
1. C++ Client for Naradabrokering

The first section of this user guide will take you through the installation process and the next section
shows how to use the simple chat client. The final section explains the architecture and how to utilize the
C++ Client to implement communication channels.

1.1 Configuration

1.1.1 Broker Configuration

Note: The current implementation of the C++ Client works on Intel-based

architectures. The differences in the endianness of various architectures require
different compilations. More explanation about this will follow in section three.

Download and unzip the Naradabrokering from http://www.naradabrokering.org/ to some local directory
(say NB_HOME)

Start the Broker using the startbr.sh shell scripts in the bin directory inside NB_HOME.

Note: If you need to handle larger payloads, please change the line in the startbr.sh

java -classpath $cp cgl.narada.node.BrokerNode $brokerConfigFile
$serviceConfigFile $brokerCommunicatorPort&

to

java -Xmx<max value>m -Xms<min value>m -classpath $cp
cgl.narada.node.BrokerNode $brokerConfigFile $serviceConfigFile
$brokerCommunicatorPort&

Use the BrokerConfiguration.txt found in the config directory inside NB_HOME to change the ports
that the broker used for communication. Please note that this step is not mandatory, using the default
ports is fine.

1.1.2 Compiling the C++ Client

Download and unzip the nbcpp.tar.gz to a local directory (say CLIENT_HOME)

Inside CLIENT_HOME you will find a src directory, which contains the C++ code.

Compile the simple chat client using the make tool. Use the following command.

make pubsub

1. This will create an executable pubsub in the src directory itself.

1/4

http://www.naradabrokering.org/

1.2 Section2: Simple Chat Client

Once the C++ Client is compiled go to CLIENT_HOME/src directory and run pubsub to start one
chat client. This will require few input parameters as explained below.

./pubsub 7799 44567 /test/topic 127.0.0.1 5045

The first integer argument is the entityId, which identifies this client in a given broker network.
The, next integer argument is the templateId which is a unique integer associated with a given topic.
The third parameter is the topic for which this client publishes and subscribes. This can be any string
without intemediate spaces.
The fourth and the fifth arguments are the host address and the port number of the broker. Please note
that we need to use the TCP port of the broker. This would be port 5045 if you are using the default port
numbers.

Once the chat client is started, start another chat client with different entityId. The next step is to see
the Chat program in action by typing in few messages.

To exit from the chat client type $<return>.

1.3 Section3: The Architecture

The C++ Client establishes a TCP connection with a given broker and supports exchanging of pub/sub
messages. The following diagram shows the architecture of the C++ Client.

Callback

ServiceClient ReceiverThread

Connection

C++ API for Naradabrokering

C++ Pub/Sub
Clients

Figure1: Architecture of the C++ Client for Naradabrokering.

The API that the C++ programmer needs to work with has one class - ServiceClient and the
Callback interface. The ServiceClient hides the rest of the components shown in the above
architecture diagram from the user, and provides four basic methods that give a publish/subscribe
interface for the C++ clients. These methods are listed below:

void init(string host,int port,int entityId,int templateId);
void subscribe(string topic,Callback *callback);
void publish(string topic,char* bytes,int length);
void close();

2/4

First, the client needs to establish a connection using the init(..) method shown above which takes
four input parameters.

Host host address of the broker

Port TCP port of the broker(default is 5045)

entityId This will identify the client uniquely in a broker network

templateId A template Id for this connection

If the client needs to subscribe to a specific topic, then the method to use is: subscribe(..). This
method takes a topic and a Callback object as input parameters.

topic String parameter, which specifies the topic to which the client needs to
subscribe.

callback This should be an implementation of the Callback interface provide by the
C++ API. The client is expected to implement the onEvent(NBEvent
*nbEvent) method of the callback. The C++ API will call this method for
any event received for a topic that this client is subscribed.

To publish messages to a topic, the client can utilize the publish(..) method. This method takes
three parameters as explained below.

topic String parameter which specifies the topic to which the client needs to
publish events.

Bytes This is the content payload of the message and can be any number of
bytes

length Length of the byte array of the content payload

Finally if the client needs to close the broker connection, then it can use the close() method of the

ServiceClient.

1.3.1 The Endianness

The current implementation supports Intel-based machines that use Little Endian ordering when storing
bytes. This affects the way we store multi-byte data types and send them over the communication
channels. Java handle bytes in BigEndian format as inherited from its Solaris roots. However, the Intel
based architectures use LittleEndian format, and hence a conversion is required when exchanging
messages between these architectures. The current implementation assumes a 32-bit value for integers
and 16-bit values for short data types. This part requires little more research to make it generic for both
32-bit and 64-bit architectures. However, this difference does not affect the usage since the C++ client
accepts a byte array as the content payload which is unique across the above platforms.

1.3.2 Simple Pub/Sub Example

The following code fragment shows the methods that need to be used in order to write a pub/sub client
using the above API.

ServiceClient serviceClient;
/*Establishes a connection*
serviceClient.init(host,port,entityId,templateId);

MyCallback callback;

3/4

/*Subscribed to a topic*/
serviceClient.subscribe(contentSynopsis,&callback);

/*Publishes a message*/
serviceClient.publish(contentSynopsis,msg,strlen(msg));

/*Close the connection*/
serviceClient.close();

4/4

	C++ Client for Naradabrokering
	Configuration
	Broker Configuration
	Compiling the C++ Client

	Section2: Simple Chat Client
	Section3: The Architecture
	The Endianness
	Simple Pub/Sub Example

