obtained by
imposing QCD-inspired assumptions for the high energy behavior of some form factors. We then obtain
that they scale as Fπ, whose scaling we calculate within U(3) χPT at the one-loop level. Subleading terms
in the resonance masses are not considered because they move very little from NC = 3 (actual physical
poles) to NC = ∞ (bare masses). They are not either taken into account for parameters vanishing in the
large NC limit. We conclude tentatively that subleading terms are not responsible for the discrepancy of
our results with those of two-loop IAM [21, 20]. We also pointed out that within our approach we know
beforehand the resonance spectrum in the NC → ∞ limit, because it directly corresponds to the bare
resonances introduced. In this way, when fitting data we are testing a known NC → ∞ set of resonances.
In the IAM the knowledge of the NC → ∞ resonance spectrum is more uncertain at the level of two-loops
because of the proliferation of higher orders counterterms and the dependence of the precise spectrum
with the explicit numerical values of the counterterms.

Regarding the f0(980) we obtain that in the large NC limit it tends to a zero width pole position
corresponding to the bare singlet scalar resonance around 1 GeV. It is worth stressing that in other
studies a zero width pole with mass of 1 GeV was already found for large NC from the evolution of the
σ pole trajectory [21, 20]. However, the pole at 1 GeV disappears in those studies for NC = 3 and only
the σ remains [20]. In our case, both states remain. On the one hand, we have the bare scalar pole
around 1 GeV that contributes to the f0(980) resonance pole in NC = 3 while, on the other hand, the σ
resonance originates dynamically mainly from pion interactions. In addition, the strong KK̄ interactions
near threshold in S-wave gives rise to another strong contribution to the f0(980) as a KK̄ bound state.
This contribution disappears in the large NC limit and only the bare singlet scalar state pole contributes
then. It is an interesting exercise for future work to check that our bare singlet scalar pole at around
1 GeV is enough to guarantee local-duality [103].

39



The a0(980) resonance disappears deep in the complex plane for large NC , by increasing its width and
mass, which is always positive and large. This behavior corresponds to a dynamically generated resonance.
We also discussed the NC trajectories for the f0(1370), a0(1450) and K

∗(1430). Asymptotically for large
NC , they tend to the zero width pole position of the bare octet of scalar resonances included at the
tree-level around 1.4 GeV.

Finally, the vector resonances ρ(770), K∗(892) and φ(1020) are reproduced with properties in good
agreement with the PDG [1]. They have an NC pole position trajectory in good agreement with the
expectations for a q̄q state, with a quenched mass running as N0

C and the width decreasing as 1/NC . The
decreasing η mass with NC makes that the K∗(892) resonance becomes heavier than the Kη channel for
NC around 15. The crossover between the mass of the resonance and the Kη threshold manifests in a
kink in the coupling to Kη.
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Appendix

A Convention of the loop functions

The one-loop functions that appear in our U(3) χPT calculation are calculated in dimensional regular-
ization within the MS − 1 renormalization scheme [25]. They are defined as

A0(m
2) =

(2πµ)4−D

iπ2

∫
dDq

1

q2 −m2

= −m2 ln
m2

µ2
,

B0(s,m
2
a,m

2
b) =

(2πµ)4−D

iπ2

∫
dDq

1

q2 −m2
a

1

(q − p)2 −m2
b

= 1− log
m2

b

µ2
+ x+ log

x+ − 1

x+
+ x− log

x− − 1

x−
, (A.1)

where µ is the renormalization scale, s = p2 and x± was defined in Eq.(33). In case of equal masses, the
two-point function reduces to

B0(s,m
2) = 1− log

m2

µ2
+ σ(s) log

σ(s)− 1

σ(s) + 1
, (A.2)
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with σ(s) defined in Eq. (35).

B Renormalization of the wave functions and masses

From the calculation of the π, K, η and η′ self-energies Fig. 3, with the latter fields defined in Eq. (13),
we have:

Zπ = 1− 1
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The leading order masses of η , η′, i.e. mη and mη′ defined in Eq.(14), and the η − η′ mixing angle
from Eq.(1) are found to be
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with ∆2 = m2
K −m2

π .
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The higher order mixing parameters of η − η′ are defined in Eq.(14). They read
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θ(m

2
π + 8m2

K) +
√
2s4θ(5m

2
π − 8m2

K)

]}

+

{
16c2m (m2

K −m2
π) (4m

2
K −m2

π)(
√
2s2θ + cθsθ −

√
2c2θ)

9F 2
πM

2
S8

− 16c̃2m (m2
K −m2

π) (2m
2
K +m2

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2
πM

2
S1

}

− 2

3
Λ2

[√
2c2θ(m

2
K −m2

π) + sθcθ(2m
2
K +m2

π)−
√
2s2θ(m

2
K −m2

π)

]
. (B.8)

C Renormalization of pion decay constant

The definition of pseudoscalar weak decay constant is

〈0|Aa
µ|φb(p)〉 = iFφb pµ δ

ab , (C.1)

where the axial-vector current is Aa
µ = q̄γµγ5

λa

2 q.
Throughout this work we have expressed F in the chiral limit in terms of the physical pion decay

constant Fπ. The corresponding expression coincides with the one in SU(3) χPT [25, 38], once resonance
saturation of the O(p4) χPT counterterms is assumed [48]. It reads

Fπ = F

{
1 +

1

16π2F 2
π

[
A0(m

2
π) +

1

2
A0(m

2
K)

]

+

[
4c̃d c̃m(m2

π + 2m2
K)

F 2
πM

2
S1

− 8cd cm (m2
K −m2

π)

3F 2
πM

2
S8

]}
. (C.2)

D Scattering amplitudes

By using crossing symmetry and isospin symmetry, as we discussed in Section 4, all the meson-meson
scattering amplitudes with well defined isospin and angular momentum in U(3) χPT can be reduced to
the calculation of 16 independent processes.

Due to the much lengthy expressions of the one-loop U(3) χPT scattering amplitudes, we only provide
here the analytical expressions for the tree level results at leading order, denoted with the superscript (2).
For the remaining parts, comprising the ones from the loops and resonance exchanges, one can download
the Mathematica file from http://www.um.es/oller/u3FullAmp16.nb, that can also be provided by the
authors under request.
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1. π+π− → π0π0

T
(2)
π+π−→π0π0 =

s−m2
π

F 2
π

. (D.1)

2. K+π+ → K+π+

T
(2)
K+π+→K+π+ =

m2
π +m2

K − s

2F 2
π

. (D.2)

3. K+K− → K0K̄0

T
(2)

K+K−→K0K̄0 =
s+ t− 2m2

K

2F 2
π

. (D.3)

4. π0π0 → ηη

T
(2)
π0π0→ηη

=
m2

π(cθ −
√
2sθ)

2

3F 2
π

. (D.4)

5. π0π0 → ηη′

T
(2)
π0π0→ηη′ =

m2
π(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2
π

. (D.5)

6. π0π0 → η′η′

T
(2)
π0π0→η′η′ =

m2
π(
√
2cθ + sθ)

2

3F 2
π

. (D.6)

7. K0K̄0 → ηη

T
(2)

K0K̄0→ηη
=

c2θ(9s− 6m2
η − 2m2

π) + 4
√
2cθsθ(2m

2
K −m2

π) + 8s2θm
2
K

12F 2
π

.

(D.7)

8. K0K̄0 → ηη′

T
(2)

K0K̄0→ηη′
=

2
√
2c2θ(m

2
π − 2m2

K)− cθsθ(3m
2
η + 3m2

η′ + 8m2
K + 2m2

π − 9s) + 2
√
2s2θ(2m

2
K −m2

π)

12F 2
π

.

(D.8)

9. K0K̄0 → η′η′

T
(2)

K0K̄0→η′η′
=

8c2θm
2
K − 4

√
2cθsθ(2m

2
K −m2

π) + s2θ(9s− 6m2
η′ − 2m2

π)

12F 2
π

.

(D.9)
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10. ηη → ηη

T (2)
ηη→ηη =

1

9F 2
π

[
c4θ(16m

2
K − 7m2

π) + 4
√
2c3θsθ(8m

2
K − 5m2

π)

+12c2θs
2
θ(4m

2
K −m2

π) + 16
√
2cθs

3
θ(m

2
K −m2

π) + 2s4θ(2m
2
K +m2

π)

]
.

(D.10)

11. ηη → ηη′

T
(2)
ηη→ηη′ =

1

9F 2
π

[√
2c4θ(−8m2

K + 5m2
π)− c3θsθ(8m

2
K +m2

π)

+3
√
2c2θs

2
θ(4m

2
K −m2

π) + 4cθs
3
θ(5m

2
K − 2m2

π) + 4
√
2s4θ(m

2
K −m2

π)

]
.

(D.11)

12. ηη → η′η′

T
(2)
ηη→η′η′ =

(4m2
K −m2

π)(2c
4
θ − 2

√
2c3θsθ − 3c2θs

2
θ + 2

√
2cθs

3
θ + 2s4θ)

9F 2
π

.

(D.12)

13. ηη′ → η′η′

T
(2)
ηη′→η′η′ =

1

9F 2
π

[
4
√
2c4θ(−m2

K +m2
π) + 4c3θsθ(5m

2
K − 2m2

π)

+3
√
2c2θs

2
θ(−4m2

K +m2
π)− cθs

3
θ(8m

2
K +m2

π) +
√
2s4θ(8m

2
K − 5m2

π)

]
.

(D.13)

14. η′η′ → η′η′

T
(2)
η′η′→η′η′ =

1

9F 2
π

[
2c4θ(2m

2
K +m2

π)− 16
√
2c3θsθ(m

2
K −m2

π)

+12
√
2c2θs

2
θ(4m

2
K −m2

π)− 4
√
2cθs

3
θ(8m

2
K − 5m2

π) + s4θ(16m
2
K − 7m2

π)

]
.

(D.14)

15. K+π0 → K+η

T
(2)
K+π0→K+η

= −
cθ(−9t+ 3m2

η + 8m2
K +m2

π) + 2
√
2sθ(2m

2
K +m2

π)

12
√
3F 2

π

.

(D.15)

16. K+π0 → K+η′

T
(2)
K+π0→K+η′ =

2
√
2cθ(2m

2
K +m2

π)− sθ(−9t+ 3m2
η′ + 8m2

K +m2
π)

12
√
3F 2

π

.

(D.16)
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E Numerical inputs

In the numerical discussion, we take the average values for the masses of the charged and neutral pions
and kaons. The values taken are summarized below in units of MeV:

mπ = 137.3 , mK = 495.6 , mη = 547.9 , mη′ = 957.7 ,

Fπ = 92.4 , µ = 770.0 , Mφ = 1026.0, Mω = 783.0 . (E.17)

The value for Mφ is adjusted so as to reproduce the pole position of the φ(1020) resonance in Table 1
according to the PDG [1].
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