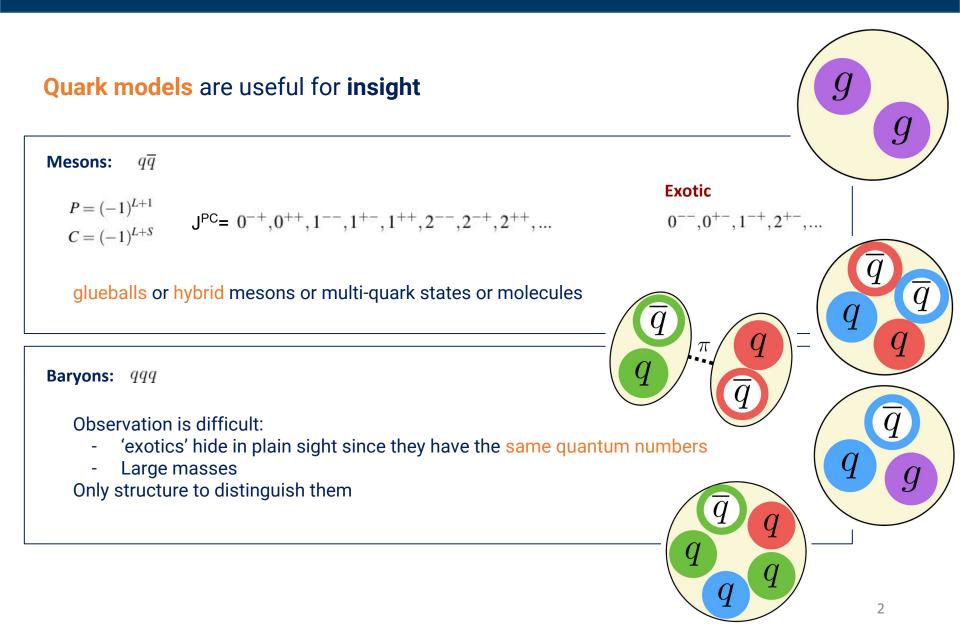
Analyticity constraints for hadron spectroscopy

<u>Jannes Nys</u>

Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz, May 7th 2018, Mainz, Germany

Exotic spectroscopy

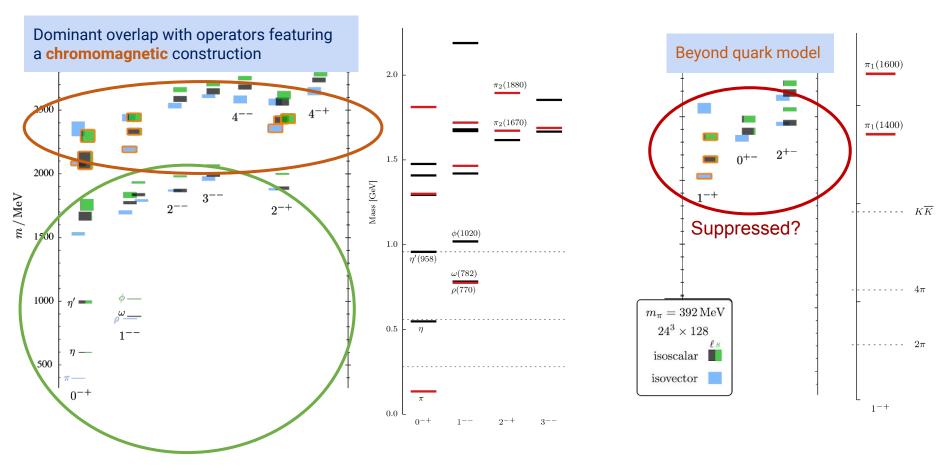


Unanswered questions

- Role of glue?
- Why did the quark model work so well up till now?
- Why does it fail in the charmonium sector (XYZ)?
- Can we extract the hadron spectrum directly from QCD?

Which rules govern hadron construction?

Hadron spectrum (from QCD)

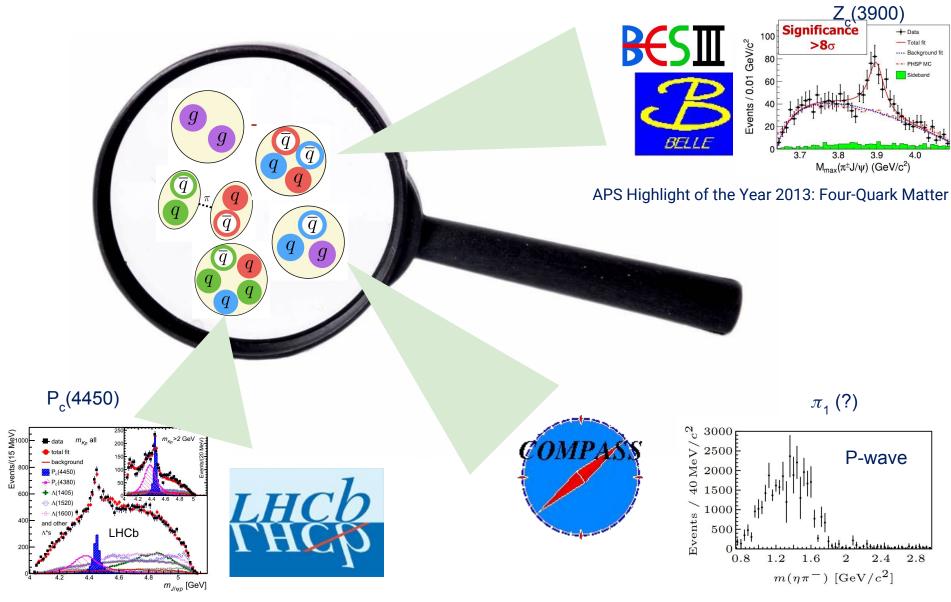


Static spectrum from Lattice QCD [Phys.Rev. D88 (2013) no.9, 094505]

PDG, experiment

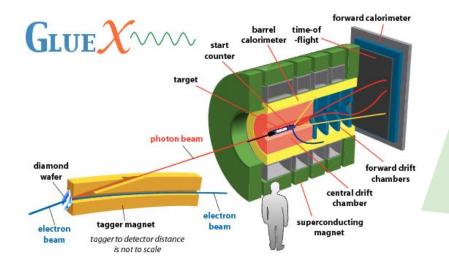
Exotic

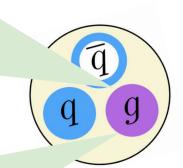
Spectroscopy programs

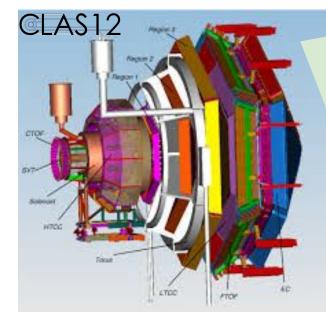


APS Highlight of the Year 2015: Particle High Five

Light-quark exotics: experiment

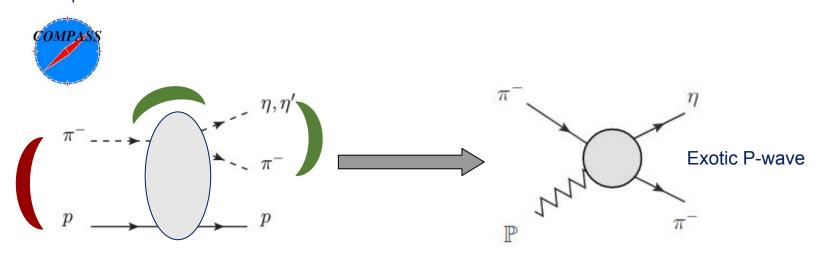






Meson production

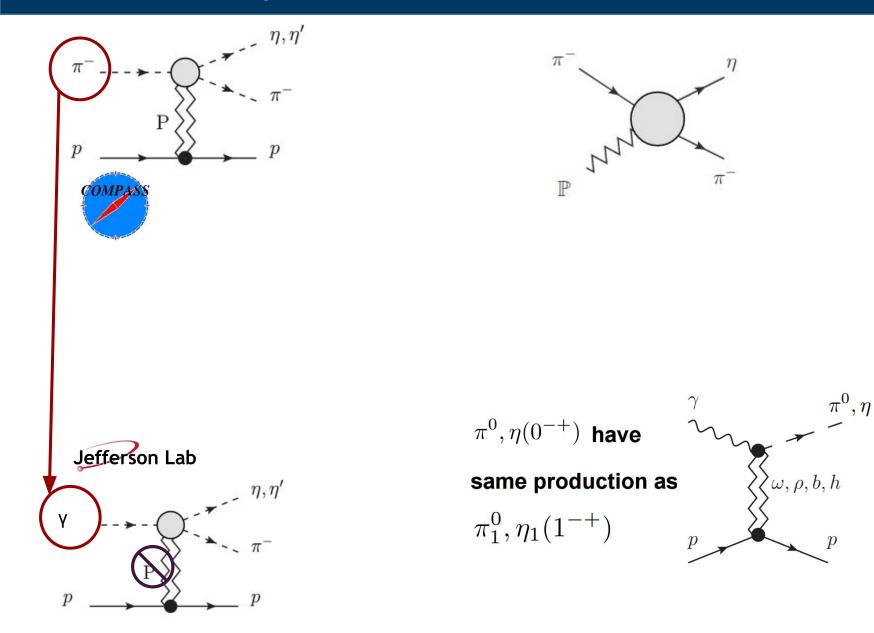
Example: π_1 production



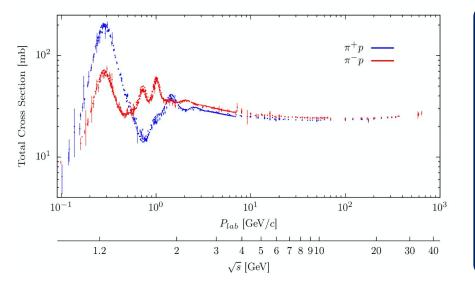
Energy scale separation: factorization possible

Knowledge of the production process required to carry out PWA Multiple production processes required for confirmation

Production process



S-matrix theory



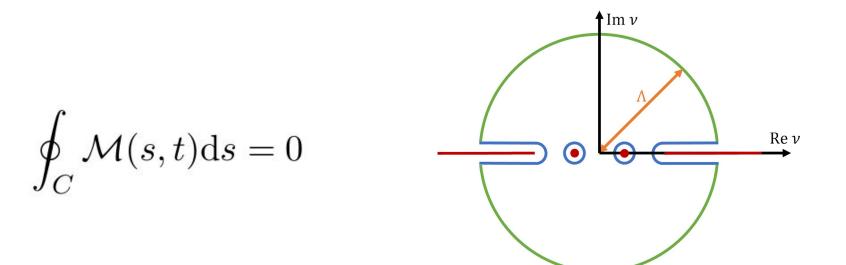
S-matrix theory

Build models: general principles

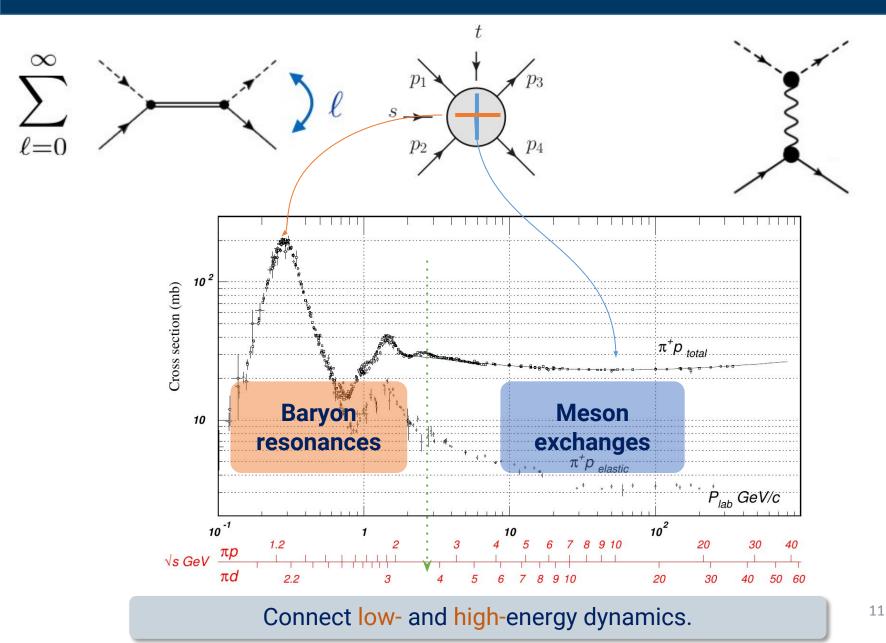
- Analyticity
- Crossing symmetry
- Unitarity
- Lorentz symmetries
- Global symmetries of QCD



Sum rules



Sum rules



Choice of amplitudes

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k\right) u_{\lambda}(p)$$

$$M_{1} = \frac{1}{2} \gamma_{5} \gamma_{\mu} \gamma_{\nu} F^{\mu\nu} ,$$

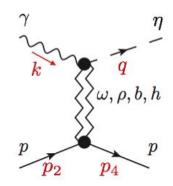
$$M_{2} = 2 \gamma_{5} q_{\mu} P_{\nu} F^{\mu\nu} ,$$

$$M_{3} = \gamma_{5} \gamma_{\mu} q_{\nu} F^{\mu\nu} ,$$

$$M_{4} = \frac{i}{2} \epsilon_{\alpha\beta\mu\nu} \gamma^{\alpha} q^{\beta} F^{\mu\nu}$$

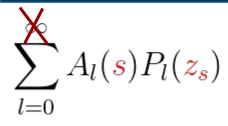
$$A_i$$
 I^G J^{PC} η Leading exchanges A_1 $0^-, 1^+$ $(1, 3, 5, ...)^{--}$ $+1$ $\rho(770), \omega(782)$ A'_2 $0^-, 1^+$ $(1, 3, 5, ...)^{+-}$ -1 $h_1(1170), b_1(1235)$ A_3 $0^-, 1^+$ $(2, 4, ...)^{--}$ -1 $\rho_2(??), \omega_2(??)$ A_4 $0^-, 1^+$ $(1, 3, 5, ...)^{--}$ $+1$ $\rho(770), \omega(782)$

- No kinematic singularities
- No kinematic zeros
- Discontinuities:
 - Unitarity cut
 - Nucleon pole



$$\begin{split} \gamma p &\to \eta p \,, \qquad A = (\omega + h + \omega_2) + (\rho + b + \rho_2) \\ \gamma n &\to \eta n \,, \qquad A = (\omega + h + \omega_2) - (\rho + b + \rho_2) \end{split}$$

s-channel: truncated partial-wave analysis



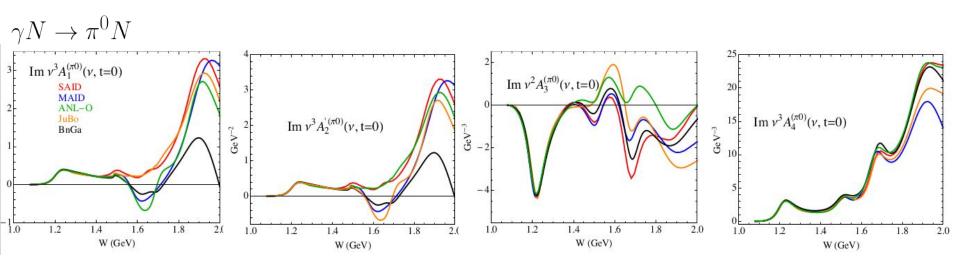
- Various models available for extracting baryon resonances (W < 2 GeV)
 - SAID
 - MAID
 - Bonn-Gatchina
 - Juelich-Bonn
 - ...

Low energies

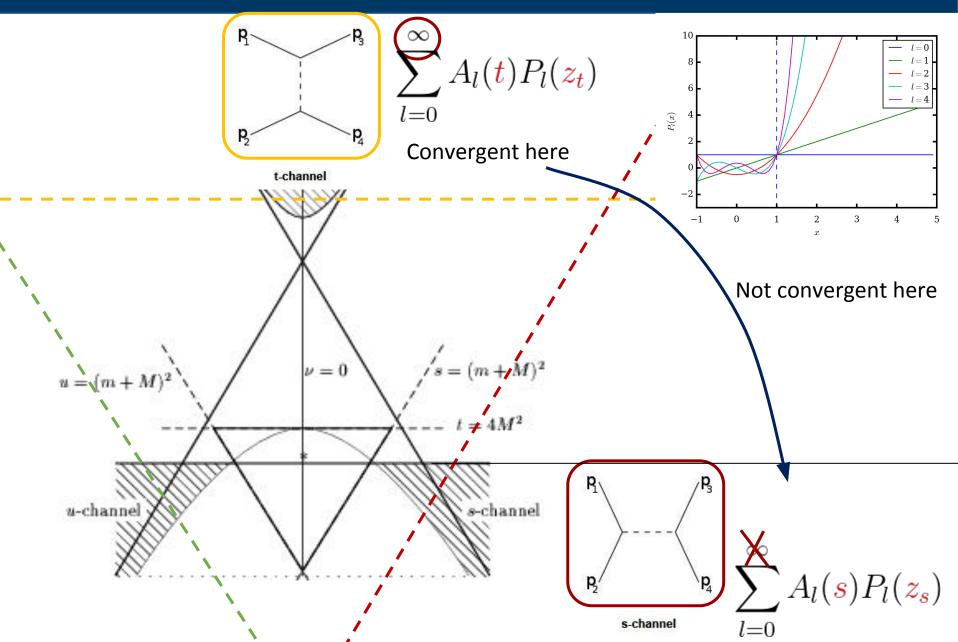
$$\int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_{i}^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^{k} d\nu'$$

Low energy models

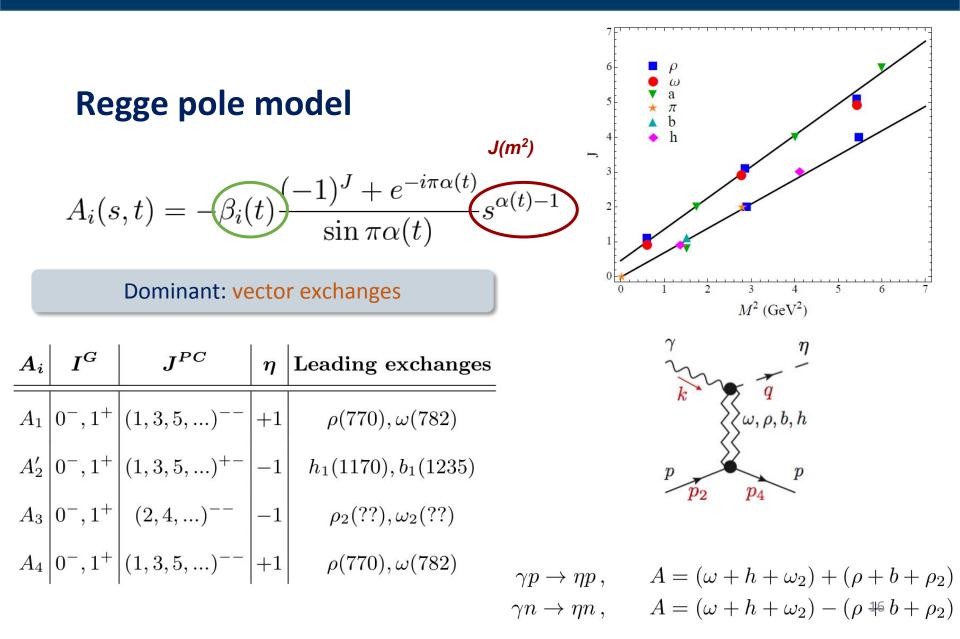
• BnGa, Juelich-Bonn, ANL-Osaka, SAID, MAID,...



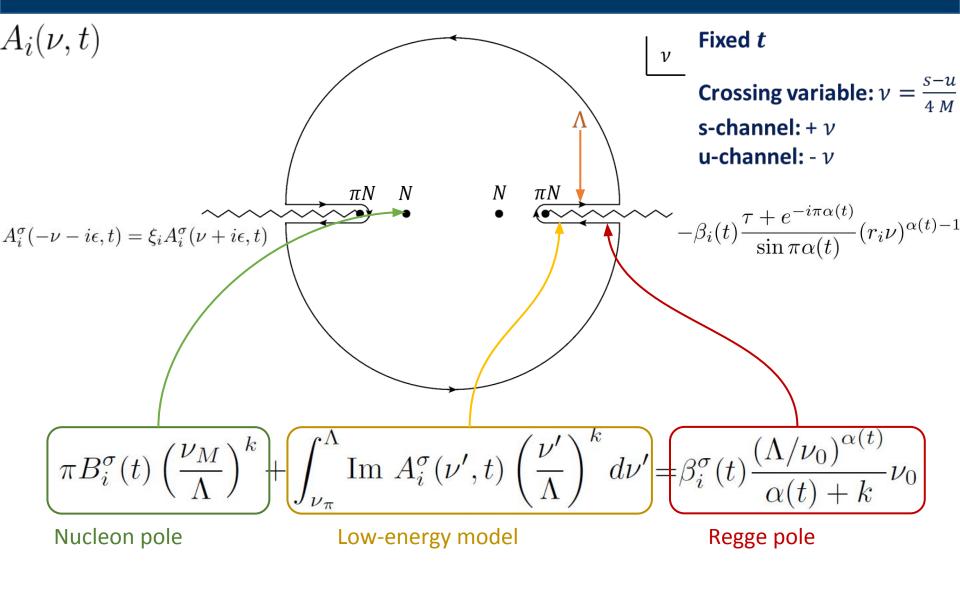
Using the right degrees of freedom



High-energy model

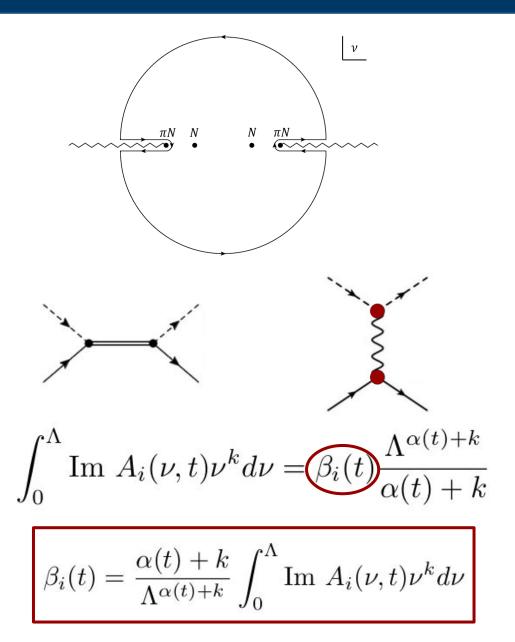


Dispersion relations - FESR

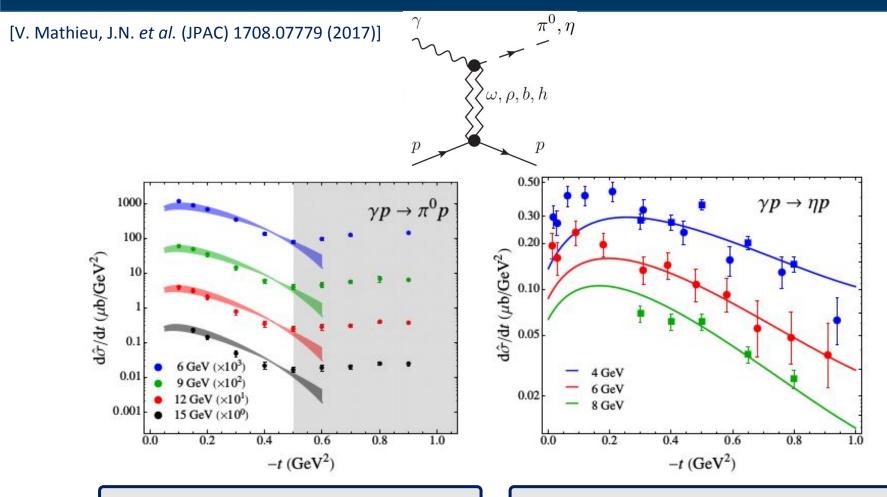


Analyticity results in Finite-Energy Sum Rules.

Finite-Energy Sum Rules



Finite-Energy Sum Rules



Combine energy regimes

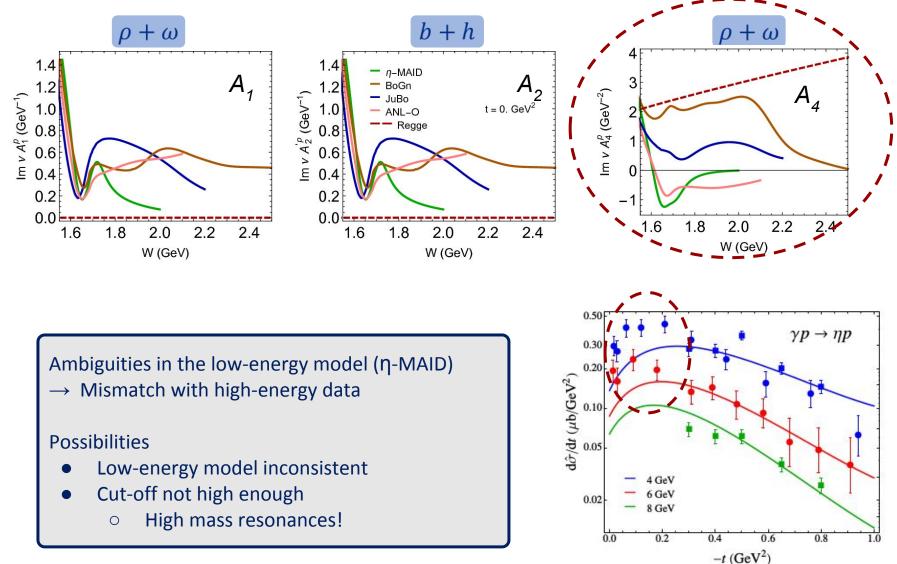
- Low-energy model
- Predict high-energy observables

Two applications

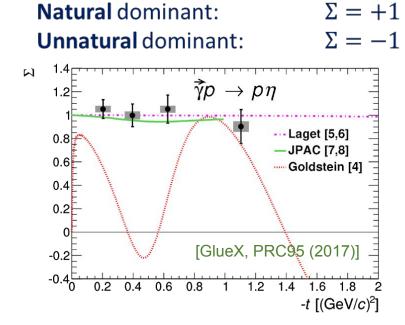
- Understand high-energy dynamics
- Constraining low-energy models

Low-energy models (η)

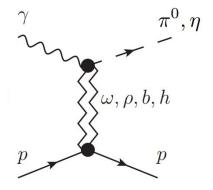
[J.N. et al., PRD95 (2017) 034014]



High-energy predictions

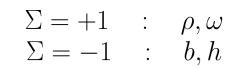


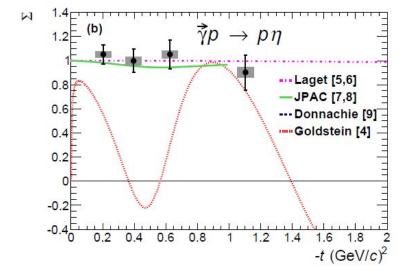
$$\Sigma = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2}$$

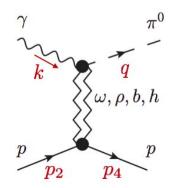


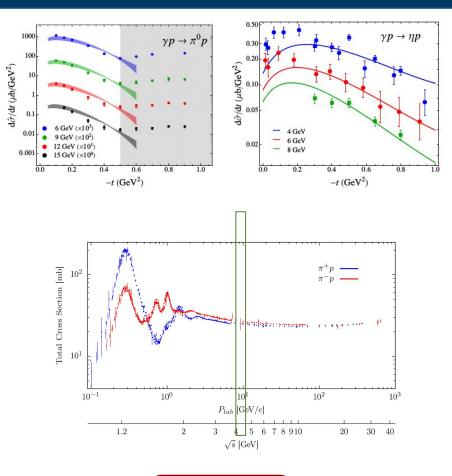
$$\begin{split} \Sigma &= +1 &: \rho, \omega \\ \Sigma &= -1 &: b, h \end{split}$$

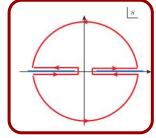
Production process: example











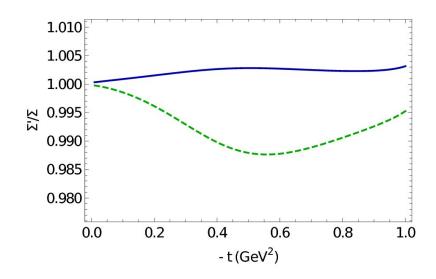
ANALYTICITY

High-energy predictions

- Unnatural components have little effect
- Φ, h' components are subleading

$$\Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}} \quad (\gamma p \to \eta p) \qquad \Sigma = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} = \Sigma'$$

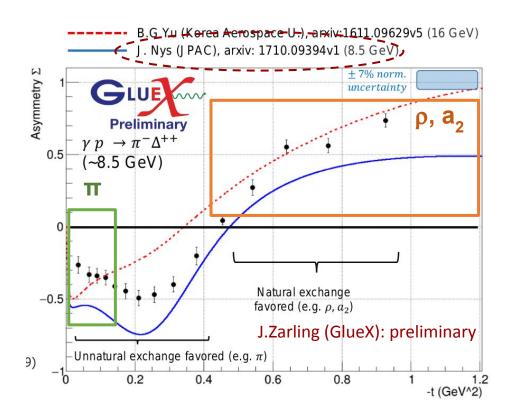
$$\Sigma' = \frac{d\sigma'_{\perp} - d\sigma'_{\parallel}}{d\sigma'_{\perp} + d\sigma'_{\parallel}} \quad (\gamma p \to \eta' p) \qquad \Sigma = \frac{|\rho + \omega + \phi|^2 - |b + h + h'|^2}{|\rho + \omega + \phi|^2 + |b + h + h'|^2} \neq \Sigma'$$

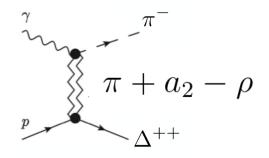


Prediction:	$\Sigma = \Sigma'$
-------------	--------------------

High-energy predictions

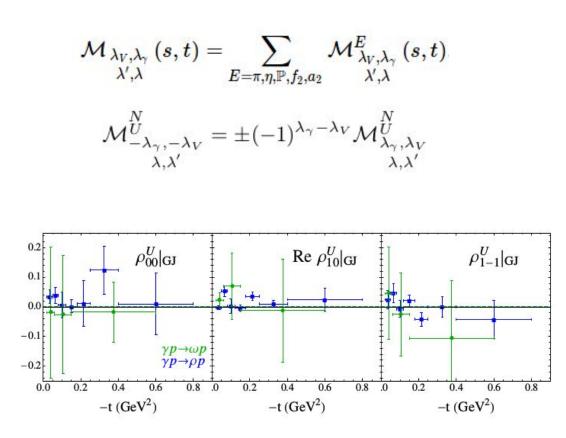
- Dominated by charged pion exchanges
- Model includes
 - Absorbed pion exchange
 - \circ p, a2 exchange (cuts)

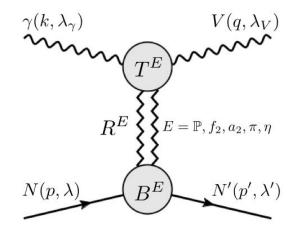




Neutral vector mesons

- Pomeron dominates at high energies
- Isoscalar exchanges dominantly helicity non-flip ($\lambda = \lambda'$)
- Unnatural exchanges: only helicity flip $(|\lambda \lambda'| = 1)$

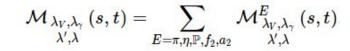


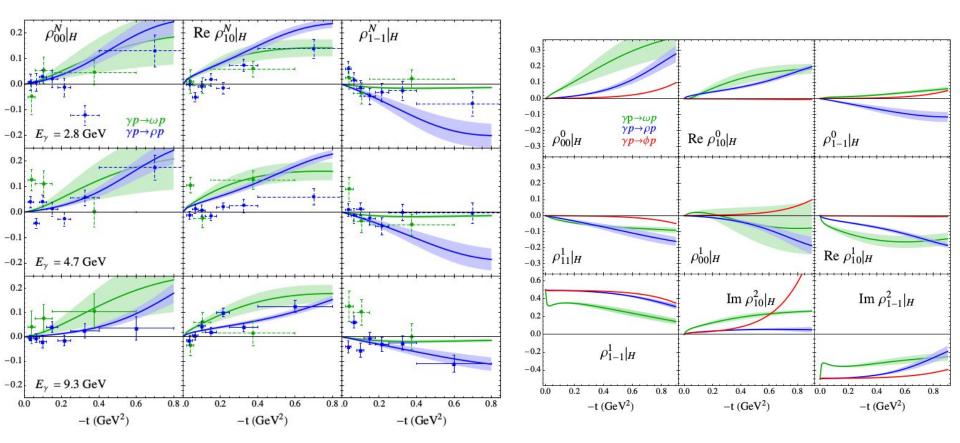


$$\begin{split} \rho_{00}^{N} &= \frac{1}{2} \left(\rho_{00}^{0} \mp \rho_{00}^{1} \right), \\ \operatorname{Re} \, \rho_{10}^{N} &= \frac{1}{2} \left(\operatorname{Re} \rho_{10}^{0} \mp \operatorname{Re} \rho_{10}^{1} \right), \\ \rho_{1-1}^{N} &= \frac{1}{2} \left(\rho_{1-1}^{1} \pm \rho_{11}^{1} \right). \end{split}$$

[V.Mathieu, J.N. et al., (2018) arXiv:1802.09403]

Neutral vector mesons

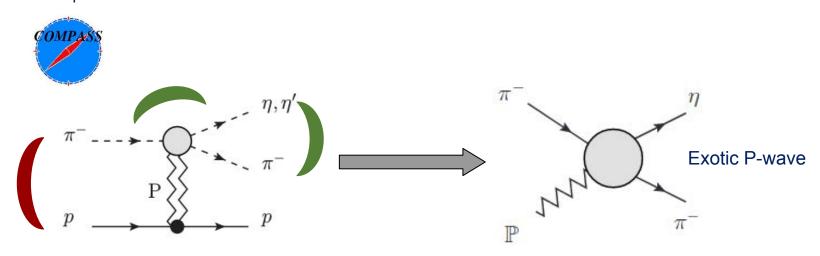




[V.Mathieu, J.N. et al., (2018) arXiv:1802.09403]

Meson production

Example: π_1 production



Energy scale separation: factorization possible

Knowledge of the production process required to carry out PWA Multiple production processes required for confirmation

Kinematic singularities

Constraints from **analyticity**

- Reaction amplitude is a smooth function, i.e. analytic
- Dynamics introduces singularities (on the unphysical sheets, or the real axis)
- Spin projections introduce singularities related to their Lorentz transformations
 - Track them down & remove them
 - Create 'kinematic singularity free amplitudes', where you can plug in the **dynamics**.
- Amplitude must be **crossing symmetric**: resonance properties are the same for different kinematics

S-matrix theory: we do not use the underlying field theory, so no Feynman diagrams to help us out

Question: "What are the minimal kinematic factors to include to have obtain analytic amplitude?"

Types of singularities:
$$\mathcal{A}_{\lambda}(s,t,u) = \frac{1}{4\pi} \sum_{j=|\lambda|}^{\infty} (2j+1) A_{\lambda}^{j}(s) d_{\lambda 0}^{j}(z_{s})$$

• Half-angle factors: kinematic singularities in t $\hat{d}_{\lambda\lambda'}^j(z_s) = \frac{d_{\lambda\lambda'}^j(z_s)}{\xi_{\lambda\lambda'}(z_s)}$

$$\xi_{\lambda\lambda'}(z_s) = \left(\sqrt{1-z_s}\right)^{|\lambda-\lambda'|} \left(\sqrt{1+z_s}\right)^{|\lambda+\lambda'|}$$

- (pseudo)threshold factors $A^{j\eta}_{\lambda_p,\lambda_b\lambda_\psi}(s) \sim p^{L_1} (A^{j\eta}_{\lambda_n,\lambda_b\lambda_\psi}(s) \sim q^{L_2})$
- s=0: little group changes

 $|\mathcal{P}\rangle \otimes |pJM;\mu_1\mu_2\rangle$ $s = \mathcal{P}^2 \to 0$ $\mathcal{P}^\mu \to (0,0,0,0)$

Tools in the toolbox:

- Helicity formalism
 - Jacob, Wick, Annals Phys. 7, 404 (1959)
- LS formalism
- Covariant tensor formalism
 - Chung, PRD48, 1225 (1993)
 - Chung, Friedrich, PRD78, 074027 (2008)
 - Filippini, Fontana, Rotondi, PRD51, 2247 (1995)
 - Anisovich, Sarantsev, EPJA30, 427 (2006)

Kinematic singularities

• General covariant structures: scalar functions are kinematic singularity and zero free

$$A_{\lambda}(s,t) = \epsilon_{\mu}(\lambda,p_1) \left[(p_3 - p_4)^{\mu} - \frac{m_3^2 - m_4^2}{s} (p_3 + p_4)^{\mu} \right] C(s,t) + \epsilon_{\mu}(\lambda,p_1) (p_3 + p_4)^{\mu} \underline{B(s,t)}$$

• Helicity partial wave decomposition + matching with covariant basis

$$\mathcal{A}_{\lambda}(s,t,u) = \frac{1}{4\pi} \sum_{j=|\lambda|}^{\infty} (2j+1) A_{\lambda}^{j}(s) \underline{d_{\lambda 0}^{j}(z_{s})}$$
singularities in t

Cohen-Tannoudji, *et al.* Annals Phys. (1968) Collins' book Martin & Spearman book

LS decomposition

$$A_{\lambda}^{j}(s) = \underbrace{p^{j-1}q^{j}}_{\lambda} \left(\sqrt{\frac{2j-1}{2j+1}} \langle j-1,0;1,\lambda | j,\lambda \rangle \hat{G}_{j-1}^{j}(s) + \sqrt{\frac{2j+3}{2j+1}} \langle j+1,0;1,\lambda | j,\lambda p^{2} \hat{G}_{j+1}^{j}(s) \right)$$
• Covariant projection method: scattering
$$L_{=1} \qquad p \qquad L_{=1} \qquad X_{\nu}(q,P) = q_{\nu}^{\perp} = q_{\nu} - P_{\nu}P \cdot q/s$$

$$A_{\lambda}(s,t) = \epsilon_{\mu}(\lambda,p_{1}) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{S}(s) + \epsilon^{\rho}(\lambda,p_{1}) X_{\rho\mu}(p,P) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{D}(s)$$
• Covariant projection method: decay
• Covariant projection method: decay
$$A_{\lambda}(s,t) = \epsilon_{\mu}^{*}(\lambda,\bar{p}_{1}) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{S}(s) + \epsilon^{\rho*}(\lambda,\bar{p}_{1}) X_{\rho\mu}(\hat{p},p_{2}) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{D}(s)$$
• Covariant projection method: decay
$$A_{\lambda}(s,t) = \epsilon_{\mu}^{*}(\lambda,\bar{p}_{1}) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{S}(s) + \epsilon^{\rho*}(\lambda,\bar{p}_{1}) X_{\rho\mu}(\hat{p},p_{2}) \left(-g^{\mu\nu} + \frac{P^{\mu}P^{\nu}}{s} \right) X_{\nu}(q,P)g_{D}(s)$$
Orthogonal to B

Covariant projection method

Based on the construction of explicitly covariant expressions.

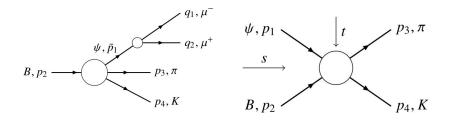
Routine:

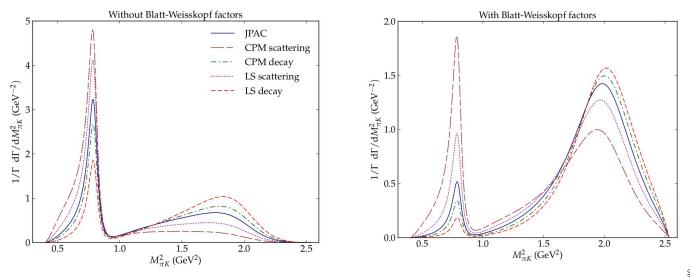
- To describe the decay $a \rightarrow bc$, we first consider the polarization tensor of each particle, $\varepsilon^{i}_{\mu_{1}...\mu_{j_{i}}}(p_{i})$
- We combine the polarizations of b and c into a "total spin" tensor, $S_{\mu_1...\mu_s}(\varepsilon_b, \varepsilon_c)$
- Using the decay momentum, we build a tensor $L_{\mu_1...\mu_L}(p_{bc})$ to represent the orbital angular momentum of the bc system, orthogonal to the total momentum of p_a
- We contract S and L with the polarization of a

<u>Advantages</u>

- The procedure is recursive, and relatively simple for low spins.
- The tensor multiply the dynamic functions which contain resonances and form factors

Kinematic singularities

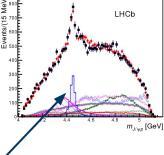




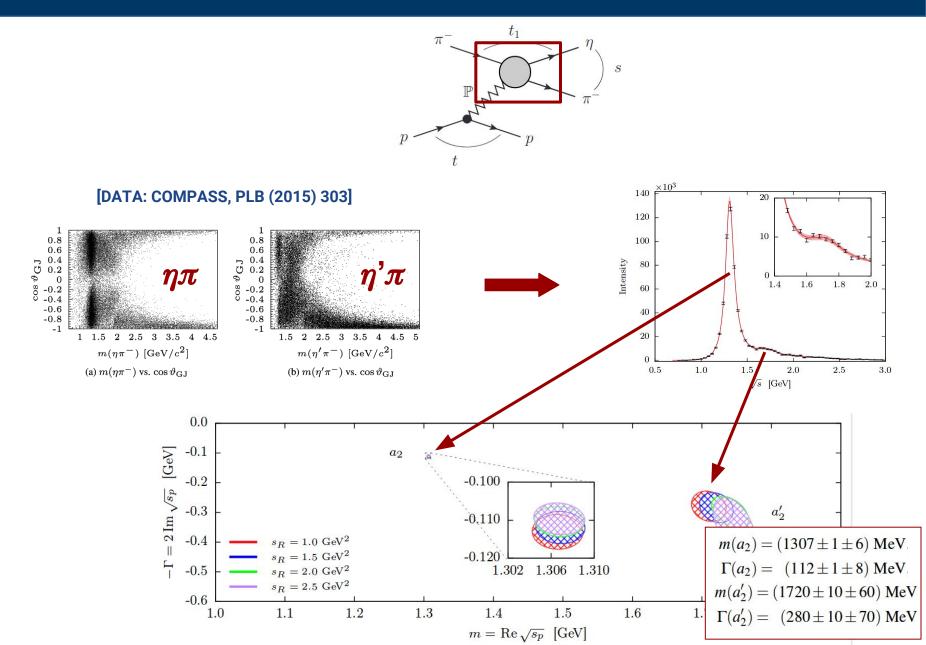
Conclusions:

- LS only gives correct threshold behavior (not pseudothreshold and s=0)
- LS is relativistic
- CPM is not crossing symmetric
- CPM differs from LS
- CPM yields redundant kinematic factors, which are not required by analyticity

[M. Mikhasenko, A. Pilloni, JN et al. EPJC78 (2018)] & [A. Pilloni, JN, M. Mikhasenko et al. arxiv today (?) (2018)]

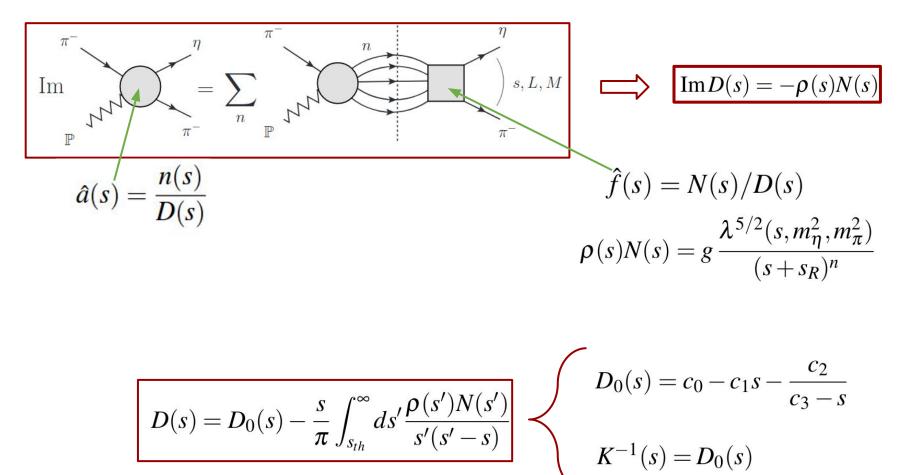


Pole extraction

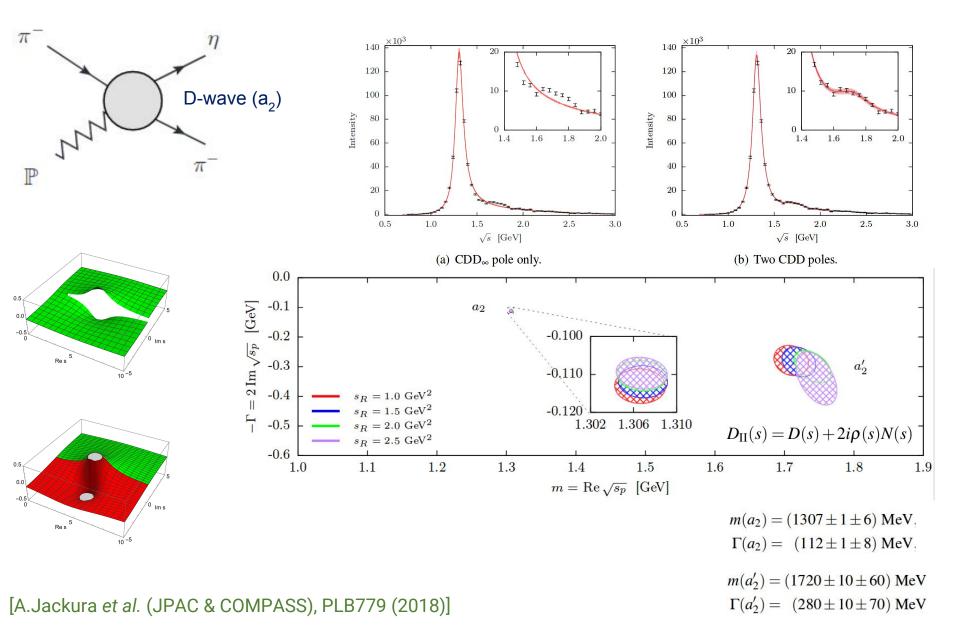


Partial-wave analysis

- Unitarity, analytic N/D model
- N contains left-hand cuts (exchange forces)
- D contains right-hand cuts (resonance content)



Partial-wave analysis



Exotic P-wave

		FLAVORED = B = 0)		
	$I^{G}(J^{PC})$	= B = 0,	$I^{G}(J^{PC})$	
• π^{\pm}	$1^{-}(0^{-})$	 ρ₃(1690) 	1+(3)	t
 π⁰ 	$1^{-}(0^{-+})$	 ρ(1700) 	$1^+(1^{})$	
• 7	$0^{+}(0^{-+})$	a2(1700)	$1^{-}(2^{++})$	
 f₀(500) 	$0^+(0^{++})$	• f ₀ (1710)	$0^+(0^{++})$	
 ρ(770) 	$1^+(1^{})$	$\eta(1760)$	$0^{+}(0^{-+})$	
 ω(782) 	$0^{-}(1^{-})$	 π(1800) 	$1^{-}(0^{-+})$	
 η'(958) 	$0^{+}(0^{-+})$	f ₂ (1810)	$0^+(2^{++})$	
 f₀(980) 	$0^+(0^{++})$	X(1835)	$?^{?}(0^{-+})$	
 a₀(980) 	$1^{-}(0^{++})$	X(1840)	??(???)	
 \$\phi(1020)\$ 	$0^{-}(1^{-})$	a1(1420)	$1^{-}(1^{+}+)$	
 h₁(1170) 	$0^{-}(1^{+})$	• $\phi_3(1850)$	$0^{-}(3^{-})$	
 b₁(1235) 	$1^{+}(1^{+})$	$\eta_2(1870)$	$0^{+}(2^{-+})$	
 a₁(1260) 	$1^{-}(1^{++})$	 π₂(1880) 	$1^{-}(2^{-+})$	
 f₂(1270) 	$0^+(2^{++})$	p(1900)	$1^+(1^{})$	
 f₁(1285) 	$0^{+}(1^{++})$	f ₂ (1910)	$0^{+}(2^{++})$	
 η(1295) 	$0^{+}(0^{-+})$	a ₀ (1950)	$1^{-}(0^{+}+)$	
 π(1300) 	$1^{-}(0^{-+})$	 f₂(1950) 	$0^+(2^+)$	
 a₂(1320) 	$1^{-}(2^{++})$	$\rho_3(1990)$	1+(3)	
 f₀(1370) 	$0^{+}(0^{++})$	• f2(2010)	$0^{+}(2^{++})$	
$h_1(1380)$	$?^{-}(1^{+})$	f (2020)	$0^{+}(0^{++})$	
 π₁(1400) 	$1^{-}(1^{-+})$	 a₄(2040) 	$1^{-}(4^{++})$	
 η(1405) 	0+(0-+)	 f₄(2050) 	$0^{+}(4^{++})$	
 f₁(1420) 	$0^{+}(1^{++})$	$\pi_2(2100)$	$1^{-}(2^{-+})$	
 ω(1420) 	0-(1)	f ₀ (2100)	$0^{+}(0^{++})$	
$f_2(1430)$	0+(2++)	f ₂ (2150)	0+(2++)	
 a₀(1450) 	$1^{-}(0^{++})$	p(2150)	$1^+(1^{})$	
 ρ(1450) 	1+(1)	 φ(2170) 	$0^{-}(1^{-})$	
 η(1475) 	0+(0-+)	f ₀ (2200)	0+(0++)	
 f₀(1500) 	0+(0++)	f _J (2220)	0+(2++	L
$f_1(1510)$	$0^+(1^{++})$		or 4 + +)	
 f'₂(1525) 	0+(2++)	$\eta(2225)$	$0^+(0^{-+})$	L
$f_2(1565)$	0+(2++)	$\rho_3(2250)$	1+(3)	
$\rho(1570)$	1+(1)	• f ₂ (2300)	0+(2++)	
$h_1(1595)$	$0^{-}(1^{+})$	f ₄ (2300)	$0^{+}(4^{+})$	Γ
 π₁(1600) 	$1^{-}(1^{-+})$	7 ₀ (2330)	0+(0++)	
a ₁ (1640)	$1^{-}(1^{++})$	• f ₂ (2340)	0+(2++)	
$f_2(1640)$	0+(2++)	ρ ₅ (2350)	1+(5)	
 η₂(1645) 	0+(2-+)	a ₆ (2450)	$1^{-}(6^{++})$	
 ω(1650) 	0-(1)	f ₆ (2510)	0+(6++)	
 ω₃(1670) 	0-(3)	OTHER	LIGHT	
 π₂(1670) 	$1^{-}(2^{-+})$	Further Sta		
 \$\overline{0}(1680)\$ 	$0^{-}(1^{-})$	Further Sta	ales	1

1400)	$\pi_1(1$
-------	-----------

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

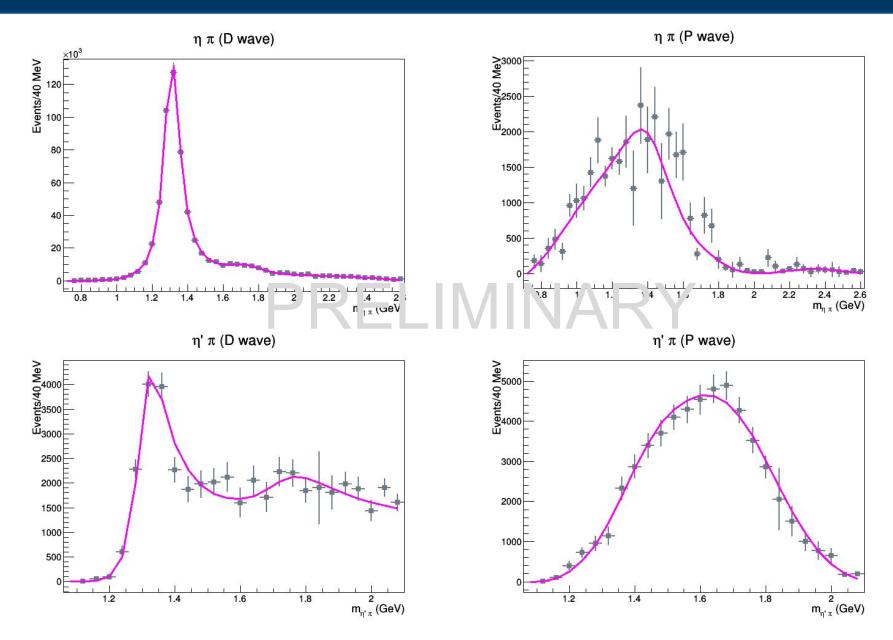
See also the mini-review under non- $q \, \overline{q}$ candidates in PDG 06, Journal of Physics ${\bf G33}~1~(2006).$

$\pi_1(1400)$	MASS
---------------	------

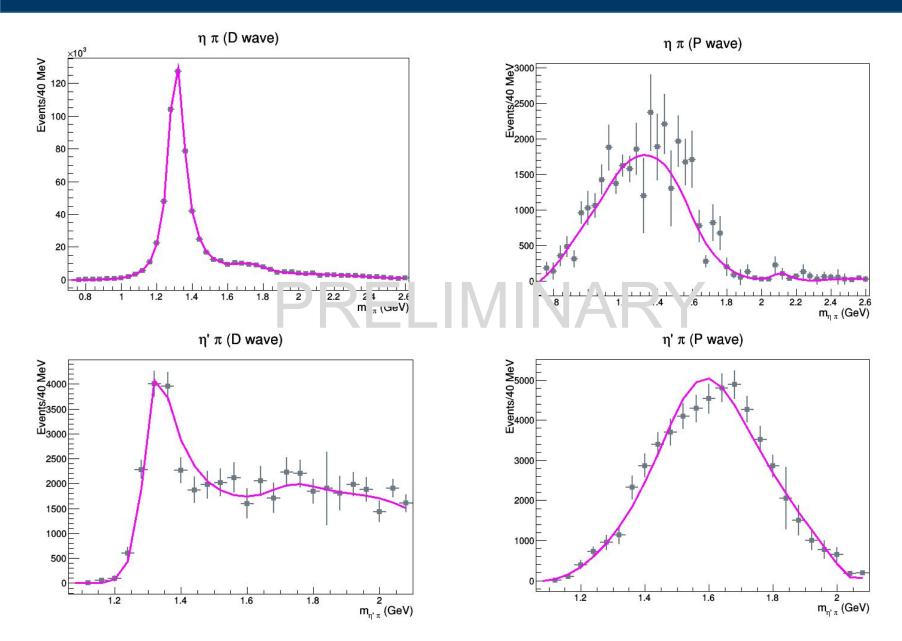
_									
	VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
	1354	±25	OUR	AVERAGE	Error includes sc	ale fac	ctor of 1	8. See	the ideogram below.
	1257	± 20	± 25	23.5k	ADAMS	07 B	B852		$18 \pi^- p \rightarrow \eta \pi^0 n$
	1384	± 20	± 35	90k	SALVINI	04	OBLX		$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
	1360	± 25			ABELE	99	CBAR		$0.0 \ \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
	1400	± 20	± 20		ABELE	98B	CBAR		$0.0 \overline{p} n \to \pi^{-} \pi^{0} \eta$
	1370	± 16	$+50 \\ -30$		¹ THOMPSON	97	MPS		18 $\pi^- p \rightarrow \eta \pi^- p$
	● ● ● We do not use the following data for averages, fits, limits, etc. ● ●								
	$\begin{array}{rrrr} 1323.1 \pm & 4.6 \\ 1406 & \pm 20 \end{array}$				² AOYAGI	93	BKEI		$\pi^- p \rightarrow \eta \pi^- p$
					³ ALDE	88B	GAM4	0	$100 \pi^- p \rightarrow \eta \pi^0 n$
	1 Natural parity exchange, questioned by DZIERBA 03.								
				y exchange.					
	³ Seen in the Po-wave intensity of the $n\pi^0$ system, unnatural parity exchange.								exchange.

	π_1 (1600))		I ^G ($J^{G}(J^{PC}) = 1^{-}(1^{-+})$			
	π1(1600) MASS							
	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
	1662 ⁺ 8 OUR AVERAGE							
	$1660 \pm 10 {+}{-}{64}$	420k	ALEKSEEV	10	COMP	190 $\pi^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb'$		
1	$1664\pm$ 8 ± 10	145k	¹ LU	05		18 $\pi^- p \rightarrow \omega \pi^- \pi^0 p$		
	$1709 \pm 24 \pm 41$	69k	² KUHN	04	B852	$18 \pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$		
	$1597 \pm 10 {+} {45} {-} {10}$		² IVANOV	01	B852	18 $\pi^- p \rightarrow \eta' \pi^- p$		
	● ● ● We do not use the following data for averages, fits, limits, etc. ● ●							
	$1593 \pm \ 8^{+29}_{-47}$		2,3 ADAMS	98B	B852	18.3 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$		
	¹ May be a different state: natural and unnatural parity exchanges. ² Natural parity exchange. ³ Superseded by DZIERBA 06 excluding this state in a more refined PWA analysis, with 2.6 M events of $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ and 3 M events of $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$ of E852 data.							

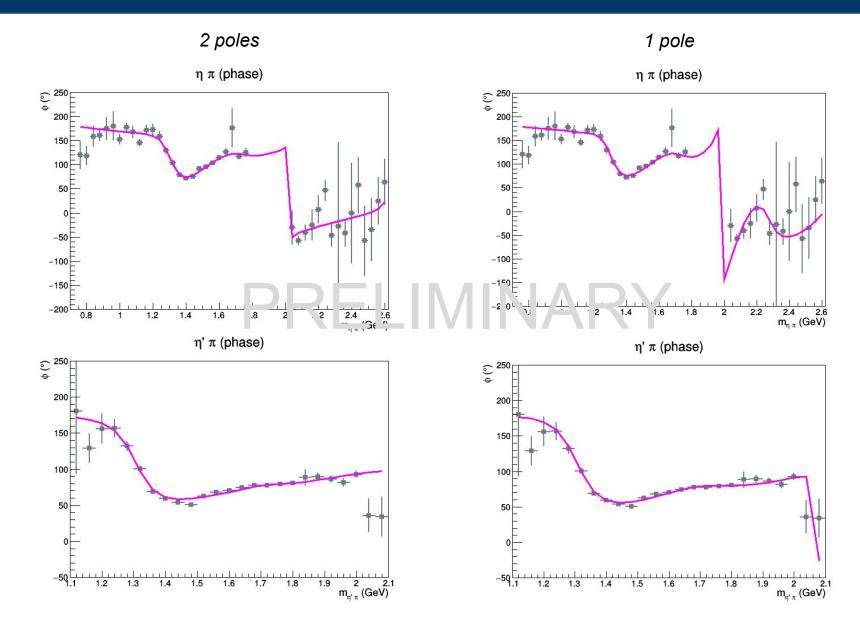
Coupled channel: 2 poles in P



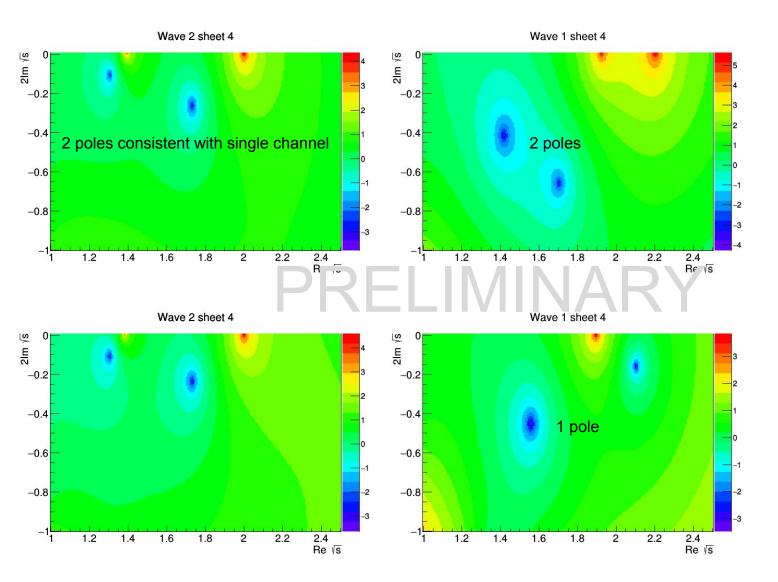
Coupled channel: 1 pole in P



Coupled channel: relative phase (P,D)



Coupled channel: sheet structure



[JPAC, in preparation]

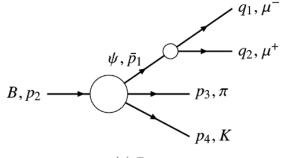
Summary

- Hunt for exotic mesons has started at Jefferson Lab
- Many analyses to understand the production process in photoproduction processes
- Analyticity constraints are necessary to predict the naturality of the exchanges
- Kinematic singularities must be removed properly before hunting for dynamic singularities: scheme dependent
- Analysis of the exotic P-wave in COMPASS data with a unitary and analytic model

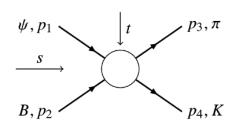
Ongoing study: sum rules for $\eta^{(\prime)}\pi$

Backup

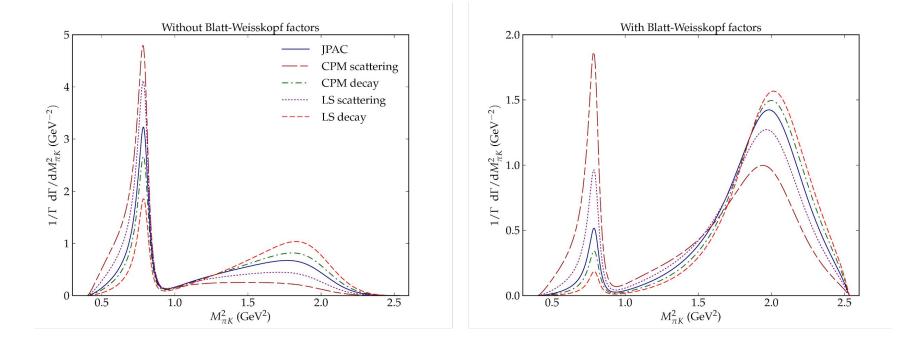
Kinematic singularities



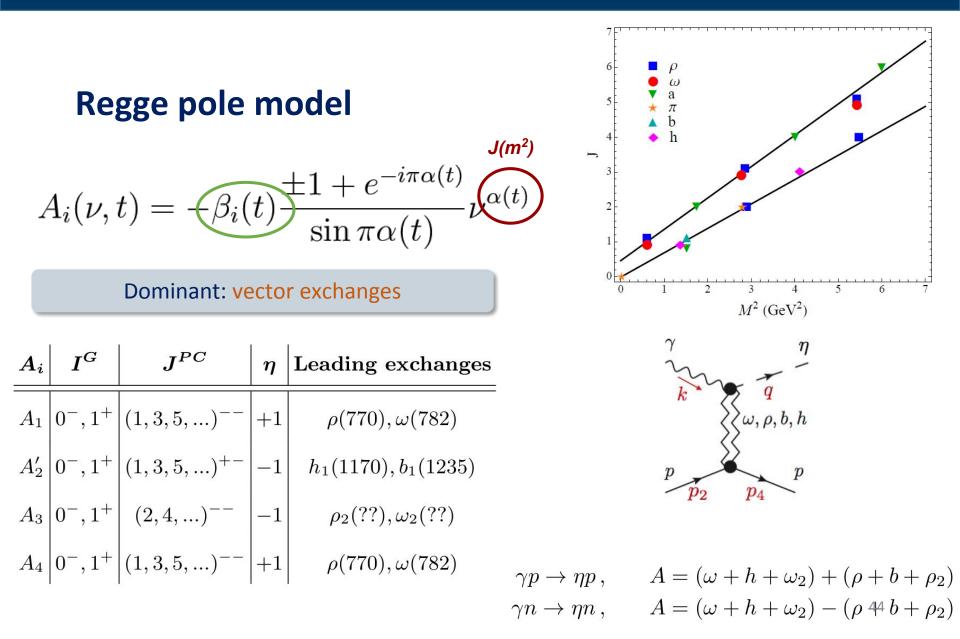
(a) Decay



(b) s-channel scattering

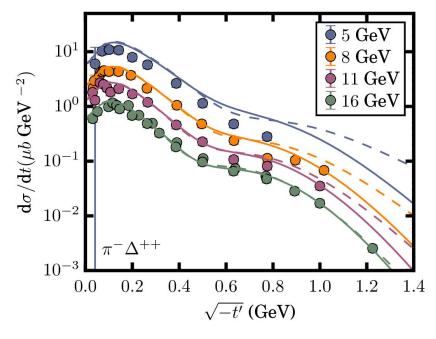


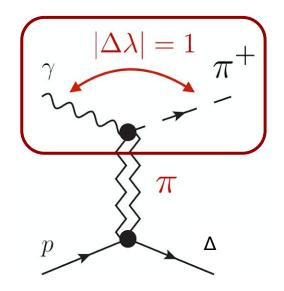
High-energy model



$\pi\Delta$ photoproduction

J.N et al. (JPAC) [arXiv:1710.09394]

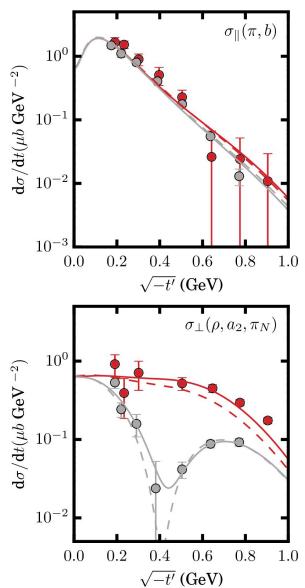


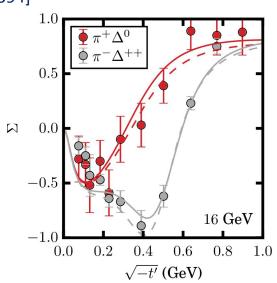


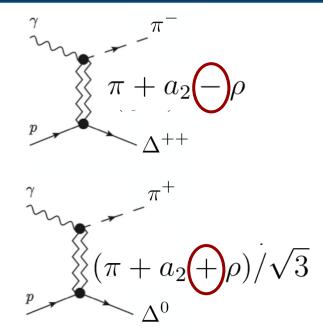
$$A^{10}_{-\frac{1}{2}\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t} \longrightarrow \frac{-m_{\pi}^2}{m_{\pi}^2 - t}$$

From residue factorization: $\sqrt{-t}$ for each helicity flip Not seen in data \rightarrow contact term

$\pi\Delta$ photoproduction



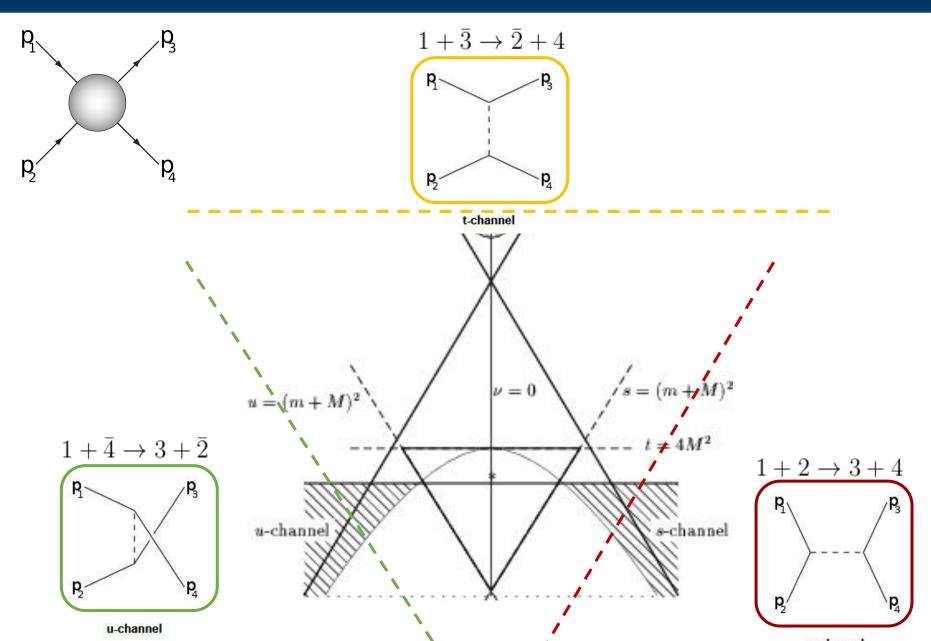




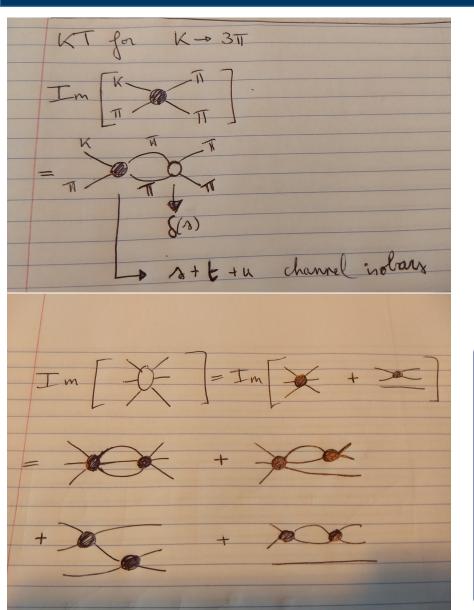
Data available at 16 GeV

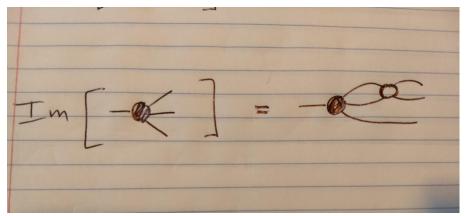
- π-exchange is featureless and entirely fixed
- Strong interference pattern in natural exchange sector
- Negligible role of b exchange

Fix t-dependence and extrapolate to JLab energies (9 GeV)



KT approach





$$\frac{1}{\sqrt{2s}} \left(A_{+,+1} + A_{-,-1} \right) = \sqrt{-t} A_4 \tag{19}$$

$$\frac{1}{\sqrt{2s}} \left(A_{+,-1} - A_{-,+1} \right) = A_1 \tag{20}$$

$$\frac{1}{\sqrt{2s}} \left(A_{+,+1} - A_{-,-1} \right) = \sqrt{-t} A_3 \tag{21}$$

$$\frac{1}{\sqrt{2s}} \left(A_{+,-1} + A_{-,+1} \right) = -A_2' = -(A_1 + tA_2) \quad (22)$$

Thus, at high energies the invariants A_3 and A_4 (A_1 and A'_2) correspond to the *s*-channel nucleon-helicity non-flip (flip), respectively. Combining Eqs. (20) and (22) we obtain

$$A_{-,+1} = -\frac{s}{\sqrt{2}} \left(A_2' + A_1 \right) \,. \tag{23}$$

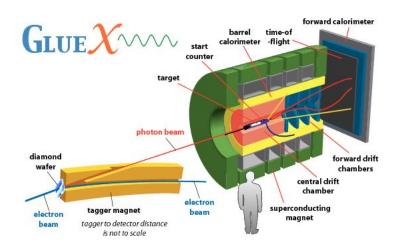
$$A_{\mu_f,\mu_i\,\mu_\gamma} \underset{t\to 0}{\sim} (-t)^{n/2},$$
 (17)

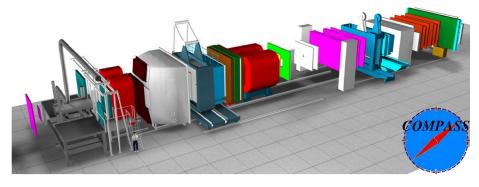
where $n = |(\mu_{\gamma} - \mu_i) - (-\mu_f)| \ge 0$ is the net *s*-channel helicity flip. This is a weaker condition than the one imposed by angular-momentum conservation on factorizable Regge amplitudes,

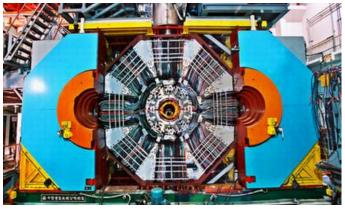
$$A_{\mu_f,\mu_i\,\mu_\gamma} \underset{t\to 0}{\sim} (-t)^{(n+x)/2},$$
 (18)

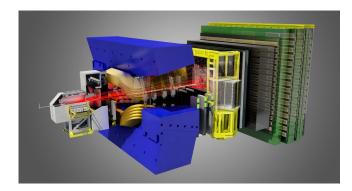
where $n + x = |\mu_{\gamma}| + |\mu_i - \mu_f| \ge 1$. We summarize the

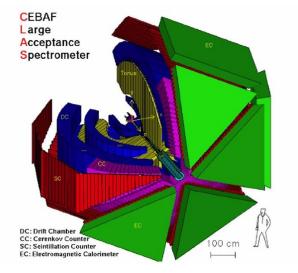
Spectroscopy (experiment)



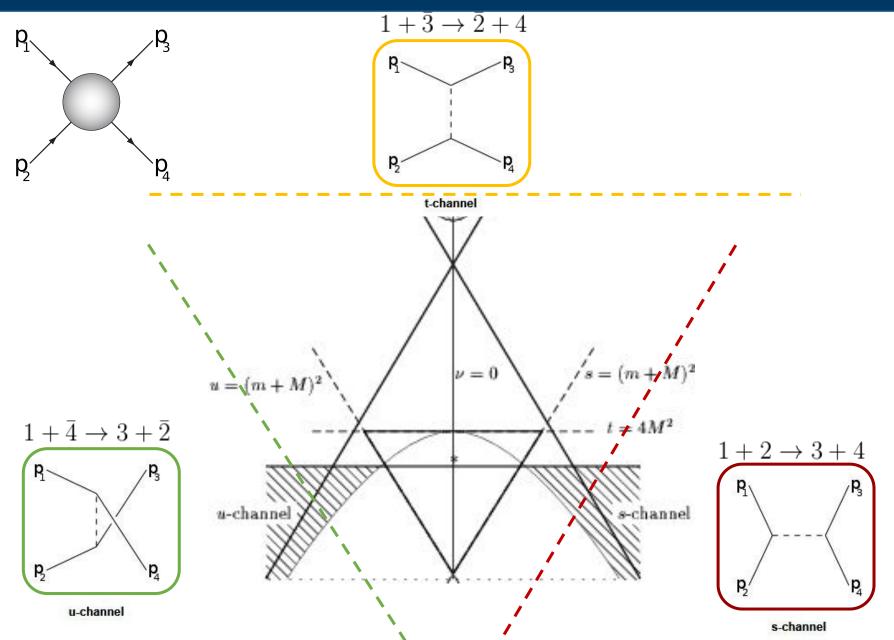


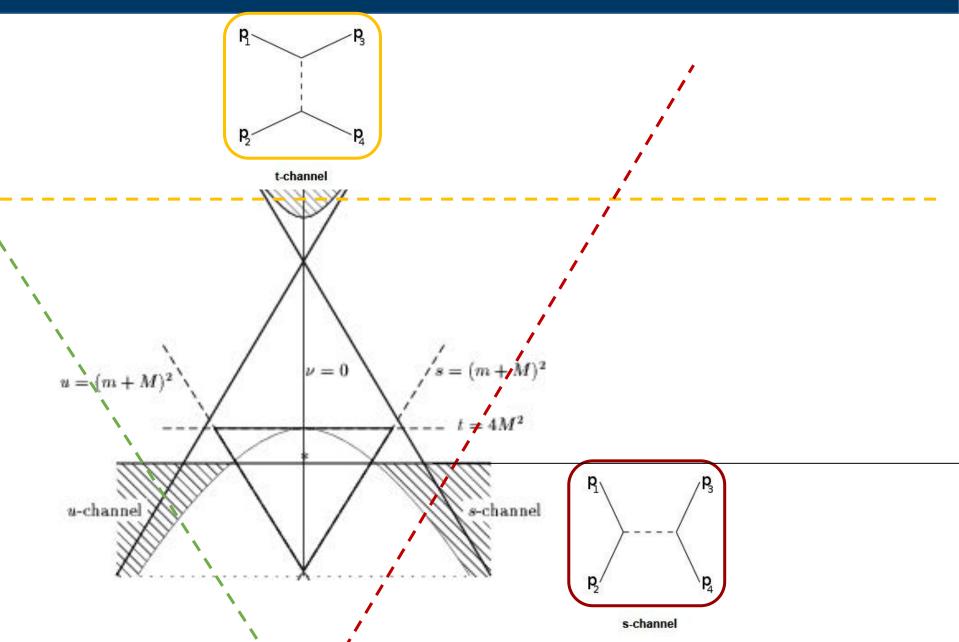


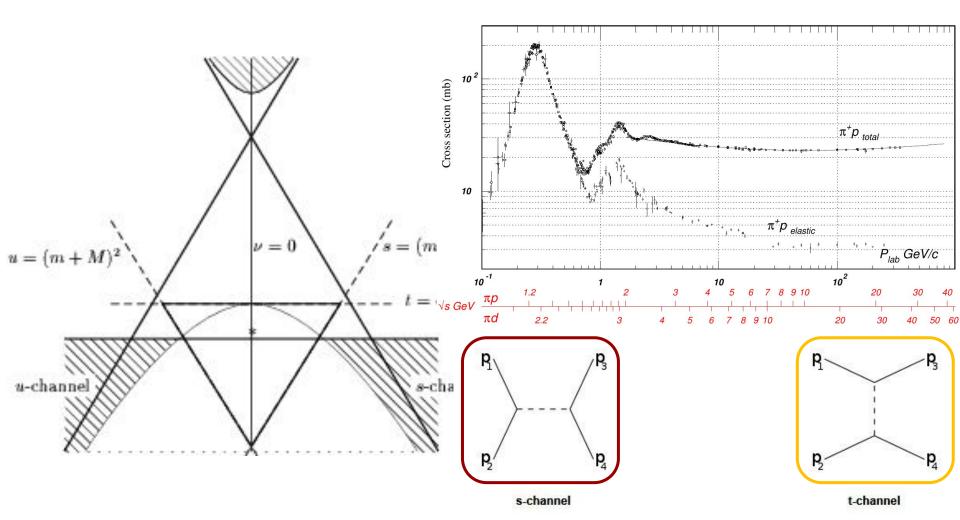




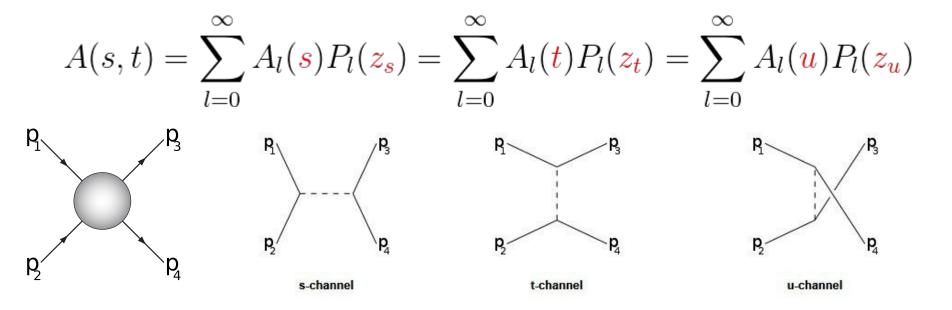
$$\alpha_{1,4}^{(\sigma)} \equiv \alpha_N(t) = 0.9(t - m_{\rho}^2) + 1$$
$$\alpha_{2,3}^{(\sigma)} \equiv \alpha_U(t) = 0.7(t - m_{\pi}^2) + 0$$





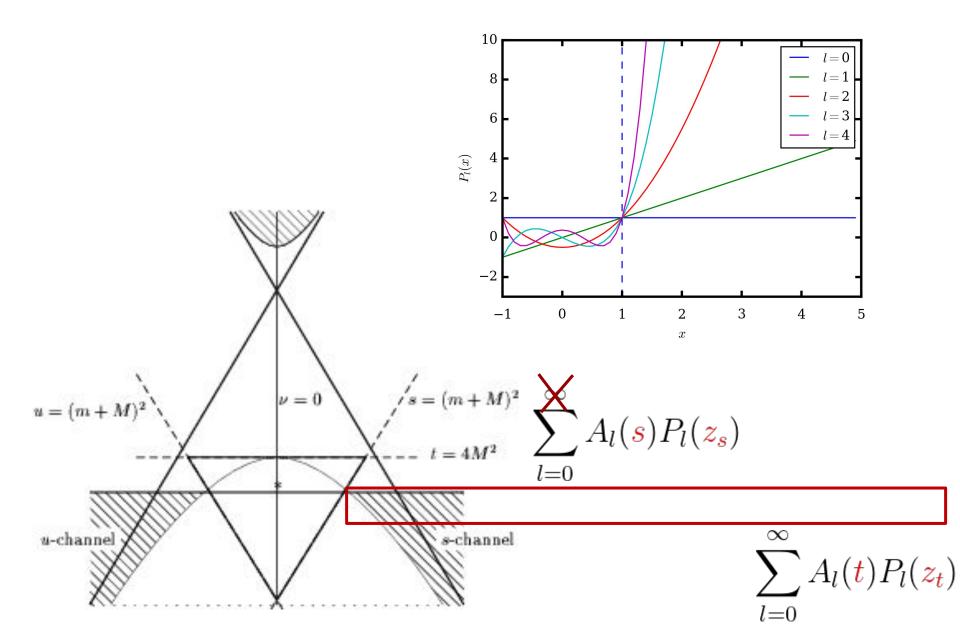


Partial-wave expansion in any channel

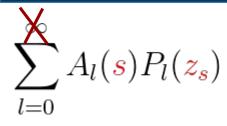


$$A_l(s) \sim q_s^l \qquad (q_s \to 0 \text{ for } s \to s_{thr})$$

Truncated partial-wave expansion

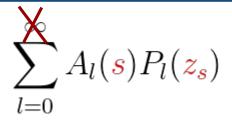


s-channel: truncated partial-wave analysis



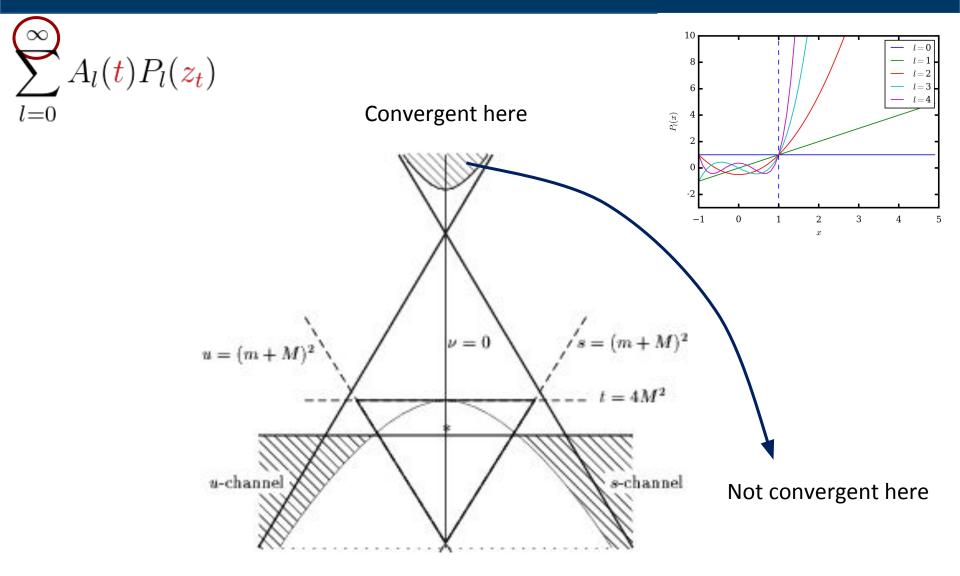
- Various models available for extracting baryon resonances (W < 2 GeV)
 - SAID
 - MAID
 - Bonn-Gatchina
 - Julich-Bonn
 - ...

s-channel: truncated partial-wave analysis

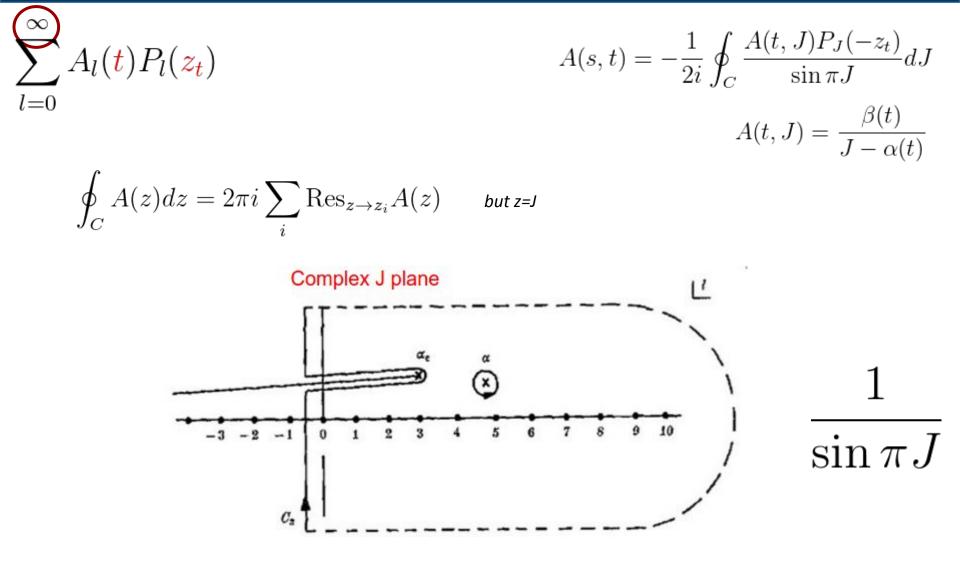


- Analyticity, Unitarity, Crossing symmetry
- Look for poles on the second Riemann sheet
- Cutoff L increases as s increases

t-channel: no truncation possible



t-channel: no truncation possible



t-channel: no truncation possible

$$\int A_l(t) P_l(z_t)$$

Using $A(t, J) = \frac{\beta(t)}{J - \alpha(t)}$

so
$$A_0(t) \sim \frac{1}{m_0^2 - t}$$

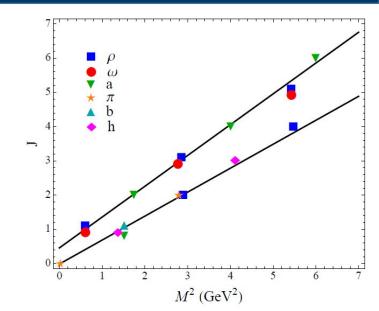
 $A_2(t) \sim \frac{1}{m_2^2 - t}$
 $A_4(t) \sim \frac{1}{m_4^2 - t}$

Solution

 ∞

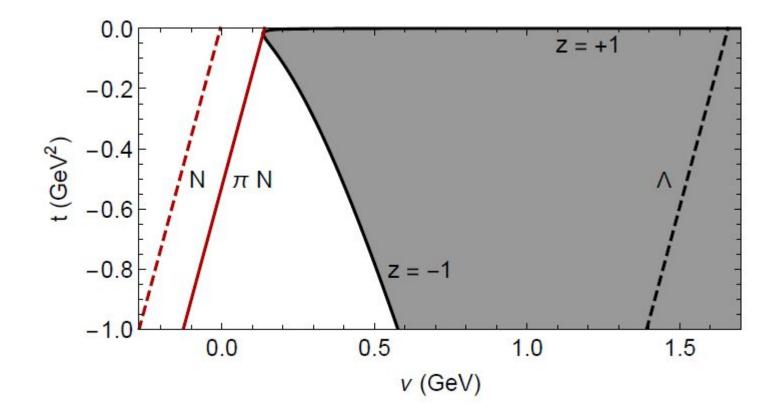
l=0

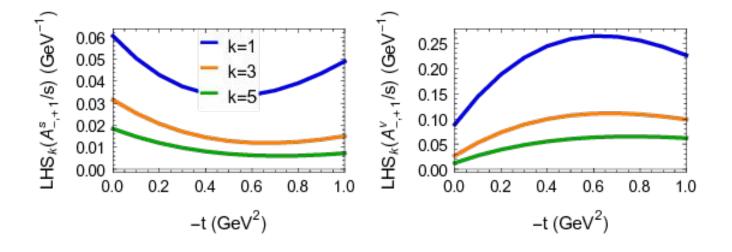
$$\alpha(t) = \alpha'(t - m_0^2)$$

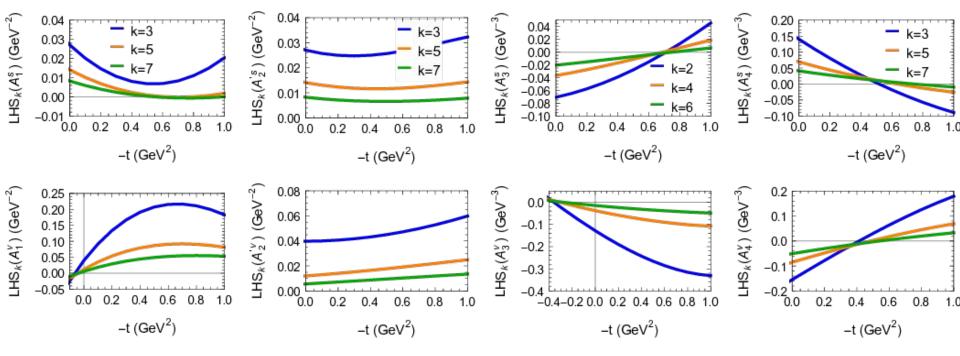


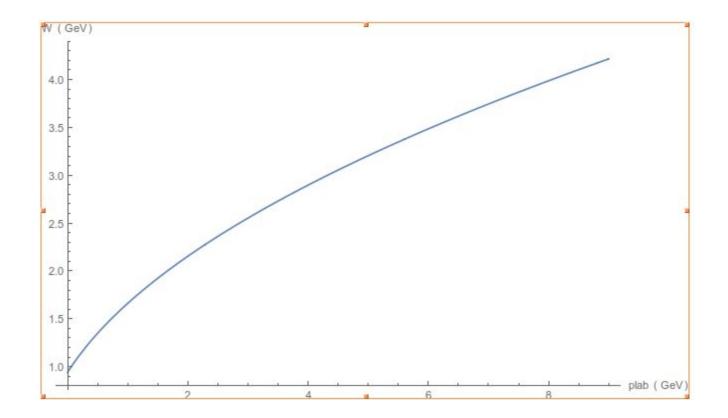
$$P_J(z_t \to +\infty) \to z_t^J$$

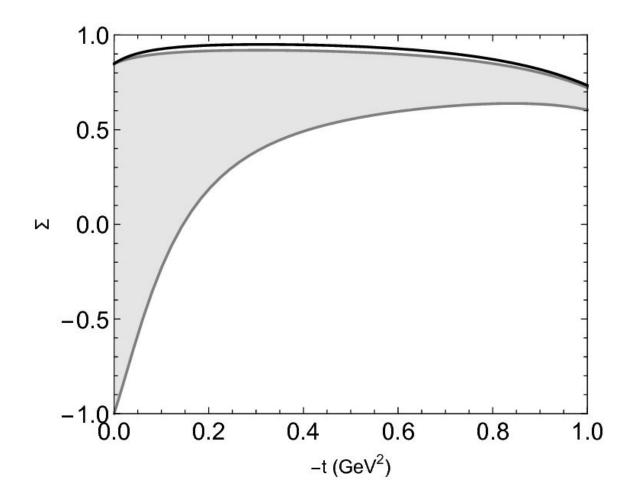
$$A(s,t) = \beta(t) \frac{\tau + e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} s^{\alpha(t)}$$

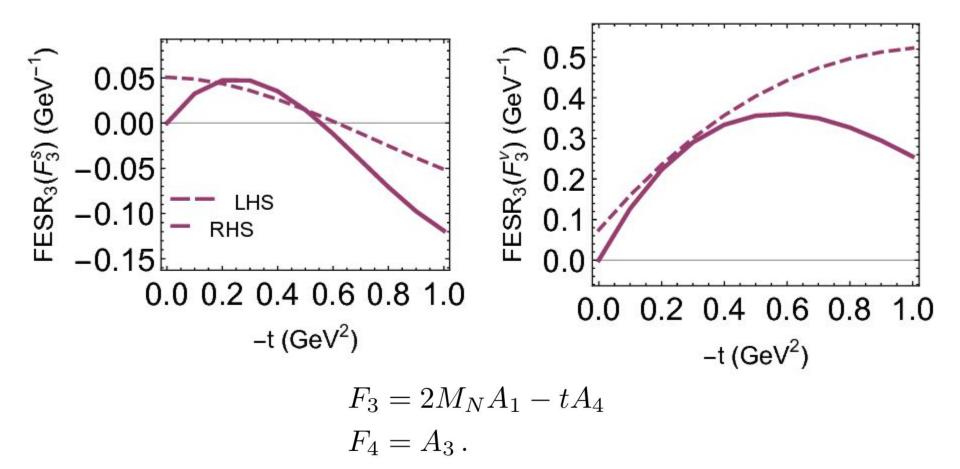








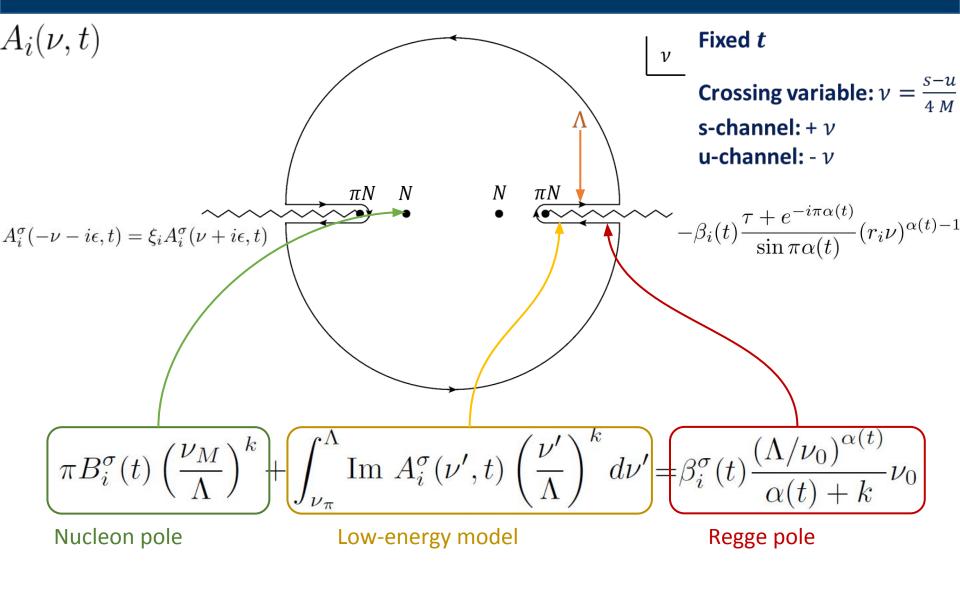




Overview

- Intro
- Dispersion relations
- Low-energy amplitudes (PWA)
- High-energy amplitudes
- Applications to π,η photoproduction: *Finite-Energy Sum Rules*

Dispersion relations - FESR



Analyticity results in Finite-Energy Sum Rules.

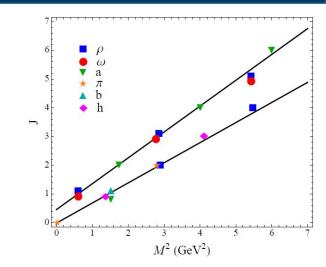
High energies

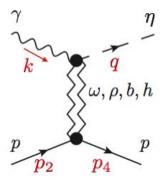
Regge pole model

$$A_{i,R}(\nu,t) = -\beta_i(t) \frac{\tau + e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} (r_i \nu)^{\alpha(t)-1}$$

Dominant: vector exchanges

A_i	I^G	J^{PC}	η	Leading exchanges
A_1	$0^{-}, 1^{+}$	$(1, 3, 5,)^{}$	+1	$ ho(770), \omega(782)$
A_2'	$0^{-}, 1^{+}$	$(1, 3, 5,)^{+-}$	$\left -1\right $	$ \rho(770), \omega(782) $ $ h_1(1170), b_1(1235) $
A_3	$0^{-}, 1^{+}$	$(2, 4,)^{}$	-1	$ ho_2(??), \omega_2(??)$
A_4	$0^{-}, 1^{+}$	$(1, 3, 5,)^{}$	$\left +1\right $	$ ho(770), \omega(782)$





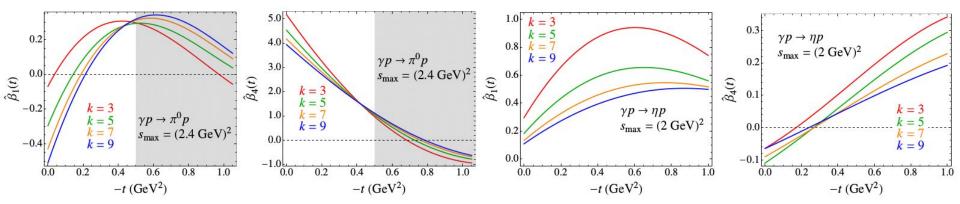
$$\begin{split} \gamma p &\to \eta p \,, \qquad A = (\omega + h + \omega_2) + (\rho + b + \rho_2) \\ \gamma n &\to \eta n \,, \qquad A = (\omega + h + \omega_2) - (\rho + b + \rho_2) \end{split}$$

 $A_2' = A_1 + tA_2$

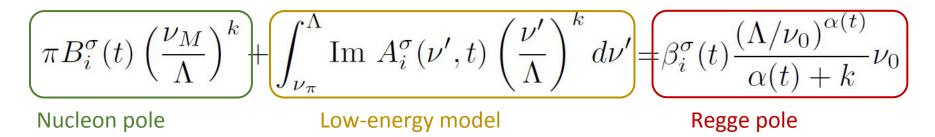
Sensitivity to k

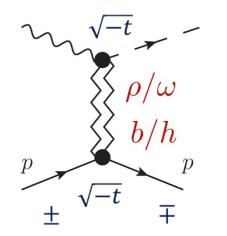
$$\pi B_i^{\sigma}(t) \left(\frac{\nu_M}{\Lambda}\right)^k + \int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_i^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^k d\nu' = \beta_i^{\sigma}(t) \frac{\left(\Lambda/\nu_0\right)^{\alpha(t)}}{\alpha(t) + k} \nu_0$$

$$\widehat{\beta}_i(t) = \frac{\alpha(t) + k}{\Lambda^{\alpha(t) + k}} \int_0^{\Lambda} \operatorname{Im} A_i^{\text{PWA}}(\nu, t) \, \nu^k \, \mathrm{d}\nu$$

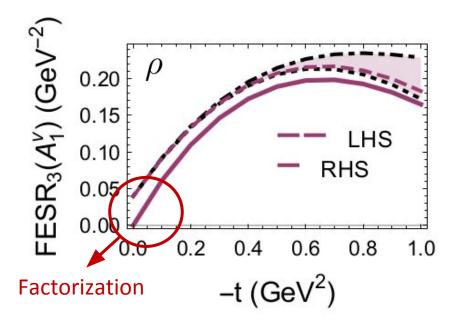


Matching: natural exchanges

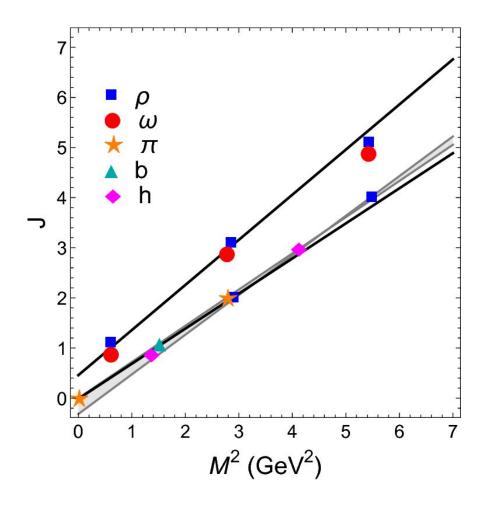




ang. mom. : $A_1 \sim 1$ single pole : $A_1 \sim t$



 $F_3 = 2 M_N A_1 - t A_4$

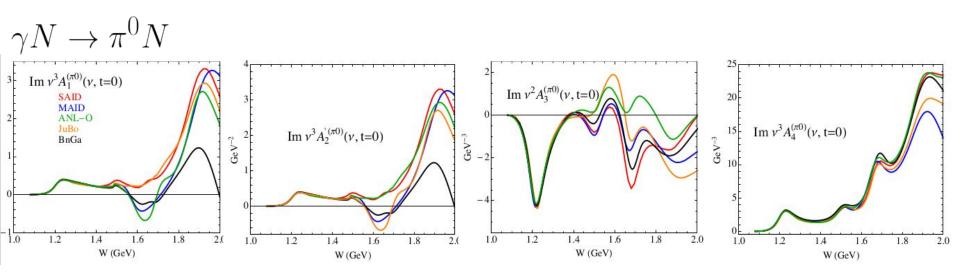


Low energies

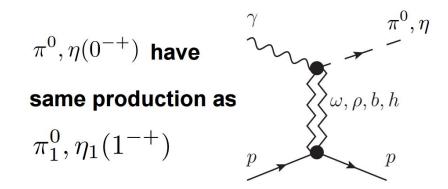
$$\int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_{i}^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^{k} d\nu'$$

Low energy models

• BnGa, Julich-Bonn, ANL-Osaka, SAID, MAID,...



Formalism



$$M_k \equiv M_k(s, t, \lambda_\gamma)$$

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k\right) u_{\lambda}(p)$$

$$M_{1} = \frac{1}{2} \gamma_{5} \gamma_{\mu} \gamma_{\nu} F^{\mu\nu} ,$$

$$M_{2} = 2 \gamma_{5} q_{\mu} P_{\nu} F^{\mu\nu} ,$$

$$M_{3} = \gamma_{5} \gamma_{\mu} q_{\nu} F^{\mu\nu} ,$$

$$M_{4} = \frac{i}{2} \epsilon_{\alpha\beta\mu\nu} \gamma^{\alpha} q^{\beta} F^{\mu\nu} ,$$

- No kinematic singularities
- No kinematic zeros
- Discontinuities:
 - Unitarity cut
 - Nucleon pole

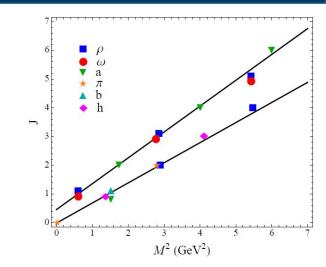
High energies

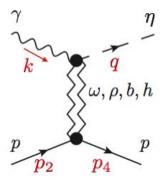
Regge pole model

$$A_{i,R}(\nu,t) = -\beta_i(t) \frac{\tau + e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} (r_i \nu)^{\alpha(t)-1}$$

Dominant: vector exchanges

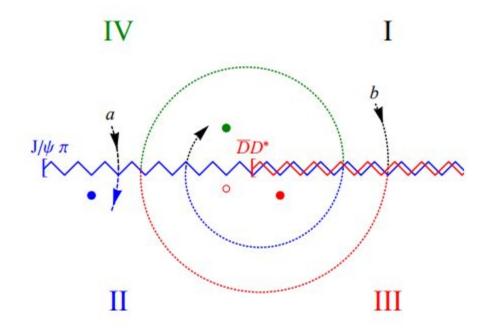
A_i	I^G	J^{PC}	η	Leading exchanges
A_1	$0^{-}, 1^{+}$	$(1, 3, 5,)^{}$	+1	$ ho(770), \omega(782)$
A_2'	$0^{-}, 1^{+}$	$(1, 3, 5,)^{+-}$	$\left -1\right $	$ \rho(770), \omega(782) $ $ h_1(1170), b_1(1235) $
A_3	$0^{-}, 1^{+}$	$(2, 4,)^{}$	-1	$ ho_2(??), \omega_2(??)$
A_4	$0^{-}, 1^{+}$	$(1, 3, 5,)^{}$	$\left +1\right $	$ ho(770), \omega(782)$





$$\begin{split} \gamma p &\to \eta p \,, \qquad A = (\omega + h + \omega_2) + (\rho + b + \rho_2) \\ \gamma n &\to \eta n \,, \qquad A = (\omega + h + \omega_2) - (\rho + b + \rho_2) \end{split}$$

 $A_2' = A_1 + tA_2$

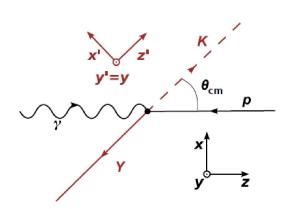


Spectroscopy from QCD



Static spectrum from Lattice QCD [Phys.Rev. D88 (2013) no.9, 094505]

Completely determined system



 $\mathcal{M}_{\lambda_p,\lambda_\Lambda}^{\lambda_\gamma} \to \mathcal{M}_{i=1,2,3,4}$

$$b_{1} \equiv {}_{y} \langle + | J_{y} | + \rangle_{y}$$

$$b_{2} \equiv {}_{y} \langle - | J_{y} | - \rangle_{y}$$

$$b_{3} \equiv {}_{y} \langle + | J_{x} | - \rangle_{y}$$

$$b_{4} \equiv {}_{y} \langle - | J_{x} | + \rangle_{y}$$

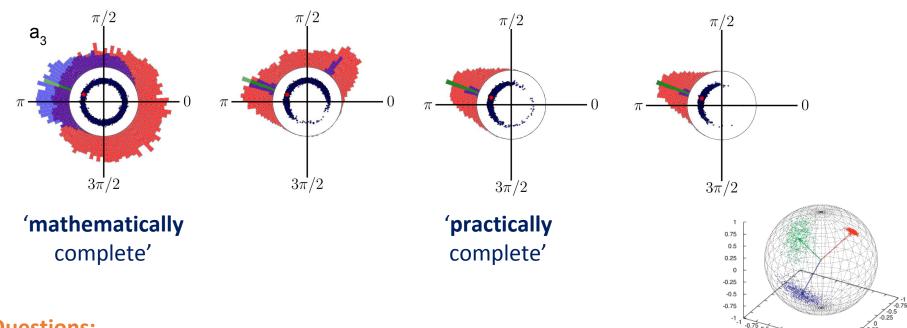
Relation with experiments

	$(\mathcal{B}_1,\mathcal{T}_1,\mathcal{R}_1)$	$(\mathcal{B}_2,\mathcal{T}_2,\mathcal{R}_2)$	Transversity expression	$\blacksquare \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(\mathcal{B},\mathcal{T},\mathcal{R})}: \text{ cross section for given}$
$\begin{array}{c} \Sigma \\ T \\ P \end{array}$	(y, 0, 0) (0, +y, 0) (0, 0, +y)		$\begin{vmatrix} r_1^2 + r_2^2 - r_3^2 - r_4^2 \\ r_1^2 - r_2^2 - r_3^2 + r_4^2 \\ r_1^2 - r_2^2 + r_3^2 - r_4^2 \end{vmatrix}$	beam (\mathcal{B}) , target (\mathcal{T}) , recoil (\mathcal{R}) polarization
$ \begin{array}{c} C_x \\ C_z \\ O_x \\ O_z \end{array} $	$(+, 0, +x) \ (+, 0, +z) \ (+ rac{\pi}{4}, 0, +z) \ (+ rac{\pi}{4}, 0, +z)$	(+, 0, -z) $(+\frac{\pi}{4}, 0, -x)$	$-2 \operatorname{Im}(a_1 a_4^* + a_2 a_3^*) +2 \operatorname{Re}(a_1 a_4^* - a_2 a_3^*) +2 \operatorname{Re}(a_1 a_4^* + a_2 a_3^*) +2 \operatorname{Im}(a_1 a_4^* - a_2 a_3^*)$	• Asymmetries $\mathcal{A} = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(\mathcal{B}_1, \mathcal{T}_1, \mathcal{R}_1)} - \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(\mathcal{B}_2, \mathcal{T}_2, \mathcal{R}_2)}}{\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(\mathcal{B}_1, \mathcal{T}_1, \mathcal{R}_1)} + \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(\mathcal{B}_2, \mathcal{T}_2, \mathcal{R}_2)}}$
E F G H	$(+, -z, 0) (+, +x, 0) (+ \frac{\pi}{4}, +z, 0) (+ \frac{\pi}{4}, +x, 0)$	(+, -x, 0) $(+\frac{\pi}{4}, -z, 0)$ $(+\frac{\pi}{4}, -x, 0)$	$+2 \operatorname{Re}(a_{1}a_{3}^{*} - a_{2}a_{4}^{*}) -2 \operatorname{Im}(a_{1}a_{3}^{*} + a_{2}a_{4}^{*}) -2 \operatorname{Im}(a_{1}a_{3}^{*} - a_{2}a_{4}^{*}) +2 \operatorname{Re}(a_{1}a_{3}^{*} + a_{2}a_{4}^{*}) $	• $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(0,0,0)} = \frac{\rho}{4} \sum_{i=1}^{4} b_i ^2$
$ \begin{array}{c} T_x \\ T_z \\ L_x \\ L_z \end{array} $	$(0, +x, +x) \ (0, +x, +z) \ (0, +z, +x) \ (0, +z, +z) \ (0, +z, +z)$	(0, +x, -z) (0, +z, -x)	$+2 \operatorname{Re}(a_{1}a_{2}^{*} + a_{3}a_{4}^{*}) +2 \operatorname{Im}(a_{1}a_{2}^{*} + a_{3}a_{4}^{*}) -2 \operatorname{Im}(a_{1}a_{2}^{*} - a_{3}a_{4}^{*}) +2 \operatorname{Re}(a_{1}a_{2}^{*} - a_{3}a_{4}^{*})$	$a_i = \frac{b_i}{\sqrt{ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2}} = r_i e^{i\alpha_i}$

A 'complete set' is a minimum set of observables from which one can determine the underlying amplitudes (b_i) unambiguously:

8 well-chosen observables [Chiang et al. PRC55 (1997)]

Impact of polarization observables



Questions:

- 1) Given 2 models, which measurement would help me distinguish the two scenarios?
- 2) Given the currently available data, what is the highest impact measurement?

Approach 1:

'Completeness is related to a certain information content in amplitude space'

$$H = -\int p(\{x_i\}) \log p(\{x_i\}) d\{x_i\},$$

Approach 2:

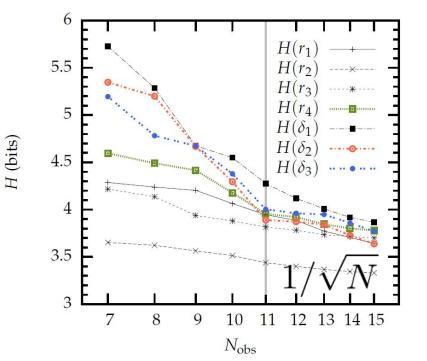
'Completeness is related to model distance'

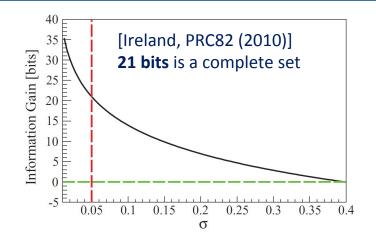
$$\Delta \mathcal{M} = \sqrt{\left\langle \mathcal{D} \left[\mathcal{M}_0, \mathcal{M} \right]^2 \right\rangle_{P(\mathcal{M} | \{A_i^{\exp}\})}}_{81}},$$

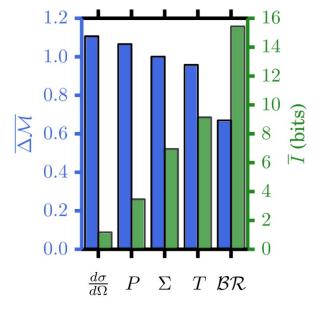
Approach 1: information content

- Map the posterior in amplitude and observable space
- Evaluate the entropy

$$H(P) = \int P(\mathcal{M}|\{A_i^{\exp}\}) \log_2 P(\mathcal{M}|\{A_i^{\exp}\}) \,\mathrm{d}\mathcal{M}$$







Approach 2: model distance

- Map the model distance
- Map the data resolution
- Data resolution must be much lower than model distance

(Rayleigh statement)

 $1.9\ 2.0\ 2.1$

W (GeV)

.8

1.7

-0.5

0.0

 $\cos\theta_{\rm c.m.}$

0.5

2.2

1.0

0.8

0.6

 $0.2 \\ 0.0$

1.0

0.8

0.6

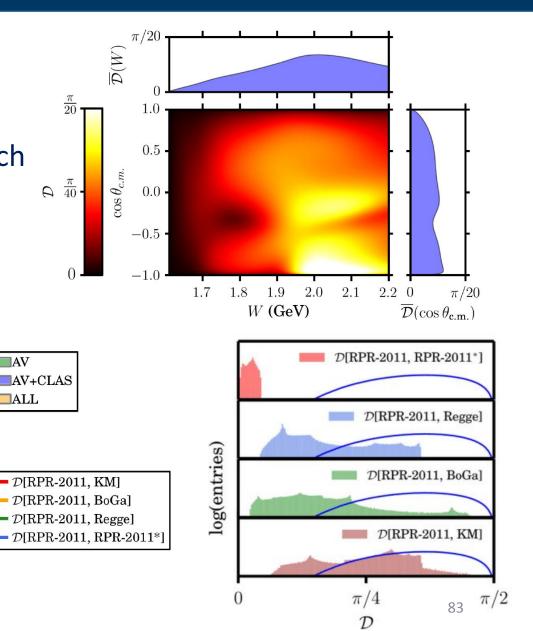
0.4

 $0.2 \\ 0.0$

0

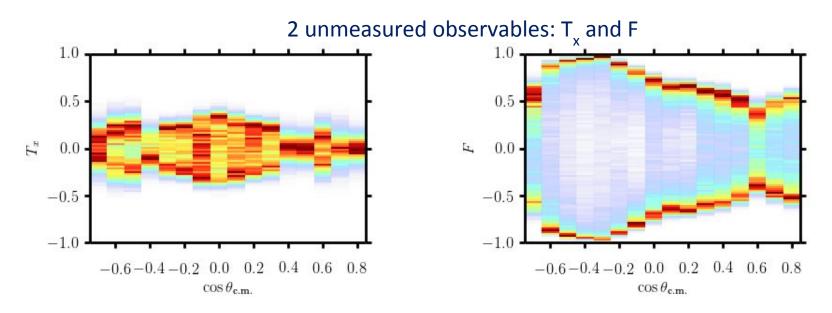
 $\Delta \mathcal{M}$

A

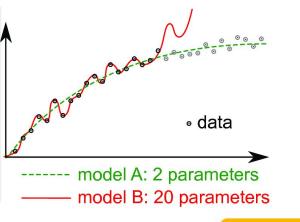


Concrete: model-independent predictions

- Project information in amplitude space onto observable space
- Clear effect of measurements by comparing posterior to prior

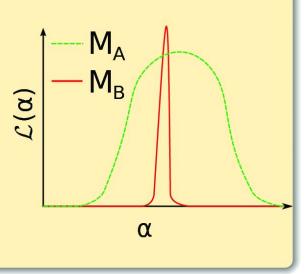


Classical analysis: point estimates



Conventional way of discriminating between models M_A en M_B

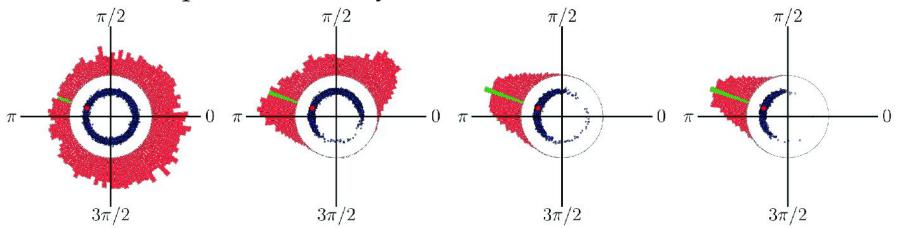
- χ² = measure for model-to-data distances
- $\mathcal{L}(\alpha) = \chi^2(\alpha)$ -distribution
- $\blacksquare \max \left[\mathcal{L}(\alpha) \right] \Leftrightarrow \min \left[\chi^2(\alpha) \right]$
- Model selection on the basis of minimal *x*² values
- Adding parameters often reduces the *χ*²: the most complex model wins



- + Let's go beyond **point estimates**
- + Including 'naturality' of parameter values (prio⁸⁵)

Extract $r_3 e^{i\delta_3^4}$ at $(W = 1.8 \text{ GeV}, \theta_{\text{c.m.}} = -0.1)$ from data

Extract the amplitudes from synthetic data with a realistic 10% error



(i) "mathematically complete set" $\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\}$ (ii) $\{A_i^{\exp}\}_2 = \{A_i^{\exp}\}_1 + \{C_z, O_z, G\}$ (iii) $\{A_i^{\exp}\}_3 = \{A_i^{\exp}\}_2 + \{H\}$ (iv) $\{A_i^{\exp}\}_4 = \{A_i^{\exp}\}_3 + \{T_x, T_z, L_x, L_z\}$

Totality has no Limits! Mathematical Completeness does not imply Practical Completeness!

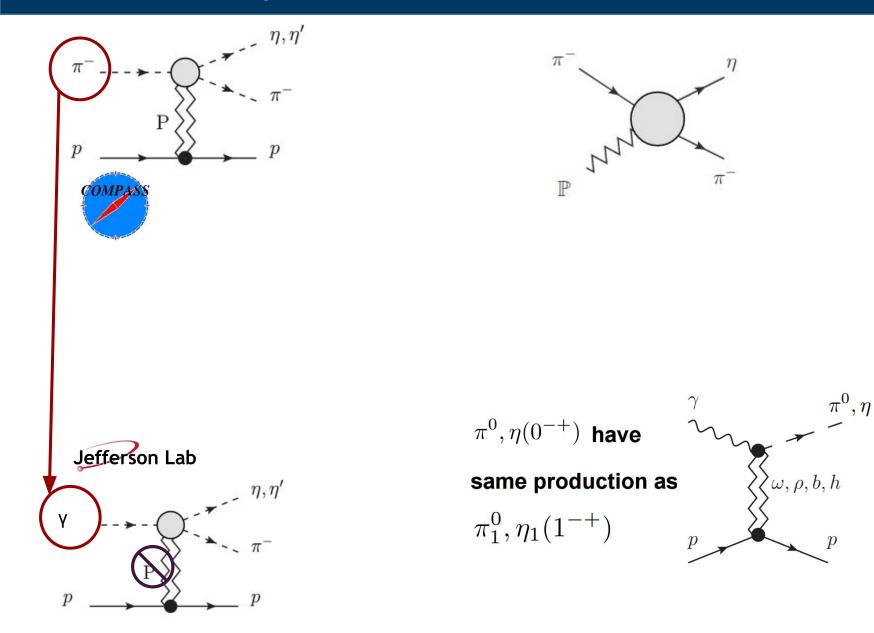
Jan Ryckebusch (Ghent University)

NSTAR 2017, August, 2017

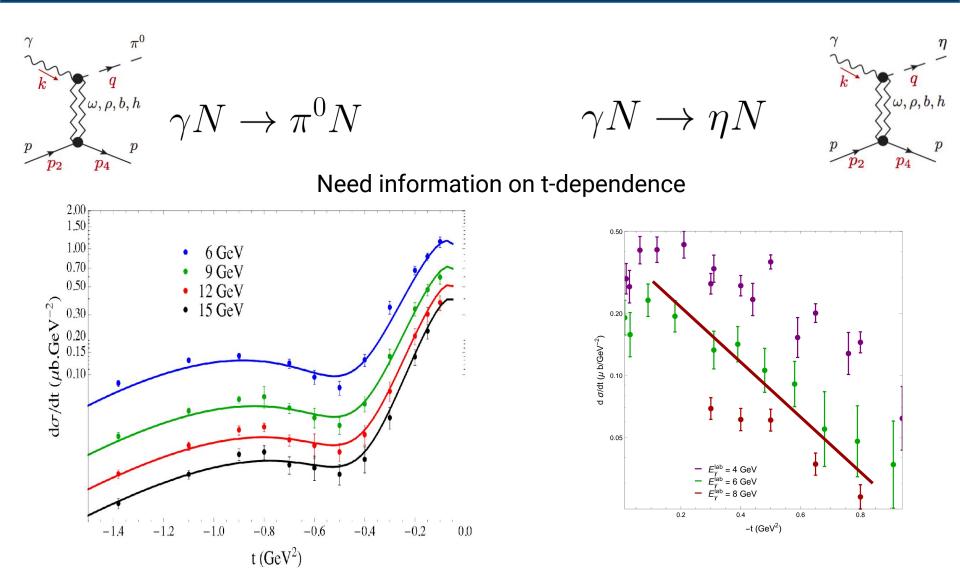
DQC

30/33

Production process



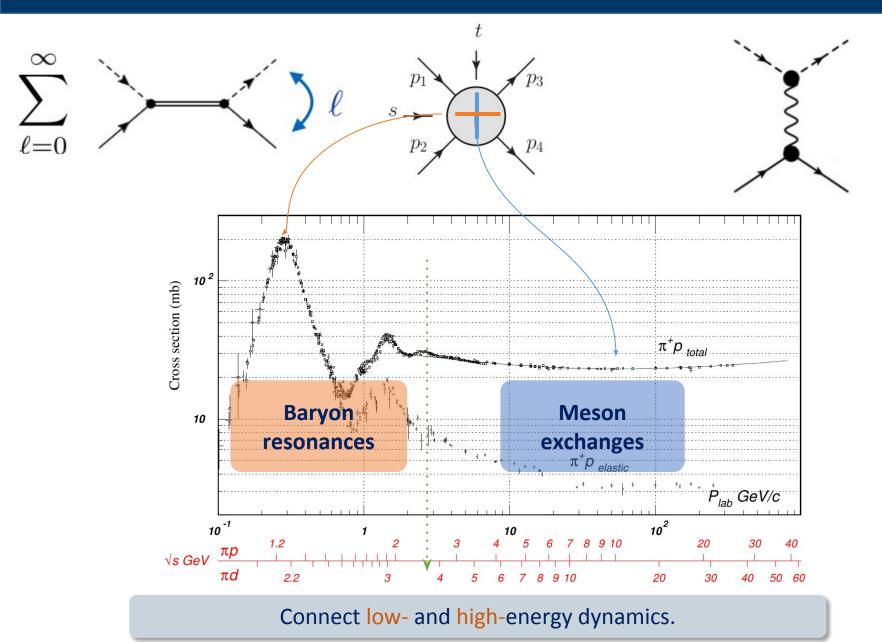
Neutral meson production

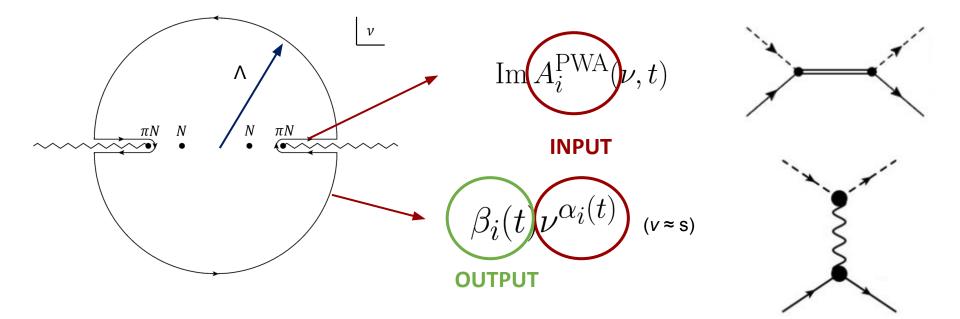


[V. Mathieu et al., PRD92 (2015) 074013]

[J.N. et al., PRD95 (2017) 034014]

Analytic constraints





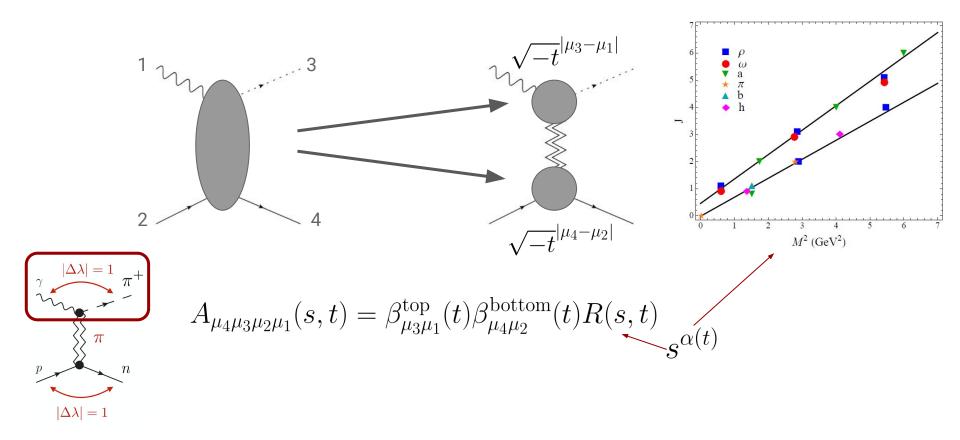
High energies: Regge theory (meson exchanges)

Low energies: partial-wave analyses (baryon resonances)

• SAID, MAID, Bonn-Gatchina, Julich-Bonn,...

High-energy model

- Contribution from photon and baryon vertex
- Suppresses amplitudes in forward direction (t=0)



Choice of amplitudes

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k\right) u_{\lambda}(p)$$

$$M_{1} = \frac{1}{2} \gamma_{5} \gamma_{\mu} \gamma_{\nu} F^{\mu\nu} ,$$

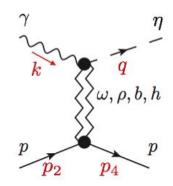
$$M_{2} = 2 \gamma_{5} q_{\mu} P_{\nu} F^{\mu\nu} ,$$

$$M_{3} = \gamma_{5} \gamma_{\mu} q_{\nu} F^{\mu\nu} ,$$

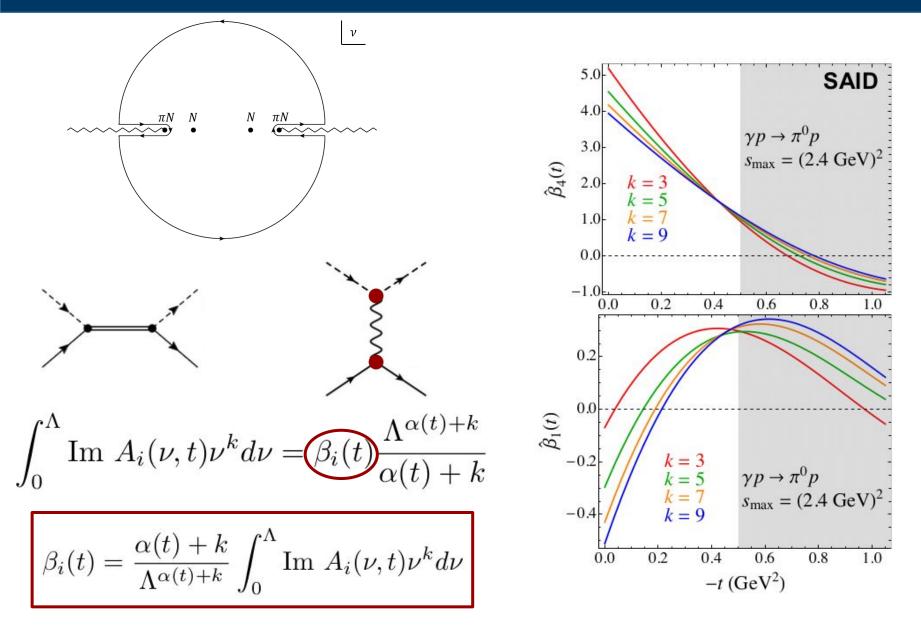
$$M_{4} = \frac{i}{2} \epsilon_{\alpha\beta\mu\nu} \gamma^{\alpha} q^{\beta} F^{\mu\nu}$$

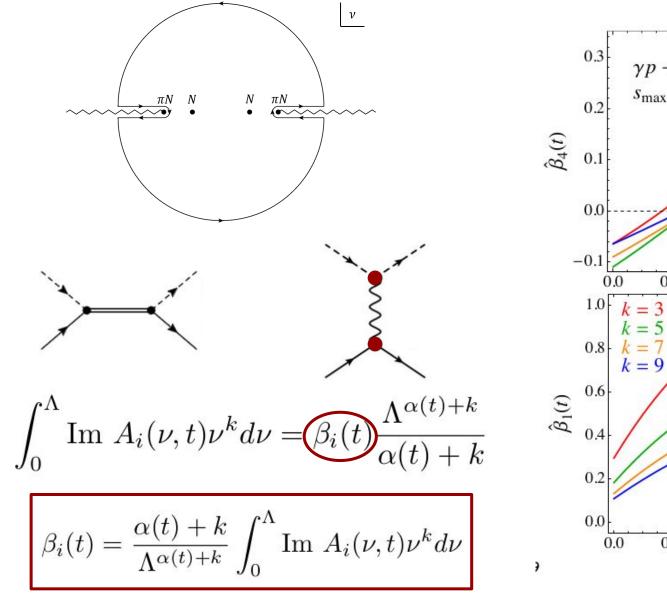
$$A_i$$
 I^G J^{PC} η Leading exchanges A_1 $0^-, 1^+$ $(1, 3, 5, ...)^{--}$ $+1$ $\rho(770), \omega(782)$ A'_2 $0^-, 1^+$ $(1, 3, 5, ...)^{+-}$ -1 $h_1(1170), b_1(1235)$ A_3 $0^-, 1^+$ $(2, 4, ...)^{--}$ -1 $\rho_2(??), \omega_2(??)$ A_4 $0^-, 1^+$ $(1, 3, 5, ...)^{--}$ $+1$ $\rho(770), \omega(782)$

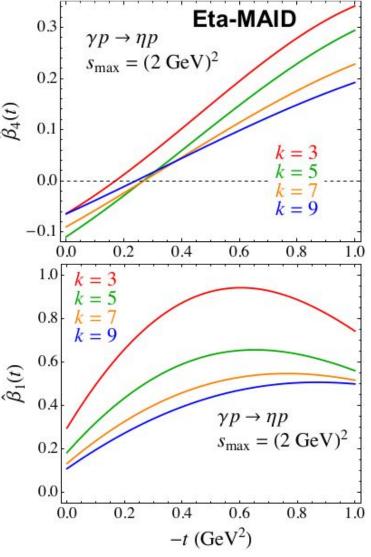
- No kinematic singularities
- No kinematic zeros
- Discontinuities:
 - Unitarity cut
 - Nucleon pole



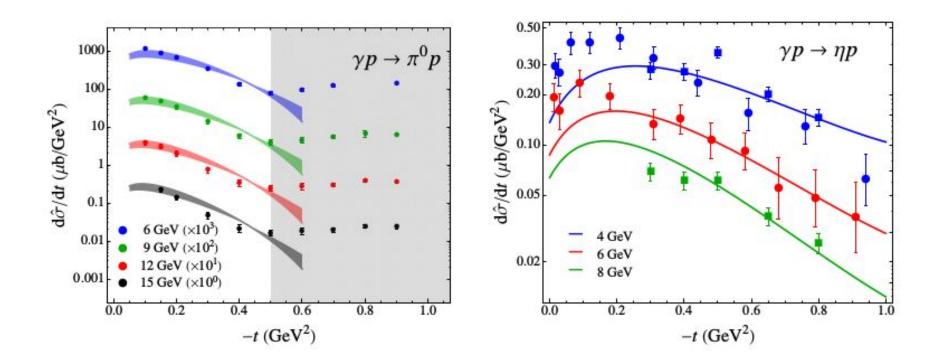
$$\begin{split} \gamma p &\to \eta p \,, \qquad A = (\omega + h + \omega_2) + (\rho + b + \rho_2) \\ \gamma n &\to \eta n \,, \qquad A = (\omega + h + \omega_2) - (\rho + b + \rho_2) \end{split}$$







[V. Mathieu, J.N. et al. (JPAC) 1708.07779 (2017)]



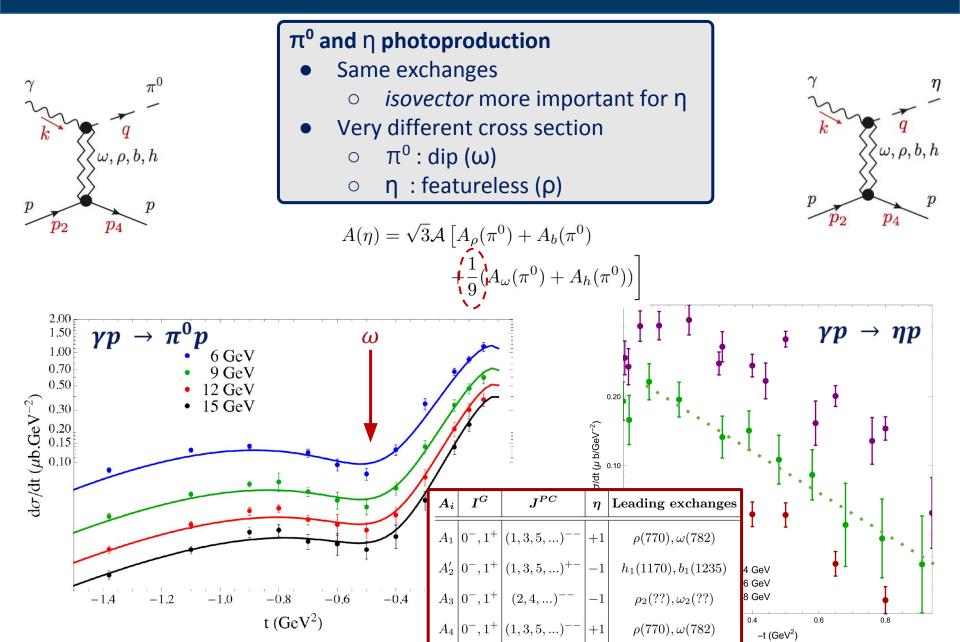
Combine energy regimes

- Low-energy model
- Predict high-energy observables

Two applications

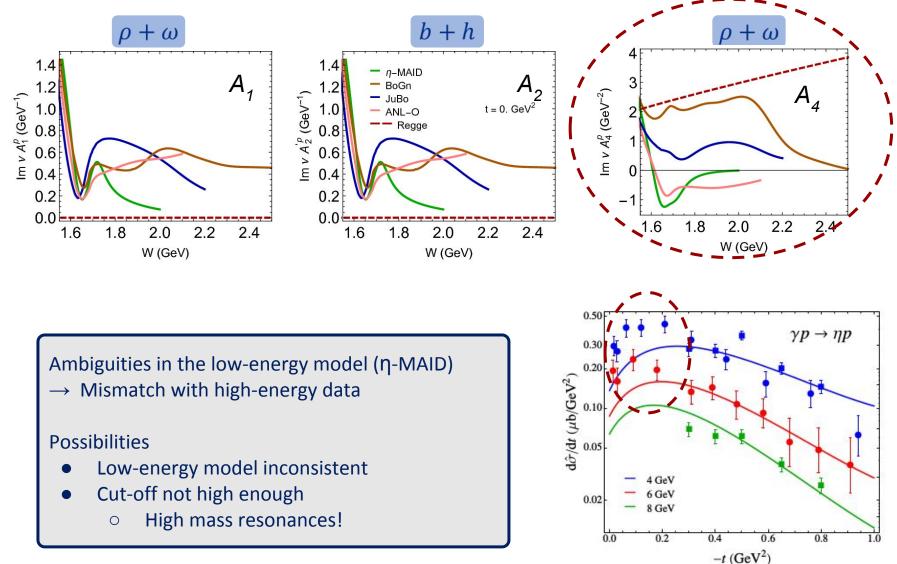
- Understand high-energy dynamics
- Constraining low-energy models

Photoproduction of neutral mesons



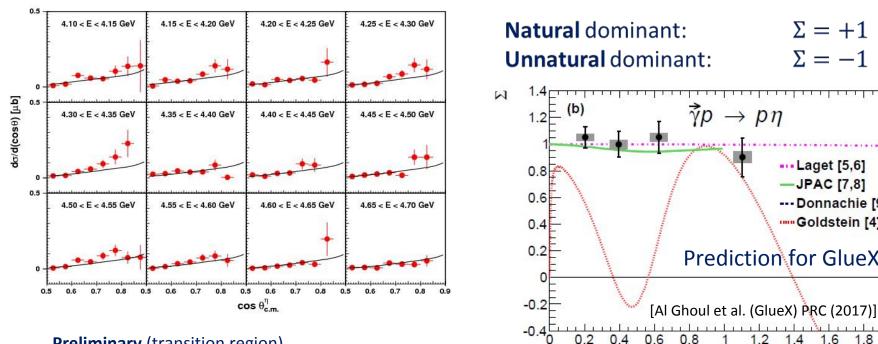
Low-energy models (η)

[J.N. et al., PRD95 (2017) 034014]



Predictions for GlueX & CLAS

$$\Sigma = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} \qquad \qquad \Sigma = +1 \qquad : \quad \rho, \omega$$
$$\Sigma = -1 \qquad : \quad b, h$$



Preliminary (transition region) [Courtesy of Zulkaida Akbar (CLAS)]

Fill up the dip with natural contribution: p

γp

 $\rightarrow pn$

Prediction for GlueX

1.4

1.2

 $\Sigma = +1$

 $\Sigma = -1$

--- Laget [5,6]

-JPAC [7,8]

--- Donnachie [9] -

1.8

 $-t (GeV/c)^2$

2

Goldstein [4]

1.6

η' photoproduction

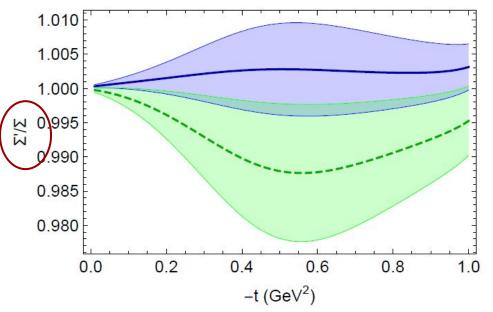
$$\Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}} \quad (\gamma p \to \eta p)$$

$$\Sigma' = \frac{d\sigma'_{\perp} - d\sigma'_{\parallel}}{d\sigma'_{\perp} + d\sigma'_{\parallel}} \qquad (\gamma p \to \eta' p)$$

$$\Sigma = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} = \Sigma'$$

$$\Sigma = \frac{|\rho + \omega + \phi|^2 - |b + h + h'|^2}{|\rho + \omega + \phi|^2 + |b + h + h'|^2} \neq \Sigma'$$

V.Mathieu, J.N. et al. (JPAC) [PLB774 (2017) 362]

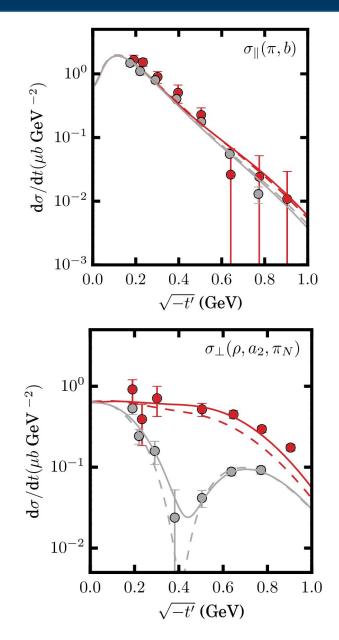


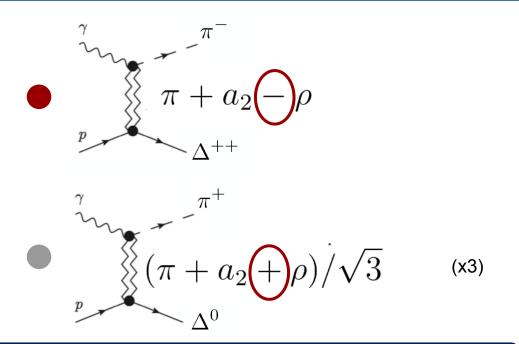
Based on the FESR for η: predict beam asymmetry for η'

- Same exchanges
- Natural exchanges (ρ, ω) dominant
 - Couplings from radiative decays
 - Mixing angle cancels in ratio
- Unknown behavior of
 - **¢** exchange
 - unnatural exchanges (b,h)

Prediction: ≈ same beam asymmetry

$\pi\Delta$ photoproduction





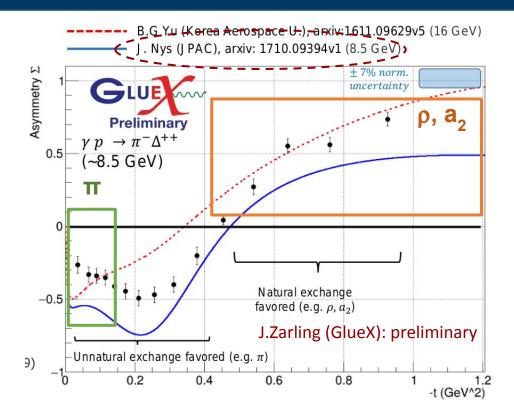
Data available at 16 GeV

- π-exchange is featureless and entirely fixed
- Strong interference pattern in natural exchange sector
- Negligible role of b exchange

Fix t-dependence and extrapolate to JLab energies (9 GeV)

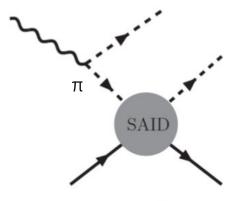
[J.N. et al., PLB779 (2018)]

$\pi\Delta$ photoproduction



Comparison to GlueX data

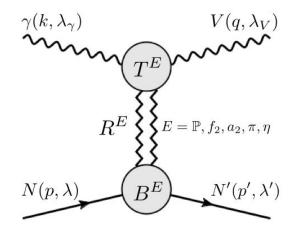
- Confirmation of interference pattern
- High -t: natural, low -t: unnatural
- Mismatch: oddly behaved π exchange
 - Ongoing analysis
 - Experimental or theoretical?



Łukasz Bibrzycki (Cracow)

Neutral vector mesons

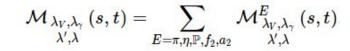
- Pomeron dominates at high energies
- Isoscalar exchanges dominantly helicity non-flip ($\lambda = \lambda'$)
- Unnatural exchanges: only helicity flip $(|\lambda \lambda'| = 1)$

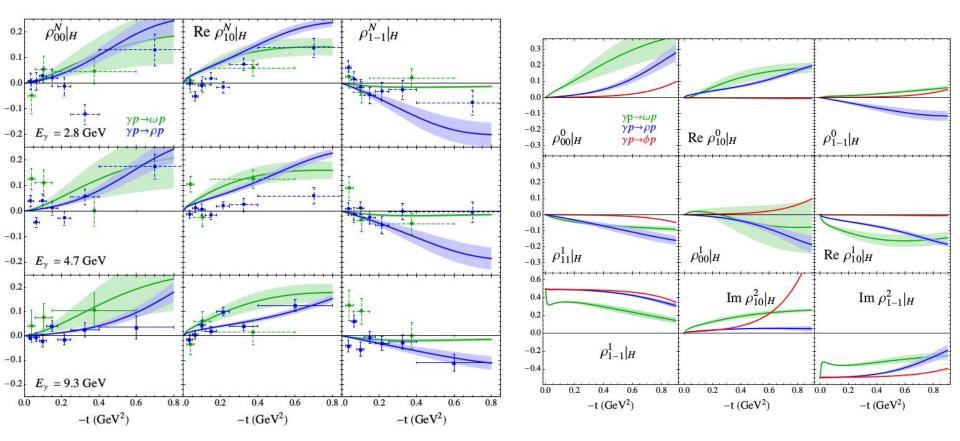


$$\begin{split} \rho_{00}^{N} &= \frac{1}{2} \left(\rho_{00}^{0} \mp \rho_{00}^{1} \right), \\ \operatorname{Re} \, \rho_{10}^{N} &= \frac{1}{2} \left(\operatorname{Re} \rho_{10}^{0} \mp \operatorname{Re} \rho_{10}^{1} \right), \\ \rho_{1-1}^{N} &= \frac{1}{2} \left(\rho_{1-1}^{1} \pm \rho_{11}^{1} \right). \end{split}$$

[V.Mathieu, J.N. et al., (2018) arXiv:1802.09403]

Neutral vector mesons





[V.Mathieu, J.N. et al., (2018) arXiv:1802.09403]

Summary

Theory support for GlueX and CLAS with JPAC

- Various photoproduction reactions analyzed
 - \circ πN, πΔ, ηN, η'N + many more
 - Comparison to first GlueX data
 - Unnatural exchanges negligible
 - Natural exchanges dominate
 - Importance of analytic constraints (FESR)
 - Connection between baryon spectroscopy and high-energy data
 - SDME predictions for neutral meson prediction (Pomeron dominated)

http://www.indiana.edu/~jpac/

