Light mesons from JPAC+COMPASS analyses

Misha Mikhasenko

Joint Physics Analysis Center, COMPASS @ CERN, CERN, Switzerland

> PsiPhi 2019 Adkademgorodok

> > 27.02.2019

Contents

Introduction

- JPAC Collaboration
- Challenges of hadron spectroscopy

2 $\eta^{(\prime)}\pi$ analyses

- COMPASS data
- Method to extract resonance properties
- Coupled-channel analysis

3 Three-pions physics

- COMPASS PWA
- Deck mechanism
- Data for the 1^{++} sector
- Analysis of τ -data

Summary

Introduction

Introduction

JPAC Collaboration

Joint Physics Analysis Center

Emilie Passemar Andrew Jackura Nathan Sherrill Tim Londergan Indiana U. Indiana U. Indiana U. Indiana U.

Astrid Hiller Blin Misha Mikhasenko VM Jannes Nys Adam Szczepaniak Mainz U. Bonn U. JLab Ghent U. Indiana U.

Łukasz Bibrzycki Cracow P. U.

Arkaitz Rodas Bilbao Madrid U.

Viktor Mokeev JLab

Cesar Fernández-Ramírez UNAM

Alessandro Pilloni JLab → ECT*

Miguel Albaladejo JLab

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- $\bullet\,$ The Real axis $\to\,$ physical world,
- Resonances = poles of the unphysical sheet.

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- $\bullet\,$ The Real axis $\to\,$ physical world,
- Resonances = poles of the unphysical sheet.

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- $\bullet\,$ The Real axis $\to\,$ physical world,
- Resonances = poles of the unphysical sheet.

Two regimes of scattering

Hadronic duality

[V.Mathieu, et al., PRD92 (2015), 074004]

Two regimes of scattering

Hadronic duality

[V.Mathieu,et al.,PRD92 (2015), 074004]

Challenges of hadron spectroscopy

Hadronic excitations

Results of lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Challenges of hadron spectroscopy

Hadronic excitations

Results of lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

$\eta^{(\prime)}\pi$ analyses

[(COMPASS) PLB 740 (2015) 303]

[(COMPASS) PLB 740 (2015) 303]

$\eta^{(\prime)}\pi$ partial wave analysis

Two-main contribution: *P*- and *D*-waves

[(COMPASS) PLB 740 (2015) 303]

PDG status: exotic π_1 states

Two candidates

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).

π ₁ (1400) MASS		1354 ± 25 MeV (S	1354 ± 25 MeV (S = 1.8)					
π ₁ (1400) WIDTH		$330\pm35~\text{MeV}$	$330\pm35\text{MeV}$					
Decay	Modes							
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c)				
Γ_1	$\eta \pi^0$	seen		557				
Γ_2	$\eta \pi^-$	seen		556				
Γ ₃	η'π			318				

$\pi_1(1600)$ $I^G(J^{PC}) = 1^-(1^{-+})$

π ₁ (1600) MASS π ₁ (1600) WIDTH		1662^{+8}_{-9} MeV 241 ± 40 MeV (S	1662 ⁺⁸ ₋₉ MeV 241 ± 40 MeV (S = 1.4)				
Decay	Modes						
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c)			
Γ_1	ллл	seen		803			
Γ_2	$\rho^0 \pi^-$	seen		641			
Γ_3	$f_2(1270)\pi^-$	not seen		318			
Γ_4	$b_1(1235)\pi$	seen		357			
Γ_5	$\eta'(958)\pi^-$	seen		543			
Γ_6	$f_1(1285)\pi$	seen		314			

Amplitude for $\eta\pi$ production

[A.Jackura,MM,A.Pilloni,et al. (JPAC-COMPASS),

PLB779, 464-472]

N-over-D method

Scattering amplitude: $\eta \pi \rightarrow \eta \pi$, *D*-wave

Production amplitude: $\pi \mathbb{P} \to \eta \pi$, *D*-wave

 D(s) is universal, has only the right-hand cut.
 N(s) and n(s) have the left-hand cut only (exchanges) M. Mikhasenko (CERN) Light mesons from JPAC+COMPASS analyses

Coupled-channel amplitude [A.Rodas,A.Pilloni,MM,et al. (JPAC), PRL122 (2019)] Scattering amplitude: $\eta^{(\prime)}\pi \rightarrow \eta^{(\prime)}\pi$, P/D-waves

$$\rho N_{ki}^{J}(s') = \delta_{ki} \frac{(p_{\eta^{(\prime)}\pi} \sqrt{s}/2)^{2J+1}}{(s'+s_L)^{2J+1+\alpha}},$$

• 2 K-matrix pole for D-wave

 $T = \frac{N(s)}{D(s)}$

- 1 K-matrix pole for P-wave
- Production amplitude: $\pi \mathbb{P} \to \eta^{(\prime)} \pi$, P/D-waves

$$a = \frac{n(s)}{D(s)}$$

$$a_i^J(s) = q^{J-1}p_i^J \sum_k n_k^J(s) \left[D^J(s)^{-1} \right]_{ki}$$

 $D^J_{ki}(s) = \left[K^J(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s}^{\infty} ds' \frac{\rho N^J_{ki}(s')}{s'(s'-s-i\epsilon)}.$

- left poles to model unknown production function *n*(*s*)
- D(s) has only the right-hand cut.
- N(s) and n(s) have the left-hand cut only (exchanges)

Fit to the data

[A.Rodas,A.Pilloni,MM,et al. (JPAC), PRL122 (2019)]

$\chi^2/\mathrm{ndf} = 162/122$, the band - 2σ bootstrap error

D-wave difference

- Kinematics $(m_{n'} > m_n)$
- \Rightarrow Same amplitude.

P-wave difference

- production mechanism
- + kinematics.

Results: pole positions

[A.Rodas, A.Pilloni, MM, et al. (JPAC), PRL122 (2019)]

• Change parametrization of the denominator $\rho N_{ki}^{J}(s') = \delta_{ki} \frac{(\rho_{\eta(\prime)} \sqrt{s}/2)^{2J+1}}{(s'+s_{i})^{2J+1+\alpha}}$,

- ▶ $s_R = 1 \text{ GeV} \to 0.8, 1.8 \text{ GeV}.$
- $\alpha = 2 \rightarrow 1 \text{GeV}.$
- Different function, $\rho N_{ki}^J(s') = \delta_{ki} Q_J(z_{s'}) s'^{-\alpha} \lambda^{-1/2}(s', m_{\eta^{(\prime)}}^2, m_{\pi}^2)$
- Change of parameters in the numerator n(s)
 - Effective transferred momentum $t_{\rm eff} = -0.1\,{\rm GeV}^2$ \rightarrow $-0.5\,{\rm GeV}^2$.
 - Order of the polynomial 3rd-order \rightarrow 4th-order.

Same π_1 as in 3π ?

[See a talk of B.Ketzer, afternoon]

The COMPASS fit:

- Signal by BW amplitude
- Flexible background

Consistent results on $\pi_1(1600)$ pole:

- $\rho\pi$ Breit-Wigner parameters \Rightarrow pole position
- $\eta^{(\prime)}\pi$ systematic margins

2

Three-pions physics

Three-pions physics

Diffractive production of 3π off proton target

[COMPASS data, MM, PhD thesis]

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Three-pions physics

Diffractive production of 3π off proton target

[COMPASS data, MM, PhD thesis]

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Model for the forward scattering [MM, A.Jack

[MM, A.Jackura (JPAC) in preparation]

Deck effect

• Two diagrams (π^- symmetrization)

$$\mathcal{B}_{\lambda\lambda'}=\mathcal{B}^{(1)}_{\lambda\lambda'}+\mathcal{B}^{(3)}_{\lambda\lambda'}$$

- High energy $p\pi$ scattering
- $\pi\pi$ scattering dominated by resonances in lower partial waves
 - Relative strength of S, P, D-waves is controlled by unitarity

$$\mathcal{B}^{(1)} = s_{\pi\rho}F(t) \frac{\mathrm{FF}(t_1)}{m_{\pi}^2 - t_1} \left[\frac{2}{3} t^{(\sigma_1, f_0)}(\sigma_1) + 3 t^{(\rho)}(\sigma_1, t_1)P_1(\cos \theta_{\pi\pi}) + \frac{10}{3} t^{(f_2)}(\sigma_1, t_1)P_2(\cos \theta_{\pi\pi}) \right].$$

Standard Deck $\overline{m_{\pi}^2 - t_1}$,

[MM PhD thesis]

Regge Deck

$$\frac{e^{-i\pi\alpha(t_1)/2}}{m_{\pi}^2-t_1}\left(\frac{s'-u'}{2s_{\rm sc}}\right)^{\alpha(t_1)}$$

Form-factored Deck

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS	D	DOCUMENT ID		TECN	COMMENT	
250 to 600	OUR ESTIMATE						
$\textbf{389} \pm \textbf{29}$	9 ± 29 OUR AVERAGE Error includes scale factor of 1.3.						
$430 \pm 24 \pm 31$		D	DARGENT	2017	RVUE	$D^0 ightarrow \pi^-\pi^+\pi^-\pi^+$	
$367 \pm 9 {}^{+28}_{-25}$	420k	A	LEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$	
••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \pm \!\! 31 \pm \!\! 30$		1 A	UBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$	
520 - 680	6360	2 LI	INK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$	
480 ± 20		3 G	GOMEZ-DUMM	2004	RVUE	$ au^+ ightarrow \pi^+\pi^+\pi^- u_ au$	
580 ± 41	90k	S	SALVINI	2004	OBLX	$\overline{p} \ p ightarrow 2 \ \pi^+ 2 \ \pi^-$	
460 ± 85	205	4 D	RUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$	
$814 \pm 36 \pm 13$	37k	5 A	SNER	2000	CLE2	10.6 e^+ $e^- ightarrow au^+ au^-$, $ au^- ightarrow \pi^- \pi^0 \pi^0 u_ au$	

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

\sim								
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT				
250 to 600	OUR ESTIMATE							
389 ± 29	OUR AVERAGE Erro	or includes scale factor of	of 1.3.					
$430 \pm 24 \pm 31$		DARGENT	2017 RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$				
$367 \pm 9 {}^{+28}_{-25}$	420k	ALEKSEEV	2010 COMP	$190~\pi^- ightarrow \pi^-\pi^-\pi^+ P l$	· · · · ·			
••• We do not u	••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \pm \! 31 \pm \! 30$		1 AUBERT	2007AU BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp$	γ			
520 - 680	6360	2 LINK	2007A FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$				
(480 ± 20)		3 GOMEZ-DUMM	2004 RVUE	$ au^+ ightarrow \pi^+\pi^- u_ au$				
580 ± 41	90k	SALVINI	2004 OBLX	$\overline{p} \; p ightarrow 2 \; \pi^+ 2 \; \pi^-$				
460 ± 85	205	4 DRUTSKOY	2002 BELL	$B^{(*)} K^{-} K^{*0}$				
$814 \pm 36 \pm 13$	37k	5 ASNER	2000 CLE2	$10.6~e^+~e^- ightarrow au^+ au^-$,	$ au^- o \pi^- \pi^0 \pi^0 u_ au$			
\								

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT			
250 to 600	OUR ESTIMATE							
389 ± 29	OUR AVERAGE Error	r includes scale factor	of 1.3.					
$430 \pm 24 \pm 31$		DARGENT	2017	RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$			
$367 \pm 9 \ ^{+28}_{-25}$	420k	ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$			
••• We do not u	••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \pm \! 31 \pm \! 30$		1 AUBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$			
520 - 680	6360	2 LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$			
(480 ± 20)		3 GOMEZ-DUMM	2004	RVUE	$ au^+ ightarrow \pi^+ \pi^+ \pi^- u_ au$			
580 ± 41	90k	SALVINI	2004	OBLX	$\overline{p} \; p ightarrow 2 \; \pi^+ 2 \; \pi^-$			
460 ± 85	205	4 DRUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$			
$814 \pm 36 \pm 13$	37k	5 ASNER	2000	CLE2	$10.6~e^+~e^- ightarrow au^+ au^-$, $ au^- ightarrow \pi^0 \pi^0 u_ au$			

 $\tau^- \to \pi^- \pi^+ \pi^- \nu$

- V-A: Vector (1⁻⁻) or Axial (1⁺⁺)
- Isospin 1 due to the charge
- Negative G-parity \Rightarrow positive C-parity

$$\Rightarrow J^{PC} = 1^{++}$$

Fit to ALEPH data

[data from ALEPH, Phys.Rept.421 (2005)]

Fit to ALEPH data

[data from ALEPH, Phys.Rept.421 (2005)]

Dispersive model vs Non-dispersive model

- Difference: LH singularities
- The dispersive model fits significantly better

Fit function

$$(\vec{D} - \vec{M}(c, m, g))^T C_{\text{stat}}^{-1} (\vec{D} - \vec{M}(c, m, g)),$$

- Stat. cov. matrix is used in the fit
- Syst. cov. matrix in the bootstrap

First measurement of the $a_1(1260)$ pole position

The result and systematic studies [MM (JPAC), PRD98 (2018), 096021]

M. Mikhasenko (CERN)

Meson spectroscopy

- Using hadronic scattering as QCD excitation laboratory.
- Mapping gluonic degrees of freedom to structures of excited states is an essential test of QCD.
- Non-perturmative methods are required

Resent impact of JPAC to light meson spectroscopy

Extensive analyses and extraction of resonance poles:

- Tensor states: $a_2(1320)$ and $a_2(1700)$
- Establishing single exotic $\pi_1(1600)$
- Ground axial state *a*₁(1260)

JPAC effort

- \bullet > 50 research papers in PRD, PLB, PRL, EJPC (> 10 in 2018)
- $\bullet\,>100$ invited talks and seminars
- Collaboration with GlueX, CLAS12, COMPASS, MAMI, BaBar, LHCb,...
- Summer Schools on Reaction Theory (2015, 2017)

Thank you

Three-particles PW technique

Model: a sum of 88* partial waves

M. Mikhasenko (CERN)

Light mesons from JPAC+COMPASS analyses

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$\rho(\boldsymbol{s}) = \sum_{\lambda} \int \mathrm{d} \boldsymbol{\Phi}_3 \left| f_{\rho}(\sigma_1) \boldsymbol{d}_{\lambda 0}(\theta_{23}) - f_{\rho}(\sigma_3) \boldsymbol{d}_{\lambda 0}(\hat{\theta}_3 + \theta_{12}) \right|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - *P*-wave Blatt-Weisskopf factors

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{\boldsymbol{g}^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$\rho(\boldsymbol{s}) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_{\rho}(\sigma_1) \boldsymbol{d}_{\lambda 0}(\theta_{23}) - f_{\rho}(\sigma_3) \boldsymbol{d}_{\lambda 0}(\hat{\theta}_3 + \theta_{12}) \right|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Light mesons from JPAC+COMPASS analyses

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Light mesons from JPAC+COMPASS analyses

The spurious pole in the Breit-Wigner model

Energy dependent width, stable particles

$$t(s) = \frac{1}{m^2 - s - im\Gamma(s)}, \quad \Gamma(s) = \Gamma_0 \frac{p(s)}{p(m^2)} \frac{m}{\sqrt{s}}, \quad p(s) = \frac{\sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}}{2\sqrt{s}}$$

Example: $m_1 = 140$ MeV, $m_2 = 770$ MeV, $m = 1.26$ GeV, $\Gamma_0 = 0.5$ GeV

Live demo

Bootstrap: stability of the poles

• Statistical bands are obtained by 50k bootstrap samples

Subchannel dynamics

Khuri-Treiman equations

Consistency equations for the isobar lineshape

- Governed by two-body unitarity
- Model: only RHC for the isobar amplitude
- Uses Analyticity / Cauchy theorem / Omnès trick

