
C++ Bridge for NaradaBrokering (JNI-based)

The first section of this user guide will take you through the installation process and the next section
shows how to use the simple chat client. Final section explains the architecture and how to utilize the
C++ Bridge to implement communication channels.

Section 1: Configuration

Broker Configuration

JDK –Version: Both the Broker and the Bridge require JDK1.5 or above

1. Download and unzip the Naradabrokering to some local directory (say NB_HOME)

2. Start the Broker using the startbr.sh shell scripts in the bin directory inside
NB_HOME.

Note: If you need to handle larger payloads, please change the line in the
startbr.sh

java -classpath $cp cgl.narada.node.BrokerNode $brokerConfigFile
$serviceConfigFile $brokerCommunicatorPort&

to

java -Xmx<max value>m -Xms<min value>m -classpath $cp
cgl.narada.node.BrokerNode $brokerConfigFile $serviceConfigFile
$brokerCommunicatorPort&

A benchmark test, where the broker is fired with 64kB of data at a rate of
~4.5MB, shows that <max value> of 512 is a good heap size.

3. Use the BrokerConfiguration.txt found in the config directory inside NB_HOME to change
the ports that the broker used for communication. Please note that this step is not a must.

Compiling the C++ Bridge

1. Download and unzip the cppbridge.tar.gz to a local directory (say BRIDGE_HOME)

2. Inside BRIDGE_HOME you will find a src directory which contains both Java and the C++
code.

Note: Java classes are pre-compiled and are in the nbcppbridge.jar located
in BRIDGE_HOME/lib

3. Set the JAVA_HOME variable in the make file (located in the BRIDGE_HOME/src
directory) to point to the appropriate location.

4. Default goal will perform the necessary compilation, build chat executable and move it to

BRIDGE_HOME/build directory.

Section2: Simple Chat Client

1. Once the C++ Bridge is compiled go to BRIDGE_HOME/build directory and run the
chat.sh to start a chat client. e.g. ./chat.sh 5000

2. The integer argument is the entity Id which identifies this client in a given broker network.
To start the second chat client run it again in a new shell with different entity id. (say
./chat.sh 6000)

3. Once the two chat windows shows the line “Happy Chatting”, you can type any text to be

sent to the other.

4. To exit from the chat client type $<return>.

Section3: The Architecture

The C++ Bridge uses JNI technology to communicate with Naradabrokeing. The following
diagram shows the high-level architecture.

Naradabrokering C++ Pub/Sub Clients

ServiceClient (C++) BridgeServiceClient (Java)

JNI

Figure1: Architecture of the C++ Bridge for Naradabrokering.

How to Use the Bridge

The API that the C++ programmer needs to work with comprises of one class - ServiceClient
and the Callback interface.

ServiceClient contains the following public methods and perform the tasks as described
below.

1.

bool init (int entity_id, char *config_file_path, char
*host_name, int port_num, char *transport);

Description:

This will initializes the ServiceClient where it will load the JVM and initializes the
communication with the broker.

Parameters:

entity_id – ID of this service instance
config_file_path - Path to the ServiceConfiguration.txt
host_name - Host Name where the Broker is running
port_num - Port Number of the Broker
transport - Transport type to be used. (Default uses TCP) possible options “niotcp” , “udp”

2.

bool subscribe (char *topic, long callbackId);

Description:
This is used to subscribe to any topic using this ServiceClient instance.

Parameters:

Topic – Topic to which the messages are sent. e.g. “/topics/nbcpp”
callbackId - This is the reference to the Callback object used for this topic.

User can provide different callback objects for different topics or use the same callback object. The
callbackId should be a pointer to any implementation of Callback interface. Please see the
chat_client.cc for a sample.

3.

bool publish (char *topic, char *transfer_bytes);

Description:

This will publish a given set of bytes to a given topic using this ServiceClient instance.
topic - Topic to which the message is published. e.g. “/topic/nbcpp”
transfer_bytes - Set of bytes to be transferred.

Note: If multiple publishers and subscribers need to be run in a single process
they should all share a single instance of ServiceClient as it is not
possible to create multiple JVMs in a single process.

Simple Publisher Example

The following code fragment shows the methods that need to be used in order to write a publisher
using the above API.

int
main (int argc, char *argv[])
{
 //Input parameters for publisher
 int entity_id = atoi (argv[1]);
 char *service_config_path
=/test/abc/ServiceConfiguration.txt";
 char *host_name = "gf6.ucs.indiana.edu";
 int port_num = 3075;
 char *transport = "niotcp";
 char *topic = "/publish/mytopic";
 ServiceClient sClient;

 //Initialize the service_client
 if (!sClient.

 init (entity_id, service_config_path, host_name, port_num,
 transport))
 {
 cout << "Error:Initialization Failed \n";
 }

 //Publish a given set of bytes.
 char *buffer=”This is my test message”;
 if (!sClient.publish (topic, buffer))
 {
 cout << "Error:Publishing Failed \n";
 }

 return 0;
}

Simple Subscriber Example

The following code fragment shows the methods that need to be used in order to write a publisher
using the above API.

//Callback class for the receiving events.
class MyCallback:public Callback
{
public:
 MyCallback ()
 {
 }
 ~MyCallback ()
 {
 }
 virtual int on_event (char *received_data)
 {
 cout << received_data << endl;
 }
};

int
main (int argc, char *argv[])
{
 //Input parameters for publisher
 int entity_id = atoi (argv[1]);
 char *service_config_path
=/test/abc/ServiceConfiguration.txt";
 char *host_name = "gf6.ucs.indiana.edu";
 int port_num = 3075;
 char *transport = "niotcp";
 char *topic = "/publish/mytopic";
 ServiceClient sClient;

 //Initialize the service_client

 if (!sClient.
 init (entity_id, service_config_path, host_name, port_num,
 transport))
 {
 cout << "Error:Initialization Failed \n";
 }

 //Callback handles the events to me.
 Callback *callback = new MyCallback ();
 long cbid = (long) callback;

 //Subscribing to the topic
 if (!sClient.subscribe (topic, cbid))
 {
 cout << "Error:Subscription Failed \n";
 }

 While(1){sleep(2);}//Need to wait to receive events.

 return 0;
}

Other Configurations

ServiceClient assumes the following parameters for the JVM and currently they are placed in
native_calls.cc

/* define it to be ':' on Solaris */
#define PATH_SEPARATOR ';'

/*java classes are here */
#define USER_CLASSPATH "../lib/NaradaBrokering.jar:../lib/log4j-
1.2.8.jar:../lib/jug-uuid.jar:../lib/nbcppbridge.jar"

/* libcppbridge.so should be here */
#define USER_LIBPATH "../lib"

If you need to change these directory locations please update this file and re-compile the source.

	C++ Bridge for NaradaBrokering (JNI-based)
	Section 1: Configuration
	Broker Configuration
	Compiling the C++ Bridge

	Section2: Simple Chat Client
	
	
	Section3: The Architecture
	How to Use the Bridge
	Simple Publisher Example
	Simple Subscriber Example

