

1/117

THE NARADABROKERING USER’S GUIDE

USER’S GUIDE VERSION 3.3.0
COMMUNITY GRIDS LAB,

INDIANA UNIVERSITY
501 N. MORTON ST, SUITE 224

BLOOMINGTON IN 47404

http://www.naradabrokering.org

THE NARADABROKERING USER’S GUIDE Table of Contents

2/117

TABLE OF CONTENTS

1 Getting Started with NaradaBrokering .. 6

1.1 Basics .. 6
1.1.1 Requirements .. 6
1.1.2 Downloading additional jar files .. 7

1.2 Compiling the NaradaBrokering code base ... 7
1.2.1 Using Apache ANT .. 7
1.2.2 Compiling using the javac command ... 8
1.2.3 Checking the version of NaradaBrokering .. 8
1.2.4 Library Dependencies: .. 8

1.3 Conventions used in this manual .. 9

2 Configuring the broker ... 10

2.1 Configuring the ports for communications .. 10
2.2 Configuring a broker as stand-alone or part of a distributed network 11
2.3 Starting the Broker .. 11

2.3.1 For Windows ... 12
2.3.2 For UNIX environments ... 12

3 Setting up a distributed broker network ... 14

3.1 Requesting a node address: .. 15
3.1.1 Issuing a node address request .. 15
3.1.2 When Node Address Requests Fail .. 17
3.1.3 Which node assigns the node address for a given node? 17

3.2 Creating a gateway between broker nodes in a distributed network 17

4 Graphical deployment of Broker Networks ... 19

4.1 Compiling the Management framework ... 19
4.2 Terminology for the machines involved ... 19
4.3 The configuration files .. 19
4.4 Changes to the .bin files before running programs .. 20
4.5 VNC Servers .. 20
4.6 Preliminary setup ... 22
4.7 The GUI for deploying Broker Networks ... 24

4.7.1 In case of initialization problems .. 24
4.7.2 Main Window of the Deployment Panel .. 25
4.7.3 Resource Properties ... 26
4.7.4 Policies ... 27
4.7.5 Generating Topologies .. 29
4.7.6 Ring Topology ... 30
4.7.7 Cluster topology .. 31
4.7.8 Editing Links ... 33

THE NARADABROKERING USER’S GUIDE Table of Contents

3/117

4.7.9 Manually Creating Links .. 34
4.7.10 Shutting down the Broker Network ... 35

5 Specifying the creation of Links .. 36

5.1 Creating a link ... 36
5.2 A Code Snippet Detailing Link Creation ... 38
5.3 Instructions for SSL/HTTPS connections through a proxy 39
5.4 Using IPSec ... 40

5.4.1 IPSec Server: .. 40
5.4.2 IPSec Client: ... 42
5.4.3 Setting up of the IPSec Tunnel from NaradaBrokering clients...................... 44

6 Developing NaradaBrokering Applications .. 46

6.1 Primer on events, synopsis, profiles and templates ... 46
6.2 Writing a simple NaradaBrokering client .. 47

6.2.1 Initializing the Client Service ... 47
6.2.2 Initializing communications with the broker ... 48
6.2.3 Initializing the consumer role ... 48
6.2.4 Initializing the producer role .. 50
6.2.5 Event Properties .. 51

6.3 Harnessing the available Qualities of Services .. 52
6.3.1 Consumer Constraints .. 52
6.3.2 Producer Constraints .. 52
6.3.3 Compression and Decompression Services ... 53
6.3.4 Reliable Delivery Services ... 54

6.3.4.1 Initializing the consumer ... 54
6.3.4.2 Initializing the producer .. 55

6.3.5 Managing Replays .. 56
6.3.5.1 Creating the appropriate ReplayRequest ... 56
6.3.5.2 Initiating Replays ... 57

6.3.6 Fragmentation and Coalescing ... 58
6.3.6.1 The Fragmentation Service .. 58
6.3.6.2 The Coalescing Service ... 59

7 Setting up the Repository Node .. 61

7.1 Creating the Database and Tables (Windows and Linux) 61
7.2 Using the Robust Node ... 62
7.3 The Robust Subscribers and Publishers ... 74

8 Writing JMS applications .. 78

8.1 Creating a TopicConnectionFactory ... 78
8.2 Initializing the Topic Session and Topic ... 78
8.3 Creating a Subscriber ... 79
8.4 Message Types .. 80
8.5 Creating a Publisher ... 80

THE NARADABROKERING USER’S GUIDE Table of Contents

4/117

8.6 Running the sample JMS chat application .. 81
8.7 Unsubscribing Topics .. 81

9 Broker Discovery .. 82

9.1 Discovering Brokers ... 82
9.2 Using the Broker Discovery Helper.. 82

10 Topic Creation & Discovery ... 84

10.1 Topic Creation ... 84
10.1.1 Starting the Topic Discovery Node .. 84
10.1.2 Creating Topics .. 84

10.2 Topic Discovery ... 86
10.2.1 Discovering Topics ... 86

11 Root Provider .. 88

11.1 Using the Root Provider .. 88
11.2 Loading Certificates and Keys .. 90

12 Security Framework .. 91

12.1 Creating Security Tokens and securing topics ... 91
12.1.1 Starting the Key Management Center.. 91

12.2 Creating Secure Topics ... 91
12.3 Signed Security Token Retrieval ... 93
12.4 Secure Publishing of events ... 94
12.5 Receiving Secure Events ... 95

13 The C++ Bridge for NaradaBrokering .. 97

13.1 C++ Socket Client for Naradabrokering ... 97
13.1.1 Configuration .. 97

13.1.1.1 Broker Configuration .. 97
13.1.1.2 Compiling the C++ Client .. 98

13.1.2 Simple Chat Client ... 98
13.1.3 The Architecture .. 98
13.1.4 Issues specific to Endianness .. 100
13.1.5 Simple Pub/Sub Example ... 100

13.2 C++ Bridge for NaradaBrokering (JNI-based) .. 100
13.2.1 Broker Configuration ... 101
13.2.2 Compiling the C++ Bridge .. 101
13.2.3 Simple Chat Client .. 102
13.2.4 The Architecture ... 102
13.2.5 How to Use the Bridge ... 102
13.2.6 Simple Publisher Example .. 104

14 Appendix A: Working with the codebase in IDEs 106

14.1 Incorporating the NaradaBrokering Codebase into Eclipse 106

THE NARADABROKERING USER’S GUIDE Table of Contents

5/117

14.1.1 Download NaradaBrokering and the Necessary Jars 106
14.1.2 Creating New Project Using Eclipse .. 106
14.1.3 Use NaradaBrokering in Your Project .. 112

14.2 Importing the codebase into JBuilder ... 114

15 Appendix B: The Broker Configuration File .. 116

THE NARADABROKERING USER’S GUIDE Getting Started With NaradaBrokering

6/117

1 Getting Started with NaradaBrokering

In this chapter we cover issues pertaining to getting a quick start on utilizing the
NaradaBrokering System. The chapter covers issues pertaining to installing the software,
compiling the code base and starting the individual brokers. The chapter also provides a
discussion on setting up a distributed broker network.

1.1 Basics
The NaradaBrokering software is available for download at http://www.naradabrokering.org.
The distribution is a zip file. When you unzip the file, the distribution is contained in a folder
named NaradaBrokering-x.y.z where x.y.z corresponds to the version number of the

NaradaBrokering release; here x indicates the major release and indicates a significant
advancement in the software's capabilities; y indicates the minor release which adds

incremental capabilities to the major release; finally, z indicates improvements to the minor

release which is typically the result of bug fixes. The directory structure of a typical
NaradaBrokering distribution is depicted in the figure below

Figure 1: High level view of the NaradaBrokering distribution

1.1.1 Requirements

NaradaBrokering is written in Java and requires you to have JRE/JDK 1.6 or higher. You
can download the latest version of Java from http://java.sun.com . NaradaBrokering uses
classes and features that are available in these newer versions of the Java Virtual Machine.

NaradaBrokering has been tested on Windows (NT/XP), Linux and Solaris based systems.

THE NARADABROKERING USER’S GUIDE Getting Started With NaradaBrokering

7/117

1.1.2 Downloading additional jar files

NaradaBrokering binaries are included in the distribution. However, you may need to
download some of the necessary jar files without which you will have problems running the
software effectively. Specifically, you need to download two pieces of software and include
these jar files in your CLASSPATH.

JMS: The Java Message Service specification is a set of interfaces that abstract one-to-one
and one-to-many communications between entities. You can download this jar file from
 http://java.sun.com/products/jms/index.html

JMF: The Java Media Framework is also needed to execute the multimedia related tools in
NaradaBrokering. The latest version of JMF can be found at
http://java.sun.com/products/java-media/jmf/

1.2 Compiling the NaradaBrokering code base
Start off by making sure that you are using JDK-1.6 or higher (you can verify this by
typing java -version). Also check and see whether your javac is JDK-1.6.1 or higher

by checking the path variable in case you have multiple Java SDK installations on your
machine.

1.2.1 Using Apache ANT

The easiest way to compile the entire code base in the NaradaBrokering distribution is to
use ANT. ANT is Java based build tool from Apache and can be downloaded from
http://ant.apache.org/. We have included an XML file build.xml in the distribution which can
be used to compile the entire NaradaBrokering source tree. Next, you also need to update
the locations of the jms.jar and jmf.jar files specified in the build.xml file.

Once you have downloaded the ANT software and updated the locations of the jms.jar and
jmf.jar files in the build.xml file, you can supply this build.xml file as a parameter to the

ant command to compile the entire distribution. Thus, the command ant will rebuild the
distribution. This rebuilding will generate a new NaradaBrokering.jar in the

NB_HOME/lib directory, where NB_HOME corresponds to the location of the

NaradaBrokering distribution on your machine.

THE NARADABROKERING USER’S GUIDE Getting Started With NaradaBrokering

8/117

1.2.2 Compiling using the javac command

If you aren't using ANT and you are trying to compile the sources from the command line
you need to make sure that you did include the jar files included in the lib directory of the

distribution in the CLASSPATH that you specified while compiling.

1.2.3 Checking the version of NaradaBrokering

There are many instances where developers have multiple instances of NaradaBrokering
running. Its also conceivable that the jar files in your CLASSPATH may have multiple
NaradaBrokering.jar files. To verify the version of NaradaBrokering that you are running
please use the following command java cgl.narada.util.Version.

1.2.4 Library Dependencies:

Included below is the list of jar files needed for executing and accessing the entire
NaradaBrokering functionality in addition to jms.jar and jmf.jar. The jar files listed below
are currently being included in the distribution and are covered by their individual licenses.

Table 1: Summary of library dependencies

Software Function Availability NB Distribution
location

Xerces XML parser http://www.apache.org lib/Xerces.jar
Xalan XPath parser http://www.apache.org lib/Xalan.jar
ExoLab
JMS
Selector

SQL selector in openJMS http://www.exolab.org lib/exolabJMSselect
or.jar

ANTLR Grammar functionality
used by ExolabJMS
selector mechanism

http://www.antlr.org lib/antlr.jar

JXTA P2P functionality http://www.jxta.org lib/jxta.org
Log4j Logging facility http://www.apache.org lib/log4j-1.2.8.jar
MD5
library

Digest authentication
which requires the MD5

Timothy W Macinta
http://www.twmacinta.co
m

lib/MD5.jar
Package:
com.twmacinta.util.
*

Base 64
Encoder/
Decoder
Library

Needed for Basic User
Authentication.

Robert Harder
http://iharder.sourceforge.
net/base64/

src/cgl/narada/util/
Base64.java

Digest Needed for supporting Clarke County Code lib/

THE NARADABROKERING USER’S GUIDE Getting Started With NaradaBrokering

9/117

Authentic
ation

Digest Authentication Brewing Company.
http://www.geocities.com/
ballarke/Projects/HttpClien
t/

DigestAuthen.jar
Package:
digestauthe.*

Cryptix
Cryptogra
phic
extension
s

Used for implementing
cryptographic functions

http://www.cryptix.org/

Under lib
cryptix_jce-
provider.jar
cryptix_jce–
compact.jar
cryptix_jce–tests.jar
cryptix_jce–api.jar

1.3 Conventions used in this manual
This is the font <Courier New, 11 pt, bold> used for Variable names
and Class names
This is the font <Courier New, 11 pt, bold, red> used for specifying
executables & directory locations
This is the font <Courier New, 11pt> used for Code Snippets
This is the font <Verdana, 10 pt> used for everything else

THE NARADABROKERING USER’S GUIDE Configuring the Broker

10/117

2 Configuring the broker

Included in the distribution is a file for configuring the broker. This file (NB_HOME/config/
BrokerConfiguration.txt) could be used for configuring the network communication ports for
a broker and for other properties that control the broker’s behavior. This configuration file is
included in the appendix of this manual.

2.1 Configuring the ports for communications
A broker in NaradaBrokering can communicate over multiple ports over different transport
protocols. The protocols supported within NaradaBrokering include TCP, UDP, Multicast,
SSL, HTTP and RTP. The TCP communications include support for both blocking and non-
blocking IO. Included below is a table outlining the parameters, default values for them and
their accompanying functions.

Table 2: List of ports that are used for communications by specific transports

PARAMETER DEFAULT FUNCTIONALITY
NIOTCPBrokerPort 3045 This parameter specifies the port

number for non-blocking TCP
communications with the broker.

UDPBrokerPort 3045 This parameter specifies the port at
which the broker listens to for
datagram communications. This port is
ideal for transient communications with
the broker.

MulticastGroupHost/
MulticastGroupPort

224.224.224.224/
4045

This pertains to communicating with
the broker using multicast. The port
specified here has to be different from
the one specified for the
UDPBrokerPort.

TCPBrokerPort 5045 This parameter specifies the port
number for blocking TCP-based
communications with the broker

PoolTCPBrokerPort 6045 This is an experimental part of the
NaradaBrokering system which
concerns the use of thread pool to
manage concurrent connections. This
feature eliminates the need to have a
thread associated with every
connection.

THE NARADABROKERING USER’S GUIDE Configuring the Broker

11/117

In addition to this NaradaBrokering can also communicate using SSL over port 443 and
HTTP over port 80. NaradaBrokering now incorporates support for IPSec. To use this
particular feature, one does not need to any configure specific ports which the broker would
use to accept connections or incoming traffic. Once the tunnel has been set up, all
registered transports can use the tunnel for communications with the corresponding ports
(as listed in the Table 2).

2.2 Configuring a broker as stand-alone or part of a distributed
network

Every broker in NaradaBrokering has an ID associated with it. This address is assigned
depending on how the broker is configured for use. A broker that intends to be part of a
distributed network needs to retrieve its address by issuing a request to one of the brokers
(with an assigned address) within the distributed network. If, however, a broker is being
run in the stand-alone mode the broker assigns itself a default address.

The parameter AssignedAddress controls this behavior. If this is set to true the broker

assigns itself a default address and begins operation in stand-alone mode. Other brokers
can contact this broker to help set up the distributed network. Please note that the first
broker on a NB broker network assigns its own address.

If the AssignedAddress parameter is set to false the broker does not assign itself an

address and is ready to be part of a distributed broker network.

2.3 Starting the Broker
In the bin directory of the NaradaBrokering installation please update the NB_HOME variable

in the .bat (and .sh) executable scripts. The NB_HOME variable points to the location of

the NaradaBrokering installation. For example the NB_HOME variable could be

/home/users/smith/NaradaBrokering-3.2.0. Note that that the location of the installation
directory does not have a trailing slash “/”.

Table 3: The startbr.sh file that is used for starting the broker process

export NB_HOME=..
brokerConfigFile=${NB_HOME}/config/BrokerConfiguration.txt
serviceConfigFile=${NB_HOME}/config/ServiceConfiguration.txt
brokerCommunicatorPort=11111
brokerCommunicatorFile=${NB_HOME}/config/uuid.txt

cp=.

for i in ${NB_HOME}/lib/*.jar;

THE NARADABROKERING USER’S GUIDE Configuring the Broker

12/117

 do cp=$i:${cp}
done

for i in ${NB_HOME}/lib/*.zip;
 do cp=$i:${cp}
done

java -Xmx260m -Xms260m -Xmn32m -XX:SurvivorRatio=10 -classpath $cp
cgl.narada.node.BrokerNode --brokerConfig=$brokerConfigFile --
serviceConfig=$serviceConfigFile --
brokerConmmunicatorPort=$brokerCommunicatorPort --
brokerCommunicatorFile=$brokerCommunicatorFile&

There are two configuration files that the broker uses. The first file is related to Broker
configurations (such as port numbers etc) while the second is related services loaded by the
broker.

In addition to this, there is a third parameter – the broker communicator port. This feature
was introduced to allow the broker to be run as a background process while retaining the
ability to interactively issue commands to the broker process.

If you need to start multiple brokers on the same machine, you will need to update your
broker communication ports in both the startbroker (sh and bat files) and

brokerInteract (sh and bat files) appropriately.

2.3.1 For Windows

For Microsoft OS users the file that needs to be updated is the startBroker.bat file. To start
broker under Windows you can simply double click the startBroker icon. For Windows-NT

please also include the %NB_HOME%\dll in your path variable. This is needed to enable

automatic detection of proxy settings using the WinINET API. This is useful during
communication through proxies and firewalls.

2.3.2 For UNIX environments

For UNIX users the file to modify is the startbr.sh file. The first time you try to execute this
file you would also need to make the file executable by using the command chmod +x
startbr.sh. To start the broker under Linux/Unix use the following command in the

$NB_HOME/bin directory – ./startbr.sh

THE NARADABROKERING USER’S GUIDE Configuring the Broker

13/117

Within the UNIX environment we have included another file (stopbr.sh) which allows one to
shutdown a currently running broker process using the command ./startbr.sh.

THE NARADABROKERING USER’S GUIDE Setting up a distributed broker network

14/117

3 Setting up a distributed broker network

In this chapter we describe the setting up of a distributed broker network. But before we do
that we digress on the overlay structure that NaradaBrokering imposes on the distributed
broker network

SSC-A
 SC-1

SC-2

SC-3

l
13 14

15

n
20

21

i4 5

6

j
7 8

9

m16 17

18

k10 11
12

h1 2
3

19

k

10 11

12

SP

SP
SP

SP
SP

11a
10a

12a

EC EC

1, 10 Super-super-cluster
controller

5, 9, 10, 16 Super-cluster controller
2,4, 6,8, 12,14,18,20 Cluster controller

Broker Node

Service Provider

End Client

Figure 2:An example of a NaradaBrokering broker network sub-section

In NaradaBrokering we impose a hierarchical structure on the broker network, where a
broker is part of a cluster that is part of a super-cluster, which in turn is part of a super-
super-cluster and so on. Figure 1 depicts a sub-system comprising of a super-super-cluster
SSC-A with 3 super-clusters SC-1, SC-2 and SC-3 each of which have clusters that in turn
are comprised of broker nodes. Clusters comprise strongly connected brokers with multiple
links to brokers in other clusters, ensuring alternate communication routes during failures.
Within every unit (cluster, super-cluster and so on), there is at least one unit-controller,
which provides a gateway to nodes in other units. For example in figure 1, cluster controller
node 20 provides a gateway to nodes in cluster m. Creation of broker network maps (BNMs)
and the detection of network partitions are easily achieved in this topology.

THE NARADABROKERING USER’S GUIDE Setting up a distributed broker network

15/117

Please note that in NaradaBrokering we limit the number of units within a super-unit to 32.
Thus, there can be only 32 brokers within a cluster. Similarly, there can only be 32 clusters
within a super-cluster and so on. Figure 2 depicts the NaradaBrokering ID associated with a
broker node. The NaradaBrokering broker addresses are of the form 23.20.31.14 – where 14
corresponds to the broker id within the cluster 31 of super-cluster 20 within the super-super-
cluster 23.

The clusters in the overlay structure may or may not correspond to actual clusters.
Sometimes a cluster may comprise of broker processes running on geographically closer
machines. Ideally, brokers within a cluster would comprise machines which can route
messages very efficiently between each other. Also brokers within a cluster will have
multiple links between them to ensure alternate communication paths during broker
failures.

Establishing a NaradaBrokering connection between 2 brokers is different from simply
establishing a socket connection between them. Establishing a socket connection between
broker nodes is simply a precursor to issuing requests to set up a broker node within the
broker network.

3.1 Requesting a node address:
As mentioned earlier, setting up of distributed broker network requires that the first broker
within the network has a self assigned address. This self-assigned default address for the
starting node is 1.1.1.1. When broker nodes are being added to the system, depending on
their node creation requests (issued to brokers with assigned addresses) appropriate logical
units are created within the system. A broker performs 3 steps to facilitate its addition into
the distributed broker network. We enumerate these below

• Set the AssignedAddress to false in the broker configuration file.

• Connect to one of the brokers within the distributed broker network. A broker is part
of a distributed broker network only if it has a unique NaradaBrokering address
assigned to it.

• Next, the broker creates a request for setting up of this node within the broker
network.

We will also include an example below will describe the process of adding broker nodes
within the system.

3.1.1 Issuing a node address request

When the broker process is running it continues to accept command line inputs from the
broker administrator. We are currently in the process of addition a GUI based version of
broker administration to the broker process. This section concentrates on command line
inputs for now. The command line inputs are specified using the brokerInteract (bat or

THE NARADABROKERING USER’S GUIDE Setting up a distributed broker network

16/117

sh) file available in the bin directory. This was done so that users can continue to interact

with the broker even though it is running in the background mode in Unix systems. Typing
an “h” on the command line of this program lists the set of commands that can be issued.

The first step involves the creation of a socket connection to one of the nodes within the
broker network. To do this the command that is issued is “c <hostname> <port-number>
<transport>” where hostname corresponds to the IP addresses or hostname of the

machine hosting the broker process. The port-number and transport correspond to the port
over which the broker is listening to communication and the transport protocol that is used
for communications over that port. Thus if a broker is listening to TCP communications over
port 5045 the connection command would be “c everest.ucs.indiana.edu 5045 t”.

The process of creating a connection returns a link-ID which snapshots information
pertaining to the created connection. This ID is then used in the issuing of the node address
request. The command for issuing a node address request is “na <link-id> <address-
level>”, where link-id corresponds to the connection ID mentioned earlier. The address-

level can vary from zero to three (0-3) by default. An example usage is the following: “na
tcp://everest.ucs.indiana.edu:5045 0”. We now enumerate how the address level

will relate to the organization of the broker network. Also for the purposes of discussion let
us assume that broker node that the requesting-broker is interacting with has an address
2.5.7.9

Address
level

How the request translates within the system

0 This implies that the requesting broker seeks to be a part of the cluster that
querying-broker is a part of. The address assigned to the requesting broker could
be of the form 2.5.7.10

1 This implies that the requesting broker seeks to create a new cluster within the
super-cluster the querying-broker is a part of. The address assigned to the
requesting broker could be of the form 2.5.8.1. This newly created cluster contains
only one broker node – the requesting broker.

2 This implies that the requesting broker seeks to create a new super-cluster within
the super-super-cluster the querying-broker is a part of. The address assigned to
the requesting broker could be of the form 2.6.1.1. This newly created super-
cluster contains only one broker node – the requesting broker.

3 This implies that the requesting broker seeks to create a new super-super-cluster
within the brokering network the querying-broker is a part of. The address
assigned to the requesting broker could be of the form 3.1.1.1. This newly created
super-super-cluster contains only one broker node – the requesting broker.

THE NARADABROKERING USER’S GUIDE Setting up a distributed broker network

17/117

3.1.2 When Node Address Requests Fail

Node address requests can fail for one of three of reasons. First, if the number of sub-units
within a unit has exceeded the maximum threshold of 32. Any request that implies the
creation of an additional sub-unit within this unit will result in a failure. Thus if there are
already 32 brokers within a cluster, a node address request with address-level=0 will result
in a failure.

Second, a node address request will fail if the querying-broker has not been assigned a
NaradaBrokering address. Finally, the process of assigning a node address can involve
different nodes depending on the level of the request. Failures in intermediate brokers
during this process can result in problems with assigning a node address to the requesting
broker.

3.1.3 Which node assigns the node address for a given node?

The node set up request, if successful, assigns the broker requesting to be part of the
network, a NaradaBrokering address. Depending on the node address request the address
for the node is assigned by different nodes within the brokering network. If the broker seeks
to be part of a cluster, the address is assigned by the lowest numbered broker within the
cluster the broker would be a part of. If the broker issues a request with address-level=1
the address is assigned by the lowest numbered broker within the lowest numbered cluster
in the super-cluster the broker seeks to be. The same pattern is followed for increasingly
higher address levels.

3.2 Creating a gateway between broker nodes in a distributed
network

Establishing a link to another broker is just a precursor to creating a connection that will be
deployed for efficient routings within the system. We call this connection a gateway to
distinguish it clearly from simple socket connections or simply establishing communication
links. Depending on the gateway that is created between two nodes, they end up as unit
controllers. For example if a gateway is established between brokers in different clusters
(but within the same super-cluster) both these nodes will be designated as cluster-
controllers within the system. Brokers can also set up gateways to other brokers within its
cluster.

The first step to establishing a gateway that can be deployed for efficient disseminations is
the creation of a link to that broker. This is similar to what we discussed in the earlier
section. The command that is issued is “c <hostname> <port-number> <transport>”

where hostname corresponds to the IP addresses or hostname of the machine hosting the

THE NARADABROKERING USER’S GUIDE Setting up a distributed broker network

18/117

broker process. The process of creating a connection returns a link-ID which snapshots
information pertaining to the created connection.

To create a gateway between brokers the request is of the form “ga <link-id>
<connection-level>”, where link-id corresponds to the established connection ID

between the nodes. The connection-level provides an indication of the type of controller a
node seeks to be.

There are certain rules that must be adhered to for the creation of gateways between two
broker nodes. Brokers within a cluster can only establish gateways with each other that are
of level 0. Brokers in two different clusters but within the same super-cluster can establish a
gateway that can only be of level 1. Establishing such a gateway link also results in these
endpoint nodes being designated as cluster controllers. The scheme works similarly for
higher levels.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

19/117

4 Graphical deployment of Broker Networks

In this section we describe the graphical deployment of broker networks. This software,
HPSearch, is available for download from the NaradaBrokering project website. In this
section we will provide detailed instructions on setting up broker networks graphically.

4.1 Compiling the Management framework
Currently the framework completely depends on NaradaBrokering for all its dependencies.
Make sure you have the latest NaradaBrokering setup. Further, the installation is
precompiled with Java 6. If you need to recompile for some reason, compilation is based on
Apache Ant. To compile, issue the following command:

ant -DNB_HOME=path_to_nb_home jar

4.2 Terminology for the machines involved
For clarity of discussions we will be referring to two sets of machines. The first set of
machines B = {B1, B2 …. }, the broker machines, will be the machines on which the
brokers will run. The second set M typically will have only one machine where the core
management components run, and from where you launch Graphical User Interfaces (GUI)
to manage and deploy broker networks. A given management machine, can manage upto
700 brokers; since, one would typically not go beyond this we need to use only one
machine. A discussion of creating a hierarchy of management nodes M = {M1, M2, …} to
manage extremely large broker networks is included at the end of this chapter.

4.3 The configuration files
Configuration files for the HPSearch system are available in the conf directory of the
distribution. There are three configuration files: two of these are typically not modified.
Modifications, if any, should be done on the management machine.

1. MGMT_HOME/conf/mgmtSystem.conf
This file contains configuration information for the management framework
components. The only change one would do is to replace “localhost” with the fully
qualified name of the management machine, M, on which you decide to run the
management components. Thus, use gf1.ucs.indiana.edu instead of gf1.

2. MGMT_HOME/conf/defaultMessagingNode.conf
This file contains port information for a communications node used by the
management framework. The ONLY reason to modify this file is if you feel that the
default ports used by this component is unacceptable.

3. MGMT_HOME/conf/system.conf
This file is also least likely to change and contains various timeouts, heartbeat
intervals, retry counts.

If you plan on deploying a broker network with brokers running on machines {B1, B2, B3
..}, you need to copy the modified mgmtSystem.conf file to the MGMT_HOME/conf/

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

20/117

directory of the machines { B1, B2, B3 ..}. If the machines involved {M, B1, B2, B3 …}
mount the same file-system, then you don’t need to perform this step. It is still a good idea
to make sure that all the broker machines {B1, B2, B3 …} see the modified
mgmtSystem.conf file with the fully qualified DNS name of the management machine.

4.4 Changes to the .bin files before running programs

You may need to make the following changes before running the management framework

1. In MGMT_HOME/bin/setEnv.bat(.sh), Set the value of NB_HOME

2. Change permissions on all the .sh files in the MGMT_HOME/bin directory to make sure
that they have execute permissions. Executing the flowing command in the
MGMT_HOME/bin directory ensures this: chmod +x *.sh

4.5 VNC Servers
If you are plan on running the management components on a machine (M1) that you
connect to remotely (from a Windows machine), and if you are running Unix on this
management machine, M1, you will need to use a VNC client. This is because the
management machine will spawn two GUIs that it won’t be able to spawn otherwise. To do
this, you will first need to start a VNC Server on the management machine in question (e.g.
gf8.ucs.indiana.edu)

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

21/117

Figure 3: Starting a VNC Server

To connect to the VNC Server you will need a VNC Client (e.g. TightVNC). Once you do this
you will be able to launch GUIs.

Figure 4: Using a VNC client to connect to the VNC Server

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

22/117

4.6 Preliminary setup
In this section we describe the preliminary steps that one needs to perform prior to being
able to deploy broker networks graphically. These steps are order-sensitive, so please make
sure that you do not perform these steps out-of-order. In each step we will also specify the
machine on which a given program will be executed.

All the .sh files (or .bat files in the case of Windows) are being executed from the

MGMT_HOME/bin directory. On Windows machines, to execute a .bat file you simply double-
click the file in question. The remainder of this section will specify instructions for Unix
based systems.

Step 1: Running the Fork daemons
The fork daemon needs to be running on ALL machines: the broker machines {B1, B2, …}
and also the management machine {M1}

./runForkDaemon.sh -- executeInTerminal

It is a good idea to use the executeInTerminal parameter if you are doing this for the
first time since it simplifies the debugging process in case there are problems. If you do
decide to submit it as a background job, at a later time, the logging output goes to
MGMT_HOME/logs/PROCESS.log file.

The Default port used by the fork daemon is 65535. This can be changed while executing

the fork daemon by specifying an additional parameter (-- port) to specify another port.

Step 2: Run the bootstrap node on the management machine
If you are accessing the management machine (M1) remotely from a Windows machine, we
assume that you have performed steps to ensure that the GUI can be launched: one way of
doing this was outlined in the preceding section.

To run the bootstrap node on the management machine type the following command in the
MGMT_HOME/bin directory: ./bootstrapUI. This will launch the Bootstrap Management

Console which is depicted in Figure 5.

Clicking on the Refresh button, reloads the status of the bootstrap node currently being
shown in "Location of the ROOT Node Web Service". If this service is unreachable, then the
Instantiate button is activated which can be clicked to start the configured ROOT Bootstrap
node by sending a message to the ROOT Node Fork Process Locator.

Clicking the Instantiate button causes a few .sh scripts to execute in different terminals

that get launched through the GUI. These include: runBootStrapService,

startRegistry, startMessagingNode and startManagerWithHealthCheck.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

23/117

Figure 5: The Bootstrap Management Console

Step 3: Start the Broker Service Adaptors on the broker machines {B1, B2 …}
You then need to start the broker service adaptors (BSA) on the all the machines {B1, B2
…} where you intend to deploy the brokers. To do so execute the following command in the
MGMT_HOME/bin directory of all the broker machines {B1, B2, …} :
./runBrokerServiceAdapter.sh

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

24/117

Step 4: Do a Refresh on the Bootstrap Console
Doing a Refresh on the Bootstrap Console will now launch the startManager in addition to
the ones that were spawned-off in Step 2.

4.7 The GUI for deploying Broker Networks
In this section, we focus on the Broker Management GUI which is used to deploy broker
networks. This GUI will be launched on the management machine (M1).

To launch this GUI, on the management machine (M1), you need to type the following
command in the MGMT_HOME/bin directory: ./userUI.sh

4.7.1 In case of initialization problems

If the system is NOT properly configured OR if the configured bootstrap node cannot be
located after several retries the system does error reporting. In the error reports mode, a
dialog box will pop-up prompting for a different location of the bootstrap service as shown in
Figure 6.

Figure 6: Prompt for Bootstrap Service Locator

Finally, if the bootstrap node cannot be contacted after several attempts a confirmation
dialog (depicted in Figure 7) will be seen by the user.

Figure 7: Dialog box if a Bootstrap node could not be located

On the contrary, if the bootstrap node was indeed correctly contacted, then the main
window of the deployment console is shown

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

25/117

4.7.2 Main Window of the Deployment Panel

The main window (Figure 8) shows a list of available the Broker Service Adapter nodes and
their associated registries. By selecting a node from the tree (left pane), one can view / set
properties specific to the selected resource. In the left-pane, one needs to scroll to the right
to see the complete IP address of the machines where the broker service adaptors have
been started. The right pane consists of various resource specific tabs for configuring the
selected resource.

Registry
Location

Available Broker Service
Adapter (BSA) Nodes

Resource
(Physical)
Location

and Status

Reloads
data from

configured
Registries

Last ‘N’ Log
entries. ‘N’ is
configurable

Various
available
functions

Left
Pane

Right
Pane

Figure 8: Main Window of the deployment console

The Reload button on the toolbar, reloads data from the registry. This overwrites the
current user state and configuration.
Commit button is used to save all changes to the registry.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

26/117

The Topology Generator button starts the topology generator which uses default topology
generation algorithms. If a user-specific topology is desired, then the Links tab can be used
to create and deploy a user-defined topology. Currently the Topology Generator provides
support for 2 topologies RING and CLUSTER.
Remove All Links deletes all current links from the registry after the next commit.
The Load Sample Data is for debugging purposes to check the User interface functionality.
We now discuss the various tabs and functionalities of the GUI. The functionality depicted
here is very specific to Broker Management.

4.7.3 Resource Properties

Figure 9 shows the main Resource properties window.

Resource Properties Tab

Allows Creating a new Broker
Node and setting properties

Figure 9: Resource Properties

The resource properties tab shows an editable table of Configuration Properties and their
Values. Currently new values cannot be created, however existing values can be edited. This
allows a user to configure a broker node to run specific services (such as, Run TCP and UDP
transport on specified ports but do not run HTTPS/SSL and HTTP etc…).

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

27/117

The first step is to create a new node and change the default values if needed. This can be
done by clicking the Create Node button. Figure 10 shows the default configuration
properties after creating a new node.

After Creating a
new Node

Click to save modifications (e.g.
changing port numbers etc…)

Figure 10: Default properties after creating a new node

To make any changes, simply double click the “Value” and press “Enter” when done.

Finally, the changes to a node’s configuration may be saved (on the user’s side) by clicking
Save Changes. You then also need to Commit to ensure that these changes are
registered. Failure to Commit will simply result in creation/changes to be discarded.

4.7.4 Policies

Failure of nodes would cause the application using the broker to function erratically. The
usual method is to re-instantiate a new broker process manually. Whenever possible, this
may be automated by setting the appropriate policy. The default policy, depicted in Figure
11, is to wait for “User Interaction” which simply put, “Does Nothing”.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

28/117

Figure 11: The default policy (Require User Interaction)

Figure 12: Alternate Policy (Automatically spawn a new Broker)

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

29/117

An alternate policy, depicted in Figure 12, is to use one of the Fork Process Daemons to
spawn a broker process and use the newly spawned process in lieu of the failed broker
process. The following MUST be noted for using this feature.

• In the current prototype implementation, Only Fork Process Daemons directly
accessible (via UDP / TCP /HTTP or via a NB topic) can be used to spawn a new
process.

• A failed process is typically indistinguishable from an extremely slow one. The
determination of a process failure is solely dependent on missing heartbeats and the
inability of the manager to successfully establish a contact with the target resource
after several retries.

4.7.5 Generating Topologies

The Topology Generator button on the toolbar starts the topology generator module.
Currently we have implemented a RING and a CLUSTER topology generator. Each of these
topologies has specific characteristics. The main window for the topology generator is shown
in Figure 13.

Figure 13: Main window for the Topology Generator

On the left side is a list of available nodes. An Available Node is defined as a node which
was created using the Create Node on the Resource Properties page, and then and
committed using Commit. Such a node is assumed to be completely configured and any

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

30/117

changes to this node after the links generation process would result in an incorrect
deployment of the broker topology.

Figure 14: A warning dialog prompting for the confirmation of link deletion

The type of topology to generate can be selected from the drop-down list, and after setting
topology specific parameters on the Topology Parameters tab, the user clicks Generate,
Save Changes, and then Commit to generate the topology. The topology generation
deletes all previous links and creates new links. A warning is issued (as shown in Error!
Reference source not found.) before the topology generation is started. We now show
the RING and CLUSTER topology generation on a sample data set.

4.7.6 Ring Topology

The Ring topology does not have any major topology specific parameters. When deploying
broker network involving brokers behind NAT devices, a third party relay server (present in
a non-NATed network) is used. The server location is configured as shown in Figure 15.

Figure 15: Ring topology parameters

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

31/117

When Generate is clicked the output for an 8-node network is shown in Figure 16. To
complete the generation of the Topology and the linking-up of the nodes click Save
Changes, and then Commit to generate the topology.

Figure 16: Nodes and Links Configuration for RING topology

4.7.7 Cluster topology

Cluster topology has more configuration parameters than the basic RING topology. These
parameters [see Figure 17] define the characteristics of the generated topology such as the
number of clusters, super-clusters and super-super-clusters.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

32/117

Figure 17: Cluster topology parameters

When Generate is clicked the output for an 8 node network using the above set parameters
is shown in Figure 18. To complete the generation of the Topology and the linking-up of the
nodes click Save Changes, and then Commit to generate the topology.

Figure 18: Nodes and Links Configuration for CLUSTER topology

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

33/117

4.7.8 Editing Links

The Links tab allows a user to edit pre-created links (via the topology generator) OR create
/ delete / modify user-defined links. Figure 19 shows the links created in an earlier run of
CLUSTER topology generator. NODE-3 has 3 out-going links.

Links Tab for creating / deleting /
editing Links between Broker Nodes Outgoing Links from Selected Node

Selected Node

Figure 19: Editing Links

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

34/117

To delete an existing link, simply select the link to delete and click on Delete LinkInfo as
shown in Figure 20. Be sure to Commit after you are done with the editing.

Figure 20: Deleting existing Links

4.7.9 Manually Creating Links

While creating links, the following must be noted
• Links can only be created between configured nodes. i.e. nodes which have been

assigned properties in the Resource Properties tab after creating the node via Create
Node.

• If the configuration changes after creating links, then the created links may not be
deployed properly. This is because the link information contains physical IP
addresses and port of the destination broker and this information is set when the link
information is created. Thus, it is necessary to first set the broker configuration and
then create the link.

• A link using a specific protocol between 2 nodes can only be created once and is
directional, i.e. if a TCP link exists from NODE-1 to NODE-2, another TCP link from
NODE-1 to NODE-2 cannot be created, however a TCP link from NODE-2 to NODE-1
can be created. Similarly an NIOTCP link between NODE-1 to NODE-2 can be created
even if a TCP link was previously created.

The link creation process is illustrated in Figure 21. Once again, be sure to Commit the
changes.

THE NARADABROKERING USER’S GUIDE Graphical Deployment of Broker Networks

35/117

Figure 21: Manual Link Creation

To create a link from NODE-1 to NODE-2, select NODE-1 in the left pane. The Right pane’s
Links tab shows the available nodes. Available nodes are instantiated. Selecting an
available node populates the available protocol list depending on the services configured on
NODE-2. After selecting a protocol, simply click on the New button to create the link
information for the link.

After nodes have been created and configured and the required link information set, the
entire configuration information can be committed to registry by clicking the Commit
button on the toolbar. The manager process associated with the nodes then picks up the
configuration and deploys the network of brokers as defined by the user.

4.7.10 Shutting down the Broker Network

To shutdown the broker network, simply go to the Resource Properties tab and click
Delete Node. After the required nodes have been deleted, this information is committed to
the registry by clicking the Commit button. The delete request is then acted upon by the
respective manager processes.

THE NARADABROKERING USER’S GUIDE Creation of Links

36/117

5 Specifying the creation of Links

In this chapter we describe the creation of links in NaradaBrokering. We require that
properties be specified for the creation of a link to any other NaradaBrokering node (broker
or client alike). These properties snapshot information mandated by the NaradaBrokering
transport layers to facilitate the creation of a communication link between 2 entities. This
information generally pertains to –

a) The hostname and the port number which the process would be listening to
b) The underlying transport over which communications take place TCP, UDP, Multicast.
c) Whether data exchange should be over encrypted links.
d) Information required for tunneling through authenticating proxies and firewalls.

5.1 Creating a link
The properties specified for creation of links vary from transport to transport. In this section
we describe the properties that need to be specified for the creation of different kinds of
links to facilitate communications using different transport implementations. The properties
always go in tandem with a specified transport type. The transport type is a String;
examples of the transport type include “niotcp”, “tcp”, “udp”, “multicast”, “rtp”,

“ssl”. We will also include a code snippet outlining the specification of these properties to

create a link.

We now provide details pertaining to specifying properties for the creation of different types
of links. We also outline the information encapsulated within these properties. For the
purposes of our discussion lets assume that the connection is being initiated by a node A to
another node B. Communication between two nodes over a certain transport type is
predicated on the fact that both the nodes can support communications of the transport
type in question.

Table 4: List of properties for specifying the creation of communication links in
different transport protocols

Transport
Type

Properties Functions

TCP TCPServerPort

Used for initialization of the TCPLinkFactory. When
the value of this variable is set to 0 it implies that
the node A initiating a connection to node B will not
accept link creation requests from any other node.

hostname This is the hostname on which the node B’s process
is running.

portnum This is the port number on which node B accepts
link creation requests from other nodes. In other
words, the TCPServerPort specified to the

THE NARADABROKERING USER’S GUIDE Creation of Links

37/117

TCPLinkFactory at node B is equal to portnum.

UDP UDPListenerPort

The port on which node A would listen to
communications.

hostname The host on which node B’s process is running
portnum The port number on which node B is listening to

datagram packets.
Multicast No properties are required for setting up the

MulticastLinkFactory.
MulticastHost To enable receipt & sending of data to a given

multicast group.
MulticastPort To enable receipt &sending of data to a given

multicast group.
RTP RTPListenerPort

This needs to be specified for setting up the
RTPLinkFactory. This is then used to exchange
information pertaining to the RTP meeting id.

dataPortLocal To deal with raw RTP clients we need to establish
two underlying communication paths. One is for the
data packets and the other is for control packets.
This is local port on which we listen for RTP data
packets. A check is performed to see to it that this
is an even number. Once this fact is confirmed we
proceed to create another listener for the control
packets at dataPortLocal+1.

rtpHost This is the host name on which the raw RTP Client
resides.

rtpPort This is the port number on which the RTP client
listens to for data packets. Once again this has to
be even numbered. The raw RTP client listens to
control packets on the rtpPort + 1. There are two
underlying communication paths that are created by
the specification of dataPortLocal, rtpHost and
rtpPort. First, is the data path between
dataPortLocal on node A to rtpHost and rtpPort on
node B. The second is the control path between
dataPortLocal+1 on node A to rtpHost and
rtpPort+1 on node B.

SSL truststore

Location of the trusted authorities database

keystore

Location of the public/private key database

truststorePassword Password to the truststore

THE NARADABROKERING USER’S GUIDE Creation of Links

38/117

keystorePassword

Password to the keystore

username The username for proxy authentication

password The password for proxy authentication

domain NT domain or workgroup for NTLM authentication

host

local host name for NTLM authentication

https.proxyHost The location of the HTTPS proxy. Will try to auto
detect from System properties if this does not exist.

https.proxyPort

The location of the HTTPS proxy port. Will try to
auto detect from System properties if this does not
exist.

secure

true | false. If false, will not do any real SSL.

listenerport The port to listen for incoming connections.

host

The transport's end point's host name or IP address.

port The transport's end point's port number.

5.2 A Code Snippet Detailing Link Creation
The snippet below depicts the loading of properties to enable SSL, TCP and Multicast
communications.

 Properties props = new Properties();
 props.put("truststore", "D:/ SSLTunnel/keys/truststore");
 props.put("keystore", "D:/ SSLTunnel/keys/keystore");
 props.put("truststorePassword", "abc");
 props.put("keystorePassword", "abc");
 props.put("username", "test1");
 props.put("password", "test1");
 props.put("https.proxyHost", "everest");
 props.put("https.proxyPort", "8080");
 props.put("secure", "true");
 props.put("listenerport", "443");
 props.put("host", args[0]);
 props.put("port", args[1]);

 /** These properties pertain to setting up a blocking-TCP,

THE NARADABROKERING USER’S GUIDE Creation of Links

39/117

 and multicast link */
 props.put("hostname", args[0]); /** for both tcp, udp*/
 props.put("portnum", args[1]); /** for both tcp, udp */
 props.put("TCPServerPort", "0"); /** for TCP */
 props.put("MulticastHost", "224.224.224.224");
 props.put("MulticastPort", args[1]);

5.3 Instructions for SSL/HTTPS connections through a proxy
To connect to the NaradaBrokering broker and client by using SSL/HTTPS over a proxy,
please try the following steps:

 (1) Add the keystore JVM parameter in the NaradaBrokering broker execution script
available at $NB_HOME/bin/startbr.sh
java -Djavax.net.ssl.keyStore="/root/sslkeys/impromptu.localdomain.key" -
Djavax.net.ssl.keyStorePassword=XX cgl.narada.node.BrokerNode
$brokerConfigFile $serviceConfigFile $brokerCommunicatorPort&

(2) For coding the clients, the connection properties keystore and truststore are NOT used:

HTTPSconProp.put("trustStore", "c:/truststore");
HTTPSconProp.put("keyStore", "c:/keystore");
HTTPSconProp.put("trustStorePassword", "XXXXX");
HTTPSconProp.put("keyStorePassword", "XXXXX");
ini = new cgl.narada.jms.NBJmsInitializer(HTTPSconProp, "ssl");

(3) Instead the system properties should be set to point to a truststore
System.setProperty("javax.net.ssl.trustStore", DEFAULT_TRUSTSTORE);
System.setProperty("javax.net.ssl.trustStorePassword",DEFAULT_TRUSTPASS);

(4) In $NB_HOME/config/ServiceConfiguration.txt, there are two keystore

parameters that are for the security framework, and do not have an effect on the SSL store
requirements.
SecurityKeyStore=XXX
SecurityTrustStore=XXX

(5) In the $NB_HOME/config/BrokerConfiguration.txt, connect to the SSL broker

port
SSLBrokerPort=443

THE NARADABROKERING USER’S GUIDE Creation of Links

40/117

5.4 Using IPSec
NaradaBrokering incorporates IPSec, allowing clients to traverse firewalls that prohibit other
traffic. To enable this functionality, both the NaradaBrokering broker and clients must have
additional software installed. Fortunately, this software is freely available and easily
obtained.

We note that while IPSec is traditionally used to construct secure virtual private networks,
we merely use IPSec as a tunnel to bypass firewalls for NaradaBrokering traffic. The IPSec
connection established is not used for confidentiality or authenticity; upper layer protocols
provide that security, when needed.

When implementing the IPSec connection documented below, the IPSec clients and servers
will be deploying "split-tunneling." In this approach, a subset of the traffic from the machine
will be tunneled through IPSec while the rest will be transmitted normally. In particular, the
IPSec connection will only be used for traffic addressed to the other IPSec end-point. This
allows NaradaBrokering to be used while not impacting other applications on the clients and
servers.

IPSec can be used to traverse networks employing Network Address Translation (NAT).
However, only the client can be behind NAT in the scenario documented below. If the server
is behind a NAT, the Windows XP client machine must have a registry patch installed (see
http://support.microsoft.com/default.aspx?kbid=885407). Unfortunately, IPSec is unlikely
to work if multiple NATs are used between the client and server.

Below are instructions for configuring the client and server machines. The client instructions
are written for Windows XP and the server is written for Fedora Linux. However, other Linux
distributions can be used for the server while clients can additionally run MacOS X, Linux,
and Windows 2000/Vista. Configuration support for these other versions will be added in
subsequent releases.

5.4.1 IPSec Server:

To implement the IPSec server, we compile strongSwan 4.1 on Fedora 8 Linux. You can
download strongSwan 4.1 from http://www.strongswan.org/download.htm . Before
installing, you will need to ensure you have GCC and the GMP libraries (run "yum install
gcc.i386 gmp.i386 gmp-devel.i386" as root).

To install strongSwan, uncompress the tarball, enter the extracted directory, run
"./configure", "make", and "make install". If all the dependencies are met, this will

install strongSwan system-wide.

The next step is to configure the strongSwan IPSec server. By default in Fedora, the
configuration files are stored in /usr/local/etc/. Below is an ipsec.conf file that will

THE NARADABROKERING USER’S GUIDE Creation of Links

41/117

allow remote connections from all Windows IPSec machines using a pre-shared secret. This
configuration file must be writable only by the root user. Please note: this configuration file
is white-space sensitive! Lines must be indented with tabs as indicated and blank lines
should only appear between the configuration setup and each connection definition.

Table 5: The ipsec.conf configuration file

--- BEGIN Configuration File - ipsec.conf --- config setup
 nat_traversal=yes
 charonstart=no

conn CGL-IPSec
 authby=secret
 pfs=no
 rekey=no
 keyingtries=3
 # --
 # The VPN server.
 #
 # Allow incoming connections on the external network interface.
 # If you want to use a different interface or if there is no
 # defaultroute, you can use: left=your.ip.addr.ess
 #
 left=%defaultroute
 #
 # Required for Windows XP:
 leftprotoport=0/%any
 #
 # --
 # The remote user(s).
 #
 # Allow incoming connections only from this IP address.
 # Use right=%any to allow any incoming connections.
 right=%any
 #
 # Same thing as the leftprotoport, only for the remote user:
 rightprotoport=0/%any
 #
 # --
 # Actually enable this configuration:
 auto=add
--- END Configuration File - ipsec.conf ---

THE NARADABROKERING USER’S GUIDE Creation of Links

42/117

In addition to the basic configuration file, the server must have a list of pre-shared secrets
to authenticate the remote client. These are stored in the ipsec.secrets file (again

located in /usr/local/etc/ by default in Fedora). This file must be read and writable only

by the root user.

Table 6: The ipsec.secrets configuration file

--- BEGIN Configuration File - ipsec.secrets --- w.x.y.z %any: PSK
"shared_secret_goes_here"
--- END Configuration File - ipsec.secrets ---

Note that "w.x.y.z" is replaced with the IPv4 or IPv6 IP address of the server. The "%any"

specifies any client can connect; it can be replaced with a specific address to restrict the
acceptable clients. The value in quotation marks is replaced with the shared secret that
clients must supply to connect to the server.

Once the configuration phase is completed, simply run "ipsec start" as root, which will

allow clients to begin connecting using IPSec. To see established connections, you can run
"ipsec status" for a concise output or "ipsec statusall" for detailed output.

By default, strongSwan will write its log file to /var/log/secure in Fedora. This is useful

for troubleshooting and to monitor connections. Adding "plutodebug=control" to the

"config setup" section of the ipsec.conf file will increase the verbosity of the

connection process logging. For further IPSec troubleshooting, see
http://www.strongswan.org/support.htm . Additionally, the OpenSwan project, which forked
from the same base code as strongSwan, has documentation available at
http://wiki.openswan.org/index.php/ , which may provide some support.

5.4.2 IPSec Client:

In the current documentation for IPSec capabilities within NaradaBrokering, we focus on
Windows XP. However, Windows 2000 (Service Pack 3 or higher) and Vista also provide
IPSec and will be documented in future releases. For Windows XP, either Service Pack 1 or 2
must be installed.

For users of Service Pack 1, a patch must be downloaded from Microsoft for Network
Address Translation Traversal (NAT-T), which is required if the IPSec client is behind a NAT.
This patch is available at http://support.microsoft.com/support/kb/articles/q818/0/43.asp .
Windows XP Service Pack 2 users already have this patch installed.

THE NARADABROKERING USER’S GUIDE Creation of Links

43/117

To use IPSec, you must install the ipseccmd.exe tool. This is available on the Windows XP
CD under Windows Support Tools. Windows XP Service Pack 2 users should download an
updated version of the support tools from Microsoft at
http://support.microsoft.com/default.aspx?scid=kb;en-us;838079 .

Once this is installed, IPSec will be available from the command line in Windows XP.
NaradaBrokering will invoke this for you as needed. Once the IPSec tunnel policy has been
specified, a connection must be established using the machine. The actual IPSec tunnel is
established on demand. Accordingly, the first packet transmitted to the destination will
begin the IPSec tunnel creation. Typically, the ping command is used to establish the
tunnel. Below is output that you may see when pinging the client after executing the IPSec
command:

Table 7: Output of the ping command after executing the ipsec command

 Pinging w.x.y.z with 32 bytes of data:

 Negotiating IP Security.
 Negotiating IP Security.
 Reply from w.x.y.z: bytes=32 time<1ms TTL=64
 Reply from w.x.y.z: bytes=32 time<1ms TTL=64

 Ping statistics for w.x.y.z:
 Packets: Sent = 4, Received = 2, Lost = 2 (50% loss)

From this we see that the first two ping packets were lost while the IPSec tunnel was being
created, which is a one-time packet loss. However, the last two packets were transmitted
under the IPSec tunnel. Subsequent packets will be transmitted under IPSec until the tunnel
is deactivated.

To see what IPSec policies have been configured, you can run "ipseccmd show all" on

the client machine.

When you have finished with the IPSec tunnel, you can deactivate it using the following
command:

--- BEGIN IPSec Tunnel Termination Command --- ipseccmd -w REG -p
"NaradaBrokering Policy" -r "NaradaBrokering Rule" -y

--- END IPSec Tunnel Termination Command ---

The tunnel will then be deactivated and subsequent traffic will be sent without IPSec.

THE NARADABROKERING USER’S GUIDE Creation of Links

44/117

For more information on the ipseccmd.exe command, please see
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/ipsecmd.mspx

5.4.3 Setting up of the IPSec Tunnel from NaradaBrokering clients

NaradaBrokering allows you to set up IPSec tunnels (and subsequently tear them down)
from your program. To do so, during the creation of link one needs to specify a set of
properties, some of which are mandatory and some of which have default values assigned
by NaradaBrokering. These properties are listed in the table below.

Table 8: Properties to be specified for creation of IPSec Tunnel

Property Name Comments
IPSecHostname [mandatory] Creates a filter for all traffic between the

current machine and the IPSec server ("w.x.y.z"). Only
the traffic between these two machines will enter the
IPSec tunnel.

IPSecSharedSecret [mandatory] Authenticates the server using a pre-
shared secret of shared_secret_goes_here. This must
match what is stored in the server's ipsec.secrets file
or the client will be unable to connect.

IPSecPolicyName [default: NaradaBrokering Policy] Names the policy
that is being created. This is later needed to deactivate
the tunnel.

IPSecRuleName [default: NaradaBrokering Rule] Names the rule that is
being added to the policy. This is needed later on to
deactivate the tunnel.

The cryptographic primitives used to secure the IPSec tunnel are 3DES and MD5 since both
Windows and the strongSwan server supports them. While both these primitives are
considered weak, we are using the IPSec tunnel only for firewall traversal and not for
security purposes.

The code snippet below describes the creation of IPSec links. The NaradaBrokering transport
layer handles all the complexity of setting up the tunnel, issuing the ping command to

THE NARADABROKERING USER’S GUIDE Creation of Links

45/117

ensure packets are not lost subsequently, and finally the tearing down of the tunnel once
the link to the broker is closed.

props.put("IPSecHostname", args[0]);
props.put("IPSecSharedSecret", "shared_secret_goes_here");

clientService.initializeBrokerCommunications(props, "ipsec");

Note that once, the IPSec Tunnel has been established all registered transports within
NaradaBrokering can utilize this tunnel for communications with the broker over different
protocols. Once the client closes its connection to the broker, the IPSec tunnels are
automatically torn down by NaradaBrokering.

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

46/117

6 Developing NaradaBrokering Applications

In this chapter we introduce some basic concepts that are important to the development of
applications in NaradaBrokering. We then proceed to develop a simple application in
NaradaBrokering.

6.1 Primer on events, synopsis, profiles and templates
An event comprises of headers, content descriptors and the payload encapsulating the
content. An event’s headers provide information pertaining to the type, unique
identification, timestamps, dissemination traces and other QoS related information
pertaining to the event. The content descriptors for an event describe information pertaining
to the encapsulated content. The content descriptors and the values that these descriptors
take, collectively comprise the event’s content synopsis.

Headers

Content
Synopsis

Content Payload

Headers

Content
Synopsis & Payload

(b)(a)

Depending on how elaborate and complex the content description process is it is sometimes
conceivable that the demarcation between synopsis and the content is blurred and that they
end up being indistinguishable from each other. For example an XML event’s synopsis may
conceivably describe all the content, while the content may be dispersed across these
content descriptors.

Entities have multiple profiles each of which signifies an interest in events conforming to a
certain template. This interest is typically specified in the form of a constraint that events
need to satisfy, before being considered for routing to the entity in question. This constraint
is also sometimes referred to as a subscription. Entities specify constraints on the content
descriptors and the values some or all of these descriptors might take. Individual profiles
can also include information pertaining to the device type – CPU capability, and security
related information that would sometimes be needed for special processing of events.

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

47/117

When an event traverses through the system these constraints are evaluated against the
event’s synopsis to determine the eventual recipients. An event’s synopsis thus determines
the entities that an event needs to be routed to. Two synopses are said to be equal if the
content descriptors and the values these descriptors take are identical. It is possible for
events with the same synopsis to encapsulate different content in its payload. It is however
possible for events with different synopses to be routed to the same set of destinations. An
event’s synopsis also contains information pertaining to the originator of the event.

The type of constraints specified by the entities varies depending on the complexity and
type of the content descriptors. Examples of content descriptors include a simple character
string describing event topic information, an XML document with various elements and
nodes describing content elaborately, and finally a set of properties that can be set to
different values depending on the content. In each of these aforementioned cases the
constraints specified would be different – a simple character string based equality test, an
XPath query on the XML document and an SQL like query on the properties and the values
these properties take.

6.2 Writing a simple NaradaBrokering client

6.2.1 Initializing the Client Service

The developer first needs to specify an identifier for the client. Currently this is an integer
value. We are proposing to replace this by UUIDs. Next, one needs to control the
configuration of the clients. See the $NB_HOME/config/ServiceConfiguration.txt for

a sample configuration file. This file is used to set up and control parameters needed by
various services. Default values are used if the correct file is not specified.

Table 9: Initializing the ClientService

int entityId = 7878;

String config = "/NaradaBrokering-x.y.z/config/ServiceConfiguration.txt“;
SessionService.setServiceConfigurationLocation(config);

ClientService clientService = SessionService.getClientService(entityId);

The code snippet below, demonstrates two functions. First, one can initialize the
configurations associated with the various services in one’s session. Second, the
ClientService instance is initialized based on the specified entityId. The method calls

listed in the code snippet below will throw an exception- cgl.narada.service.
ServiceException – if it encounters problems.

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

48/117

6.2.2 Initializing communications with the broker

Once the ClientService has been initialized, we need to set up communications with the
broker. NaradaBrokering incorporates supports for several different transport protocols (as
described in section 5) and a given broker typically listens to communications over several
different ports (section 2). Setting up communications with the broker involves specifying
information about the host, port and other elements such as configuration and security
related information.

It is very simple to initialize and load communication libraries in NaradaBrokering clients.
One first needs to create a java.util.Properties object and load the appropriate values
for the various elements that are needed by a given protocol. Table 4 provides a list of the
properties that are expected (and can be specified) for different transport protocols.

Table 10: Initializing communications with the broker

Properties props = new Properties();
props.put("hostname", “localhost”);
props.put("portnum", “3045”);

clientService.initializeBrokerCommunications(props, “niotcp”);

The code snippet (Table 10) demonstrates the initialization of communications with the
broker using non-blocking TCP; the snippet outlines initializations for the case where the
broker is running on localhost and listening to socket connections on port 3045. The

transport type String which is specified as the second argument of the
initializeBrokerCommunications() method is case-sensitive. Other examples of valid
transport types include “niotcp”, “tcp”, “udp”, “multicast”, “rtp”, “ssl” and ““ipsec”.

6.2.3 Initializing the consumer role

A consumer is an entity that is interested in consuming messages. Every consumer needs to
implement the cgl.narada.service.client.NBEventListener interface. This

interface contains the onEvent(NBEvent nbEvent) method that is invoked by the

substrate upon receipt of a message which should be routed to that consumer. To create a
consumer and register it with the NaradaBrokering substrate one needs to use the following
code snippet. Note that the this in the code-snippet above refers to the class, which

implements the NBEventListener interface.

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

49/117

Table 11: Initializing the consumer

EventConsumer consumer = clientService.createEventConsumer(this);

The next step involves specifying the subscription, which clearly specifies the type of
messages the consumer is interested in consuming. The NaradaBrokering substrate
incorporates support for a wide-variety of subscription formats, these include: “/” separated

String, “,” separated <tag, value> pairs, Regular expressions, XPath etc.

In our currently example we deal with the simplest form which is String based. To

subscribe, we first need to create the Profile. We then use the EventConsumer that we
created to subscribe to the profile. The code snippet outlining the steps we described here is
depicted in Table 12.

Table 12: Initializing subscriptions

int profileType = TemplateProfileAndSynopsisTypes.STRING;
Profile profile =
 clientService.createProfile(profileType, "Movie/Casablanca");

consumer.subscribeTo(profile);

The system places not limits on the number of consumers that can be created from a given
ClientService instance, nor is there any limit on the number of subscriptions that you

can subscribe to on a given EventConsumer.

Events that an entity receives are delivered using the onEvent(NBEvent nbEvent)

method. The processing logic associated with received events can be put in this method. An
entity can inspect the received NBEvent event to retrieve its headers, synopsis, payloads

etc. In the simplest case, you can print the event’s payload. The code below depicts the
simplest implementation of the onEvent() method.

Table 13: A simple implementation of the onEvent() method

public void onEvent(NBEvent nbEvent) {
 String synopsis = (String) nbEvent.getContentSynopsis();
 System.out.println(moduleName + "Received NBEvent {" + synopsis + "} "
 + new String(nbEvent.getContentPayload()));
}

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

50/117

6.2.4 Initializing the producer role

A producer is responsible for the generation of streams. If an application needs such a
producer of events, an EventProducer needs to be initialized. This is done by simply
invoking the method createEventProducer() on the ClientService.

Additionally, if an application operates in a dual role as a subscriber to events of a stream to
which it producer role publishes to, it can configure the aforementioned producer to
suppress redistribution of events back to the application. The EventProducer interface
also allows one to configure the generation of identifiers, inclusion of template identifiers,
disabling the generation of timestamps etc.

The code snippet below (Table 14) depicts the initialization of the EventProducer and
configuration of some of the capabilities.

Table 14: Initializing the producer and configuring capabilities

EventProducer producer = clientService.createEventProducer();

producer.setSuppressRedistributionToSource(true);

producer.generateEventIdentifier(true);
producer.setTemplateId(12345);
producer.setDisableTimestamp(false);

Once the producer has been initialized we can proceed to the generation of events. To
generate events, one needs to specify the event type, the content synopsis and the payload
for the event. Once the event has been created, the producer can publish the created event.
This is depicted in the code snippet below (Table 15).

Table 15: Publishing messages using the EventProducer

int eventType = TemplateProfileAndSynopsisTypes.STRING;
String synopsis = "Movie/Casablanca“;
byte[] payload;

NBEvent nbEvent = producer.generateEvent(eventType, synopsis, payload);

producer.publishEvent(nbEvent);

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

51/117

6.2.5 Event Properties

In addition to headers and payloads, messages in NaradaBrokering can have
EventProperties associated with them. These properties are user-defined and come in
two flavors: mutable and immutable.

Immutable properties cannot be changed once they have been set. Mutable properties can
be modified several times. Furthermore, not only can one can track the property changes
that have occurred on a mutable property, they can also track the entities that initiated
these changes.

The code snippet below (Table 16) outlines the generation and processing of events with
EventProperties.

Table 16: Working with EventProperties

public void addEventProperties(NBEvent nbEvent) {
 EventProperties properties = nbEvent.getEventProperties();
 properties.setMutableProperty("Tennis", "US Open",
 new Integer(entityId));
}

public void processEventProperties(NBEvent nbEvent) throws NBEventException {
 if (nbEvent.hasEventProperties()) {
 EventProperties eventProperties = nbEvent.getEventProperties();
 Enumeration propertyNames = eventProperties.getPropertyNames();

 while (propertyNames.hasMoreElements()) {
 Object _propertyName = propertyNames.nextElement();
 String propertyType =
 eventProperties.isMutable(_propertyName) ? "mutable": "immutable";
 System.out.println("Property [" + _propertyName
 + "] was last modified by "
 + eventProperties.getLastModifier(_propertyName)
 + ". This is a " + propertyType + " property");
 }
 }
 }

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

52/117

6.3 Harnessing the available Qualities of Services
NaradaBrokering incorporates support for several Quality of Services (QoS). In this section
we will disccus how applications can harness some of these QoS. Specifically, we will
address how an application can avail of services related to compression, fragmentation,
reliable delivery, and replay that are available within NaradaBrokering. Generally,
harnessing the QoS involves the creation of ProducerConstraints and

ConsumerConstraints, which are associated with the publishing and consumption of
events respectively.

6.3.1 Consumer Constraints

ConsumerConstraints allow a consumer to specify QoS constraints on the receipt of

events conforming to a given profile. ConsumerConstraints are created by the

EventConsumer by using the Profile on which the constraints are to be specified; this

QoS constraint on the subscription is then propagated. The ConsumerConstraints
interface contains several methods that allow one to configure various aspects of the QoS
being harnessed. The code snippet below (Table 17) depicts the creation of the constraints
and the process of registering these constraints to a specific subscription profile.

Table 17: Registering ConsumerConstraints to a specific Profile

EventConsumer consumer;
// Initialization of the EventConsumer has been elided for clarity

ConsumerConstraints constraints= consumer.createConsumerConstraints(profile);

consumer.subscribeTo(profile, constraints);

6.3.2 Producer Constraints

ProducerConstraints allow a producer to specify QoS constraints on the generation of

events that conform to a specific template. ProducerConstraints first require the

creation of a TemplateInfo; this requires the specification of the templateId,

templateType and template. Once the TemplateInfo has been created, an instance of

ProducerConstraints can then be created by the EventProducer. The

ProducerConstraints interface contains several methods that allow one to configure
various aspects of the QoS being harnessed. The code snippet below (Table 18) depicts the
process of creating the TemplateInfo and from thereon the ProducerConstraints and

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

53/117

its use in specifying constraints associated with individual events: the constraints can be
specified on a per-event basis.

Table 18: Generation of ProducerConstraints and publishing events

int templateId = 12345;
int templateType = TemplateProfileAndSynopsisTypes.STRING;
Object template = "Movie/Casablanca“;
TemplateInfo templateInfo =
 clientService.createTemplateInfo(templateId, templateType, template);

EventProducer producer;
// Initialization of the EventConsumer has been elided for clarity

ProducerConstraints producerConstraints =
 producer.createProducerConstraints(templateInfo);

producer.publishEvent(nbEvent, producerConstraints);

6.3.3 Compression and Decompression Services

In this section we describe how applications can utilize the compression and decompression
services available within NaradaBrokering. These services are among the simplest QoS
available for applications within the substrate.

In this case the QoS constraints are associated only with the producer. The producer creates
the ProducerConstraints and also the Properties encompassing the algorithm to be
used for the compression of payloads. Upon encountering a compressed payload, the
system automatically decompresses the payloads prior to delivery to the relevant
consumers. The code snippet below (Table 19) demonstrates how the producer initializes
compression capabilities.

Table 19: Utilizing the compression and decompression services

Properties compressionProperties = new Properties();
compressionProperties.put("compressionAlgo", "zlib");

producerConstraints.setSendAfterPayloadCompression(compressionProperties);

producer.publishEvent(nbEvent, producerConstraints);

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

54/117

6.3.4 Reliable Delivery Services

To utilize this service, the user first needs to set up a Repository Node separately. This
process is described in detail in section 7. The Repository Node has been tested with MySQL
and PostgreSQL. The remainder of the discussions in the section proceeds under the
assumption that this node has been set up based on the specified instructions.

6.3.4.1 Initializing the consumer

We start by first focusing on the consumer that is interested in harnessing the reliable
delivery service. To do so, we first need to create the appropriate ConsumerConstraints,
and then invoke appropriate methods on these constraints to configure reliable delivery
properties. Finally, we associate these constraints with the appropriate subscription profile.
The code snippet (Table 20) outlines the steps involved in initializing an EventConsumer
that is interested in consuming messages reliably.

Table 20: Initializing constraints for consuming reliably

ConsumerConstraints constraints =
 consumer.createConsumerConstraints(profile);

constraints.setReceiveReliably(templateId);

consumer.subscribeTo(profile, constraints);

A key feature of the reliable delivery service is to be able to retrieve events after a failure or
a disconnect. To avail of this feature the application needs to implement the cgl.narada.
service.client.NBRecoveryListener interface, and initiate recovery by invoking the

recover() method on the EventConsumer that has registered for reliable delivery.

Table 21: Initiating recovery of the consumer

public class RobustApp implements NBEventListener, NBRecoveryListener {

 long recoveryId= consumer.recover(templateId, this);

 //Upon completion of the attempt to recover, this method is invoked on the
 //listener that was registered with the */
 public void onRecovery(NBRecoveryNotification recoveryNotification) {
 System.out.println(recoveryNotification);
 }

}

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

55/117

The operations involved in initiating the recovery of the consumer are depicted in the code
snippet (Table 21); the this in the code snippet corresponds to the Java Class that

implements the aforementioned NBRecoveryListener interface, which is used to notify a
consumer of the status of the recovery process that it initiated.

6.3.4.2 Initializing the producer

In our next step, we focus on ensuring that the EventProducer performs certain actions
that ensure that messages are generated reliably. To do so, we first need to create the
appropriate ProducerConstraints, and then invoke appropriate methods on these
constraints to configure the reliable delivery properties. Finally, we associate these
constraints with the events that we need to publish reliably. The code snippet (Table 22)
outlines the steps involved in initializing an EventProducer that is interested in producing
messages reliably.

Table 22: Initializing ProducerConstraints for producing reliably

TemplateInfo templateInfo =
 clientService.createTemplateInfo(templateId, templateType, template);

 producerConstraints = producer.createProducerConstraints(templateInfo);
 producerConstraints.setSendReliably();

 producer.publishEvent(nbEvent, producerConstraints);

To reinitialize the producer after a failure or disconnect one needs to implement the
NBRecoveryListener interface, and initiate recovery by invoking the recover() method.

This is depicted in the code snippet (Table 23); the this in the code snippet corresponds to

the Java Class that implements the aforementioned NBRecoveryListener interface,
which is used to notify a producer of the status of the recovery process that it initiated..

Table 23: Initiating recovery of the EventProducer

public class RobustApp implements NBEventListener, NBRecoveryListener {

 long recoveryId= producer.recover(templateId, this);

 //Upon completion of the attempt to recover, this method is invoked on the
 //listener that was registered with the */
 public void onRecovery(NBRecoveryNotification recoveryNotification) {
 System.out.println(recoveryNotification);
 }

}

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

56/117

6.3.5 Managing Replays

The Replay Service works with events that have been stored reliably using the Reliable
Delivery Service the use of which was described in the preceding section. The Replay
Service is used by the consumers to play back events that were previously archived. There
are three steps involved in utilizing the replay service. The first, involves generating events
reliably. The second step involves creating the appropriate ReplayRequest object which
encapsulates the set of events that need to be played back. The final step, involves
initiating the replay based on the created ReplayRequest.

6.3.5.1 Creating the appropriate ReplayRequest

In the section, we focus on the creation of a ReplayRequest, which encapsulates a request
that initiates playbacks. A replay request could be based on the following:

• A specified set of sequence numbers
• A specified range of sequence numbers
• A specified range of sequence numbers that also includes additional constraints that

need to be satisfied by the events that will be played back.
The ClientService interface provides these methods to create the ReplayRequest.The
code snippet (Table 24) outlines two different ways to create these requests both of which
require the templateId to be specified. The first request is created based on sequence

numbers, while the second one is based on a range (specified by the start and end

values) that has been specified.

Table 24: Creating a ReplayRequest

long[] sequenceNumbers;
// Initialize the sequences to be played …

ReplayRequest replayRequest =
 clientService.createReplayRequest(templateId, sequenceNumbers);

long start, end;
//Initialization of start and end

ReplayRequest replayRequest2 =
 clientService.createReplayRequest(templateId, start, end);

In the third approach, one specifies the templateId, the range of sequences to be

replayed, along with any additional profile constraints for delivery.

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

57/117

6.3.5.2 Initiating Replays

The ReplayRequests which were created in the previous section are used to initiate
replays. In order to be able to initiate replays, the application first needs to implement the
cgl.narada.service.replay.ReplayServiceListener interface. This interface has

two methods which are used by the substrate to playback events and also to report on the
status of previously issued ReplayRequests respectively:

• public void onReplay(ReplayEvent replayEvent)
• public void onReplayResponse(ReplayResponse replayResponse)

The code snippet (Table 25) outlines the process of initiating replays; the this in the code

snippet corresponds to the Java Class that implements the ReplayServiceListener
interface. The methods related to processing the ReplayEvents and the responses to the

ReplayRequest have been elided for clarity.

Table 25: Initiating a Replay

public class ReplayApp implements ReplayServiceListener {

 public void initializeConsumer() throws ServiceException {
 consumer = clientService.createEventConsumer(this);
 }

 public void performReplay(int templateId, long start, long end)
 throws ServiceException {
 ReplayRequest replayRequest =
 clientService.createReplayRequest(templateId, start , end);

 consumer.initiateReplay(replayRequest, this);
 }

 /** Process the playback event */
 public void onReplay(ReplayEvent replayEvent) {

 }

 /** Process the response to a previously issued ReplayRequest */
 public void onReplayResponse(ReplayResponse replayResponse) {

 }
}

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

58/117

6.3.6 Fragmentation and Coalescing

In this section we describe services for fragmenting large payloads, and the inverse service,
the coalescing service, for reconstituting these fragments into the original payload. When
these services work in tandem we are able to break up large payloads (typically files) into
smaller fragments and reliably coalesce them at the consumer.

This scheme was used in the NaradaBrokering-enhanced version of GridFTP. This scheme
allowed us to initiate file transfers without the recipient even being present at the time the
file transfer was taking place. Furthermore, this also allows one-to-many transfers. The
fragmentation/coalescing services require the NaradaBrokering Reliable Delivery Service
which was discussed in previous sections. Please see the %NB_HOME%/config/

ServiceConfiguration.txt configuration file to configure the parameters related to these.
This includes the location of the temporary directories that are needed by these services to
store the fragments.

6.3.6.1 The Fragmentation Service

In this section we focus on the fragmentation service. Specifically, we are interested in
ensuring that the EventProducer performs certain actions that ensure that it is able to
fragment the payload correctly. To do so, we first need to create the appropriate
ProducerConstraints, and then invoke appropriate methods on these constraints to
configure the fragmentations properties. The fragmentation properties take two sets of
parameters. One can specify either one of these sets as the fragmentation properties.

• fileLocation and fragmentSize. This controls the size of the fragments for the

specified file.
• fileLocation and numOfFragments. This controls the total number of fragments

for a given file.

Table 26: Initializing the EventProducer to fragment large payloads

public class FragmentApp implements NBRecoveryListener {

 long recoveryId= producer.recover(templateId, this);

 public void initializeProducerConstraints() {
 Properties fragmentationProperties = new Properties();
 fragmentationProperties.put("numberOfFragments", 300);
 fragmentationProperties.put("fileLocation", filename);
 producerConstraints.setSendAfterFragmentation(fragmentationProperties);
 }

 public void initiateFragmentation() {
 producer.publishEvent(nbEvent, producerConstraints);
 }

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

59/117

 //Upon completion of the attempt to recover, this method is invoked on the
 //listener that was registered with the */
 public void onRecovery(NBRecoveryNotification recoveryNotification) {
 System.out.println(recoveryNotification);
 }

}

Finally, we associate these constraints with the events whose payload we need to fragment.
The code snippet (Table 26) outlines the steps involved in initializing an EventProducer
that is interested in fragmenting a large payload and subsequently using these constraints
to initiate the fragmentation of the file and subsequent transfer to consumers that are
interested in the receipt of this file. The next section will describe how one can avail of the
coalescing service to reconstitute these fragments.

6.3.6.2 The Coalescing Service

In this section we focus on the consumer that is interested in coalescing fragments
produced by the fragmentation service. To do so, we first need to create the appropriate
ConsumerConstraints, and then invoke appropriate methods on these constraints to
configure reliable delivery properties. Finally, we associate these constraints with the
appropriate subscription profile. The code snippet (Table 27) outlines the steps involved in
initializing an EventConsumer that is interested in coalescing fragments.

Table 27: Initializing the EventConsumer to coalesce fragments of a large payload

public class CoalescingApp implements NBEventListener, NBRecoveryListener {

 long recoveryId= producer.recover(templateId, this);

 ConsumerConstraints constraints
 =consumer.createConsumerConstraints(profile);
 constraints.setReceiveReliably(templateId);
 constraints.setReceiveAfterCoalescingFragments();

 consumer.subscribeTo(profile, constraints);

 long recoveryId = consumer.recover(templateId,this);

 //Upon completion of the attempt to recover, this method is invoked on the
 //listener that was registered with the */

THE NARADABROKERING USER’S GUIDE Developing NaradaBrokering Applications

60/117

 public void onRecovery(NBRecoveryNotification recoveryNotification) {
 System.out.println(recoveryNotification);
 }

}

Note that the large file will be coalesced in the directory specified in the %NB_HOME%/config/
ServiceConfiguration.txt configuration file. The large coalesced file will not be
maintained in main memory; instead, the consumer will receive a notification indicating that
the precise location of the file.

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

61/117

7 Setting up the Repository Node

The first thing to make sure is that the MySQL database has been installed. MySQL can be
downloaded from http://www.mysql.com, make sure that you download a stable version as
recommended by the website and install it. NaradaBrokering’s RobustNode has been tested
with version’s 3.23 through 4.1 of the MySQL database.

7.1 Creating the Database and Tables (Windows and Linux)
If you are using the Windows operating system, the database and tables can easily be
created by using the bat files that have been provided in the distribution. These bat files are
located in the “NB_Home/bin/mysqlCommands” directory. If your database access requires

the specification of a user name and password, you need to modify “bat” files as instructed
within these bat files to make sure that you specify the user name and password while
running the mysql command viz. mysql –u username –p. The mysql program will then

ask you for your password.

To create database and its tables, execute following bat files sequentially.
CreateDatabase.bat
CreateTables.bat

If you want to delete database and/or tables, you can use following files:
DropTables.bat
DropDatabase.bat

Note that the sql files that have provided are platform independent, and will work with both
Windows and Unix environments.

For the Linux operating system, use the aforementioned SQL files to create and drop the
database and/or its tables:

create_database.sql
create_tables.sql
drop_database_sql
drop_tables.sql

To simplify management of your database, you can download the MySQL Control Center
from its site. It provides a GUI interface to manage users, databases and tables. We
suggest creating a new user account to access the database instead of using the “root”
account.

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

62/117

Finally, using a compatible JDBC driver is very important. Your driver must support your
MySQL database to create JDBC connection. If you get an exception, please check your
driver compatibility.

7.2 Using the Robust Node

Step 1: Double click startBroker.bat . This starts the broker.

Step 2: Next, double click robustNode.bat . This starts robust delivery service and the
underlying stable storage. The GUI for this application is depicted below.

Figure 22: The opening screen

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

63/117

Specify the broker-IP address and the Entity Id (it could be anything e.g. 888) for the
robust node. Proceed to press the Start button. If all goes well in the connection to the
broker and the setup of the JDBC connections you will see the GUI depicted in Figure 23.

Figure 23: The GUI after the successful setup of the broker connection and the

storage service

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

64/117

Proceed to click the View Table tab. If this is the first time that you are running this
application everything will be empty and there will be no entries in the sub tabs that are
available e.g. Inventory, Template, Profile and EntityTemplate.

Figure 24: Viewing previously registered templates

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

65/117

The Figure 25 below depicts the scenario where there are no entities registered to any
templates. In fact it is also possible (as can be seen by clicking the Template tab) that
there are no registered templates. If this is the case proceed to add entries regarding the
template, entity and register an entity to the template in question. To add information
regarding the entities, templates etc. click on the Edit Table tab. The screen that is
displayed is depicted below.

Figure 25: Viewing the templates and entities registered to these templates.

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

66/117

The screen that comes up when you click on the Edit Table tab is depicted below. First you
need to add the right template in question. Proceed to click on the Edit Template tab.

Figure 26: The Edit Table screen with sub tabs for registrations

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

67/117

The screen that is displayed when you click the Edit Template tab is depicted below. The
default that is displayed is Movies/Casablanca with a templateId of 11111.

Figure 27: Registering a new template - Initial screen

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

68/117

Next proceed to click the Edit Entity Tab. The screen that is now displayed is depicted
below. The display depicts the entries currently available. We are interested in adding
entities with ID 4444 and 5555. If you don’t see the entries in the list proceed to register
the entities. Note that this is a one-time operation and you will not need to do this again
until the database/file-system is cleared.

Figure 28: The screen for editing entity entries.

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

69/117

The figure below depicts the process of adding entities 4444 and 5555. Next we need to
register these entities to the templateId in question. For this you need to click on the Edit
EntityTemplate tab.

Figure 29: The screen after adding entries for entity 4444 and 5555

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

70/117

Next, proceed to register entities to a template by clicking on the Edit Entity Template tab.
The screen below shows the registering of an entry to a template. The highlighted items
indicate the entity and templateId for which registration/deregistration would be performed
when the appropriate buttons are pressed.

The figure below depicts entity 4444 being registered to templateID 11111

Figure 30: The screen for registering an entity to a template

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

71/117

The figure below depicts entity 5555 being registered to templateID 11111

Figure 31: Another example depicting the registration of an entity to a template

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

72/117

Note that the registration process involving entities, templates and entities-to-templates is a
one time operation for the life of the application. You need not repeat the set of instructions
detailed earlier if you are returning from a scheduled downtime or a failure. The operations
need to be repeated ONLY if you have explicitly deregistered the entity, template or
entities-from-the-template.

The figure below shows the screen, which allows one to see the templates that were
registered.

Figure 32: Viewing the registered templates

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

73/117

The figure below depicts the entity and the templates that they are registered to.

Figure 33: Viewing entities and the templates that they are registered to

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

74/117

7.3 The Robust Subscribers and Publishers
Now we proceed to running the robust subscriber. When you click on the RobustSub.bat
file this is the GUI through which your actions are initiated. In the connection screen you
need to enter the hostname and port number information.

Figure 34: The robust subscriber GUI -- Connect Tab

The figure below depicts the recovery screen. You need to specify the templateId (11111)
on which you are going to recover. If you had previously subscribed, you will automatically
be registered to those subscriptions. However, since the first time you need to specify your
subscription.

Figure 35: The robust subscriber recovery screen

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

75/117

The subscription profile screen is depicted below. Here you need to specify both the
templateId (11111) and the subscription (Movies/Casablanca).

Figure 36: Robust Subscriber - Subscription screen

The figure below depicts the scenario where, if you had previously registered a subscription,
you will automatically be registered to that subscription. This obviates the need to subscribe
using the Profile screen.

Figure 37: Robust Subscriber - Recovery screen depicting automatic subscriptions

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

76/117

The publisher publishing screen is similar to what’s available for the robust subscriber.

Figure 38: RobustPublisher - Connection Screen

Specify the templateId (11111) and the template (Movies/Casablanca) of the events that
the robust publisher will publish.

Figure 39: RobustPublisher - TemplateInfo screen

THE NARADABROKERING USER’S GUIDE Setting Up the Robust Node

77/117

The figure below depicts the scenario where a publisher publishes a message and the robust
subscriber receives it.

Figure 40: Publisher sending events and receiver receiving them

THE NARADABROKERING USER’S GUIDE Developing JMS applications

78/117

8 Writing JMS applications

Here we provide a brief introduction of how to develop JMS clients for NaradaBrokering.
There are several excellent books and tutorials that cover developing JMS applications. Here
we assume that the developer is already familiar with the developing JMS applications.
NaradaBrokering provides support only for the publish-subscribe model specified in the JMS
specification.

8.1 Creating a TopicConnectionFactory
The code snippet below provides an overview of the actions involved in getting a
TopicConnectionFactory. The example below depicts the scenario when communication
between the client and the broker is over TCP. The properties would be different for
different transport protocols.

Table 28: Creating a TopicConnectionFactory

import cgl.narada.jms.*;
import javax.jms.*;
import java.util.Properties;

public class JmsApplication implements javax.jms.MessageListener {
 String hostInfo=”everest.ucs.indiana.edu”;
 Int portInfo = 3045;
 String transportType = “niotcp”;

 Properties props = new Properties();
 /** These properties pertain to setting up a TCP link */

props.put("hostname", hostInfo);
props.put("portnum", portInfo);

ini = new NBJmsInitializer(props, transportType);
/* Lookup a JMS connection factory */
TopicConnectionFactory conFactory = (TopicConnectionFactory) ini.lookup();

public void onMessage(Message message) {

}

}

8.2 Initializing the Topic Session and Topic
The code snippet below describes the process of initializing the TopicSession, which

requires the TopicConnection object created using the TopicConnectionFactory,

THE NARADABROKERING USER’S GUIDE Developing JMS applications

79/117

which was initialized in code-snippet outlined in Table 28. The newly initialized session is
then used for the creation of a Topic which is the virtual channel over publishers and
subscribers would communicate over.

Table 29: Creation of a TopicSession and Topic

TopicConnection connection =
 conFactory.createTopicConnection("guest", "password");

// Create a JMS session object
TopicSession session =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

String topicString = "chat/channel/AliceAndBob"
Topic topic = session.createTopic(topicString);

8.3 Creating a Subscriber
The code snippet below (Table 30) depicts the creation of a TopicSubscriber from the

TopicSession object. During the creation of the TopicSubscriber one also needs to

specify the Topic for which the subscriber is being created.

Table 30: Creation of a Topic Subscriber

TopicSession subSession =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = subSession.createSubscriber(chatTopic);

subscriber.setMessageListener(this);

// Sample implementation of the onMessage() method, which assumes
// a TextMessage type
public void onMessage(Message message) {
 try {
 TextMessage textMessage = (TextMessage) message;
 String text = textMessage.getText();
 System.out.println(text);
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
}

Additionally, to be able to consume messages published over a topic, the
TopicSubscriber also needs to register a class that implements the

THE NARADABROKERING USER’S GUIDE Developing JMS applications

80/117

javax.jms.MessageListener. Messages over the subscribed topic are routed to the
onMessage() method which is part of this interface and takes the javax.jms.Message as

an argument. The Message class is the base message type for all messages supported
within the JMS specification. The next section describes the process of creating JMS
messages.

8.4 Message Types
The JMS specification incorporates support for several different message types, each of
which has a set of methods to manipulate the message types. The message types supported
by the JMS specification include: BytesMessage, TextMessage, MapMessage,

ObjectMessage and StreamMessage. The snippet below demonstrates the creation of

TextMessage using the TopicSession object.

Table 31: Creation of JMS Messages

TextMessage message = pubSession.createTextMessage();

//Manipulating the message type. This would vary for different message types
message.setText("[" + userName + "] : " + text);

8.5 Creating a Publisher
The code snippet below (Table 32) demonstrates the creation of the TopicPublisher. The

process is quite similar to the creation of a TopicSubscriber which we outlined earlier in

section 8.3. The TopicSession object is needed to create the TopicPublisher to a

specific Topic which is specified in the argument. The snippet also outlines the process of
publishing messages using the publisher.

Table 32: Creation of Publisher and publishing messages

TopicPublisher publisher = pubSession.createPublisher(jmsTopic);

TextMessage message = pubSession.createTextMessage();
message.setText("[" + userName + "] : " + text);

publisher.publish(message);

THE NARADABROKERING USER’S GUIDE Developing JMS applications

81/117

8.6 Running the sample JMS chat application
There is a simple JMS chat application included in the distribution. Let us say that the broker
process is running on machine.ucs.indiana.edu on the non-blocking TCP port of 3045.

Further, say that the Chat user’s identity is tom. The command to run the Chat application

would be –

java cgl.narada.samples.Chat machine.ucs.indiana.edu 3045 tom

8.7 Unsubscribing Topics
In the JMS specification (1.0.2b) the unsubscribe operation is only specified for durable
subscriptions that have been assigned a name. Surprisingly, there isn’t an unsubscribe
operation associated with a TopicSubscriber. The unsubscribe() operation has to be

invoked on the TopicSession, and as mentioned previously available only for durable

subscriptions.

What we have done in NaradaBrokering’s JMS support is to provide unsubscribe()

support for all subscriptions. Furthermore, if there are multiple sessions that have
subscribed to the same topic, unsubscribing on one of these sessions will not affect the
subscriptions in the other sessions. However, if you subscribe to the same topic from the
same session one of the subscribers will be inactivated, though you cannot know which one,
since there is no way to distinguish them. If however, you do need to unsubscribe a specific
subscriber we have incorporated support for this. You will need to do unsubscribe() after

casting the subscriber to cgl.narada.jms.JmsTopicSubscriber.

THE NARADABROKERING USER’S GUIDE BROKER DISCOVERY

82/117

9 Broker Discovery

In this chapter we provide information on automating discovery of brokers.

9.1 Discovering Brokers
• Start the Broker Discovery Node. This step is not mandatory but can be more useful in

disseminating broker discovery requests. Other approach is to use multicast. Refer to
the paper for more information on the disadvantages and issues with using
multicast.

• The NB package comes with a precompiled WAR (Web Archive for deploying in a
servlet container such as tomcat). Simply drop the BDN.war file in the webapps/
directory and restart the server. This should start the broker discovery node. To
check, go to http://yourHost:serverPort/BDN.

• The brokers themselves need to be told the location of the broker discovery node. This
can be done by including the location of the BDN register service in the
NB_HOME/config/BrokerConfiguration.txt file. For e.g., if the BDN.war was deployed
on localhost at port 8080 then the BDNList entry in the BrokerConfiguration.txt file
would look like
BDNList=http://localhost:8080/BDN/servlet/BDN.

Similarly the URL for discovery needs to go into the ServiceConfiguration.txt file. This
usually looks like
BDNDiscoveryList=http://localhost:8080/BDN/servlet/Discover.
Replace localhost with the host / ip address of the machine on which the BDN runs
and 8080 with the port on which it runs!

9.2 Using the Broker Discovery Helper
Broker Discovery Helper is a utility to help locate brokers programmatically. Available
brokers may be located as follows:

int eid = 5000; // some randomly generated unique ID

// timeout to wait for discovery responses (in milli sec)
int timeout = 5000;

// Maximum responses to wait. IF we get these many responses before the
// timeout occurs, we simply disregard all other responses.
int maxResponses = 3;

// The broker target set size. (maxSetSize <= maxResponses)
int maxSetSize = 2;

THE NARADABROKERING USER’S GUIDE BROKER DISCOVERY

83/117

// Assume NB_HOME was set or hardcode it here...
// OR better still pass it as a command line parameter.
// Basically some way to identify the location of the Service
// Configuration file.
String configPath = NB_HOME + "/config/ServiceConfiguration.txt";

BrokerDiscoveryHelper bdh = new BrokerDiscoveryHelper(eid, configPath,
 timeout, maxResponses, maxSetSize);

// Only brokers which have the following protocol link services enabled must
respond.
String[] protocolSet = { "tcp", "niotcp"};

BrokerDiscoveryResponse[] responses = bdh.discover(protocolSet, "",
 networks);

for(int i = 0; i< responses.length; i++) {
 System.out.println("Response: " + i + "\n" +
 responses[i].toString());
}

// This returns the final broker to use, using the default "Best broker
// selection" algorithm. Alternatively, simply write your own procedure //
for selecting the best broker from the above array
// of broker responses
return bdh.selectBestBroker(responses);

THE NARADABROKERING USER’S GUIDE TOPIC CREATION & DISCOVERY

84/117

10 Topic Creation & Discovery

Please refer to the paper for more information on the Topic Creation & Discovery scheme.

10.1 Topic Creation

10.1.1 Starting the Topic Discovery Node

The Topic discovery node (TDN) has been implemented as a NB client. To create a topic, a
TDN must be present and connected to the brokering network. A TDN may be started using
the following command

java -classpath %CLASSPATH%;%NB_CP%
 cgl.narada.discovery.topics.TopicDiscoveryNode
This command also takes optional parameters, namely <BROKER_HOST>
<BROKER_PORT> <PROTOCOL_TO_USE>

Default values are localhost, 25000, niotcp !
Refer to Javadocs for the most updated information on command line parameters.
This step is mandatory.

10.1.2 Creating Topics

The NaradaBrokering packages contain a utility class cgl.narada.discovery.
topics.Entity that discovers a TDN and works with the selected TDN to arrive at a Topic
Advertisement. However first, the process requires the user's X.509 Certificate, Private key
and the Root CA's public key. This may be loaded using the procedure outlined here.

Once these values have been loaded, we can create a topic using the following code.

int eid = 5000; // some randomly generated unique ID

// Name of the topic to create (in this case a string topic)
String topicName = "/sports/NBA";

Entity e = new Entity(eid,
 // Path to the Service configuration file
 "/path_to/ServiceConfiguration.txt",

 // Alias of the user who is creating the topic

THE NARADABROKERING USER’S GUIDE TOPIC CREATION & DISCOVERY

85/117

 // (called as topic owner)
 "testuser",

 cert, // Certificate of the test user
 priv, // Private Key of the test user
 rootCA, // Public Key of the ROOT CA

 // Hostname / IP Address of the broker to which a
 // connection must be made
 "host",

 "port", // Port on which the broker is accepting
 // connection, NOTE: this is a string parameter

 "protocol" // The communication protocol to use
 // (E.g. tcp, udp, niotcp etc...)
);

if (e == null) {
 // CHECK... e must not be NULL...
 System.out.println("ERRRORRRR !!!!");
 return;
}

if (e.sendTDNDiscoveryRequest(10000)) {
 System.out.println("Found TDN ! Proceeding to create TOPIC !!");

 // Set the topic validity
 Calendar until = Calendar.getInstance(
 TimeZone.getTimeZone("GMT-5"));
 until.add(Calendar.HOUR, 1); // E.g. Valid for 1 hr. from now

 // Refer cgl.narada.event.TemplateProfileAndSynopsisTypes for
 // different types of topics that can be created.
 // Currently String, REGEX, Integer are supported

 if (!e.createTopic("SELF", until, "Test Topic",
 TemplateProfileAndSynopsisTypes.STRING,
 topicName, 5000)) {
 System.err.println("Could not create topic ! "
 + "Aborting...");
 return false;
 }

 System.out.println("TOPIC Created: UUID -> " +
 e.getTopicUUID(topicName));
 return true;

THE NARADABROKERING USER’S GUIDE TOPIC CREATION & DISCOVERY

86/117

} else {
 System.out.println("NO TDN found within specified "
 + "timeout period !!");
 return false;
}

// Get Signed Topic Ad
SignedTopicAdvertisement sta =
 e.getSignedTopicAdvertisement(topicName);

10.2 Topic Discovery

10.2.1 Discovering Topics

Once a topic has been created, it may be discovered using the right credentials. Current
scheme allows discovery for any client who presents a valid X.509 certificate. Restriction on
topic usage (publish / subscribe) is addressed in the security framework. Once a topic has
been created, any topic discovery requests automatically check for expired topics. If an
expired topic is found it is removed. A topic discovery may be done as follows

int eid = 5000; // some randomly generated unique ID

// If a specific TDN is to be used, then use this id, else keep it null
// If NULL, the first TDN to respond will be used.
String tdnID = null;

// Name of the topic to create (in this case a string topic)
String topicName = "/sports/NBA";

// For different types, refer cgl.narada.discovery.topics.Topics
int matchingType = Topics.MATCHING_STRING;

// Maximum number of responses to gather until a timout of 5 seconds.
int maxTopics = 2;

TopicDiscoveryClient tdc = new TopicDiscoveryClient(
 eid, // Entity Id to use when connecting to the broker

 // Path to the Service configuration file
 "/path_to/ServiceConfiguration.txt",

 // Certificate of the user trying to discover mathcing topics
 cert,

THE NARADABROKERING USER’S GUIDE TOPIC CREATION & DISCOVERY

87/117

 // Private Key of the user trying to discover mathcing topics
 priv,

 // Hostname / IP Address of the broker to which a
 // connection must be made
 "host",

 // Port on which the broker is accepting connection,
 // NOTE: this is a string parameter
 "port",

 // The communication protocol to use
 // (E.g. tcp, udp, niotcp etc...)
 "protocol"
);

// Get Signed Topic Ad
SignedTopicAdvertisement[] stas = tdc.discover(matchingType,
 topicName, tdnId, maxTopics);

Once a list of signed topic advertisements is received, the client may pick one to decide the
topic on which he wishes to communicate / listen to events.

THE NARADABROKERING USER’S GUIDE THE ROOT PROVIDER

88/117

11 Root Provider

Root provider is the certificate provider used to issue digitally signed certificates. It
performs the following functions

• Issue digitally signed certificates
• Store certificates in the key-store
• Delete certificates (X.509 certificate, public key and private key) from the key-store

Root provider can be used to create users for use in topic creation and discovery and
security framework.

11.1 Using the Root Provider
Package: cgl.narada.service.security.securityProvider
Examples:
Generating ROOT Certificate (to be done only once)

CertificateManager certMan = new CertificateManager();

// To use default password use null.
// OR specify a different password in the second parameter
certMan.init(
 "/home/hgadgil/tmp/narda/keystore/NBSecurityKeys.keys",
 Null
);

ROOTSecurityProvider.GenerateRootCertificate(certMan);

Certificate manager stores the most commonly used key-store properties for certificate
management, particularly the key-store type, key-store provider, key algorithm, key-store
password. Typically these values are default, however other values may be used by using
the CertificateManager(Properties) constructor. The java.util.Properties can
contain the various properties to use. The following table lists all the possible properties.

THE NARADABROKERING USER’S GUIDE THE ROOT PROVIDER

89/117

Table 33: Properties that can be specified for the constructor

Property Used for Default Value

KEYSTORE_PATH Location of the keystore
No default. MUST be
specified during init

ROOT_CA_ALIAS Alias used for the root's certificate
and keys

rootca

KEYSTORE_TYPE Type of the keystore JKS

KEYSTORE_PROVIDER Keystore provider SUN

KEY_ALGORITHM Algorithm for key generation RSA

KEYSTORE_PASSWORD Password to access the keystore passpass

To issue certificates, the ROOT Provider creates a RSA key, gets the CSR (Certificate signing
request) and digitally signs it using the ROOT provider’s private key to create a certificate
for the client. This process is illustrated below

CertificateManager certMan = new CertificateManager();

// To use default password use null.
// OR specify a different password in the second parameter
certMan.init(
 "/home/hgadgil/tmp/narda/keystore/NBSecurityKeys.keys",
 Null
);

// Parameter 1: Specifies the alias to use
// Parameter 2: Specifies the DN of the user for whom the digital
// certificate is being issued
// Parameter 3: Specifies the validity of the certificate (in days)

ROOTSecurityProvider.IssueSignedCertificate("testuser",
 "\"CN=TEST-USER,OU=OrgUnit,O=Organization,L=Location,C=country",
 50
);

1. Alternatively if a certificate is issued, this may be requested using the Java's Keytool

command. This is usually located in <JAVA_SDK_HOME>/bin/keytool. Refer to
Java SDK for using Keytool. This may be found at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html!

2. To delete a certificate for an alias "testuser", use the following

THE NARADABROKERING USER’S GUIDE THE ROOT PROVIDER

90/117

CertificateManager certMan = new CertificateManager();

// To use default password use null.
// OR specify a different password in the second parameter
certMan.init(
 "/home/hgadgil/tmp/narda/keystore/NBSecurityKeys.keys",
 Null
);

// Parameter 1: Specifies the alias of the user whose certificate
// (key, certificate and entry in keystore) are to be deleted
ROOTSecurityProvider.DeleteCertificate("testuser")

11.2 Loading Certificates and Keys
Once the certificates have been created, they may be loaded using the key management
implementation in NaradaBrokering. The newly added topic creation/discovery [Section 10]
and security framework [Section 12] heavily use the digital certificates and keys. To load
the keys and certificate for a user "testuser", use the following code

CertificateManager certMan = new CertificateManager();

// To use default password use null.
// OR specify a different password in the second parameter
certMan.init(
 "/home/hgadgil/tmp/narda/keystore/NBSecurityKeys.keys",
 Null
);

Certificate myX509Certificate = CertificateUtil.getCertificate(
 certMan, "testuser");

PrivateKey myPrivateKey = CertificateUtil.getPrivateKey(
 certMan, "testuser");

// Frequently to validate a certificate, one also needs the root's
// public key. This may be loaded as follows
PublicKey rootCAPublicKey = CertificateUtil.getPublicKey(
 certMan, certMan.ROOT_CA_ALIAS);

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

91/117

12 Security Framework

Please refer to the NaradaBrokering security paper for more information on the Security
Framework.

12.1 Creating Security Tokens and securing topics

12.1.1 Starting the Key Management Center

The Key Management Center (KMC) may be started using the following command

java -classpath %CLASSPATH%;%NB_CP%
 cgl.narada.service.security.kmc.KMCService

This command also takes optional parameters, namely <BROKER_HOST>
<BROKER_PORT> <PROTOCOL_TO_USE>. The default values are localhost, 25000, niotcp
respectively. This step is mandatory.
Please refer to Javadocs for the most updated information on command line parameters.

12.2 Creating Secure Topics
To create a secure topic, a TDN and a KMC must be present and connected to the brokering
network. To register a secure topic, first step is to create a topic using the Topic Creation
mechanism described earlier. The NaradaBrokering package contains a utility class
cgl.narada.service.security.kmc.KMCClient that aids in the process of creating a
security token for a given topic. However first, the process requires the user's X.509
Certificate, Private key and the Root CA's public key. This may be loaded using the
procedure outlined in Section 11.2.

Once these values have been loaded, we can create a topic using the following code.

// Signed topic advertisement as obtained during the
// topic creation process
SignedTopicAdvertisement sta = ...;

KMCClient client = new KMCClient(
 cert, // Certificate of the test user
 priv, // Private Key of the test user
 rootCA, // Public Key of the ROOT CA

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

92/117

 "/client/c1", // Name of the topic on which the KMC replies back

 // Path to the Service configuration file
 "/path_to/ServiceConfiguration.txt",

 // Hostname / IP Address of the broker to which a
 // connection must be made
 "host",

 // Port on which the broker is accepting connection,
 // NOTE: this is a string parameter
 "port",

 // The communication protocol to use
 // (E.g. tcp, udp, niotcp etc...)
 "protocol"
);

// Set the topic validity
Calendar until = Calendar.getInstance(TimeZone.getTimeZone("GMT-5"));
until.add(Calendar.HOUR, 1); // E.g. Valid for 1 hr. from now

// Set the access control list for publish subscribe...
Hashtable pubs = new Hashtable();

// NOTE: Currently all subscribers and publishers *MUST* be specified
// This includes the topic owner too. This would be automated in the
// next version

// Important step...
pubs.put(((X509Certificate) c1_cert).getSubjectDN().getName(), until);

Hashtable subs = new Hashtable();

// Important step…
subs.put(((X509Certificate) c1_cert).getSubjectDN().getName(), until);

// This client has the subscribe right untile the time
// specified by 'until'
subs.put(
 // DN of the client who has been given right
 "CN=client2, OU=CGL, O=IU, L=Bloomington, C=US",

 // Time until this client has this right
 Until

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

93/117

);

// Ok, now register the topic and get a security token
SecureTopicKeyResponse resp = client.registerTopic(
 pubs, // set publishing rights
 subs, // set subscribing rights
 sta, // the signed topic advertisement
 cert, // Topic owner's X.509 certificate
 until, // Validity of secure topic
 algo, // Algorithm of secret key generation (Default AES)
 keylen, // Key length of the secret key (default 192 bits)

 // time for which to wait for a response from the KMC
 // (in milli seconds)
 5000
);

// Retrieve the signed security token...
SignedSecurityToken token = resp.getSignedSecurityToken();

12.3 Signed Security Token Retrieval
Once a secure topic has been registered with a KMC and a secret key created, allowed
publishers / subscribers may retrieve the token. The first step is to get a signed topic
advertisement for which a security token is desired. This is done using the procedure
outlined in section 10.

// Signed topic advertisement as obtained during
// the topic discovery process
SignedTopicAdvertisement sta = ...;

KMCClient client = new KMCClient(
 cert, // Certificate of the test user
 priv, // Private Key of the test user
 rootCA, // Public Key of the ROOT CA
 "/client/c1", // Name of the topic on which the KMC replies back

 // Path to the Service configuration file
 "/path_to/ServiceConfiguration.txt",

 // Hostname / IP Address of the broker to which
 // a connection must be made
 "host",

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

94/117

 // Port on which the broker is accepting connection,
 // NOTE: this is a string parameter
 "port",

 // The communication protocol to use
 // (E.g. tcp, udp, niotcp etc...)
 "protocol"
);

// Specify the requested rights... if these rights match the ones
// specified by the topic owner, only then is a security token
// issued...
TopicRights requestedRights = new
 TopicRights(TopicRights.SUBSCRIBE_RIGHT);

SecureTopicKeyResponse resp = client.requestTopicKey(
 // The topic synopsis from the signed topic ad.
 sta.getTopicAd().getTopicSynopsis(),

 cert, // Requestor's X.509 certificate
 requestedRights, // Requested rights
 5000 // timeout
);

if (resp == null)
 System.out.println("Request Denied / Timeout occurred !");
else
 System.out.println("Token recieved... !");

Once a list of signed topic advertisements is received, the client may pick one to decide the
topic on which he wishes to communicate / listen to events.

12.4 Secure Publishing of events
A secure event may be published by setting appropriate flags in the
ProducerConstraints. Along with this, one also needs to add the security token obtained
from the KMC. Note that one always publishes to the topicUUID (modified topic synopsis)
obtained in the topic discovery process.

// Signed topic advertisement as obtained
// during the topic discovery process
SignedTopicAdvertisement sta = ...;

String topicName = sta.getTopicAd().getTopicSynopsis();

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

95/117

TemplateInfo ti = new TemplateInfoImpl(
 12345, // Id representing the template

 // The type of the tempalte (used while matching)
 TemplateProfileAndSynopsis.STRING,

 topicName // Modified synopsis as obtained above...
);

EventProducer producer = ... ; // Previously created...
ProducerConstraints pc = producer.createProducerConstraints(ti);

pc.setSendSecurely();

// This is optional and defaults used are
// algorithm = SHA1withRSA
// mode = CBC
// padding = PKCS7Padding

// Used for finer control over the digital signature process
Properties props = new Properties();
props.put(ProducerConstraints.SIGNING_ALGORITHM, "SHA1withRSA");
props.put(ProducerConstraints.CIPHER_MODE, "CBC");
props.put(ProducerConstraints.CIPHER_PADDING, "PKCS7Padding");

SecureTopicKeyResponse resp = ... // previously obtained

pc.setSecurityToken(
 // Signed security token (contains rights signed by the KMC)
 resp.getSignedSecurityToken(),

 resp.getKey(), // Secret key for payload encryption
 props // For digital signature
);

NBEvent event = ...// create the event

// When actual publishing, include the producer constraints...
producer.publishEvent(nbEvent, pc);

12.5 Receiving Secure Events
Secure event may be received by setting including the security token in the topic
subscription request.

THE NARADABROKERING USER’S GUIDE BUILDING SECURE APPLICATIONS

96/117

// Signed topic advertisement as obtained during the
// topic discovery process
SignedTopicAdvertisement sta = ...;
String topicName = sta.getTopicAd().getTopicSynopsis();
EventConsumer consumer = ... ; // Previously created...
int entityId = ...; // Some integer identifying this entity...
Profile profile = ...; // Profile creation

SecureTopicKeyResponse resp = ... // previously obtained

// If encrypted payload is to be delivered then set this to true,
// else false
boolean doNotDecryptPayloadBeforeDelivery = false;

// Create consumer constraints
ConsumerConstraints cc = consumer.createConsumerConstraints(profile);
cc.setReceiveSecurely(entityId);

cc.setSecurityToken(

 // Security token identifying rights (signed by KMC)
 resp.getSignedSecurityToken(),

 resp.getKey(), // Secret key for payload decryption
 props, // Currently unused, For future use
 doNotDecryptPayloadBeforeDelivery
);

// Include the consumer constraints in subscription
consumer.subscribeTo(profile, cc);

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

97/117

13 The C++ Bridge for NaradaBrokering

In this chapter we describe the C++ bridge for NaradaBrokering. We have two different
approaches to the C++ bridge. The first one is Sockets based, while the second one is JNI
based.

13.1 C++ Socket Client for Naradabrokering

The first section of this user guide will take you through the installation process and the
next section shows how to use the simple chat client. The final section explains the
architecture and how to utilize the C++ Client to implement communication channels.

13.1.1 Configuration

13.1.1.1 Broker Configuration

Note: The current implementation of the C++ Client works on Intel-based

architectures. The differences in the endianness of various architectures require

different compilations. More explanation about this will follow in section three.

Download and unzip the Naradabrokering from http://www.naradabrokering.org/ to some local
directory (say NB_HOME)

Start the Broker using the startbr.sh shell scripts in the bin directory inside NB_HOME.

Note: If you need to handle larger payloads, please change the line in the startbr.sh

java -classpath $cp cgl.narada.node.BrokerNode $brokerConfigFile
$serviceConfigFile $brokerCommunicatorPort&

to

java -Xmx<max value>m -Xms<min value>m -classpath $cp
cgl.narada.node.BrokerNode $brokerConfigFile $serviceConfigFile
$brokerCommunicatorPort&

Use the BrokerConfiguration.txt found in the config directory inside NB_HOME to change the ports
that the broker used for communication. Please note that this step is not mandatory, using the default
ports is fine.

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

98/117

13.1.1.2 Compiling the C++ Client

Download and unzip the nbcpp.tar.gz to a local directory (say CLIENT_HOME)

Inside CLIENT_HOME you will find a src directory, which contains the C++ code.

Compile the simple chat client using the make tool. Use the following command.

make pubsub

1. This will create an executable pubsub in the src directory itself.

13.1.2 Simple Chat Client

Once the C++ Client is compiled go to CLIENT_HOME/src directory and run pubsub to start
one chat client. This will require few input parameters as explained below.

./pubsub 7799 44567 /test/topic 127.0.0.1 5045

The first integer argument is the entityId, which identifies this client in a given broker network.
The, next integer argument is the templateId which is a unique integer associated with a given topic.
The third parameter is the topic for which this client publishes and subscribes. This can be any string
without intemediate spaces.
The fourth and the fifth arguments are the host address and the port number of the broker. Please
note that we need to use the TCP port of the broker. This would be port 5045 if you are using the
default port numbers.

Once the chat client is started, start another chat client with different entityId. The next step is to see
the Chat program in action by typing in few messages.

To exit from the chat client type $<return>.

13.1.3 The Architecture

The C++ Client establishes a TCP connection with a given broker and supports exchanging of pub/sub
messages. The following diagram shows the architecture of the C++ Client.

C++ Pub/Sub
Clients

ServiceClient ReceiverThread

Callback

Connection

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

99/117

Figure1: Architecture of the C++ Client for NaradaBrokering.

The API that the C++ programmer needs to work with has one class - ServiceClient and the

Callback interface. The ServiceClient hides the rest of the components shown in the above
architecture diagram from the user, and provides four basic methods that give a publish/subscribe
interface for the C++ clients. These methods are listed below:

void init(string host,int port,int entityId,int templateId);
void subscribe(string topic,Callback *callback);
void publish(string topic,char* bytes,int length);
void close();

First, the client needs to establish a connection using the init(..) method shown above

which takes four input parameters.

Host host address of the broker

Port TCP port of the broker(default is 5045)

entityId This will identify the client uniquely in a broker network

templateId A template Id for this connection

If the client needs to subscribe to a specific topic, then the method to use is:
subscribe(..). This method takes a topic and a Callback object as input parameters.

topic String parameter, which specifies the topic to which the client

needs to subscribe.
callback This should be an implementation of the Callback interface provide

by the C++ API. The client is expected to implement the
onEvent(NBEvent *nbEvent) method of the callback. The C++ API
will call this method for any event received for a topic that this
client is subscribed.

To publish messages to a topic, the client can utilize the publish(..) method. This

method takes three parameters as explained below.

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

100/117

topic String parameter which specifies the topic to which the client
needs to publish events.

Bytes This is the content payload of the message and can be any number
of bytes

length Length of the byte array of the content payload

Finally if the client needs to close the broker connection, then it can use the close()

method of the ServiceClient.

13.1.4 Issues specific to Endianness

The current implementation supports Intel-based machines that use Little Endian ordering
when storing bytes. This affects the way we store multi-byte data types and send them over
the communication channels. Java handle bytes in BigEndian format as inherited from its
Solaris roots. However, the Intel based architectures use LittleEndian format, and hence a
conversion is required when exchanging messages between these architectures. The current
implementation assumes a 32-bit value for integers and 16-bit values for short data types.
This part requires little more research to make it generic for both 32-bit and 64-bit
architectures. However, this difference does not affect the usage since the C++ client
accepts a byte array as the content payload which is unique across the above platforms.

13.1.5 Simple Pub/Sub Example

The following code fragment shows the methods that need to be used in order to write a pub/sub
client using the above API.

ServiceClient serviceClient;
/*Establishes a connection*
serviceClient.init(host,port,entityId,templateId);

MyCallback callback;
/*Subscribed to a topic*/
serviceClient.subscribe(contentSynopsis,&callback);

/*Publishes a message*/
serviceClient.publish(contentSynopsis,msg,strlen(msg));

/*Close the connection*/
serviceClient.close();

13.2 C++ Bridge for NaradaBrokering (JNI-based)

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

101/117

The first section of this user guide will take you through the installation process and the
next section shows how to use the simple chat client. Final section explains the architecture
and how to utilize the C++ Bridge to implement communication channels.

13.2.1 Broker Configuration

This section outlines some of the steps involved in configuring the broker.
1. Download and unzip the NaradaBrokering to some local directory (say NB_HOME)
2. Start the Broker using the startbr.sh shell scripts in the bin directory inside

NB_HOME.

Note: If you need to handle larger payloads, please change the line in the
startbr.sh

java -classpath $cp cgl.narada.node.BrokerNode $brokerConfigFile
$serviceConfigFile $brokerCommunicatorPort&

to

java -Xmx<max value>m -Xms<min value>m -classpath $cp
cgl.narada.node.BrokerNode $brokerConfigFile $serviceConfigFile
$brokerCommunicatorPort&

A benchmark test, where the broker is fired with 64kB of data at a rate of
~4.5MB, shows that <max value> of 512 is a good heap size.

13.2.2 Compiling the C++ Bridge

Please note that the: Java classes for the bridge are pre-compiled and are in the
nbcppbridge.jar located in BRIDGE_HOME/lib

1. Download and unzip the cppbridge.tar.gz to a local directory (say BRIDGE_HOME)

2. Inside BRIDGE_HOME you will find a src directory which contains both Java and the

C++ code.
3. Set the JAVA_HOME variable in the make file (located in the BRIDGE_HOME/src

directory) to point to the appropriate location.
4. Default goal will perform the necessary compilation, build chat executable and move it

to BRIDGE_HOME/build directory.

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

102/117

13.2.3 Simple Chat Client

1. Once the C++ Bridge is compiled go to BRIDGE_HOME/build directory and run the

chat.sh to start a chat client. e.g. ./chat.sh 5000

2. The integer argument is the entity Id which identifies this client in a given broker

network. To start the second chat client run it again in a new shell with different
entity id. (say ./chat.sh 6000)

3. Once the two chat windows shows the line “Happy Chatting”, you can type any text to

be sent to the other.

4. To exit from the chat client type $<return>.

13.2.4 The Architecture

The C++ Bridge uses JNI technology to communicate with NaradaBrokering. The following
diagram shows the high-level architecture.

Figure 2: Architecture of the C++ Bridge for NaradaBrokering.

13.2.5 How to Use the Bridge

The API that the C++ programmer needs to work with comprises one class -
ServiceClient and the Callback interface.

C++ Pub/Sub Clients

ServiceClient (C++)

JNI

Naradabrokering

BridgeServiceClient
(Java)

NB C++ Bridge

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

103/117

The ServiceClient contains the following public methods and perform the tasks as

described below.

bool init (int entity_id, char *config_file_path, char
*host_name, int port_num, char *transport);

Description:
This will initialize the ServiceClient where it will load the JVM and initializes communications

with the broker.

Parameters:

entity_id – ID of this service instance

config_file_path - Path to the ServiceConfiguration.txt
host_name - Host Name where the Broker is running
port_num - Port Number of the Broker
transport - Transport type to be used. (Default uses TCP) possible options “niotcp” , “udp”

bool subscribe (char *topic, long callbackId);

Description:
This is used to subscribe to any topic using this ServiceClient instance.

Parameters:

Topic – Topic to which the messages are sent. e.g. “/topics/nbcpp”
callbackId - This is the reference to the Callback object used for this topic.

User can provide different callback objects for different topics or use the same callback object. The
callbackId should be a pointer to any implementation of Callback interface. Please see the

chat_client.cc for a sample.

bool publish (char *topic, char *transfer_bytes);

Description:
This will publish a given set of bytes to a given topic using this ServiceClient instance.
topic - Topic to which the message is published. e.g. “/topic/nbcpp”

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

104/117

transfer_bytes - Set of bytes to be transferred.

Note: If multiple publishers and subscribers need to be run in a single process they
should all share a single instance of ServiceClient as it is not possible to

create multiple JVMs in a single process.

13.2.6 Simple Publisher Example

The following code fragment shows the methods that need to be used in order to write a
publisher using the above API.

int
main (int argc, char *argv[])
{
 //Input parameters for publisher
 int entity_id = atoi (argv[1]);
 char *service_config_path
=/test/abc/ServiceConfiguration.txt";
 char *host_name = "gf6.ucs.indiana.edu";
 int port_num = 3075;
 char *transport = "niotcp";
 char *topic = "/publish/mytopic";
 ServiceClient sClient;

 //Initialize the service_client
 if (!sClient.
 init (entity_id, service_config_path, host_name, port_num,
 transport))
 {
 cout << "Error:Initialization Failed \n";
 }

 //Publish a given set of bytes.
 char *buffer=”This is my test message”;
 if (!sClient.publish (topic, buffer))
 {
 cout << "Error:Publishing Failed \n";
 }

 return 0;
}

THE NARADABROKERING USER’S GUIDE The NaradaBrokering C++ Bridge

105/117

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

106/117

14 Appendix A: Working with the codebase in
IDEs

14.1 Incorporating the NaradaBrokering Codebase into Eclipse

In this section of the user’s guide we describe how to import the NaradaBrokering codebase
into the Eclipse IDE. The version of eclipse platform that we use for our descriptions is 3.2.
There may be minor differences to the steps if your version of eclipse is different. However,
we expect that the overall process will be similar.

14.1.1 Download NaradaBrokering and the Necessary Jars

Download NaradaBrokering from www.naradabrokering.org and extract the zip file to a
separate directory. The NaradaBrokering zip file contains all the necessary jar files (except
jms.jar and jmf.jar) in its lib directory. Follow instructions in section 1 to retrieve these
files.

14.1.2 Creating New Project Using Eclipse

Start the Eclipse programand select File-> New-> Project as shown below [Figure 41].

Figure 41: Creating new project using eclipse.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

107/117

The next step is to select the type of the project you need. Select Java Project and press
Next as shown in the following screenshot [Figure 42].

Figure 42: Selecting Java Project as the project type.

In the next window [Figure 43] you can specify the name of the project and the location of
the project to be created. For the project location, please select the option “Create project
from existing source”. Since you have already unzipped the NaradaBrokering source code
into a directory, you can select that directory using the Browse.. button.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

108/117

Figure 43: Specifying project name and location.

Once you specify the name and the location of the project please press Next and you will
be prompted with the following screen [Figure 44].

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

109/117

Figure 44: Source directory and output directory of the project.

By this time you will see that the Eclipse IDE has already identified the source directory, the
libraries and the output directory for the project. Before finishing the project creation, there
is one more step you should perform.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

110/117

Select the Libraries tab and remove the NaradaBrokering.jar from the project. (Since you
have already mounted the NaradaBrokering codebase the classes that you compile will be
newer than the classes available in this jar file.) This step is shown in the following diagram
[Figure 45].

Figure 45: Removing NaradaBrokering.jar from the project references.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

111/117

After this please press Finish button to end the project creation step. Once this is done, you
will see that NaradaBrokering codebase is correctly imported into the Eclipse IDE as shown
below [Figure 46].

Figure 46: After importing NaradaBrokering to eclipse.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

112/117

14.1.3 Use NaradaBrokering in Your Project

This section of the user’s guide will describe how to use features of NaradaBrokering in your
project with the Eclipse IDE. Here we assume that you already have an eclipse project to
which you need to add features of Naradabrokering. We also assumed that you have
downloaded the latest version of NaradaBrokering and unzipped the content to some
directory in your machine.

The only step required to use NaradaBrokering in your project is to add the necessary jar
files to the project. Please select Project->Properties from the main menu of Eclipse as
shown below [Figure 47].

Figure 47: Selecting project->properties.

Once you click the properties menu option, you will see the following window [Figure 48].
Please select the Libraries tab of that window.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

113/117

Figure 48: Adding jar files using project configuration panel.

You can use this window to add NaradaBrokering specific jar files to your project. Please
select Add External Jars.. button to browse and select jar files. Locate the lib directory of
NaradaBrokering distribution. Select all the files in this directory as shown below [Figure
49].

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

114/117

Figure 49: Selecting all the jar files in “lib” directory.

Press Open to add all the jar files to the project. Now you will see that your project contains
references to those jars that you have selected [Error! Reference source not found.].

14.2 Importing the codebase into JBuilder
First update the JDK used in JBuilder to point to the appropriate JDK (see the requirements
section 1.1.1). To do this, go to Tools| Configure JDKs. Then select New. You can now specify
your JAVA_HOME.

Next start a new project using File|New Project and also specifying the directory in the Project
Wizard to point to the %NB_HOME% variable. Next, in your project paths you have to
make sure that you select the new JDK. Exit the wizard.

Create a src directory in your project home directory and move the cgl directory in the
NaradaBrokering's distribution to the src directory. Now, if you select Project|Refresh, you
can see all the packages in the left pane of JBuilder.

THE NARADABROKERING USER’S GUIDE APPENDIX A: NaradaBrokering & IDEs

115/117

Create NaradaBrokering libraries for your JBuilder project. Select Tool|Configure Library|New.
Click Add. Select all the “.jar” files from the lib directory in NaradaBrokering distribution and
click OK. Then give a name to the new library, e.g., NaradaBrLib. Then click OK to finish.

Add Narada Library to you project. Select Project|Project Properties. Then select the Required
Libraries tab. Then click “Add”. Select the NaradaBrLib you just created and click “OK”, the
library will be added to your project. Now, select Project|Rebuild Project. You should compile
the project successfully.

To run the test program, you need to add them to your run configuration and also add the
Application Parameters.

THE NARADABROKERING USER’S GUIDE APPENDIX B

116/117

15 Appendix B: The Broker Configuration File

#This is the Non Blocking TCP port to which the broker listens for
connections.
NIOTCPBrokerPort=3045

#This is the TCP port to which the broker listens for connections.
TCPBrokerPort=5045

#This is the UDP port to which the broker listens for connections. It is
a good idea to have this port number be #identical to the TCP port.
#The UDP communication is used specifically for transient events, since
#there are no error corrections for UDP based communication.
UDPBrokerPort=3045

MulticastGroupHost=224.224.224.224
MulticastGroupPort=4045

#This is the Non Blocking Thread pool TCP port to which the broker
listens for
#connections.
PoolTCPBrokerPort=6045

#This specifies the limit on concurrent connections. Base it on the
#capabilities of the machine hosting the broker.This is also used by the
#broker locator to determine the best available broker.
ConcurrentConnectionLimit=3000

#If this is a stand alone node, this should be "true". If this broker
#node is intended to be the first node within a #distributed setting
#this should be "true". If this node is to receive its address
#from another broker, this should be "false".
AssignedAddress=true

This gives the Geographical / Institutional info about this broker
AboutThisBroker=CGL, Indiana University, Bloomington, IN, U.S.A.

Comma seperated list of publicly known BDNs (listed in preference
Order)
BDNList=http://www.idonotexist.com,
#http://trex.ucs.indiana.edu:8080/BDN/servlet/BDN,
#http://www.gridserlocator.org/
BDNList=http://trex.ucs.indiana.edu:8080/BDN/servlet/BDN

THE NARADABROKERING USER’S GUIDE APPENDIX B

117/117

BDNList=

Broker Discovery Request Response Policy
DiscoveryResponsePolicy=cgl.narada.discovery.broker.
DefaultBrokerDiscoveryRequestResponsePolicy

A String (or UUID) referring to the private broker network ID to which
this broker belongs
This value if missing OR * => this is a public broker
VirtualBrokerNetwork=network-CGL-1
VirtualBrokerNetwork=*

Maximum number of requests to store
MAXBrokerDiscoRequests=1000

